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Abstract. Let F be a codimension-one, C2-foliation on a manifold M
without boundary. In this work we show that if the Godbillon–Vey class

GV (F) ∈ H3(M) is non-zero, then F has a hyperbolic resilient leaf. Our
approach is based on methods of C1-dynamical systems, and does not use the
classification theory of C2-foliations. We first prove that for a codimension-
one C1-foliation with non-trivial Godbillon measure, the set of infinitesimally

expanding points E(F) has positive Lebesgue measure. We then prove that if
E(F) has positive measure for a C1-foliation, then F must have a hyperbolic
resilient leaf, and hence its geometric entropy must be positive. The proof of
this uses a pseudogroup version of the Pliss Lemma. The first statement then

follows, as a C2-foliation with non-zero Godbillon–Vey class has non-trivial
Godbillon measure. These results apply for both the case when M is compact,
and when M is an open manifold.

1. Introduction.

Godbillon and Vey introduced the invariant GV (F) ∈ H3(M ;R), which is defined

for a codimension-one C2-foliation F of a manifold M without boundary, in the brief

note [26]. While the definition of the Godbillon–Vey class is elementary, understanding

its relations to the geometric and dynamical properties of the foliation F remains an open

problem. In the paper [72], Thurston showed that the Godbillon–Vey class can assume a

continuous range of values for foliations of closed 3-manifolds, and he also introduced the

concept of “helical wobble”, which he suggested gives a relation between the value of this

class and the Riemannian geometry of the foliation. This geometric relation was made

precise in a work by Reinhart and Wood [68]. More recently, Langevin and Walczak in

[52], [76], [77] gave further insights into the geometric meaning of the Godbillon–Vey

invariant for smooth foliations of closed 3-manifolds, in terms of the conformal geometry

of the leaves of the foliation.

The Godbillon–Vey class appears in a surprising variety of contexts, such as the

Connes–Moscovici work on the cyclic cohomology of Hopf algebras [13], [15], [14] which

interprets the class in non-commutative geometry setting. The works of Leichtnam and

Piazza [54] and Moriyoshi and Natsume [58] gave interpretations of the value of the

Godbillon–Vey class in terms of the spectral flow of leafwise Dirac operators for smooth

foliations.

The problem considered in this work was first posed in papers of Moussu and Pelletier

[59] and Sullivan [71], where they conjectured that a codimension-one foliation F with
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GV (F) ̸= 0 must have leaves of exponential growth. The support for this conjecture

at that time was principally a collection of examples, and some developing intuition for

the dynamical properties of foliations. The geometry of the helical wobble phenomenon

is related to geometric properties of contact flows, such as for the geodesic flow of a

compact surface with negative curvature. The weak stable foliations for such flows have

all leaves of exponential growth, and often have non-zero Godbillon–Vey classes [72],

[62], [68], [41], [27]. Moreover, the work of Thurston in [72] implies that for any positive

real number α there exist a C2-foliation of codimension-one on a compact oriented 3-

manifold, whose Godbillon–Vey class is α times the top dimension integral cohomology

class. These various results suggest that a geometric interpretation of GV (F) might be

related to dynamical invariants such as “entropy”, whose values are not limited to a

discrete subset of R.
Given a choice of a complete, relatively compact, 1-dimensional transversal X ⊂M

to F , the transverse parallel transport along paths in the leaves defines local homeomor-

phisms of X, which yields a 1-dimensional pseudogroup GF as recalled in Section 2.2. The

study of the properties of foliation pseudogroups has been a central theme of foliation

theory since the works of Reeb and Haefliger in the 1950’s [66], [67], [28], [29].

The geometric entropy h(F) of a C1-foliation F was introduced by Ghys, Langevin

and Walczak [24], and can be formulated in terms of the pseudogroup GF associated

to the foliation. The geometric entropy is a measure of the dynamical complexity of

the action of GF on X, and is one of the most important dynamical invariants of C1-

foliations. The Godbillon–Vey class GV (F) vanishes for all the known examples of

foliations for which h(F) = 0, and the problem was posed to relate the non-vanishing of

the geometric entropy h(F) of a codimension-one C2-foliation F with the non-vanishing

of its Godbillon–Vey class.

Duminy showed in the unpublished papers [18], [19] that for a C2-foliation of codi-

mension one, GV (F) ̸= 0 implies there are leaves of exponential growth. (See the account

of Duminy’s results in Cantwell and Conlon [12], and [10, Theorem 13.3.1].) Duminy’s

proof began by assuming that a C2-foliation F has no resilient leaves, or equivalently

resilient orbits for GF as in Definition 2.3. Then by the Poincaré–Bendixson theory for

codimension-one, C2-foliations [12], [33], Duminy showed that the Godbillon–Vey class

of F must vanish. Thus, if GV (F) ̸= 0 then F must have at least one resilient leaf. If

a codimension-one foliation has a resilient leaf, then by an easy argument it follows that

F has an uncountable set of leaves with exponential growth. Duminy’s proof is “non-

constructive”, as it does not show explicitly how a non-trivial value of the Godbillon–Vey

class results in resilient leaves for the foliation. One of the points of this present work is

to give a direct demonstration of this relation, which we show using techniques of ergodic

theory for C1-foliations.

In the work [24], Theorem 6.1 states that for a codimension-one, C2-foliation F ,

if h(F) ̸= 0 then F must have a resilient leaf. Candel and Conlon gave a proof of this

result in [9, Theorem 13.5.3] for the special case where the foliation is the suspension of a

group action on a circle, but were unable to extend the proof to the general case asserted

in [24]. One concludes that for a C2-foliation F , if the geometric entropy h(F) = 0,

then F has no resilient leaves and thus GV (F) = 0. The proof that GV (F) ̸= 0 implies

h(F) > 0 given in this work, circumvents these difficulties.
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The evolution of vanishing theorems for the Godbillon–Vey invariant, starting with

Hermann [37] and progressing up to Duminy’s work [18], [19], is discussed in detail in

the survey [44]. The technique that is used in all of these works was to use dynam-

ical hypotheses on the foliation to obtain upper bound estimates on the norm of the

Godbillon–Vey invariant, defined using smooth forms associated to the foliation. The

paper [36] extended these techniques, by making the relation between the value of the

Godbillon–Vey invariant and measurable forms explicit. This relationship made it pos-

sible to develop more direct relations between the ergodic theory of foliations with the

values of their secondary classes in all codimensions. A key idea introduced in [38], [39],

was to use techniques from the Oseledets theory of cocycles to study the relation between

foliation dynamics and the values of the secondary classes of foliations.

In this paper, we further develop the ergodic theory of C1-foliations, in order to

show that for a C2-foliation F , the assumption GV (F) ̸= 0 implies that the foliation

F has resilient leaves, and thus h(F) ̸= 0. An important aspect of our proof, is that

the subtle techniques of the Poincaré–Bendixson theory of C2-foliations are avoided, and

the conclusion that there exists resilient leaves follows from straightforward techniques

of dynamical systems.

The work of Duminy [18] reformulated the study of the Godbillon–Vey class for

C2-foliations in terms of the Godbillon measure GF , which for a C1-foliation F of a

compact manifold M , is a linear functional defined on the Borel σ-algebra B(F) formed

from the leaf-saturated Borel subsets of M , and by extension this measure is defined on

the saturated measurable subsets of M . These ideas are introduced and discussed in the

papers [12], [18], [19], [36], [38], [39], and recalled in Section 3 below. Here is our main

result, as formulated in these terms:

Theorem 1.1. If F is a codimension-one, C1-foliation with non-trivial Godbillon

measure GF , then F has a hyperbolic resilient leaf.

In the course of our proof of this result, resilient orbits of the action of the pseu-

dogroup GF are explicitly constructed using a version of the Ping-Pong Lemma, first

introduced by Klein in his study of subgroups of Kleinian groups [16], and which is

discussed in Section 2.4.

For C2-foliations, Theorem 4.4 below implies that the Godbillon–Vey class is ob-

tained by evaluating the Godbillon measure on the “Vey class” [v(F)] localized to the

hyperbolic set E+(F) ∈ B(F) introduced in Definition 4.3. Only the definition of the lo-

calized class [v(F)]|E+(F) requires that F be C2. Thus, for a C2-foliation F , GV (F) ̸= 0

implies that GF ̸= 0, and we deduce:

Corollary 1.2. If F is a codimension-one, C2-foliation with non-trivial

Godbillon–Vey class GV (F) ∈ H3(M ;R), then F has a hyperbolic resilient leaf, and

thus the entropy h(F) > 0.

We next discuss the strategy of the proof of Theorem 1.1. A key idea in dynamical

systems of flows is to consider the points for which the dynamics is “infinitesimally

exponentially expansive” over long orbit segments, which corresponds to points with

positive Lyapunov exponent [2], [5], [61]. The analog for pseudogroup dynamics is to
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introduce the set of points in the transversal X for which there are arbitrarily long words

in GF for which the norm of their transverse derivative matrix is exponentially growing

with respect to the word norm on the pseudogroup.

We introduce in Section 4, the F-saturated set E+(F) of points in M where the

transverse derivative cocycle for F has positive exponent. A point x ∈ E+(F)∩X if and

only if there is a sequence of holonomy maps such that the norms of their derivatives at

x grow exponentially fast as a function of “word length” in the foliation pseudogroup,

and E+(F) is the leaf saturation of this set.

The set E+(F) is a fundamental construction for a C1-foliation. For example, a key

step in the proof of the generalized Moussu–Pelletier–Sullivan conjecture in [38] was to

show that for a foliation F with almost all leaves of subexponential growth, the Lebesgue

measure |E+(F)| = 0. Here, we show in Theorem 4.4 that if a measurable, F-saturated

subset B ⊂M is disjoint from E+(F), then the Godbillon measure must vanish on B.

The second step in the proof of Theorem 1.1 is to show that for each point x ∈
E+(F), the holonomy of F has a uniform exponential estimate along the orbit of x for

its transverse expansion along arbitrarily long words in the holonomy pseudogroup. This

follows from Proposition 5.3, which is pseudogroup version of what is called the “Pliss

Lemma” in the literature for non-uniform dynamics [64], [55], [5]. If E+(F) has positive

measure, it is then straightforward to construct resilient orbits for the action of GF on

X , as done in the proof of Proposition 6.4. The proof of Theorem 1.1 then follows by

combining Theorem 4.4, Proposition 5.8 and Proposition 6.4.

The proofs of Propositions 5.3 and 5.8 are the most technical aspects of this paper.

One important issue that arises in the study of pseudogroup dynamical systems, is that

the domain of a holonomy map in the pseudogroup may depend upon the “length” of

the leafwise path used to define it, so that composing maps in the pseudogroup often

results in a contraction of the domain of definition for the resulting map. This is a key

difference between the study of dynamics of a group acting on the circle, and that of a

pseudogroup associated to a general codimension-one foliation. One of the key steps in

the proof of Proposition 5.8 is to show uniform estimates on the length of the domains

of compositions. The proof uses these estimates to produce an abundance of holonomy

pseudogroup maps with hyperbolic fixed-points.

We point out one application of Proposition 5.8, which complements the main result

of [42].

Theorem 1.3. Let F be a C1-foliation of codimension-one such that no leaf of F
has a closed loop with hyperbolic transverse holonomy, then the hyperbolic set E+(F) is

empty.

Finally, the extension of the methods for closed manifolds to the case of open man-

ifolds requires only a minor modification in the definition of the Godbillon measure, as

discussed in Section 7.

For codimension-one foliations, it is elementary that the existence of a resilient leaf

implies h(F) > 0. The converse, that h(F) > 0 implies there is a resilient leaf, was

proved in [24] for C2-foliations, and proved in [43] for C1-foliations. Let “HRL(F)”

denote the property that F has a hyperbolic resilient leaf. Let |E| denote the Lebesgue
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measure of a measurable subset E ⊂ M . The results of this paper are summarized by

the following implications:

Theorem 1.4. Let F be a codimension-one, C1-foliation of a manifold M . Then

gF ̸= 0 =⇒ |E+(F)| > 0 =⇒ “HRL(F)” ⇐⇒ h(F) > 0. (1)

2. Foliation basics.

In this section, we introduce some standard notions and results of foliation geometry

and dynamics. Complete details and further discussions are provided by the texts [8],

[9], [25], [34], [75].

We assume that M is a closed oriented smooth Riemannian m-manifold, F is a Cr-

foliation of codimension-1 with oriented normal bundle, for r ≥ 1, and that the leaves of

F are smoothly immersed submanifolds of dimension n ≥ 2, where m = n + 1. This is

sometimes referred to as a C∞,r-foliation, where the holonomy transition maps are Cr,

typically for either r = 1 or r = 2.

2.1. Regular foliation atlas.

A C∞,r-foliation atlas on M , for r ≥ 1, is a finite collection {(Uα, ϕα) | α ∈ A} such

that:

1. U = {Uα | α ∈ A} is an open covering of M .

2. ϕα : Uα → (−1, 1)m is a C∞,r-coordinate chart; that is, for (u,w) ∈ (−1, 1)n ×
(−1, 1), the map ϕ−1

α (u,w) is C∞ in the “leaf” variable u, and together with all

the leafwise derivatives with respect to u, it is Cr in the “transverse” variable w.

3. Each chart ϕα is transversally oriented.

4. Given x ∈ Uα ∩ Uβ with ϕα(x) = (u,w), for the change-of-coordinates map

(u′, w′) = ϕβ ◦ ϕ−1
α (u,w), the value of w′ is locally constant with respect to u.

The collection of sets

VF ≡
{
Vα,w = ϕ−1

α (V × {w}) | V ⊂ (−1, 1)n, w ∈ (−1, 1), α ∈ A
}

form a subbasis for the “fine topology” on M . For x ∈ M , let Lx ⊂ M denote the

connected component of this fine topology containing x. Then Lx is path connected,

and is called the leaf of F containing x. Without loss of generality, we can assume that

the coordinates are positively oriented, mapping the positive orientation for the normal

bundle to TF to the positive orientation on (−1, 1).

Note that each leaf L is a smooth, injectively immersed manifold in M . The Rie-

mannian metric on TM restricts to a smooth metric on each leaf. The path-length metric

dF on a leaf L is defined by

dF (x, y) = inf
{
∥γ∥ | γ : [0, 1] → L is C1, γ(0) = x, γ(1) = y

}
,

where ∥γ∥ denotes the path length of the C1-curve γ(t). If x, y ∈M are not on the same

leaf, then set dF (x, y) = ∞. It was noted by Plante [63] that for each x ∈ M , the leaf
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Lx containing the point x, with the induced Riemannian metric from TM is a complete

Riemannian manifold with bounded geometry, that depends continuously on x. In partic-

ular, bounded geometry implies that for each x ∈M , there is a leafwise exponential map

expFx : TxF → Lx which is a surjection, and the composition ι ◦ expFx : TxF → Lx ⊂ M

depends continuously on x in the compact-open topology.

We next recall the notion of a regular covering, or what is sometimes called a nice

covering in the literature (see [9, Chapter 1.2], or [34].) For a regular foliation covering,

the intersections of the coverings of leaves by the plaques of the charts have nice metric

properties. We first recall a standard fact from Riemannian geometry, as it applies to

the leaves of F .

For each x ∈M and r > 0, let BF (x, r) = {y ∈ Lx | dF (x, y) ≤ r} denote the closed

ball of radius r in the leaf containing x. The Gauss Lemma implies that there exists

λx > 0 such that BF (x, λx) is a strongly convex subset for the metric dF . That is, for

any pair of points y, y′ ∈ BF (x, λx) there is a unique shortest geodesic segment in Lx

joining y and y′ and it is contained in BF (x, λx) (cf. [3], [17, Chapter 3, Proposition 4.2]).

Then for all 0 < λ < λx, the disk BF (x, λ) is also strongly convex. The compactness of

M and the continuous dependence of the Christoffel symbols for a Riemannian metric in

the C2-topology on sections of bundles over M yields:

Lemma 2.1. There exists λF > 0 such that for all x ∈ M , BF (x, λF ) is strongly

convex.

If F is defined by a flow without periodic points, so that every leaf is diffeomorphic

to R, then the entire leaf is strongly convex, so λF > 0 can be chosen arbitrarily. For a

foliation with leaves of dimension n > 1, the constant λF must be less than the injectivity

radius for each of the leaves.

Let dM : M ×M → [0,∞) denote the path-length metric on M . For x ∈ M and

ϵ > 0, let BM (x, ϵ) = {y ∈ M | dM (x, y) < ϵ} be the open ball of radius ϵ about x, and

let BM (x, ϵ) = {y ∈ M | dM (x, y) ≤ ϵ} denote its closure. Then as above, there exists

λM > 0 such that BM (x, λ) is a strongly convex ball in M for all 0 < λ ≤ λM .

We use these estimates on the local geometry ofM and the leaves of F to construct a

refinement of the given covering of M by foliations charts, which have uniform regularity

properties.

Let ϵU > 0 be a Lebesgue number for the given covering U of M .

Then for each x ∈ M , there exists αx ∈ A be such that x ∈ BM (x, ϵU ) ⊂ Uαx
. It

follows that for each x ∈M , there exists 0 < δx ≤ λF such that BF (x, δx) ⊂ BM (x, ϵU ).

Let (ux, wx) = ϕα(x), and note that ϕα(BF (x, δx)) ⊂ (−1, 1)n × {wx}. Then there

exists ϵx > 0 so that for each w ∈ (wx − ϵx, wx + ϵx) and xw = ϕ−1
α (ux, w) we have

BF (xw, δx) ⊂ BM (x, ϵU ) ⊂ Uαx is a leafwise convex subset. Define Ux and Ũx to be

unions of leafwise strongly convex disks,

Ux =
∪

w∈(wx−ϵx/2,wx+ϵx/2)

BF (xw, δx/2); Ũx =
∪

w∈(wx−ϵx,wx+ϵx)

BF (xw, δx) (2)

so then Ux ⊂ Ũx ⊂ BM (x, ϵU ) ⊂ Uαx . The restriction ϕαx : Ũx → (−1, 1)n+1 is then a

foliation chart, though the image is not onto.
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Note that for each x′ ∈ ϕ−1
αx

(wx − ϵx, wx + ϵx), the chart ϕαx defines a framing of

the tangent bundle Tx′Lx′ and this framing depends Cr on the parameter x′, so we can

then use the Gram–Schmidt process to obtain a Cr-family of orthonormal frames as well.

Then using the inverse of the leafwise exponential map and affine rescaling, we obtain

foliation charts

φ̃αx : Ũx → (−δx, δx)n × (wx − ϵx, wx + ϵx) ∼= (−2, 2)n × (−2, 2),

φαx : Ux → (−δx/2, δx/2)n × (wx − ϵx/2, wx + ϵx/2) ∼= (−1, 1)n × (−1, 1)

where φαx is the restriction of φ̃αx . Observe that φ̃αx(x) = (⃗0, 0) ∈ (−1, 1)n × (−1, 1)

for each x.

The collection of open sets {Ux | x ∈M} forms an open cover of the compact space

M , so there exists a finite subcover “centered” at the points {x1, . . . , xν} ⊂M . Set

δFU = min{δx1/2, . . . , δxν/2} ≤ λF/2. (3)

This covering by foliation coordinate charts will be fixed and used throughout. To sim-

plify notation, for 1 ≤ α ≤ ν, set Uα = Uxα , Ũα = Ũxα , φα = φxα , φ̃α = φ̃xα , and

U = {U1, . . . , Uν}.
The resulting collection {φα : Uα → (−1, 1)n × (−1, 1) | 1 ≤ α ≤ ν} is a regular

covering of M by foliation charts, in the sense used in [9, Chapter 1.2] or [34].

For each 1 ≤ α ≤ ν, define Tα ≡ (−1, 1) ∼= {⃗0} × (−1, 1) and T̃α ≡ (−2, 2) ∼=
{⃗0} × (−2, 2). The extended chart φ̃α defines Cr-embeddings

τα : Tα → Uα, τ̃α : T̃α → Ũα. (4)

Let Xα = τα(Tα) and X̃α = τ̃α(T̃α) denote the images of these maps. For n ≥ 3, we

can assume without loss of generality that the submanifolds X̃α and X̃β are disjoint, for

α ̸= β.

Consider Tα and Tβ as disjoint spaces for α ̸= β, and similarly for T̃α and T̃β .
Introduce the disjoint unions of these spaces, as denoted by

T =
∪

1≤α≤ν

Tα ⊂ T̃ =
∪

1≤α≤ν

T̃α, (5)

X =
∪

1≤α≤ν

Xα ⊂ X̃ =
∪

1≤α≤ν

X̃α. (6)

Note that X is a complete transversal for F , as the submanifold X is transverse to the

leaves of F , and every leaf of F intersects X. The same is true for X̃.

Let τ : T → X ⊂M denote the map defined by the coordinate chart embeddings τα,

and similarly define τ̃ : T̃ → X̃ ⊂M using the maps τ̃α.

Let each T̃α have the metric dT induced from the Euclidean metric on R, where
dT (x, y) = |x− y| for x, y ∈ T̃α. Extend this to a metric on T by setting dT (x, y) = ∞
for x ∈ T̃α, y ∈ T̃β with α ̸= β.

Let each X̃α have the Riemannian metric induced from the Riemannian metric on

M , and let dX denote the resulting path-length metric on Xα. As before, extend this to
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a metric on X by setting dX(x, y) = ∞ for x ∈ X̃α, y ∈ X̃β with α ̸= β.

Given r > 0 and x ∈ X̃α let BX̃(x, r) = {y ∈ X̃α | dX(x, y) < r}. Introduce a

notation which will be convenient for later work. Given a point x ∈ X̃α and δ1, δ2 > 0,

let

[x− δ1, x+ δ2] ⊂ X̃α

be the connected closed subset bounded below by the point x−δ1 satisfying by dX(x, x−
δ1) = δ1 and [x− δ1, x] is an oriented interval in Xα. The set [x− δ1, x+ δ2] is bounded

above by the point x+ δ2 satisfying by dX(x, x+ δ2) = δ2 and [x, x+ δ1] is an oriented

interval in Xα.

For each 1 ≤ α ≤ ν, let πα ≡ πt ◦φα : Uα → Tα be the composition of the coordinate

map φα with the projection πt : Rn+1 = Rn × R → R. For each w ∈ Tα, the preimage

Pα(w) = π−1
α (w) ⊂ Uα

is called a plaque of the chart φα. Then the plaques for the foliation atlas are indexed

by the set T .

For x ∈ Uα, by a small abuse of notation, we use Pα(x) to denote the plaque of the

chart φα containing x. Note that Pα(x) is the connected component of the intersection

of the leaf Lx of F through x with the set Uα.

The maps π̃α ≡ πt ◦ φ̃α : Ũα → T̃α are defined analogously, with corresponding

plaques P̃α(w). Again, by an abuse of notation, for x ∈ Ũα let P̃α(x) ⊂ Ũα denote the

plaque of the chart φ̃α containing x.

Note that each plaque Pα(x) is strongly convex in the leafwise metric, so if the

intersection of two plaques {Pα(x),Pβ(y)} is non-empty, then it is a strongly convex

subset. In particular, the intersection Pα(x) ∩ Pβ(y) is connected. Thus, each plaque

Pα(x) intersects either zero or one plaque in Uβ . The same observations are also true for

the extended plaques P̃α(x).

2.2. Holonomy pseudogroup GF .

A pair of indices (α, β) is admissible if Uα ∩Uβ ̸= ∅. For each admissible pair (α, β)

define

Tαβ = {x ∈ Tα such that Pα(x) ∩ Uβ ̸= ∅}, (7)

T̃αβ = {x ∈ T̃α such that P̃α(x) ∩ Ũβ ̸= ∅}. (8)

Then there is a well-defined transition function hβ,α : Tαβ → Tβα, which for x ∈ Tαβ is

given by

hβ,α(x) = y where Pα(x) ∩ Pβ(y) ̸= ∅.

Note that hα,α : Tα → Tα is the identity map for each α ∈ A.

The holonomy pseudogroup GF associated to the regular foliation atlas for F is the

pseudogroup with object space T , and transformations generated by compositions of the

local transformations {hβ,α | (α, β) admissible}. The C∞,r-hypothesis on the coordinate
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charts implies that each map hβ,α is Cr. Moreover, the hypothesis (2) on regular foli-

ation charts implies that each hβα admits an extension to a Cr-map h̃β,α : T̃αβ → T̃αβ
defined in a similar fashion. The number of admissible pairs is finite, so there exists a

uniform estimate on the sizes of the domains of these extensions. We note the following

consequence of these observations.

Lemma 2.2. There exists ϵ0 > 0 so that for (α, β) admissible and x ∈ Tαβ, then
[x− ϵ0, x+ ϵ0] ⊂ T̃αβ. That is, if x ∈ Tα is in the domain of hβ,α then [x− ϵ0, x+ ϵ0] is

in the domain of h̃β,α.

For 0 < δ < ϵ0 we introduce the closed subsets of T̃

T [δ] = {y ∈ T̃ | ∃ x ∈ T ,dT (x, y) ≤ δ}, (9)

Tαβ [δ] = {y ∈ T̃αβ | ∃ x ∈ T αβ ,dT (x, y) ≤ δ}. (10)

Thus, the maps hβ,α are uniformly Cr on Tαβ [δ] for δ < ϵ0.

Composition of elements in GF will be defined via “plaque chains”. Given x, y ∈ T
corresponding to points on the same leaf, a plaque chain P of length k between x and y

is a collection of plaques

P = {Pα0(x0), . . . ,Pαk
(xk)},

where x0 = x, xk = y and for each 0 ≤ i < k we have Pαi
(xi) ∩ Pαi+1

(xi+1) ̸= ∅. We

write ∥P∥ = k.

A plaque chain P also defines an “extended” plaque chain for the charts {(Ũα, ϕ̃α)},

P̃ = {P̃α1
(x0), . . . , P̃αk

(xk)}.

We say two plaque chains

P = {Pα0(x0), . . . ,Pαk
(xk)} and Q = {Pβ0(y0), . . . ,Pβℓ

(yℓ)}

are composable if xk = y0, hence αk = β0 and Pαk
(xk) = Pβ0(y0). Their composition is

defined by

Q ◦ P = {Pα0
(x0), . . . ,Pαk

(xk),Pβ1
(y1), . . . ,Pβℓ

(yℓ)}.

The holonomy transformation defined by a plaque chain is the local diffeomorphism

hP = hαkαk−1
◦ · · · ◦ hα1α0

whose domain DP ⊂ Tα0 contains x0. Note that DP is the largest connected open subset

of Tα0 containing x0 on which hαℓαℓ−1
◦ · · · ◦ hα1α0 is defined for all 0 < ℓ ≤ k. The

dependence of the domain of hP on the plaque chain P is a subtle issue, yet is at the

heart of the technical difficulties arising in the study of foliation pseudogroups.

Let h̃P̃ be the holonomy associated to the chain P̃, with domain D̃P̃ ⊂ T̃α0 the

largest maximal open subset containing x0 on which h̃αℓαℓ−1
◦ · · · ◦ h̃α1α0 is defined for
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all 1 < ℓ ≤ k. By the extension property of a regular atlas, the closure DP ⊂ D̃P̃ and

h̃P̃ is an extension of hP .

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} and a point y ∈ DP , there is a

“parallel” plaque chain denoted P(y) = {Pα0(y), . . . ,Pαk
(yk)} where hP(y) = yk.

For x ∈ T , let

GF (x) = {y = hP(x) ∈ T | P a plaque chain for which x ∈ DP}

denote the orbit of x under the action of the pseudogroup. If Lξ ⊂ M denotes the leaf

containing ξ ∈ Uα with πα(ξ) = x ∈ Tα, then τ(GF (x)) = Lξ ∩ X.

2.3. The derivative cocycle.

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} from x = x0 to y = xk, the

derivative h′
P(x) is defined using the identifications Tα = (−1, 1) for 1 ≤ α ≤ ν. Note

that the assumption that the foliation charts are transversally orientation preserving

implies that h′
P(x) > 0 for all plaque chains P and x ∈ DP .

Given composable plaque chains P and Q, with x = x0, y = xk = y0, z = yℓ the

chain rule implies

h′
Q◦P(x) = h′

Q(y) · h
′
P(x). (11)

Define the map Dh : GF → R by Dh(P, y) = h′
P(y)(y), which is called the derivative

cocycle for the foliation pseudogroup GF acting on T . The function ln{Dh(P, y)} : GF →
R is the additive derivative cocycle, or sometimes the modular cocycle for GF .

2.4. Resilient leaves and ping-pong games.

A plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} is closed if x0 = xk. A closed plaque

chain P defines a local diffeomorphism hP : DP → Tα0 with hP(x) = x, where x = x0 ∈
Tα0 .

A point y ∈ DP is said to be asymptotic by iterates of hP to x, if hℓ
P(y) ∈ DP for all

ℓ > 0 (where hℓ
P denotes the composition of hP with itself ℓ times), and limℓ→∞ hℓ

P(y) =

x.

The map hP is said to be a contraction at x if there is some δ > 0 so that every

y ∈ BT (x, δ) is asymptotic to x. The map hP is said to be a hyperbolic contraction at

x if 0 < h′
P(x) < 1. In this case, there exists ϵ > 0 and 0 < λ < 1 so that h′

P(y) < λ

for all y ∈ BT (x, ϵ). Hence, every point of BT (x, ϵ) is asymptotic to x, and there exists

0 < δ < ϵ so that the image of the closed δ-ball about x satisfies

hP(BT (x, δ)) ⊂ BT (x, δ).

Definition 2.3. We say x ∈ T is a hyperbolic resilient point for GF if there exists

1. a closed plaque chain P such that hP is a hyperbolic contraction at x = x0,

2. a point y ∈ DP which is asymptotic to x (and y ̸= x),

3. a plaque chain R from x to y.
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The “ping-pong lemma” is a key technique for the study of 1-dimensional dynamics,

which was used by Klein in his study of subgroups of Kleinian groups [16]. For a

pseudogroup, this has the form:

Definition 2.4. The action of the groupoid GF on T has a “ping-pong game” if

there exists x, y ∈ Tα with x ̸= y and

1. a closed plaque chain P such that hP is a contraction at x = x0,

2. a closed plaque chain Q such that hQ is a contraction at y = y0,

3. y ∈ DP is asymptotic to x by hP and x ∈ DQ is asymptotic to y by hQ.

We say that the ping-pong game is hyperbolic if the maps hP and hQ are hyperbolic

contractions.

These two notions are closely related as follows; for example, see [24] for a more

detailed discussion.

Proposition 2.5. GF has a “ping-pong game” if and only if it has a resilient

point, and has a “hyperbolic ping-pong game” if and only if it has a hyperbolic resilient

point.

3. The Godbillon–Vey invariant.

We first recall the definition of the Godbillon–Vey class for C2-foliations in Sec-

tion 3.1. We then discuss the Godbillon operator in Section 3.2, as introduced in [18]

and [36]. In Section 3.4, we introduce the Godbillon measure, and discuss its calculation

using distributional differentials of leafwise forms. This technique was introduced in [36],

and is a key point for the estimates of the values of the Godbillon–Vey invariants in terms

of dynamical properties of the foliation. In particular, Proposition 3.5 is the key result

used to relate the Godbillon–Vey invariant to foliation dynamics. These concepts are

also discussed in detail by Candel and Conlon in [10, Chapter 7].

The Godbillon–Vey class is well-defined for C2-foliations, and the Godbillon measure

for C1-foliations. However, giving these definitions for Cr-foliations adds a layer of

notational complexity which obscures the basic ideas of the constructions. Thus, for

clarity of the exposition, we assume in the following Section 3.1 that F is a C∞-foliation,

and leave to the reader the required technical modifications to show the analogous results

for Cr-foliations, for r = 1 or 2. Alternately, consult the works [18], [36], [38] for further

details in these cases.

3.1. The Godbillon–Vey class.

Assume that M has a Riemannian metric, and that F is a C∞-foliation of codimen-

sion one. The normal bundle Q→M to TF is then identified with the orthogonal space

to the tangential distribution TF . We may assume without loss of generality that M is

connected, and that both the tangent bundle TM and the normal bundle Q are oriented,

as the dynamical properties of foliations that we will be considering are preserved by

passing to finite coverings ofM . We may thus assume that TF is defined as the kernel of
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a non-vanishing 1-form ω onM . Throughout this work, H∗(M) will denote the de Rham

cohomology groups of M .

We first recall a basic construction that is used throughout the following discussions.

Let v⃗ be a smooth vector field on M such that ω(v⃗) = 1. The integrability of the

tangential distribution TF implies that dω ∧ ω = 0. Hence, there exists a 1-form α with

dω = ω∧α. The choice of the 1-form α is not canonical, and so we introduce a procedure

for choosing a representative for α.

Definition 3.1. Let ω be a non-vanishing 1-form on M whose kernel equals TF ,

and v⃗ a vector field on M such that ω(v⃗) = 1. Define Dv⃗ω = ι(v⃗) dω.

For brevity of notation, set η = Dv⃗ω, and note that η(v⃗) = 0. Then for any choice

of α such that dω = ω ∧ α, let u⃗ be tangent to F , then we have

η(u⃗) = (ι(v⃗)dω)(u⃗) = dω(v⃗, u⃗) = (ω ∧ α)(v⃗, u⃗) = α(u⃗) (12)

as ω(v⃗) = 1 and ω(u⃗) = 0 by definition. Thus, for any 1-form α such that dω = ω ∧ α
and any leaf L of F , their restrictions satisfy α|L = η|L. In particular, we have that

dω = ω ∧ η, and calculate

0 = d(dω) = d(ω ∧ η) = dω ∧ η − ω ∧ dη = ω ∧ η ∧ η − ω ∧ dη = −ω ∧ dη. (13)

We conclude from (13) that the 2-form dη is a multiple of ω. Then calculate d(η ∧ dη) =
dη ∧ dη = 0 as ω ∧ ω = 0, so that η ∧ dη is a closed 3-form on M .

Theorem 3.2 (Godbillon and Vey [26]). The cohomology class GV (F) = [η∧dη] ∈
H3(M) is independent of the choice of the 1-forms ω and η.

Moreover, the Godbillon–Vey class GV (F) is an invariant of the foliated concordance

class of F , as noted for example in Thurston [72] and Lawson [53, Chapter 3].

The definition of the Godbillon–Vey class in Theorem 3.2 reveals very little about

the relation of this cohomology class with the dynamics of the foliation F . In the case

where the leaves of F are defined by a smooth fibration M → S1, the defining 1-form ω

for F can be chosen to be a closed form, and it is then immediate from the definition

that GV (F) = 0. Herman showed in [37] that a foliation defined by the suspension of

an action of the abelian group Z2 on the circle must have GV (F) = 0. The proof used

an averaging process to obtain a sequence of defining smooth 1-forms {ωn | n = 1, 2, . . .}
for which the corresponding 1-forms Dvnωn → 0.

3.2. The Godbillon operator.

We again assume there is given a non-vanishing 1-form ω onM such that TF equals

the kernel of ω, and the Frobenius Theorem implies that dω∧ω = 0. We define differential

graded subalgebras of the de Rham complex Ω∗(M) of M using this property.

The breakthrough idea of Duminy, which first appeared in his paper with Sergiescu

[20], is to separate the roles of the forms η and dη in the definition of GV (F), and then

study how the contribution from the form η is related to the dynamical properties of

F . This is done by introducing the notion of the Godbillon functional. First, for p ≥ 1,
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introduce the space

Ap(M,F) ≡ {ξ = ω ∧ β | β ∈ Ωp−1(M)} ⊂ Ω∗(M), (14)

which can alternately be defined as the space of p-forms on M which vanish when

restricted to each leaf of F . Let A∗(M,F) ⊂ Ω∗(M) denote the sum of these sub-

spaces, which is then a subalgebra with trivial products as ω ∧ ω = 0. The identity

dω = ω ∧ η implies that A∗(M,F) is closed under exterior differentiation. More pre-

cisely, let ξ = ω ∧ β ∈ Ak(M,F) for k ≥ 1, then

dξ = d(ω∧β) = dω∧β−ω∧dβ = (ω∧η)∧β−ω∧dβ = ω∧(η∧β−dβ) ∈ Ak+1(M,F). (15)

Thus, A∗(M,F) is a differential graded algebra.

Let H∗(M,F) denote the cohomology of the differential graded complex

{A∗(M,F), d}. For a closed form ξ ∈ Ak(M,F), let [ξ]F ∈ Hk(M,F) denote its co-

homology class.

The inclusion of the ideal A∗(M,F) ⊂ Ω∗(M) induces a map on cohomology

H∗(M,F) → H∗(M). In general, the induced map need not be injective, and the calcu-

lation of the cohomology groups H∗(M,F) is often an intractable problem, as discussed

by El Kacimi in [21]. On the other hand, H∗(M,F) is the domain of the Godbillon

operator, as we next discuss, which makes it useful.

Let α be any choice of a 1-form satisfying dω = ω ∧ α. Then by a calculation

analogous to (13), the closed 2-form dα is in the ideal generated by ω, so dα ∈ A2(M,F).

Duminy observed in [18] (see also [10, Chapter 7],[36]) that the class [dα]F ∈ H2(M,F)

is independent of the choices of the 1-forms ω and α, and so is an invariant of F , which

he called the Vey class of F .

To be precise, we use the form η = Dv⃗ω to define the Vey class [dη]F ∈ H2(M,F).

The 2-form dη has some properties analogous to those of a symplectic form on M , espe-

cially in the geometric interpretation of the Godbillon–Vey invariant as “helical wobble”

in [52], [68], [72]. The geometric meaning of the class [dη]F remains obscure, although

as noted below, [dη]F = 0 implies that GV (F) = 0.

Given a closed form ξ ∈ Ap(M,F), consider the product η ∧ ξ ∈ Ap+1(M,F), and

calculate:

d(η ∧ ξ) = dη ∧ ξ = ω ∧ η ∧ ξ = 0, (16)

as ω∧ξ = 0. Thus, η∧ξ is a closed form. Moreover, if ξ = dβ for some form β ∈ Ap(M,F),

then η ∧ β ∈ Ap+1(M,F) and

d(−η ∧ β) = −(dη) ∧ β + η ∧ dβ = η ∧ ξ. (17)

Thus, given [ξ]F ∈ Hp(M,F) we obtain a well-defined class [η ∧ ξ]F ∈ Hp+1(M,F).

Multiplication by the 1-form η thus yields a well-defined map

η· : Hp(M,F) → Hp+1(M,F). (18)

Compose the map (18) with the inclusion induced map ι∗ : H
p+1(M,F) → Hp+1(M) to
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obtain the linear functional

g : Hp(M,F)
η·−→ Hp+1(M,F)

ι∗−→ Hp+1(M), (19)

which is called theGodbillon operator. It was shown above that the 2-form dη is a multiple

of ω, and is clearly a closed form, so it defines a cohomology class [dη]F ∈ H2(M,F).

Then we have g([dη]F ) = [η ∧ dη] = GV (F) ∈ H3(M). That is, “Godbillon(Vey) =

Godbillon–Vey”.

3.3. The Godbillon functional.

The Godbillon operator takes values in the de Rham cohomology groups H∗(M).

For the purposes of showing that this operator vanishes, it is preferable to consider the

closely related mappings with values in R, obtained by integrating the image classes of

the mappings (19) for p = m−1 over the fundamental class ofM , whereM has dimension

m.

If M is a closed 3-manifold with fundamental class [M ], then evaluating GV (F) on

[M ] yields a real number, the real Godbillon–Vey invariant of F :

⟨GV (F), [M ]⟩ =
∫
M

η ∧ dη.

If M is an open 3-manifold, then H3(M) = 0 so that GV (F) = 0 in this case.

However, the class GV (F) need not vanish in the case when M is open and M has

dimension m > 3. In this case, it is necessary to introduce cohomology with compact

supports, in order to obtain a real-valued invariants from the class GV (F).

Let Ω∗
c(M) ⊂ Ω∗(M) denote the differential subalgebra of forms with compact sup-

port. The cohomology of this ideal is denoted by H∗
c (M) which is called with the

de Rham cohomology with compact supports of M . We also consider the differential

ideal A∗
c(M,F) ⊂ Ω∗

c(M) consisting of forms in A∗(M,F) with compact support. Its

cohomology groups are denoted by H∗
c (M,F), and these groups are called the foliated

cohomology with compact supports.

Given a closed form ζ ∈ Ap(M,F), let ξ ∈ Ωk
c (M) be a closed form with compact

support, then the product ζ ∧ ξ ∈ Ak+p(M,F) is again closed with compact support. If

either form ζ or ξ is the boundary of a form with compact support, then ζ ∧ ξ is also the

boundary of a form with compact support. Thus, there is a well-defined pairing

Hp(M,F)×Hk
c (M) → Hk+p

c (M,F). (20)

In particular, given a class [ξ] ∈ Hm−3
c (M) represented by a smooth closed form ξ ∈

Ωm−3
c (M), then the pairing [dη]F ∪ [ξ] = [dη ∧ ξ]F ∈ Hm−1

c (M,F) is well-defined.

Recall that the manifoldM is assumed to be oriented and connected, so by Poincaré

duality the pairing Hp(M)⊗Hm−p
c (M) → Hm

c (M) ∼= R is non-degenerate for 0 ≤ p < m.

In particular, the value of the class [η ∧ dη] ∈ H3(M) is determined by its pairings with

classes in Hm−3
c (M). This is the idea behind the definition of the Godbillon functional.

The Godbillon operator in (19) applied to a class in Hm−1
c (M,F) yields a closed

m-form with compact support onM , which can be integrated over the fundamental class

to obtain a real number. This composition yields the Godbillon functional, denoted by
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G : Hm−1
c (M,F) → R, G([ξ]F ) = ⟨[η ∧ ξ], [M ]⟩ =

∫
M

η ∧ ξ. (21)

Note that we use the notation “g” for the Godbillon operator between cohomology groups,

and the notation “G” for the linear functional on the cohomology group Hm−1
c (M,F).

With these preliminary preparations, we have the basic result as observed by Duminy

in [18]:

Proposition 3.3. The value of the Godbillon–Vey class GV (F) ∈ H3(M) is de-

termined by the Godbillon functional G in (21). In particular, if G ≡ 0 then GV (F) = 0.

Proof. For the case when the dimension m = 3 and M is compact, this follows

by applying the linear functional G to the class [dη]F ∈ H2(M,F) = H2
c (M,F). For

m > 3, then by Poincaré duality, the value of GV (F) ∈ H3(M) is determined by pairing

the 3-form η ∧ dη with closed forms ξ ∈ Ωm−3
c (M), followed by integration, to obtain

⟨GV (F) ∪ [ξ], [M ]⟩ =
∫
M

(η ∧ dη) ∧ ξ.

Note that [dη ∧ ξ]F ∈ Hm−1
c (M,F), so that ⟨GV (F) ∪ [ξ], [M ]⟩ = G([dη ∧ ξ]F ). The

claim follows. □

The strategy to proving that GV (F) = 0 is thus to obtain dynamical properties of

a foliation which suffice to show that the linear functional G vanishes.

3.4. The Godbillon measure.

Duminy showed that the integral of the expression η∧ξ in (21) over a saturated Borel

subset of M is independent of the choices made to define η, and thus gives a localized

invariant for F . This observation was systematically generalized in the work [36], to

show that the Godbillon functional G extends to a measure on the σ-algebra of Lebesgue

measurable saturated subsets of M . We show how this observation is used to calculate

the Godbillon functional.

A set B ⊂ M is F-saturated if for all x ∈ B, the leaf Lx through x is contained in

B. Let B(F) denote the σ-algebra of Lebesgue measurable F-saturated subsets of M .

Theorem 3.4 ([18], [36]). For each B ∈ B(F), there is a well-defined linear

functional

GF (B) : Hm−1
c (M,F) → R, GF (B)([ξ]F ) =

∫
B

η ∧ ξ (22)

where ξ ∈ Am−1
c (M,F) is closed. Moreover, the correspondence

B 7→ GF (B) ∈ Homcont(H
m−1
c (M,F),R)

is a countably additive measure on the σ-algebra of Borel subsets in B(F). Note that if

B has Lebesgue measure zero, then GF (B) = 0. Thus, GF extends to the full σ-algebra

of Lebesgue measurable saturated subsets of M . This is called the Godbillon measure.
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Part of the claim of Theorem 3.4 is that the linear functional (22) is independent of

the choice of the smooth 1-form ω defining F . Much more is true, as described below.

The key idea, introduced in [36], is to consider representatives for η which belong to the

space of leafwise forms on F which are leafwise smooth, but need only be measurable as

functions on M .

Introduce the graded differential algebra Ω∗(F) consisting of leafwise forms. That

is, for k ≥ 0, the space Ωk(F) consists of sections of the dual to the k-th exterior power

Λk(TF) of the leafwise tangent bundle TF . Given ξ ∈ Ωk(F), then for each x ∈ M

and k-tuple (v⃗1, . . . , v⃗k) of vectors in the tangent space TxF to the leaf Lx containing

x, we obtain a real number ξ(v⃗1, . . . , v⃗k) ∈ R. We impose on the sections in Ωk(F) the

following regularity condition: given ξ ∈ Ωk(F), for each leaf L of F , the restriction ξ|L
to L is a smooth form.

For ξ ∈ Ωk(F), define DF (ξ) ∈ Ωk+1(F) is as follows. For each leaf L of F , the

restriction ξ|L is a smooth k-form on L, so there is a well-defined exterior differential

d(ξ|L). The collection of leafwise forms {d(ξ|L) ∈ Ωk+1(L) | L ⊂ M} defines DF (ξ) ∈
Ωk+1(F). Thus, there is a well-defined leafwise exterior differential operator,

DF : Ωk(F) → Ωk+1(F), DF (ξ)|L = d(ξ|L) for each leaf L ⊂M. (23)

The cohomology of {Ω∗(F), DF} is called the foliated cohomology of F .

A key observation in the definition of the exterior differential in (23) is that it does

not require any regularity for the transverse behavior of the leafwise forms. Thus, one

can consider the subcomplex Ω∗
∞(F) ⊂ Ω∗(F) of smooth leafwise forms, and the differen-

tial DF restricted to Ω∗
∞(F) yields a differential graded subalgebra. Its smooth foliated

cohomology groups H∗
∞(F) were used, for example, by Heitsch in [35] to study the defor-

mation theory of foliations. We can also consider the the differential graded subalgebra

Ω∗
c(F) ⊂ Ω∗(F) consisting of the continuous leafwise forms, whose cohomology spaces

H∗
c (F) were studied by El Kacimi-Alaoui in [21].

Finally, one can also consider the differential graded subalgebra Ωk
me(F) ⊂ Ω∗(F)

of measurable (or bounded measurable) sections of the dual to the k-th exterior power

of the leafwise tangent bundle TF . A form ξ ∈ Ωk
me(F) is required to be smooth when

restricted to leaves of F , but is only required to be a Borel measurable function on

M . We also demand that for ξ ∈ Ωk
me(F), its leafwise differential DFξ ∈ Ωk+1

me (F). The

cohomology H∗
me(F) of the complex Ω∗

me(F) is called the measurable leafwise cohomology

of F . These groups were used by Zimmer in [79], [80] to study the rigidity theory for

measurable group actions.

A function f : M → R is said to be transversally measurable if it is a measurable

function, and for each leaf L of F , the restriction f |L is smooth and the leafwise deriva-

tives of f are measurable functions as well. Such a function f is the typical element

in Ω0
me(F). Given a function f ∈ Ω0

me(F) and a form ξ ∈ Ωk
c (F), then the product

f · ξ ∈ Ωk
me(F).

We next introduce norms on the spaces Ωk
me(F). For each x ∈ M , the Riemannian

metric on TxM defines a norm on TxM , which restricts to a norm on the leafwise tangent

space TxF . The norm on the space TxF induces a dual norm on the cotangent bundle

T ∗
xF , and also induces norms on each exterior vector space ΛkTxF and on its dual
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Ωk(TxF), for all k > 1. We denote this norm by ∥ · ∥x in each of these cases. For a

function f ∈ Ω0
me(F), let ∥f∥x = |f(x)|. Given a subset B ⊂ M , and a leafwise form

ξ ∈ Ωk
me(F) for k ≥ 0, define the sup-norm over B by

∥ξ∥B = sup
x∈B

∥ξ∥x.

Next, given a smooth function f : M → R, set ωf = exp(f)·ω. Let v⃗ be a vector field

such that ω(v⃗) = 1, then set v⃗f = exp(−f) · v⃗ so that ωf (v⃗f ) = 1. Then by Definition 3.1,

Dv⃗fωf = exp(−f) · ι(v⃗) d{exp(f) · ω} = ι(v⃗) (df ∧ ω + dω).

Thus, for ζ ∈ Ap(M,F) we evaluate

(Dv⃗fωf ) ∧ ζ = −df ∧ ζ +Dv⃗ω ∧ ζ = −DFf ∧ ζ +Dv⃗ω ∧ ζ. (24)

By the Leafwise Stokes’ Theorem [36, Proposition 2.6], given a closed form with

compact support ζ ∈ Am−1
c (M,F) and B ∈ B(F), then∫

B

(Dv⃗fωf ) ∧ ζ =

∫
B

Dv⃗ω ∧ ζ. (25)

Observe that for ζ a closed form, the leafwise coboundary term DFf ∧ ζ in (24) depends

only on the leafwise derivatives of f . This observation is the idea behind the proof

of [36, Theorem 2.7] which shows that if f ∈ Ω0
me(F) satisfies ∥DFf∥B < ∞, and

ζ ∈ Am−1
c (M,F) is a closed form with compact support, then

GF (B)([ζ]F ) =

∫
B

−DFf ∧ ζ +Dv⃗ω ∧ ζ, (26)

where DFf is defined by (23). The formula (26) is the motivation for introducing the

following terminology, where given f ∈ Ω0
me(F), set ωf = exp(f) ·ω and v⃗f = exp(−f) · v⃗,

then define

D
v⃗f
ωf = −DFf +Dv⃗ω. (27)

If the function f is smooth onM and ζ ∈ Am−1
c (M,F), then (D

v⃗f
ωf )∧ζ = (Dv⃗fωf )∧ζ,

where the latter term is defined in the sense of Definition 3.1. Thus, the definition (27)

can be viewed as the extension of the Definition 3.1 in the sense of distributions to the

measurable complex Ω∗
me(F).

We now recall a fundamental result, Theorem 4.3 of [38], which is a broad general-

ization of the ideas in the seminal work by Herman [37].

Proposition 3.5. Let B ∈ B(F). Suppose there exists a sequence of transversally

measurable functions {fn | n = 1, 2, . . .} on M so that the 1-forms {ωn = exp(fn) · ω |
n = 1, 2, . . .} on M satisfy ∥Dv⃗n

ωn∥B < 1/n where v⃗n = exp(−fn) · v⃗. Then GF (B) = 0.

Proof. For each n ≥ 1, set
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ηn = D
v⃗n
ωn = −DFfn +Dv⃗ω. (28)

For [ζ]F ∈ Hm−1
c (M,F) and each n ≥ 1, then by (26) we have

GF (B)([ζ]F ) =

∫
B

ηn ∧ ζ. (29)

Estimate the norms of the integrals in (29):

|GF (B)([ζ]F )| = lim
n→∞

∣∣∣∣∫
B

ηn ∧ ζ
∣∣∣∣

≤ lim
n→∞

∫
B

∥ηn∥B ∥ζ∥B dvol

≤ lim
n→∞

(1/n) ·
∫
B

∥ζ∥B dvol = 0.

As this holds for all [ζ]F ∈ Hm−1
c (M,F), the claim follows. □

We note two important aspects of the proof of Proposition 3.5. First, the n-form

ηn ∧ ζ in the integrand of (29) depends only on the restrictions ηn|L for leaves L of

F . Thus, the pairing ηn ∧ ζ is well-defined when F is a C∞,1-foliation. Also, the

convergence of the integral in (29) as n→ ∞ uses the Lebesgue dominated convergence

theorem, and can be applied assuming only that the form ζ ∈ Am−1
c (M,F) is continuous.

In particular, for a C∞,2-foliation the form dη is continuous, so the calculation above

applies to multiples of this form as required for the proof of Proposition 3.3.

Proposition 3.5 gives an effective method for showing that the Godbillon–Vey class

vanishes on a set B ∈ B(F), provided that one can construct a sequence of 1-forms

{ωn = exp(fn) · ω | n = 1, 2, . . .} on M satisfying the hypotheses of Proposition 3.5. In

hindsight, one can see that an analogous estimate was used in the previous works [20],

[37], [56], [57], [74], [78] to show that GV (F) = 0 for C2-foliations of codimension one,

for foliations with various types of dynamical properties.

For a C2-foliation F , Sacksteder’s Theorem [70] implies that if F has no resilient

leaf, then there are no exceptional minimal sets for F . Hence, by the Poincaré–Bendixson

theory, all leaves of F either lie at finite level, or lie in “arbitrarily thin” open subsets

U ∈ B(F). In his works [18], [19], Duminy used a result analogous to Proposition 3.5

to show that GF (B) = 0, where B is a union of leaves at finite level. Thus, for a C2-

foliation with no resilient leaves, the Godbillon measure vanishes on the union of the

leaves of finite level, and also vanishes on any Borel set in their complement. Thus,

GV (F) = 0 for a C2-foliation of codimension-one with no resilient leaves. See [9], [12]

for a published version of this proof. In the next two sections, we follow a different, more

direct approach to obtain this conclusion. From the assumption GF ̸= 0, we conclude

that the holonomy pseudogroup of a C∞,1-foliation F must contain resilient orbits. Thus

for a C2-foliation F with GV (F) ̸= 0, we have that GF ̸= 0 and hence F must contain

resilient leaves.
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4. Asymptotically expansive holonomy.

In this section, we assume there is given a codimension-one foliation F on a compact

manifoldM , so thatM admits a finite regular C∞,1-foliation atlas {φα : Uα → (−1, 1)n×
(−1, 1) | 1 ≤ α ≤ ν} which is a regular covering ofM by foliation charts, as in Section 2.1,

with associated transversal T , and associated holonomy pseudogroup GF as in Section 2.2.

Then GF is generated by a finite collection of local C1-diffeomorphisms defined on open

subsets of T . Recall that the charts in the foliation atlas are assumed to be transversally

oriented, so for each plaque chain P, the derivative h′
P(x) > 0 for all x ∈ DP in its

domain.

The main result of this section, Theorem 4.4, implies that the Godbillon measure

GF is supported on the set E+(F) introduced in Section 4.2. That is, for any B ∈ B(F),

we have GF (B) = GF (B ∩ E+(F)). Hence, GF ̸= 0 implies the set E+(F) must have

positive Lebesgue measure.

4.1. The transverse expansion exponent function.

We introduce the notion of asymptotically expansive holonomy for a leaf of F . For

all x ∈ T , set µ0(x) = 1. Then for each integer n ≥ 1, define the maximal n-expansion

function

µn(x) = sup {h′
P(x) | x ∈ DP and ∥P∥ ≤ n}. (30)

The function x 7→ µn(x) is the maximum of a finite set of continuous functions, so is a

Borel function on T , and µn(x) ≥ 1 as the identity transformation is the holonomy for a

plaque chain of length 1.

Lemma 4.1. Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain of length 1.

For the holonomy map hβ,α of this length-one plaque-chain, we have hβ,α(x) = y. Then

for all n > 0,

µn−1(x) ≤ µn(y) · h′
β,α(x) ≤ µn+1(x). (31)

Proof. Let P be a plaque chain at y with ∥P∥ ≤ n, then P ◦Q is a plaque chain

at x with ∥P ◦ Q∥ ≤ n+ 1, so

h′
P(y) · h

′
β,α(x) = h′

P◦Q(x) ≤ µn+1(x).

As this is true for all plaque chains at y with ∥P∥ ≤ n, we obtain µn(y) · h′
β,α(x) ≤

µn+1(x).

Given a plaque chain P at x with ∥P∥ ≤ n − 1, the chain R = P ◦ Q−1 at y has

∥R∥ ≤ n and

h′
P(x) = h′

R(y) · h′
β,α(x) ≤ µn(y) · h′

β,α(x). (32)

As (32) holds for all plaque chains at x with ∥P∥ ≤ n − 1, we have µn−1(x) ≤ µn(y) ·
h′
β,α(x). □

Define λn(x) = ln (µn(x)), so that λn(x) = sup {ln(h′
P(x)) | x ∈ DP and ∥P∥ ≤ n}.
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Then the transverse expansion exponent at x ∈ T is defined by

λ∗(x) = lim sup
n→∞

λn(x)

n
. (33)

Lemma 4.2. The transverse expansion exponent function λ∗ is Borel measurable

on T , and constant on the orbits of GF .

Proof. For each n ≥ 1, the function λn(x)/n is Borel, so the supremum function

in (33) is also Borel.

Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain, then the estimate (31)

implies that,

ln(µn+1(x))

n+ 1
≥

ln(µn(y) · h′
β,α(x))

n
· n

n+ 1
=

{
ln(µn(y))

n
+

ln(h′
β,α(x))

n

}
· n

n+ 1
(34)

so that

λ∗(x) = lim sup
n→∞

{
ln(µn+1(x))

n+ 1

}
≥ lim sup

n→∞

{
ln(µn(y))

n

}
= λ∗(y). (35)

The converse inequality follows similarly.

Thus, λ∗(x) = λ∗(y) if there is a plaque chainQ = {Pα(x),Pβ(y)}. The pseudogroup
GF is generated by the holonomy defined by plaque chains of length 1, so that for each

point y ∈ GF (x), there is a finite plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} with x0 = x

and xk = y. Then λ∗(xℓ) = λ∗(xℓ+1) for each 0 ≤ ℓ < k, from which it follows that

λ∗(x) = λ∗(y). □

4.2. The expansion decomposition.

The transverse expansion exponent function λ∗ is defined on the space T . We use

the conclusion of Lemma 4.2 to lift the function λ∗ from T toM , and then use this lifted

function to define a Borel saturated decomposition of M .

Let X ⊂ M be the transversal to F as defined in (6). For each ξ ∈ X there exists

1 ≤ α ≤ ν such that ξ ∈ Xα, and xα ∈ Tα with τα = x. Define the function λ∗ on X by

setting λ∗(ξ) = λ∗(xα). Extend the function λ∗ to a function on M , where for ξ ∈ M

choose and index 1 ≤ α ≤ ν such that ξ ∈ Uα, then set λ∗(ξ) = λ∗(πα(ξ)). The value

λ∗(x) is independent of the choice of open set with ξ ∈ Uα by Lemma 4.2. Moreover, the

function λ∗ is then constant on leaves, as the function λ∗ is constant on the orbits of GF .

By abuse of notation, we denote by λ∗(L) this constant value, so that λ∗(L) = λ∗(ξ) for

some ξ ∈ L.

Definition 4.3. Define the GF -saturated Borel subsets of T

E+(T ) = {x ∈ T | λ∗(x) > 0},
E+
a (T ) = {x ∈ T | λ∗(x) > a} for a ≥ 0,

S(T ) = T − E+(T ),
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and the F-saturated Borel subsets of M

E+(F) = {ξ ∈M | λ∗(ξ) > 0},

E+
a (F) = {ξ ∈M | λ∗(ξ) > a} for a ≥ 0,

S(F) =M − E+(F).

A point x ∈ E+(F) is said to be infinitesimally expansive. The set E+(F) is called

the hyperbolic set for F , and is the analog for codimension-one foliations of the hyperbolic

set for diffeomorphisms in Pesin theory [2], [61]. The set S(F) consists of the leaves of

F for which the transverse infinitesimal holonomy has “slow growth”. Both sets E+(F)

and S(F) are fundamental for the study of the dynamics of the foliation F .

Note that for x ∈ T , if there is an holonomy map hP with x ∈ DP , hP(x) = x and

h′
P(x) = λ > 1, then x ∈ E+(T ). If P is a plaque-chain of length k, then x ∈ E+

a (T )

for any 0 < a < ln(λ)/k. The plaque chain P determines a closed loop γP based at

x in the leaf Lx, and the transverse holonomy along γP is linearly expanding in some

open neighborhood of x. Such transversally hyperbolic elements of the leaf holonomy

have a fundamental role in the study of foliation dynamics, in particular in the works

by Sacksteder [70], by Bonatti, Langevin and Moussu [4], and the works [40], [42].

However, given x ∈ E+(T ) there may not be a holonomy map hP with hP(x) = x and

h′
P(x) = λ > 1. What is always true, is that there exists a sequence of holonomy maps

whose lengths tend to infinity, each of which has infinitesimally expansive holonomy at

x. We make this statement precise.

Consider a point x ∈ E+
a (T ) for a > 0, and choose λ with a < λ < λ∗(x). Then

for all N > 0, there exists n ≥ N such that λn(x) ≥ nλ. By the definition of λn(x),

this means there exists a plaque chain P with length ∥P∥ ≤ n starting at x such that

h′
P(x) ≥ exp{nλ}. By the continuity of the derivative function on T , there exists ϵn > 0

such that on the open interval (x− ϵn, x+ ϵn) ⊂ T ,

h′
P(y) ≥ exp{nλ/2} for all x− ϵn ≤ y ≤ x+ ϵn.

By the Mean Value Theorem, h′
P is expanding on the interval (x−ϵn, x+ϵn) by a factor at

least exp{nλ/2}. Thus, the assumption λ∗(x) > λ > 0 and the definition in (33) implies

that we can choose a sequence of plaque chains Pℓ with lengths ∥Pℓ∥ = nℓ starting

at x such that nℓ is strictly increasing, and so tends to infinity, and the corresponding

holonomy maps satisfy

h′
Pℓ
(y) ≥ exp{nℓλ/2} for all x− ϵnℓ

≤ y ≤ x+ ϵnℓ
. (36)

The constant ϵnℓ
> 0 in (36) depends upon ℓ, λ and x, and is exponentially decreasing

as ℓ→ ∞.

It is a strong condition to have a sequence of holonomy maps as in (36) for elements

of the holonomy pseudogroup at points x, whose plaque lengths tend to infinity. This is

what gives the set E+(F) a fundamental role in the study of foliation dynamics, exactly

in analog with the role of the Pesin set in smooth dynamics [2], [51], [61], [69]. The

works [46], [47] give further study of the relation between the hyperbolic set E+(F) and
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the dynamics of the foliation. In contrast, for the slow set S(F), the dynamics of F on

S(F) has “less complexity”, as discussed in [47].

4.3. A vanishing criterion.

For an arbitrary saturated Borel set B ∈ B(F), we have

GF (B) = GF (B ∩ E+(F)) +GF (B ∩ S(F)). (37)

We use the criteria of Proposition 3.5 to show that GF (S(F)) = 0, so that GF ̸= 0

implies the set E+(F) must have positive Lebesgue measure.

The strategy is to construct a sequence of transversally measurable, non-vanishing

transverse 1-forms {ωn | n = 1, 2, . . .} on M for which ∥Dv⃗nωn∥S(F) < 1/n, where

the leafwise 1-form Dv⃗nωn is defined as in (28) The construction of the forms {ωn}
follows the method introduced in [38]. The first, and crucial step, is to construct an

ϵ-tempered cocycle over the pseudogroup GF which is cohomologous to the additive

derivative cocycle, using a procedure adapted from [39]. This tempered cocycle is then

used to produce the sequence of defining 1-forms ωn, using the methods of [7] and [48],

[50]. These are the ingredients used in the proof of the following result.

Theorem 4.4. The Godbillon measure GF (S(F)) = 0. Hence, by (37) for any set

B ∈ B(F), the Godbillon measure GF (B) = GF (B ∩ E+(F)). In particular, if E+(F)

has Lebesgue measure zero, then GF (B) = 0 for all B ∈ B(F).

Proof. The first step in the proof is to use the properties of the holonomy action

for points in the slow set S(T ) to construct the forms {ωn} as mentioned above.

Fix ϵ > 0. For x ∈ S(T ), by the definition of λ∗(x) = 0 in (33), there exists

Nϵ,x such that n ≥ Nϵ,x implies ln{µn(x)} ≤ nϵ/2, and hence the maximal n-expansion

µn(x) ≤ exp{nϵ/2}.
We define the coboundary gϵ function next. Set gϵ(x) = 1 for x ∈ T but x ̸∈ S(T ).

For x ∈ S(T ) set

gϵ(x) =
∞∑

n=0

exp{−nϵ} · µn(x). (38)

For x in the slow set S(T ), the sum in (38) converges as the function exp{−nϵ} · µn(x)

decays exponentially fast as n → ∞. Note that while gϵ(x) is finite for each x ∈ T ,

there need not be an upper bound for its values on S(T ). Also, gϵ is a Borel measurable

function defined on all of T .

The definition of the function gϵ in (38) is analogous to the definition of the Lyapunov

metric in Pesin theory. Its role is to give a “change of gauge” with respect to which the

expansion rates of the dynamical system is “normalized” for the action of GF on T , as

made precise by Lemma 4.5 below.

Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain of length 1. Let hβ,α

denote the holonomy map of the plaque-chain Q, with hβ,α(x) = y. The following

result estimates the value of gϵ under a change of coordinates, for charts such that

Pα(x) ∩ Pβ(y) ̸= ∅. Let Sα = πα(S(F) ∩ Uα) ⊂ Tα.
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Lemma 4.5. For x ∈ Sα and Q = {Pα(x),Pβ(y)},

exp{−ϵ} · gαϵ (x) ≤ gβϵ (y) · h
′
β,α(x) ≤ exp{ϵ} · gαϵ (x). (39)

Proof. Use the estimate (31), noting that hβ,α(x) = y, to obtain:

gβϵ (y) · h
′
β,α(x) =

{ ∞∑
n=0

exp{−nϵ} · µn(y)

}
h′
β,α(x)

≤
∞∑

n=0

exp{−nϵ} · µn+1(x)

< exp{ϵ} ·

{ ∞∑
n=1

exp{−nϵ} · µn(x) + µ0(x)

}
= exp{ϵ} · gαϵ (x). (40)

Similarly, we have

gβϵ (y) · h
′
β,α(x) =

{ ∞∑
n=0

exp{−nϵ} · µn(y)

}
h′
β,α(x)

≥
∞∑

n=1

exp{−nϵ} · µn−1(x) + µ0(x) · h′
β,α(x)

≥ exp{−ϵ} · gαϵ (x). (41)

This completes the proof of Lemma 4.5. □

Introduce the notation, for x ∈ Uα ∩ Uβ ,

kϵ,β,α(x) = gβϵ ◦ hβ,α ◦ πα(x) · h′
β,α ◦ πα(x). (42)

Note that kϵ,αα = gαϵ ◦ πα. Then in this notation, the estimate (39) implies that

exp(−ϵ) · kϵ,αα(x) ≤ kϵ,β,α(x) ≤ exp(ϵ) · kϵ,αα(x). (43)

We next use the given covering {Uβ | 1 ≤ β ≤ ν} ofM to construct a smooth 1-form

ω on M which defines F . Recall that Tβ ≡ (−1, 1), and let dxβ denote the coordinate

1-form on Tβ . Use the projection πβ : Uβ → Tβ along plaques to pull-back the form

dxβ to the closed 1-form ωβ = π∗
β(dxβ). Choose a partition of unity {ρβ | 1 ≤ β ≤ ν}

subordinate to the cover {Uβ | 1 ≤ β ≤ ν}. Then for each 1 ≤ β ≤ ν, the 1-form ρβ · ωβ

has support contained in Uβ , and set ω =
∑

1≤β≤ν ρβ · ωβ .

Next, for ϵ > 0 we construct a measurable 1-form ωϵ on M . Recall that the function

gϵ on T was defined by (38). For each 1 ≤ β ≤ ν, introduce the notation gβϵ = gϵ|Tβ , and
define the 1-form ϕϵβ = gβϵ dxβ on Tβ . Then define ωβ

ϵ = π∗
β(ϕ

ϵ
β) =

(
gβϵ ◦ πβ

)
· ωβ which

is a transversally measurable leafwise 1-form on Uβ . Recall that ωβ = π∗
β(dxβ), so that

dωβ = 0, and hence DFω
β
ϵ = 0 on Uβ . Finally, define the 1-form ωϵ =

∑
ρβ · ωβ

ϵ on M .

For each 1 ≤ α ≤ ν, consider the 1-forms ω and ωϵ restricted to the chart Uα:
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ω|Uα =
∑

Uβ∩Uα ̸=∅

ρβ |Uα · ωβ |Uα , (44)

ωϵ|Uα =
∑

Uβ∩Uα ̸=∅

ρβ |Uα · ωβ
ϵ |Uα =

∑
Uβ∩Uα ̸=∅

ρβ |Uα ·
(
gβϵ ◦ πβ

)
· ωβ |Uα . (45)

We express the terms on the right-hand-sides of (44) and (45) in terms of the 1-form ωα.

For β with Uα∩Uβ ̸= ∅, let Q = {Pα(x),Pβ(y)} be the plaque chain with holonomy map

hβ,α. Then h∗
β,α(dxβ) = h′

β,α · dxα and so by the identity πβ = hβ,α ◦ πα on Uα ∩Uβ we

have

ωβ |Uα∩Uβ
= π∗

β(dxβ)|Uα∩Uβ
= π∗

α ◦ h∗
β,α(dxβ)|Uα∩Uβ

= π∗
α(h

′
β,α · dxα)|Uα∩Uβ

= (h′
β,α ◦ πα) · ωα|Uα∩Uβ

. (46)

Using the identity h∗
β,α(ϕ

ϵ
β) =

(
gβϵ ◦ hβ,α

)
· h′

β,α · dxα, we obtain the corresponding

expression

ωβ
ϵ |Uα∩Uβ

= π∗
β(dx

ϵ
β)|Uα∩Uβ

= π∗
α ◦ h∗

β,α(dx
ϵ
β)|Uα∩Uβ

= π∗
α(g

β
ϵ ◦ hβ,α · h′

β,α · dxα)|Uα∩Uβ

= (gβϵ ◦ hβ,α ◦ πα) · (h′
β,α ◦ πα) · ωα|Uα∩Uβ

. (47)

Thus, for x ∈ Uα ∩ Uβ , we have ωβ
ϵ |x = kϵ,β,α(x) · ωα|x. For each 1 ≤ α ≤ ν, on Uα

define:

Φα =
∑

Uβ∩Uα ̸=∅

ρβ |Uα
· h′

β,α ◦ πα, Φϵ
α =

∑
Uβ∩Uα ̸=∅

ρβ |Uα
· kϵ,β,α. (48)

We then have

ω|Uα = Φα · ωα|Uα , ωϵ|Uα = Φϵ
α · ωα|Uα . (49)

We return to the proof that GF (S(F)) = 0. Let v⃗ be a vector field on M such

that ω(v⃗) = 1. Then set η = Dv⃗ω = ι(v⃗)dω, as in Definition 3.1. Define a function

fϵ ∈ Ω0
me(F) by ωϵ = exp(fϵ) · ω, and set v⃗ϵ = exp(−fϵ) · v⃗ so that ωϵ(v⃗ϵ) = 1. Then as

in (27), define

ηϵ = D
v⃗ϵ
ωϵ = −DFfϵ +Dv⃗ω = −DFfϵ + η, (50)

where the 1-form DFfϵ is defined by (23). Then by (26), the Godbillon measure GF (B)

can be calculated using the 1-form ηϵ restricted to B.

Next, estimate the norm ∥ηϵ∥x for x ∈ Uα using the expression (50). We first

calculate

η|Uα = ι(v⃗)d(ω|Uα) = ι(v⃗)d(Φα · ωα|Uα) = ι(v⃗)d(exp{ln(Φα)} · ωα|Uα)

= −DF ln(Φα|Uα
). (51)

Then by (49), we have exp(fϵ)|Uα ·Φα = Φϵ
α, so fϵ|Uα = ln (Φϵ

α)− ln (Φα), and calculate
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ηϵ|Uα = −DFfϵ|Uα + η|Uα = ({DF ln (Φα)−DF ln (Φϵ
α)})− {DF ln (Φα)}

= −DF ln (Φϵ
α) . (52)

Note that DFkϵ,β,α = 0, as each function kϵ,β,α is constant along the plaques in

Uα ∩ Uβ , so its leafwise differential is zero. Use this observation and the definition (48)

to obtain:

∥ηϵ|x∥ = ∥DF ln (Φϵ
α)∥x = (Φϵ

α(x))
−1 ·

∥∥∥∥∥∥
∑

Uβ∩Uα ̸=∅

DFρβ |Uα · kϵ,β,α

∥∥∥∥∥∥
x

. (53)

The leafwise differential of the constant function is zero, so we have the identity

0 = DF1 = DF

(∑
ρβ

)
=

∑
DFρβ

which implies that ∑
Uβ∩Uα ̸=∅

DFρβ · kϵ,αα = kϵ,αα ·
∑

Uβ∩Uα ̸=∅

DFρβ = 0. (54)

Then continuing from (53), and using the identities (54) and (43), for x ∈ Uα we have:

∥ηϵ|x∥ = (Φϵ
α(x))

−1 ·

∥∥∥∥∥∥
∑

Uβ∩Uα ̸=∅

DFρβ · {kϵ,β,α − kϵ,αα}

∥∥∥∥∥∥
x

≤ (Φϵ
α(x))

−1 ·
∑

Uβ∩Uα ̸=∅

∥DFρβ∥x · |kϵ,β,α(x)− kϵ,αα(x)|

≤ (Φϵ
α(x))

−1 · sup
x∈Uα

∥DFρβ∥x ·
∑

Uβ∩Uα ̸=∅

|kϵ,β,α(x)− kϵ,αα(x)|

≤ (Φϵ
α(x))

−1 · sup
x∈Uα

∥DFρβ∥x ·
∑

Uβ∩Uα ̸=∅

(exp(ϵ)− 1) · kϵ,αα(x). (55)

It remains to estimate (Φϵ
α(x))

−1 in (55). Use (48) and the estimates (43) to obtain for

x ∈ Uα that

Φϵ
α(x) =

∑
Uβ∩Uα ̸=∅

ρβ(x) · kϵ,β,α(x) ≥
∑

Uβ∩Uα ̸=∅

ρβ(x) · exp(−ϵ) · kϵ,αα(x)

= exp(−ϵ) · kϵ,αα(x). (56)

Thus, we obtain the estimate

(Φϵ
α(x))

−1 ≤ exp(ϵ) · kϵ,αα(x)−1. (57)

Then combining (55) and (57), and noting that the number of indices β for which

Uβ ∩ Uα ̸= ∅ is bounded by the cardinality ν of the covering, we obtain
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∥ηϵ|x∥ ≤ sup
x∈Uα

∥DFρβ∥x · ν · exp(ϵ) · (exp(ϵ)− 1). (58)

Note that the right hand side in (58) tends to 0 as ϵ → 0, so that for each n > 0,

we can choose ϵn > 0 such that ∥ηϵn∥ ≤ 1/n. Then set ωn = ωϵn , and the claim of the

Theorem 4.4 follows from Proposition 3.5. □

5. Uniform hyperbolic expansion.

In this section, we assume that F is a C1-foliation with non-empty hyperbolic set

E+(F), and show that there exists a hyperbolic fixed-point for the holonomy pseudogroup

GF . The proof uses a pseudogroup version of the Pliss Lemma, which is fundamental

in the study of non-uniformly hyperbolic dynamics (see [1] or [5, Lemma 11.5], or the

original article by Pliss [64].)

The goal is to construct hyperbolic contractions in the holonomy pseudogroup. The

length of the path defining the holonomy element is not important, but rather it is

important to obtain uniform estimates on the size of the domain of the hyperbolic element

thus obtained, estimates which are independent of the length of the path. This is a key

technical point for the application of the constructions of this section in the next Section 6,

where we construct sufficiently many contractions so that they result in the existence of

a resilient orbit for the action of the holonomy pseudogroup.

We note that the existence of a hyperbolic contraction can also be deduced using the

foliation geodesic flow methods introduced in [42], though that method does not yield

estimates on the size of the domain of the hyperbolic element in the foliation pseudogroup.

5.1. Uniform hyperbolicity and the Pliss Lemma.

We fix a regular covering on M as in Section 2.1, with transversals X and X̃ as in

(6), and let GF denote the resulting pseudogroup acting on the spaces T and T̃ as in (5).

Recall that by Lemma 2.2, there exists ϵ0 > 0 so that for every admissible pair (α, β)

and x ∈ Tαβ then [x − ϵ0, x + ϵ0] ⊂ T̃αβ . Recall that the space Tαβ was defined in (7),

and T̃αβ was defined in (8).

Definition 5.1. Given 0 < ϵ1 ≤ ϵ0, a constant 0 < δ0 ≤ ϵ1 is said to be a

logarithmic modulus of continuity for GF with respect to ϵ1, if for y, z ∈ Tαβ [δ0] with
dT (y, z) ≤ δ0, then ∣∣∣log{h̃′

β,α(y)} − log{h̃
′
β,α(z)}

∣∣∣ ≤ ϵ1. (59)

Lemma 5.2. Given 0 < ϵ1 ≤ ϵ0, there exists a constant 0 < δ0 ≤ ϵ1 which is a

logarithmic modulus of continuity for GF with respect to ϵ1.

Proof. By the choice of 0 < ϵ1 ≤ ϵ0, for each admissible pair {α, β}, the log-

arithmic derivative log{h̃
′
β,α(y)} is continuous on the compact subset Tαβ [ϵ1] ⊂ T̃αβ .

Thus, there exists δ0(α, β) > 0 such that (59) holds for this choice of {α, β}. Define

δ0 = min{δ0(α, β) | {α, β} admissible}. As the number of admissible pairs is finite, we

have δ0 > 0. □
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The next result shows that if E+(F) is non-empty, then there are words in GF of

arbitrarily long length, along which the holonomy is “uniformly expansive”. That is,

there exists a constant λ∗ > 0 such that for such a word hn defined by a plaque chain

P of length n, then h′
n(y) ≥ exp{nλ∗) for all y ∈ DP . The proof is technical, but also

notable as it develops a version for pseudogroup actions of the Pliss Lemma, which is

used in the study of the dynamics of partially hyperbolic diffeomorphisms, as for example

in [5], [55], [64].

Note that Definition 4.3 implies that the set E+(F) is an increasing union of the

sets E+
a (F) for a > 0, and thus given ξ ∈ E+(F), there exist a > 0 such that ξ ∈ E+

a (F).

We introduce a convenient notation for working with the set E+
a (F). For each

1 ≤ α ≤ ν, let

E+
a (F) ∩ Tα = πα(E

+
a (F) ∩ Uα) ⊂ Tα,

E+
a (F) ∩ T = (E+

a (F) ∩ T1) ∪ · · · ∪ (E+
a (F) ∩ Tν).

Recall that the transversals Xα and their images Tα in the coordinates Uα were defined

in (4).

Proposition 5.3. Let x ∈ E+
a (F) ∩ T for a > 0, let 0 < ϵ1 < min{ϵ0, a/100},

and let δ0 be the logarithmic modulus of continuity for GF with respect to ϵ1, as chosen

in Lemma 5.2.

Then for each integer n > 0, there exist a point yn ∈ GF (x), a closed interval

Ixn ⊂ T̃α containing x in its interior, and a holonomy map hx
n : I

x
n → Jx

n such that for

yn = hx
n(x), J

x
n = [yn − δ0/2, yn + δ0/2] ⊂ T̃ and Ixn = (hx

n)
−1(Jx

n), we have

(hx
n)

′(z) > exp{na/2} for all z ∈ Ixn . (60)

It follows that |Ixn | < δ0 exp{−na/2}.

Proof. The map and intervals that we will construct are illustrated in Figure 1:

Figure 1. Expanding holonomy map hx
n.

Fix a choice of 0 < ϵ1 < min{ϵ0, a/100}, and then choose a logarithmic modulus of
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continuity δ0 > 0 as in Lemma 5.2.

The set Tαβ [ϵ1], as defined in (10) for δ = ϵ1, is compact, so there exists C0 > 0 so

that for all (α, β) admissible and y ∈ Tαβ [ϵ1], we have 1/C0 ≤ h̃
′
β,α(y) ≤ C0.

From the definition of λ∗(x) as a limsup in (33), the assumption that λ∗(x) > a

implies that for each integer n > 0, we can choose a plaque chain of length ℓn ≥ n, given

by Pn = {Pα0(z0), . . . ,Pαℓn
(zℓn)} with z0 = x, such that log{h′

Pn
(z0)} > ℓn · a. Fix n

and the choice of the plaque chain Pn as above.

For each 1 ≤ j ≤ ℓn let hαj ,αj−1 be the holonomy transformation defined by

{Pαj−1 ,Pαj}, and so h−1
αj ,αj−1

= hαj−1,αj . Introduce the notation ĥ0 = Id, and for

1 ≤ j ≤ ℓn let

ĥj = hαj ,αj−1 ◦ · · · ◦ hα1,α0 (61)

denote the partial composition of generators. Note that zj = ĥj(z0) and z0 = x, and

that we have the relations ĥj+1 = hαj+1,αj ◦ ĥj and zj+1 = hαj+1,αj (zj) for 0 ≤ j < ℓn.

For each 1 ≤ j ≤ ℓn, set

λj = log{ĥ
′
αj−1,αj

(zj)} = − log{ĥ
′
αj ,αj−1

(zj−1)}. (62)

In particular, log{ĥ
′
ℓn(x)} = −(λ1+ · · ·+λℓn). Note that if λj < 0 then the map ĥαj−1,αj

is an infinitesimal contraction at zj , and ĥαj ,αj−1 is an infinitesimal expansion at zj−1.

The following algebraic definition and lemma provide the key to the analysis of the

hyperbolic expansion properties of the partial compositions of the maps ĥj .

Definition 5.4. Let {λ1, . . . , λm} be given, and ϑ > 0. An index 1 ≤ j ≤ m is

said to be ϑ-regular if the following sequence of partial sum estimates hold:

λj + ϑ < 0,

λj−1 + λj + 2ϑ < 0,

... (63)

λ1 + · · ·+ λj + jϑ < 0.

Condition (63) is a weaker hypothesis than assuming the uniform estimates λi < −ϑ
for all 1 ≤ i ≤ j, but is sufficient for our purposes. The next result shows that ϑ-regular

indices always exist.

Lemma 5.5. Assume there are given real numbers {λ1, . . . , λm} such that

λ1 + · · ·+ λm ≤ −am. (64)

Then for any 0 < ϵ1 < a, there exists an ϵ1-regular index qm, for some 1 ≤ qm ≤ m,

which satisfies

λ1 + · · ·+ λqm ≤ (−a+ ϵ1)m. (65)
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Proof. The existence of the index qm satisfying this property is shown by con-

tradiction. We introduce the concept of an ϵ1-irregular index, for which the ϵ1-regular

condition fails, and show by contradiction that not all indices can be ϵ1-irregular.

We say that an index k ≤ m is ϵ1-irregular if

λk + · · ·+ λm + (m− k + 1)ϵ1 ≥ 0. (66)

If there is no irregular index, then observe that qm = m is an ϵ1-regular index. Otherwise,

suppose that there exists some index k which is ϵ1-irregular. The inequality (64) states

that the index k = 1 is not ϵ1-irregular. Let jm ≤ m be the least ϵ1-irregular index, so

that

λjm + · · ·+ λm + (m− jn + 1)ϵ1 ≥ 0. (67)

By (64), jm = 1 is is not ϵ1-irregular, so we. have 2 ≤ jm ≤ m.

Set qm = jm − 1, then we claim that qm is an ϵ1-regular index. If not, then at least

one of the inequalities in (63) must fail to hold. That is, there is some i ≤ qm with

λi + · · ·+ λqm + (qm − i+ 1)ϵ1 ≥ 0. (68)

Add the inequalities (67) and (68), and noting that qm = jm− 1, we obtain that i is also

an ϵ1-irregular index. As i < jm, this is contrary to the choice of jm. Hence, qm is an

ϵ1-regular index.

It remains to show that the estimate (65) holds. As jm = qm+1 is irregular, subtract

(66) for k = jm from (64) to obtain

λ1 + · · ·+ λqm ≤ −am+ (m− qm)ϵ1 ≤ (−a+ ϵ1)m

as claimed. □

We return to considering the maps ĥj defined by (61), and the exponents λj defined

by (62). The following result then follows directly from Lemma 5.5 and the definitions.

Corollary 5.6. Assume that there is given a > 0 with x ∈ E+
a (F) ∩ T , a choice

of integer n > 0, and plaque-chain Pn = {Pα0(z0), . . . ,Pαℓn
(zℓn)} with ℓn ≥ n, such that

log{h′
Pn

(z0)} ≥ ℓn · a and z0 = x. Given 0 < ϵ1 < a, by Lemma 5.5 there exists an

ϵ1-regular index qn, for some 1 ≤ qn ≤ ℓn chosen as in Lemma 5.5, such that for the

map ĥqn defined by (61),

log{ĥ
′
qn(x)} ≥ (a− ϵ1) ℓn ≥ (a− ϵ1)n. (69)

The estimate (69) can be interpreted as stating that “most” of the infinitesimal

expansion of the map ĥℓn at z0 is achieved by the action of the partial composition ĥqn .

Recall that we have a fixed choice of 0 < ϵ1 < min{ϵ0, a/100}, as given in the

statement of Proposition 5.3, and δ0 > 0 is chosen so that the uniform continuity estimate

(59) in Lemma 5.2 is satisfied.
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Then let 1 ≤ qn ≤ ℓn be the ϵ1-regular index defined in Lemma 5.5 which satisfies

(65). We next use the ϵ1-regular condition to obtain uniform estimates on the domains

for which the inverses ĥ
−1

j are contracting, for 1 ≤ j ≤ qn.

Recall that h̃β,α denotes the continuous extension of the map hβ,α to the domain

T̃αβ . Introduce extensions hx
n of ĥqn and gx

n of its inverse ĥ
−1

qn , which are defined by

hx
n = h̃αqn ,αqn−1 ◦ · · · ◦ h̃α1,α0 , (70)

gx
n = (hx

n)
−1 = h̃α0,α1 ◦ · · · ◦ h̃αqn−1,αqn

. (71)

Set yn = hx
n(x) = zℓn , then by the estimate (69) we have

log{(gx
n)

′(yn)} = λ1 + · · ·+ λqn ≤ (−a+ ϵ1) ℓn < 0. (72)

We next show that gx
n is uniformly contracting on an interval with uniform length

about yn.

Lemma 5.7. Set δ′0 = δ0/8. Then the interval Jx
n = [yn − 4δ′0, yn + 4δ′0] is in the

domain of gx
n, and for all y ∈ Jx

n ,

exp{(−a− 2ϵ1) ℓn} ≤ (gx
n)

′(y) ≤ exp{(−a+ 2ϵ1) ℓn}. (73)

Hence, for Ixn = gx
n(J

x
n),

|Ixn | ≤ δ0 exp{(−a+ 2ϵ1) ℓn} < exp{(−a/2) ℓn}. (74)

Proof. By the choice of δ′0, the uniform continuity estimate (59) implies that for

all y ∈ Jx
n ∣∣∣log{h̃′

αqn−1,αqn
(y)} − log{h̃

′
αqn−1,αqn

(yn)}
∣∣∣ ≤ ϵ1.

Thus, by the definition of λqn we have that, for all y ∈ Jx
n ,

exp{λqn − ϵ1} ≤ h̃
′
αqn−1,αqn

(y) ≤ exp{λqn + ϵ1}.

The assumption that qn is ϵ1-regular implies λqn + ϵ1 < 0, hence exp{λqn + ϵ1} < 1.

Thus, for all y ∈ Jx
n we have

dT (h̃αqn−1,αqn
(yn), h̃αqn−1,αqn

(y)) ≤ 4δ′0 exp{λqn + ϵ1} < 4δ′0. (75)

Now proceed by downward induction. For 0 < j ≤ qn set

gx
n,j = h̃αj−1,αj ◦ · · · ◦ h̃αqn−1,αqn

, Jx
n,j = gx

n,j(J
x
n), yn,j = gx

n,j(yn) = zj−1.

Assume that for 1 < j ≤ qn, we are given that for all y ∈ Jx
n,j the estimates

exp{λj+· · ·+λqn−(qn−j+1) ϵ1} ≤ (gx
n,j)

′(y) ≤ exp{λj+· · ·+λqn+(qn−j+1) ϵ1}, (76)
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dT (y, yn,j) ≤ 4δ′0. (77)

The choice of δ0 and the hypothesis (77) imply that for y ∈ Jx
n,j ,∣∣∣log{h̃′

αj−2,αj−1
(y)} − log{h̃

′
αj−2,αj−1

(yn,j)}
∣∣∣ ≤ ϵ1.

Recall that zj−1 = yn,j , and that λj−1 = log{h̃
′
αj−2,αj−1

(yn,j)} by (62), so for all y ∈ Jx
n,j

we have for the inverse map h̃αj−2,αj−1 = h̃
−1

αj−1,αj−2
that

exp{λj−1 − ϵ1} ≤ h̃
′
αj−2,αj−1

(y) ≤ exp{λj−1 + ϵ1}. (78)

Then by the chain rule, the estimates (78) and the inductive hypothesis (76) yield

the estimates

exp{λj−1 + · · ·+ λqn − (qn − j + 2) ϵ1} ≤ (gx
n,j−1)

′(y)

≤ exp{λj−1 + · · ·+ λqn + (qn − j + 2) ϵ1}.
(79)

Now the assumption that qn is ϵ1-regular implies λj−1+ · · ·+λqn +(qn−j+2) ϵ1 < 0

hence exp{λj−1 + · · ·+ λqn + (qn − j + 2) ϵ1} < 1.

By the Mean Value Theorem, this yields the distance bound dT (yn,j−1, y) ≤ 4δ′0,

which is the hypothesis (77) for j − 1. This completes the inductive step. Thus, we may

take j = 1 in inequality (76) and combined with the inequality (65), for all y ∈ Jx
n we

have that

(gx
n)

′(y) ≤ exp{λ1 + · · ·+ λqn + qn ϵ1} ≤ exp{−a ℓn + (ℓn + qn) ϵ1}
≤ exp{(−a+ 2ϵ1) ℓn}. (80)

Set Ixn = gx
n(J

x
n), then the estimate (74) follows by the Mean Value Theorem. □

Since a− 2ϵ1 > a/2 and ℓn ≥ n, this completes the proof of Proposition 5.3. □

5.2. Hyperbolic fixed-points.

We show the existence of hyperbolic fixed-points for GF contained in the closure of

E+(F) ∩ T in T̃ , with uniform estimates on the lengths of their domains of contraction.

Proposition 5.8. Let x ∈ E+
a (F)∩T for a > 0, let 0 < ϵ1 < min{ϵ0, a/100}, and

let δ0 be chosen as in Lemma 5.2, and set δ′0 = δ0/8. Given 0 < δ1 < δ′0 and 0 < µ < 1,

then there exists holonomy maps ϕ1, ψ1 ∈ GF , points u1, v1 ∈ T such that dT (x, v1) < δ1,

such that we have:

1. Φ1 = ϕ1 ◦ ψ1 has fixed point Φ1(u1) = u1;

2. J1 ≡ [u1 − δ′0, u1 + δ′0] is contained in the domain of Φ1;

3. Φ′(y) < µ for all y ∈ J1;

4. Ψ1 = ψ1 ◦ ϕ1 has fixed point Ψ1(v1) = v1;
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5. K1 ≡ ψ1(J1) ⊂ (x− δ1, x+ δ1).

Proof. The idea of the proof is to consider a sequence of maps as given by

Proposition 5.3, for n ≥ 1, and consider a subsequence of these for which the sequence

of points {yn = hx
n(x) = zℓn | n ≥ 1} cluster at a limit point. We then use the estimates

(74) on the sizes of the domains to show that the appropriate compositions of these maps

are defined, and have a hyperbolic fixed point. The details of this argument follow.

Set δ∗ = min{1, δ′0/4, δ1/4}. Then by Proposition 5.3, for each integer n > 0, we

can choose a map hx
n : I

x
n → Jx

n as in (70), which satisfies condition (60). Label the

resulting sequence of points yn = hx
n(x) ∈ T , and the inverse maps gx

n = (hx
n)

−1. Let pn
denote the length of the plaque chain defining hx

n, then pn equals the ϵ1-regular index

1 ≤ qn ≤ ℓn chosen as in the proof of Corollary 5.6.

Recall that T has compact closure in T̃ , so there exists an accumulation point

y∗ ∈ T ⊂ T̃ for the set {yn | n > 0} ⊂ T . We can assume that dT (y∗, yn) < δ∗/4 for all

n > 0, first by passing to a subsequence {yni} which converges to y∗ and satisfies this

metric estimate, and then reindexing the sequence.

Let Jx
n = [yn − 4δ′0, yn + 4δ′0], and set J∗ = [y∗ − 3δ′0, y∗ + 3δ′0]. Then for all n > 0,

we have yn ∈ (y∗ − δ′0, y∗ + δ′0) ⊂ J∗ ⊂ Jx
n . In particular, y1 ∈ J∗ ⊂ Jx

1 is an interior

point of J∗, so x = gx
1(y1) is an interior point of gx

1(J∗).

Also recall from Proposition 5.3, that Ixn = gx
n(J

x
n) with x ∈ Ixn for all n, and the

interval Ixn has length |Ixn | < δ0 exp{−na/2} = 8δ′0 exp{−na/2}. Hence, for n sufficiently

large, the interval Ixn is contained in the interior of gx
1(J∗). Without loss of generality,

we again pass to a subsequence and reindex the sequence, so that we have Ixn ⊂ gx
1(J∗)

and ℓn+1 > ℓn for all n > 0. We then have the inclusions

gx
n(J∗) ⊂ gx

n(J
x
n) = Ixn ⊂ gx

1(J∗). (81)

Thus, for each n > 0 the composition hx
1 ◦ gx

n : J∗ → hx
1 ◦ gx

1(J∗) ⊂ J∗ is defined, as

illustrated in Figure 2.

Figure 2. The contracting holonomy map hx
1 ◦ gx

n.

Recall that p1 denotes the length of the plaque-chain which defines hx
1 , and C0 is
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the Lipschitz constant defined in the proof of Proposition 5.3. Let N0 be chosen so that

for n ≥ N0 we have

Cp1

0 exp{−an/2} < min {µ, 1/2}, (82)

δ′0 exp{−an/2} < δ1/2. (83)

With the above notations, we then have:

Lemma 5.9. Fix n ≥ N0, then the map hx
1 ◦ gx

n is a hyperbolic contraction on J∗
with fixed-point v∗ ∈ J∗ satisfying dT (v∗, yn) ≤ δ1/2 and (hx

1 ◦ gx
n)

′(v∗) < µ.

Proof. By the choice of C0 we have (hx
1)

′(y) ≤ Cp1

0 for all y in its domain. Recall

that gx
n is the inverse of hx

n which is defined by a plaque-chain of length ℓn ≥ n, so the

same holds for gx
n. The derivative of g

x
n satisfies the estimates (73) by Lemma 5.7, so we

have

exp{(−a− 2ϵ1) ℓn} ≤ (gx
n)

′(y) ≤ exp{(−a+ 2ϵ1)n}. (84)

Thus by (82), for all y ∈ J∗ the composition hx
1 ◦ gx

n satisfies

(hx
1 ◦ gx

n)
′(y) ≤ Cp1

0 exp{(−a+ 2ϵ1)n} < Cp1

0 exp{−an/2} < min {µ, 1/2} (85)

where we use that the choice of ϵ1 < a/100 implies that (−a + 2ϵ1) < −a/2. Thus,

hx
1 ◦ gx

n is a hyperbolic contraction on J∗ and it follows that hx
1 ◦ gx

n has a unique fixed-

point v∗ ∈ J∗. Define a sequence of points wℓ = (hx
1 ◦ gx

n)
ℓ(yn) ∈ J∗ for ℓ ≥ 0, then

v∗ = limℓ→∞ wℓ.

Observe that hx
1 ◦ gx

n(yn) = hx
1(x) = y1, and recall that dT (y∗, yn) < δ∗/4 for all n,

hence, dT (y1, yn) < δ∗/2. Since w0 = yn and w1 = y1, the estimate (85) implies that

dT (wℓ, wℓ+1) < 2−ℓ · dT (w0, w1) < 2−ℓ · δ∗/2.

Summing these estimates for ℓ ≥ 1, we obtain that dT (w0, v∗) = dT (yn, v∗) ≤ δ∗ so that

dT (y∗, v∗) ≤ dT (y∗, yn) + dT (yn, v∗) < 2δ∗ ≤ δ1/2. (86)

Then by (85) we have (hx
1 ◦ gx

n)
′(v∗) ≤ µ, as was to be shown. □

The conclusions of Lemma 5.9 essentially yield the proof of Proposition 5.8, except

that it remains to make a change of notation so the results are in the form stated in

the proposition, and check that conditions (1) to (5) of Proposition 5.8.1 are satisfied.

This change of notation is done so that the conclusions are in a standard format, which

will be invoked recursively in the following Section 6 to prove there exists “ping-pong”

dynamics in the holonomy pseudogroup GF .

Choose n ≥ N0 so that the hypotheses of Lemma 5.9 are satisfied, then define

ϕ1 = hx
1 and ψ1 = gx

n so that Φ1 = ϕ1 ◦ ψ1 = hx
1 ◦ gx

n, and recall that

J∗ = [y∗ − 3δ′0, y∗ + 3δ′0] ⊂ Jx
n = [yn − 4δ′0, yn + 4δ′0] (87)
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for δ′0 and y∗ as defined above. Set u1 = v∗ and v1 = gx
n(v∗).

We check that conditions (5.8.1) and (5.8.4) of Proposition 5.8 are satisfied:

Φ1(u1) = ϕ1 ◦ ψ1(u1) = hx
1 ◦ gx

n(v∗) = v∗ = u1,

Ψ1(v1) = ψ1 ◦ ϕ1(v1) = gx
n ◦ hx

1(g
x
n(v∗)) = gx

n(v∗) = v1.

Next, for J1 = [u1 − δ′0, u1 + δ′0] = [v∗ − δ′0, v∗ + δ′0] as defined in (5.8.2), by the

estimate (86) we have dT (y∗, v∗) < 2δ∗ ≤ δ′0/2 from which it follows that J1 ⊂ J∗. Then

condition (5.8.3) follows from (85) since u1 = v∗ ∈ J∗.

Finally, to show condition (5.8.5) of Proposition 5.8 is satisfied, recall that ψ1(yn) =

gx
1(yn) = x, that dT (yn, v∗) < δ∗ ≤ 1 by the proof of Lemma 5.9, and that δ∗ =

min{1, δ′0/4, δ1/4}. Also, the estimate (73) combined with (83) and the choice of δ′0 ≤ 1

in Definition 5.1 yields that, for all y ∈ J∗

(gx
n)

′(y) ≤ exp{(−a+ 2ϵ1) ℓn} < δ′0 · exp{−an/2} < δ1/2. (88)

Thus, by the Mean Value Theorem and the estimate dT (yn, v∗) ≤ δ∗ ≤ 1, we have that

dT (x, v1) = dT (g
x
n(yn), g

x
n(v∗)) ≤ δ1/2 · dT (yn, v∗) ≤ δ1/2.

For any y ∈ J1 = [v∗ − δ′0, v∗ + δ′0] we also have that

dT (g
x
n(y), v1) = dT (g

x
n(y), g

x
n(v∗)) ≤ δ1/2 · dT (y, v∗) ≤ δ′0δ1/2 < δ1/2.

Thus,

dT (g
x
n(y), x) ≤ dT (g

x
n(y), v1) + dT (x, v1) < δ1,

so that K1 = ψ1(J1) ⊂ [x− δ1, x+ δ1], as was to shown.

This completes the proof of Proposition 5.8. □

6. Hyperbolic sets with positive measure.

The main result of this section is:

Theorem 6.1. Let F be a C1-foliation of codimension-one of a compact manifold

M for which E+(F) has positive Lebesgue measure. Then F has a hyperbolic resilient

leaf, and hence the geometric entropy h(F) > 0.

The assumption that the Lebesgue measure |E+(F)| > 0 is used in two ways. First,

the set E+(F) is an increasing union of the sets E+
a (F) for a > 0, so |E+(F)| > 0 implies

|E+
a (F)| > 0 for some a > 0. For each x ∈ E+

a (F), we obtain from Proposition 5.8

uniform hyperbolic contractions with fixed-points arbitrarily close to the given x ∈ E,

and with prescribed bounds on their domains.

Secondly, almost every point of a measurable set is a point of positive Lebesgue

density, hence |E+
a (F)| > 0 implies that E+

a (F) has a “pre-perfect” subset of points with

expansion greater than a. This observation enables us to construct an infinite sequence of
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hyperbolic fixed-points arbitrarily close to the support of E+
a (F), whose domains have to

eventually overlap since the closure T is compact. This yields the existence of a resilient

orbit for GF , hence a ping-pong game dynamics as defined in Section 2.4, which implies

that h(F) > 0.

Definition 6.2. A set E is said to be pre-perfect if it is non-empty, and its closure

E is a perfect set. Equivalently, E is pre-perfect if it is not empty, and no point is isolated.

The following observation is a standard property of sets with positive Lebesgue

measure.

Lemma 6.3. If X ⊂ Rq has positive Lebesgue measure, then there is a pre-perfect

subset E ⊂ X.

Proof. Let E ⊂ X be the set of points with Lebesgue density 1. Recall that this

means that for each x ∈ X and each δ > 0, the Lebesgue measure |BX(x, δ) ∩X| > 0,

and limδ→0 |BX(x, δ) ∩X|/|BX(x, δ)| = 1.

It is a standard fact of Lebesgue measure theory that |E| = |X|, so that |X| > 0

implies that E ≠ ∅. Moreover, if x ∈ E is isolated in E , then x is a point with Lebesgue

density 0, thus each x ∈ E cannot be isolated. It follows that E is pre-perfect. □

Theorem 6.1 now follows from Lemma 6.3 and the following result:

Proposition 6.4. Let a > 0, and suppose there exists a pre-perfect subset E ⊂
E+
a (F), then F has a resilient leaf contained in the closure E+

a (F).

Proof. Let a > 0 and let E ⊂ E+
a (F) be a pre-perfect set. The saturation of

a pre-perfect set under the action of the holonomy pseudogroup GF is pre-perfect, so

we can assume that E is saturated. We assume that F does not have a resilient leaf in

E+
a (F), and show this leads to a contradiction.

We follow the notation introduced in the proof of Proposition 5.8, which will be

invoked repeatedly, and the resulting maps and constants will be labeled according to

the stage of the induction. Choose 0 < ϵ1 < min{ϵ0, a/100}, and let δ0 be chosen as in

Definition 5.1.

Fix a choice of 0 < µ < 1, and choose 0 < δ1 < δ0 and x1 ∈ E ∩ Tα. Then

by Proposition 5.8, there exists holonomy maps ϕ1, ψ1 ∈ GF and points u1 ∈ T and

v1 = ψ1(u1), such that dT (x1, v1) < δ1 and which are fixed-points for the maps Φ1, Ψ1

respectively. Moreover, we have the sets

1. J1 ≡ [u1 − δ0, u1 + δ0],

2. I1 ≡ Φ1(J1) ⊂ (u1 − δ0, u1 + δ0),

3. K1 ≡ ψ1(J1) ⊂ (x1 − δ1, x1 + δ1)

whose properties were given in Proposition 5.8. In particular, Φ1 : J1 → I1 ⊂ J1 is a

hyperbolic contraction with fixed-point u1. In particular, note that
∩

ℓ>0 Φℓ
1(J1) = {u1}.

If the orbit of u1 under GF intersects J1 in a point other than u1, then by definition,

u1 is a hyperbolic resilient point, which by assumption does not exist. Therefore, the
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GF -orbit of u1 intersects the interval J1 exactly in the interior point u1, and intersects

K1 exactly in the interior point v1.

Note that x1 ∈ K1 ∩ E so there exists x2 ∈ (K1 − {x1, v1}) ∩ E as E is pre-perfect.

Choose 0 < δ2 < δ1 so that (x2 − δ2, x2 + δ2) ⊂ (K1 − {x1, v1}). The GF -orbit of v1
intersects K1 only in the point v1, thus the interval (x2 − δ2, x2 + δ2) is disjoint from

the orbit of v1. We then repeat the construction in the proof of Proposition 5.8, to

obtain holonomy maps ϕ2, ψ2 ∈ GF and points u2 ∈ T and v2 = ψ2(u2), such that

dT (x2, v2) < δ2 and which are fixed-points for the maps Φ2, Ψ2 respectively. Again,

define the sets

1. J2 ≡ [u2 − δ0, u2 + δ0],

2. I2 ≡ Φ2(J2) ⊂ (u2 − δ0, u2 + δ0),

3. K2 ≡ ψ2(J2) ⊂ [x2 − δ2, x2 + δ2].

We then repeat this construction recursively. Let {u1, u2, . . .} ⊂ T be the resulting

centers of contraction for the hyperbolic maps {Φi | i > 0}. As T is compact, there exists

an accumulation point u∗ ∈ T . In particular, there exists distinct indices i1, i2 > 0 such

that dT (u∗, ui1) < δ0/10 and dT (u∗, ui2) < δ0/10 and thus dT (ui1 , ui2) < δ0/5.

Recall that the intervals Ji1 = [ui1 − δ0, ui1 + δ0] and Ji2 = [ui2 − δ0, ui2 + δ0] have

uniform width, and moreover {ui1 , ui2} ⊂ Ji1 ∩ Ji2 . As ui1 and ui2 are disjoint fixed-

points of hyperbolic attractors, we can choose integers m1,m2 > 0 so that Φm1
i1

(Ji1) ∩
Φm2

i2
(Ji2) = ∅ and Φ

mj

ij
(Jij ) ⊂ J = Ji1 ∩ Ji2 for j = 1, 2. Then the action of the

contracting maps H = Φm1
i1

and G = Φm2
i2

on J define a “ping-pong game” as in

Definition 2.4.

Now let x = ui1 , y = G(x) ̸= x, then Hℓ(y) → x as ℓ → ∞, so that the orbit of x

under the action GF is resilient, contrary to assumption.

Hence, if there exists a pre-perfect set E ⊂ E+
a (F) for a > 0, then there exists a

resilient leaf. □

7. Open manifolds.

In this section, we extend the methods above from compact manifolds to open man-

ifolds, using the techniques of [38, Section 5].

Theorem 7.1. Let F be a codimension-one C2-foliation of an open complete man-

ifold M . If the Godbillon–Vey class GV (F) ∈ H3(M ;R) is non-zero, the F has a hyper-

bolic resilient leaf.

Proof. The class GV (F) ∈ H3(M ;R) is determined by its pairing with the com-

pactly supported cohomology group Hm−3
c (M ;R), so GV (F) ̸= 0 implies there exists a

closed m−3 form ξ with compact support onM such that ⟨GV (F), [ξ]⟩ ̸= 0. Let |ξ| ⊂M

denote the support of ξ, which is a compact set. As the support |ξ| is compact, there is

a finite open cover of |ξ| by a regular foliation atlas {(Uα, ϕα) | α ∈ A} for F on M (as

in Section 2 above). Let M0 denote the union of the sets {Uα | α ∈ A}, then the closure

M0 is a compact subset of M and |ξ| ⊂M0. Thus we have GV (F|M0) ̸= 0. If M0 is not
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connected, we can choose a connected component M1 ⊂ M0 for which GV (F|M1) ̸= 0.

Thus, we may assume that M0 is connected.

The proof of Theorem 4.4 used only the properties of the pseudogroup generated by

a regular foliation atlas {(Uα, ϕα) | α ∈ A} – the compactness of M was not used except

in the construction of this atlas. The definition and properties of the Godbillon measure

also apply to open manifolds, as was discussed in [38, Section 5]. Hence, by the same

proof we obtain that the set E+(F|M0) has positive measure.

The proofs of Propositions 5.8 and 6.4 use only the assumption that the pseudogroup

GF is compactly generated, as defined by Haefliger [32], and do not require the compact-

ness of M , hence apply directly to show that GF|M0 has a hyperbolic resilient point if

E(F|M0) has positive measure. Thus, F|M0 must have a resilient leaf, and so also must

F . □

Here is an application of Theorem 7.1. Let BΓ
(2)
1 denote the Haefliger classify-

ing space of codimension-one C2-foliations [30], [31]. There is a universal Godbillon–

Vey class GV ∈ H3(BΓ
(2)
1 ;R) such that for every codimension-one C2-foliation F of a

manifold M , there is a classifying map hF : M → BΓ
(2)
1 such that h∗FGV = GV (F)

(see [6], [53]). The first two integral homotopy groups π1(BΓ
(2)
1 ) = 0 = π2(BΓ

(2)
1 ),

while Thurston showed in [72] that the Godbillon–Vey class defines a surjection

GV : π3(BΓ
(2)
1 ) → R. It follows from Thurston’s work in [73], that for a closed ori-

ented 3-manifold M and any a > 0, there exists a codimension-one foliation Fa on M

such that ⟨GV (Fa), [M ]⟩ = a. Each such foliation Fa for a ̸= 0 must then have resilient

leaves.

More generally, given any finite CW complex X, a continuous map h : X → BΓ
(2)
1

defines a foliated microbundle over X, whose total space M is an open manifold with

a codimension-one foliation Fh such that h∗GV = GV (Fh). This is discussed in detail

by Haefliger [31], who introduced the technique. (See also Lawson [53].) Thus, using

homotopy methods to construct the map h so that h∗GV ̸= 0, one can construct many

examples of open foliated manifolds with non-trivial Godbillon–Vey classes. Theorem 7.1

implies that all such examples have resilient leaves.
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