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Abstract. We consider representation varieties in SL2 for lattices in
solvable Lie groups, and representation varieties in sl2 for finite-dimensional
Lie algebras. Inside them, we examine depth 1 characteristic varieties for
solvmanifolds, respectively resonance varieties for cochain Differential Graded

Algebras of Lie algebras. We prove a general result that leads, in both cases,
to the complete description of the analytic germs at the origin, for the corre-
sponding embedded rank 2 jump loci.

1. Introduction and statement of results.

Jump loci are basic objects in geometry, topology and group theory. They appear

in the following way. Let M be a connected, compact differentiable manifold (up to

homotopy), with fundamental group π. Let ι : G → GL(V ) be an algebraic representation

of complex linear algebraic groups. The representation variety Hom(π,G) is an affine

variety with distinguished basepoint 1, the trivial group homomorphism. It encodes the

representation theory of π into G. Furthermore, it comes equipped with a collection of

closed subvarieties: the characteristic varieties (or jump loci) in degree i and depth r

V i
r (M, ι) = {ρ ∈ Hom(π,G) | dimHi(M, ιρV ) ≥ r} , (1)

which stratify the local systems onM with typical fiber V that factor through ι, according

to the dimension of the corresponding twisted cohomology of M . This rich structure

contains valuable information on the geometry and topology of M .

The rank one case (when ι = idC×) received a lot of attention. The corresponding

characteristic varieties, denoted simply by V i
r (M), are the topological counterpart, for

r = 1, of the loci defined in algebraic geometry by Green and Lazarsfeld in [9][10],

when M is a complex projective manifold. Results of Arapura [1], further refined in

[6], show how the regular maps from M onto curves of general type may be recovered

from the geometry of the variety V 1
1 (M), when M is supposed merely quasi-projective.

In topology, it is known that the rank 1 jump loci V i
1 (M) control delicate finiteness

properties of Alexander-type invariants of M . This fact was used in [4][3] to obtain

significant results on certain important subgroups of mapping class groups of closed

Riemann surfaces.
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The rank two case (when G is SL2(C) or PSL2(C)) is considerably more difficult.

Indeed, the universality theorem of Kapovich and Millson [13] shows that the varieties

Hom(π,PSL2(C)) have arbitrarily bad singularities away from 1, when π runs through

the family of Artin groups. At the same time, the large number of applications of this case

makes it very interesting. For example, a recent result from [23] establishes a connexion

between the rank 2 case and a difficult open problem about the monodromy action on

the Milnor fiber homology of a complex hyperplane arrangement.

In this note, we approach analytic germs at 1 of representation varieties and jump

loci through the prism of the main result from [5]. The idea is to replace M by a model

A = (A., d): a connected, finite-dimensional Commutative Differential Graded Algebra

(for short, a cdga) having the same Sullivan minimal model [26] as the complex de

Rham cdga of M . Denote by θ : g → gl(V ) the tangent map at 1 of ι. Replace the

G-representation variety of π by the affine variety of g-valued flat connections on A,

F (A, g) ⊆ A1 ⊗ g, with natural basepoint 0. For ω ∈ F (A, g), consider the cochain

complex (A.⊗ V, dω), where dω is the associated algebraic covariant derivative. Replace

V i
r (M, ι) in (1) by the resonance varieties Ri

r(A, θ) defined in (2). These Zariski closed

subvarieties of F (A, g) record how dimHi(A ⊗ V, dω) jumps, for ω ∈ F (A, g). See

Section 2 for more details.

In what follows, we will denote by X(x) the analytic germ at x of an affine variety

X . Theorem B from [5] establishes an isomorphism Hom(π,G)(1) ≃ F (A, g)(0) that

identifies V i
r (M, ι)(1) with Ri

r(A, θ)(0) for all i, r, when A models M . We are going to

examine topological and algebraic Green–Lazarsfeld loci, corresponding to r = 1. In the

rank 1 case, we will drop ι and θ from notation.

To state our first main result, we need to recall two constructions from [18] (see

also Section 2). The Zariski closed subset F 1(A, g) ⊆ F (A, g) consists of those flat

connections of the form ω = η ⊗ g with dη = 0. The additional condition det θ(g) = 0

defines the Zariski closed subset Π(A, θ) ⊆ F 1(A, g).

Theorem 1.1 (Corollary 2.5). Let A = (A., d) be a connected, finite-dimensional

cdga over C. Let θ : g → gl(V ) be a finite-dimensional representation of a finite-

dimensional Lie algebra g, with V ̸= 0. Assume that 0 is an isolated point of
∪

i≥0 Ri
1(A),

and F (A, g)(0) = F 1(A, g)(0). Then Ri
1(A, θ)(0) = Π(A, θ)(0), for all i.

In Section 3, we apply this general result to a discrete, co-compact subgroup Γ

of a 1-connected solvable real Lie group S and the associated aspherical solvmanifold

M = S/Γ. It leads to the following complete description of embedded germs at 1 of rank

two topological Green–Lazarsfeld loci, for solvmanifolds. (In what follows, we denote by

P(H) the projective space of a vector space, and by V (f) the zero set of a polynomial.)

Theorem 1.2 (Theorem 3.3). Let M = S/Γ be a solvmanifold and let ι : G →
GL(V ) be a rational representation of a complex, semisimple linear algebraic group of

rank 1, with tangent map θ : sl2 → gl(V ). Then the germ at 1 of Hom(Γ,G) is isomorphic

to the germ at 0 of the cone on P(H1(M))×P(sl2), and the embedded topological Green–

Lazarsfeld germs are given by
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V i
1 (M, ι)(1) =

{
∅ if Hi(M) = 0,

cone(P(H1(M))× V (det ◦θ))(0) otherwise.

This extends the computation done in [18] for nilmanifolds, by replacing Nomizu’s

model [21] of such a manifold with a model found by Kasuya [14] for an arbitrary solv-

manifold. As explained in [25], lattices in solvable Lie groups are much more complicated

than those in nilpotent Lie groups. Nevertheless, Theorem 1.1 makes things work well.

Note that the first assumption from Theorem 1.1 (on rank one resonance) also appears in

Theorem 1 from [7]: it is equivalent to the fact that all completed Alexander invariants of

M are finite-dimensional, for an arbitrary compact manifold M modeled by A. To check

it for solvmanifolds, we prove in Theorem 3.5 a result of independent interest: each rank

one characteristic variety V i
1 (M) is finite, when M is the classifying space of a virtually

polycyclic group.

Next, we recall that Nomizu’s model for the nilmanifold M = S/Γ is the Chevalley–

Eilenberg cochain cdga, C.(s⊗C), of the nilpotent Lie algebra s⊗C, where s is the Lie

algebra of S. In Section 4, we apply Theorem 1.1 to another large class of examples:

cochain cdga’s of arbitrary finite-dimensional Lie algebras. Denoting by H.(h) untwisted
Lie algebra cohomology, we obtain in Theorem 4.8 the following complete description of

embedded germs at 0 of rank two algebraic Green–Lazarsfeld loci, for this class.

Theorem 1.3 (Theorem 4.8). Let h be a finite-dimensional complex Lie alge-

bra and let θ : sl2 → gl(V ) be a finite-dimensional Lie representation with V ̸= 0.

Then F (C.h, sl2)(0) is equal to {0} when H1(h) = 0, and otherwise is isomorphic to

cone(P(H1(h)) × P(sl2))(0). In the first case, Ri
1(C.h, θ)(0) is empty or equal to {0},

depending on whether Hi(h) vanishes or not. In the second case, the embedded germs of

depth 1 resonance varieties are given by

Ri
1(C
.
h, θ)(0) =

{
∅ if Hi(h) = 0,

cone(P(H1(h))× V (det ◦θ))(0) otherwise.

When A. = C.h, the analysis of the second hypothesis from Theorem 1.1 (on flat

connections) turns out to be the more difficult part. We know from [18] that F (A, sl2) =

F 1(A, sl2), when h is nilpotent. We first extend this property to the solvable case, where

we prove that F (C.h, sl2)(0) = F 1(C.h, sl2)(0). Along the way, we show in Lemma 4.3(2)

that the global property F (C.h, sl2) = F 1(C.h, sl2) actually characterizes the nilpotence

of h, within a certain metabelian class. Finally, we associate to an arbitrary finite-

dimensional Lie algebra h a solvable Lie algebra s̃, and we prove in Proposition 4.6

that, for any finite-dimensional Lie algebra k, there is a natural analytic isomorphism,

F (C.h, k)(0) ≃ F (C.s̃, k)(0). This leads to the equality F (C.h, sl2)(0) = F 1(C.h, sl2)(0),
in the general case.

2. Vanishing rank one resonance.

We start by isolating a useful property of rank 1 resonance. In the sequel, this will

enable us to treat simultaneously the germs at the origin of rank 2 jump loci, for both
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solvmanifolds and Lie algebras.

First, we need to review a couple of basic definitions and facts related to algebraic

jump loci, following [5] and [18]. Unless otherwise mentioned, our ground ring will be C.
Let A = (A., d) be a cdga, whose defining axioms capture the essential algebraic

features of the de Rham algebra of a differentiable manifold. Our standard assumption

is that A is finite-dimensional (as a vector space) and connected (i.e., A0 = C · 1). For

a finite-dimensional Lie algebra g, we denote by F (A, g) ⊆ A1 ⊗ g the variety of g-

valued flat connections on A, given by the solutions of the Maurer–Cartan equation,

dω + [ω, ω]/2 = 0. This construction gives a Zariski closed subset of A1 ⊗ g containing

the distinguished point 0, and is natural in both A and g. When g is abelian, F (A, g) =

H1(A) ⊗ g, since A is connected. Otherwise, the singularity F (A, g)(0) can be pretty

complicated. We will denote F (A,C) simply by F (A).

Now, let θ : g → gl(V ) be a finite-dimensional Lie representation with V ̸= 0. For

ω ∈ F (A, g), the covariant derivative dω acts on A.⊗ V (via θ), in the following way.

Write ω =
∑

i ηi⊗gi ∈ A1⊗g. Then dω(η⊗v) = dη⊗v+
∑

i ηiη⊗θ(gi)v, for η⊗v ∈ A.⊗V .

The flatness condition implies that d2ω = 0. We may thus speak for each degree i about

the descending filtration of F (A, g) by the depth r resonance varieties

Ri
r(A, θ) = {ω ∈ F (A, g) | dimHi(A⊗ V, dω) ≥ r} , (2)

which are Zariski closed in F (A, g). We are going to pay particular attention to the

depth 1 resonance varieties, since their germs at 0 are isomorphic to the germs at 1 of

the corresponding topological Green–Lazarsfeld loci V i
1 (M, ι), when A models M .

The simplest case is the rank one case, corresponding to θ = idC, when Ri
r(A, θ) ⊆

F (A,C) is denoted simply by Ri
r(A) ⊆ F (A), and F (A) = H1(A). This case is much

more studied than the non-abelian situation. Our starting point in this note is to identify

properties of rank 1 resonance that give valuable information on higher rank resonance.

A simple useful remark in this direction, made in [18], is that

Ri
1(A, θ)(0) ̸= ∅ ⇐⇒ Ri

1(A)(0) ̸= ∅ ⇐⇒ Hi(A) ̸= 0 . (3)

More information comes from considering the quadratic map

P : A1 × g −→ A1 ⊗ g , (η, g) 7→ η ⊗ g , (4)

the induced map P : H1(A) × g −→ F (A, g), and the (essentially) rank one part

F 1(A, g) := P (H1(A) × g), which is Zariski closed in F (A, g) and contains the origin

0. Define Π(A, θ) := P (H1(A) × V (det ◦θ)), where det : gl(V ) → C is the determinant.

Again, Π(A, θ) is Zariski closed in F 1(A, g) and contains 0. Moreover, as shown in [18],

Hi(A) ̸= 0 implies that

Π(A, θ) ⊆ Ri
1(A, θ) . (5)

This higher rank resonance bound actually follows from a more precise result.

Theorem 2.1 ([18]). Let ω = η ⊗ g with dη = 0 be an arbitrary element of

F 1(A, g). Then ω ∈ Ri
1(A, θ) if and only if there is an eigenvalue λ of θ(g) such that
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λη ∈ Ri
1(A).

In coordinates, consider the quadratic map

P : Cm × Cn −→ Cmn ≡ Cm ⊗ Cn , (x, y) 7→ z , (6)

where zij = xiyj . We denote its image by F 1(m,n). Clearly, F 1(m,n) = F 1(A, g),

when dimH1(A) = m and dim g = n. As is well-known, F 1(m,n) ≃ cone(Pm−1×Pn−1)

is Zariski closed in Cm ⊗ Cn.

Clearly, P−1(0) = Cm × 0
∪

0×Cn. To describe the other fibers, let us consider the

C×-action defined by t · (x, y) = (t−1x, ty), for t ∈ C×. Then P (x, y) = P (x′, y′) if and

only if (x, y) and (x′, y′) lie in the same C×-orbit, when P (x, y) ̸= 0.

We will use the following nice property of the regular map (6).

Lemma 2.2. A regular function f on Cm × Cn factors through the surjection

P : Cm × Cn ↠ F 1(m,n) if and only if f is C×-invariant. If this is the case, then

the (unique) quotient function F is regular on F 1(m,n).

Proof. If f factors, then clearly f is C×-invariant, since P (t·(x, y)) = P (x, y), for

all t ∈ C× and (x, y) ∈ Cm × Cn. Conversely, C×-invariance means that the polynomial

f is of the form f(x, y) =
∑

|I|=|J| cIJxIyJ where (I, J) ∈ Nm×Nn. This plainly implies

factorization, according to the above description of the fibers of P . The second claim

follows from the fact that the algebra of C×-invariant polynomials is generated by the

monomials xiyj . □

Definition 2.3. We say that the cdga A has trivial resonance in degree i if 0 is

an isolated point of Ri
1(A). In other words, Ri

1(A) = {0} ∪
∩

α(V (φα) ∩H1(A)), where

{φα} are polynomial functions on A1 and there is φ0 such that φ0(0) ̸= 0.

This property has the following significant higher rank consequence.

Theorem 2.4. If A has trivial resonance in degree i, then Π(A, θ) and Ri
1(A, θ)∩

F 1(A, g) have the same germ at 0, for any representation θ : g → gl(V ).

Proof. By (3) and (5), we know that 0 ∈ Π(A, θ) ⊆ Ri
1(A, θ) ∩ F 1(A, g). Set

p = dimV and consider the polynomial function on A1 × Cp, f̃(η, λ) =
∏p

i=1 φ0(λiη),

where φ0 is chosen as in Definition 2.3. Since f̃ is symmetric in λ, f̃(η, λ) = f(η, σ), for

some polynomial function f on A1×Cp, when σi is the i-th elementary symmetric function

σi(λ), for i = 1, . . . , p. Next, write det(t · id−θ(g)) = tp+
∑p

i=1(−1)icit
p−i, where each ci

is a polynomial function in g ∈ g. Clearly, ci(g) = σi(λ), for all i, where λ1, . . . , λp are the

eigenvalues of θ(g). Define the polynomial function f on A1 × g by f(η, g) = f(η, c(g)).

By construction, f(η, g) = f̃(η, λ), when λ1, . . . , λp are the eigenvalues of θ(g).

We may thus apply Lemma 2.2 to the quadratic map (4) and the regular function f .

Let us check that f factors through P . If η = 0 or g = 0, then clearly f(η, g) = φ0(0)
p.

It is equally clear that f(t−1η, tg) = f(η, g). Hence, we may find a regular function F on

A1 ⊗ g such that F ◦ P = f and F (0) = φ0(0)
p ̸= 0.
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Our claim will follow from the inclusion Ri
1(A, θ)∩F 1(A, g) ⊆ Π(A, θ)

∪
V (F ). To

prove this inclusion, assume that ω ∈ Ri
1(A, θ), where ω = η ⊗ g with dη = 0, η ̸= 0

and det θ(g) ̸= 0. We infer from Theorem 2.1 that there is an eigenvalue λj ̸= 0 of θ(g)

such that λjη ∈ Ri
1(A). Therefore, φ0(λjη) = 0, according to Definition 2.3. By the

construction of f , 0 = f̃(η, λ) = f(η, g). Finally, the factorization property of f implies

that f(η, g) = F (ω), and we are done. □

Under an additional hypothesis, the above result implies that the bound (5) is sharp,

at the level of germs at the origin.

Corollary 2.5. If A has trivial resonance in degree i and F (A, g)(0) =

F 1(A, g)(0), then Ri
1(A, θ)(0) = Π(A, θ)(0), for any representation θ : g → gl(V ).

The trivial resonance property is also related to delicate finiteness properties of

Alexander invariants of spaces [22][7]. For cdga’s with d = 0, it follows from Definition

(2) that all resonance varieties Ri
r(A, θ) are homogeneous. In particular, in this case,

triviality of resonance in degree i is equivalent to Ri
1(A) = {0}. As shown in [22], exam-

ples of this sort abound. More precisely, the cdga’s with d = 0 and fixed Betti numbers

bi = dimAi may be viewed as the points of an affine variety. On this parameter space,

triviality of resonance in degree i is a Zariski open condition, when bi > 0. Moreover, for

i = 1 and b2 ≥ 2b1 − 3 ≥ −1, this open set is non-void, as follows from Theorem 1.1 in

[24]. In the next sections, we will exhibit new classes of examples, with trivial resonance

and non-zero differential.

Example 2.6. For n ≥ 2, let M = C \ {n points} be the classifying space of

a finitely generated free non-abelian group. It is well-known that in this case A =

(H.(M), d = 0) is a model of M , and R1
1(A) = Cn. Hence, A does not have trivial

resonance in degree 1.

This simple example also shows that the second assumption from Corollary 2.5 is not

always satisfied. Indeed, for an arbitrary cdga A = (A., d) and ω =
∑

i ηi ⊗ gi ∈ A1 ⊗ g,

the Maurer–Cartan equation is equivalent to∑
i

dηi ⊗ gi +
∑
i<j

ηiηj ⊗ [gi, gj ] = 0. (7)

In our example, (7) shows that F (A, g) = A1 ⊗ g. When dim g > 1, it follows that

F (A, g)(0) ̸= F 1(A, g)(0).

3. Solvmanifolds.

In this section, we apply the general theory to solvmanifolds, where it leads to a

complete description of germs at 1 for both varieties of SL2-representations and topolog-

ical Green–Lazarsfeld loci. We also show that the rank one topological Green–Lazarsfeld

sets of virtually polycyclic groups are finite.

A solv-lattice is a discrete, co-compact subgroup Γ of a 1-connected solvable real Lie

group S, giving rise to the compact, aspherical solvmanifold M = S/Γ, with fundamental

group Γ. For such a manifold, Kasuya constructed in [14] a connected, finite-dimensional
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cdga model. Since the details are rather complicated, we are going to extract only the

properties of the Kasuya model A of M that are relevant to our study, following [14][16].

Let n be the nilshadow of the solvable Lie algebra s of S. The model A. is a sub-cdga

of the Chevalley-Eilenberg cochain algebra of the finite-dimensional nilpotent Lie algebra

n⊗C, B. := C.(n⊗C). This information is enough to prove that A satisfies the second

assumption from Corollary 2.5 globally, for g = sl2.

Lemma 3.1. If A is a Kasuya solvmanifold model and g = sl2, then F (A, g) =

F 1(A, g).

Proof. Since A. ⊆ B., equation (7) readily implies that F (A, g) = F (B, g) ∩
A1 ⊗ g, for any g. Similarly, F 1(A, g) = F 1(B, g) ∩ A1 ⊗ g. Finally, the nilpotence of

n⊗C implies, for g = sl2, the equality F (B, g) = F 1(B, g) [18]. Our claim follows. □

To verify triviality of resonance for Kasuya models, we will use a general result from

[7], which we now recall. Let M be a connected, finite CW-complex, with fundamental

group π and universal abelian cover Mab. The action of πab by deck-transformations

makes H.(Mab) a graded C[πab]-module, with I-adic completion denoted Ĥ.(Mab),

where I is the augmentation ideal of the group ring C[πab]. Let A be a cdga model

of a connected, compact manifold M . Then 0 is an isolated point of
∪

i≥0 Ri
1(A) if

and only if the C-vector space Ĥ.(Mab) is finite-dimensional. When M = S/Γ is a

solvmanifold, note that H.(Mab) = H.(Γ′), where Γ′ is the derived subgroup.

Lemma 3.2. All connected covers of a solvmanifold M = S/Γ have finite dimen-

sional homology. Moreover, if Hi(M) ̸= 0, then A has trivial resonance in degree i, for

an arbitrary cdga model A of M .

Proof. By the above discussion and (3), it is enough to show that the vector

space H.(G) is finite-dimensional, for any subgroup G ⊆ Γ. This in turn will follow from

results in [25, Chapters III-IV]. We know that the solv-lattice Γ is a polycyclic group,

by [25, Proposition 3.7]. Hence, G must be polycyclic [25, Remark 4.2]. According to

Theorem 4.28 from [25], G contains as a normal subgroup of finite index a solv-lattice

Γ0, with associated (compact) solvmanifold M0. A transfer argument shows then that

H.(G) is a quotient of H.(Γ0) = H.(M0), and we are done. □

We may now describe germs at 1 of non-abelian topological Green–Lazarsfeld loci

for solvmanifolds, as follows.

Theorem 3.3. Let M = S/Γ be a solvmanifold and let ι : G → GL(V ) be a

rational representation of a complex, semisimple linear algebraic group of rank 1, with

tangent map θ : sl2 → gl(V ). Then the germ at 1 of Hom(Γ,G) is isomorphic to the germ

at 0 of the cone on P(H1(M)) × P(sl2), and the embedded topological Green–Lazarsfeld

germs are given by

V i
1 (M, ι)(1) =

{
∅ if Hi(M) = 0,

cone(P(H1(M))× V (det ◦θ))(0) otherwise.
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Proof. Let A be a Kasuya model for M . Theorem B from [5] allows us to

replace Hom(Γ,G)(1) by F (A, sl2)(0) and V i
1 (M, ι)(1) by Ri

1(A, θ)(0). The assertion about

Hom(Γ,G)(1) follows then from Lemma 3.1 and the description (6) of F 1(A, sl2), since

H.(A) ≃ H.(M). If Hi(A) = 0, Ri
1(A, θ)(0) = ∅, by (3). When Hi(A) ̸= 0, Lemma 3.2

and Corollary 2.5 together imply that Ri
1(A, θ)(0) = Π(A, θ)(0). The identification of

Π(A, θ) with the cone on P(H1(M))× V (det ◦θ) follows as before. □

Note that the complete description of embedded non-abelian jump loci from The-

orem 3.3 depends only on θ and the untwisted Betti numbers of M , and extends the

similar result on nilmanifolds obtained in [18].

Example 3.4. When the Lie group S is nilpotent, a remarkable result of Dixmier

[8] says that the untwisted Betti numbers of M have no gaps, i.e., bi(M) ̸= 0 for all

i ≤ dimM . This no longer holds for solvmanifolds. Indeed, Kasuya constructed in [14,

Example 10.4], for every s ≥ 1, a solvmanifold M of dimension 2s+ 2 with the property

that bs+1(M) = 0.

We close this section by examining the rank one jump loci of virtually polycyclic

groups. LetM be a connected CW-complex with finite 1-skeleton and (finitely generated)

fundamental group π. Denote by T(M) := Hom(π,C×) = Hom(πab,C×) the affine

character torus, corresponding to the case ι = idC× . For ρ ∈ T(M), let Cρ be the

associated rank 1 local system on M , identified with the right π-module Cρ, where

z · g = zρ(g), for z ∈ C and g ∈ π. As noted in [18], the rank 1 jump loci (the

characteristic varieties V i
r (M)) are given by

V i
r (M) = {ρ ∈ T(M) | dimHi(M,Cρ) ≥ r} . (8)

When M is aspherical, we will replace it by π in the notation. Our goal is to prove

the following.

Theorem 3.5. If π is a virtually polycyclic group, then the characteristic variety

V i
1 (π) is finite, for all i.

This extends a result from [17], where it was shown that
∪

i≥0 V i
1 (π) = {1}, when π

is a finitely generated nilpotent group. At the same time, this gives a more precise version

of Lemma 3.2, when M = S/Γ is a solvmanifold (aspherical, with polycyclic fundamental

group Γ) with cdga model A, since V i
r (M)(1) ≃ Ri

r(A)(0), by the main result of [5].

Theorem 3.5 was proved for solv-lattices by Kasuya in [15], using a different method.

We begin by pointing out a useful virtual property, for characteristic varieties of

groups.

Lemma 3.6. Let f : K ↪→ G be the inclusion of a finite index subgroup K in a

finitely generated group G. Then f∗ : T(G) → T(K) has finite fibers and sends V i
r (G)

into V i
r (K), for all i, r. In particular, if V i

1 (K) is finite for all i, then G has the same

property.
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Proof. Clearly, fab : Kab → Gab has finite index image. By the exactness of the

T-functor, f∗ has finite kernel, which proves the first assertion. For ρ ∈ T(G), a transfer

argument (see [2, III.9]) shows that f.: H.(K,Cf∗ρ) → H.(G,Cρ) is surjective, whence

our second claim. The last property follows from the first two. □

If π is virtually polycyclic, it contains a finite index subgroup π0 which is poly-

cyclic with infinite cyclic quotients in a composition series, by [25, Lemma 4.6]. Due to

Lemma 3.6, we may thus assume in Theorem 3.5 that π is actually poly-Z, and argue by

induction on the length of a composition series.

The induction step goes as follows. Let α be an automorphism of a finitely generated

group G. Denote by Gα the semidirect product G⋊α Z and consider the exact sequence

1 → G
j−→ Gα

p−→ Z → 1 . (9)

We are going to use, for a Gα-module U , the Hochschild–Serre spectral sequence of

the group extension (9) ([2, p. 171]),

E2
st = Hs(Z,Ht(G,U)) =⇒ Hs+t(Gα, U) , (10)

which collapses at the E2-term. We denote by τ = σ(1) ∈ Gα the lift of 1 ∈ Z to Gα,

via the canonical section σ of p.

We start by using trivial coefficients Z, to describe character tori. We find that

(Gα)ab ≃ C⊕Z, where C denotes the coinvariants of αab acting on Gab. Thus, ρ ∈ T(Gα)

is identified with (χ, λ) ∈ T(C)× C×, χ is identified with j∗ρ ∈ T(G), and λ = ρ(τ).

For U = Cρ, the spectral sequence (10) collapses to the isomorphism

Hi(Gα,Cρ) = H0(Z,Hi(G,Cχ))⊕H1(Z,Hi−1(G,Cχ)) . (11)

Moreover, the action of 1 ∈ Z onH.(G,Cχ) may be described as follows, cf. [2, p. 171

and pp. 78–79]. Note that α : G → G is conjugation by τ . Let (α, id) : (G,Cχ) → (G,Cχ)

be the automorphism in the category of coefficients associated to α and idC. Then the

right action of 1 ∈ Z on H.(G,Cχ) is given by λ · (α, id)−1
∗ .

Lemma 3.7. If dimHi(G,U) < ∞ for all i and every finite-dimensional G-module

U , then the same property holds for Gα.

Proof. This is a straightforward consequence of the spectral sequence (10). □

Lemma 3.8. Assume that G has the finiteness property from Lemma 3.7. In the

above setting, ρ ∈ V i
1 (Gα) if and only if either j∗ρ = χ ∈ V i

1 (G) and λ is an eigenvalue

of (α, id)∗i : Hi(G,Cχ) → Hi(G,Cχ) or the same conditions hold for i− 1.

Proof. By definition (8), ρ ∈ V i
1 (Gα) if and only if Hi(Gα,Cρ) ̸= 0. We infer

from (11) that Hi(Gα,Cρ) ̸= 0 if and only if 1 is an eigenvalue for the monodromy action

of 1 ∈ Z on either Hi(G,Cχ) or Hi−1(G,Cχ). Our claim follows. □

Proof of Theorem 3.5. As noticed before, we may assume that π is poly-Z.
We suppose inductively that the group G from (9) has the finiteness property from
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Lemma 3.7, and Theorem 3.5 holds for G. We will finish the induction by showing that

both properties are inherited by Gα. Lemma 3.7 takes care of the first property. We

may use then Lemma 3.8 to deduce that, if ρ ∈ V i
1 (Gα), then χ = j∗ρ belongs to the

finite set V i
1 (G) ∪ V i−1

1 (G), and the second component of ρ, λ, is among the finitely

many eigenvalues of (α, id)∗q acting on Hq(G,Cχ), for q = i or i− 1. This completes our

proof. □

4. Lie algebras.

The tools developed in Section 2 also enable us to describe completely the germs at

0 of both sl2-valued flat connections and their depth 1 resonance subvarieties, for cochain

cdga’s of finite-dimensional Lie algebras.

By a result of Hattori [11], the cdga A.= C.(s⊗C) is a model for the solvmanifold

S/Γ, when the Lie algebra s of S is completely solvable. Due to Lemmas 3.1 and 3.2,

the comparison theorem with the corresponding topological germs at 1 from [5] implies

that F (A, sl2)(0) = F 1(A, sl2)(0) and A has trivial rank one resonance in degree i, if

Hi(A) ̸= 0. Therefore, Corollary 2.5 may be used for the cochain cdga A and g = sl2. In

what follows, we aim at extending this approach to an arbitrary cochain cdga A = C.h,
assuming only that the Lie algebra h is finite-dimensional.

Remark 4.1. Millionschikov proved in [19] that
∪

t≥0 Rt
1(C.s) is finite, for an

arbitrary solvable Lie algebra s. By the above discussion, this is an infinitesimal analogue

of Theorem 3.5, in the completely solvable case.

We refer the reader to [12, Chapters VII–VIII] for basic facts related to Lie algebra

(co)homology. Let h be a finite-dimensional Lie algebra. Note that C.h = (
∧.

h∗, d)

has the exterior algebra on the dual vector space h∗ as underlying commutative graded

algebra, hence C.h is connected and finite-dimensional. Denoting by H.(h, U) the Lie

cohomology of h with coefficients in the h-module U , note also that H.(Ch) is the Lie

cohomology of h with trivial C-coefficients, denoted simply by H.(h). Hence, F (C.h) =
H1(h).

We will need a couple of results on jump loci of cochain cdga’s from [18]. First,

for any finite-dimensional Lie algebra g, there is a natural isomorphism between the

variety F (C.h, g) and the Lie representation variety Rep(h, g) ⊆ h∗ ⊗ g = Hom(h, g),

consisting of all Lie homomorphisms from h to g. Moreover, F 1(C.h, g) is identified with

Rep1(h, g) := {φ ∈ Rep(h, g) | rank(φ) ≤ 1}. For g = C (the rank one case), clearly

Rep(h,C) = Rep(hab,C) = Hom(h/[h, h],C) = Hom(H1(h),C) = H1(h), thus recovering

the previous identification. For ω ∈ H1(h), we will denote by ωC the corresponding rank

1 h-module. This leads to the following description of rank 1 resonance:

Ri
r(C
.
h) = {ω ∈ H1(h) | dimHi(h, ωC) ≥ r} . (12)

We may now establish the Lie analogue of Theorem 3.5, in full generality.

Proposition 4.2. If the Lie algebra h is finite-dimensional, then Ri
1(C.h) is finite,

for all i. In particular, the cdga C.h has trivial resonance in degree i, if Hi(h) ̸= 0.
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Proof. By Levi’s theorem [12, p. 250], h = s⋊g, with s solvable and g semisimple.

Consider the Lie extension 0 → s
j−→ h −→ g → 0, and the associated natural exact

sequence [12, p. 238]

H2(h) → H2(g) → s/[h, s] → H1(h) → H1(g) → 0 , (13)

where H1(g) and H2(g) vanish by semisimplicity, cf. [12, p. 247 and p. 249]. We infer

that the map induced on abelianizations, jab : H1(s) → H1(h), may be identified with

the surjection s/[s, s] ↠ s/[h, s]; in particular, j∗ : H1(h) ↪→ H1(s) is injective.

For ω ∈ H1(h), the extension gives rise to the Grothendieck–Hochschild–Serre spec-

tral sequence [12, p. 305]

Hs(g,Ht(s, j∗ωC)) =⇒ Hs+t(h, ωC) . (14)

If j∗ω ̸∈
∪

t≥0 Rt
1(C.s), (14) implies by (12) that H.(h, ωC) = 0. On the other hand, the

solvability of s forces
∪

t≥0 Rt
1(C.s) to be finite, as shown by Millionschikov in [19]. Our

claim follows. □

We know from [18] that F (C.h, sl2) = F 1(C.h, sl2), when h is nilpotent. Now,

we have to prove that F (C.h, sl2)(0) = F 1(C.h, sl2)(0), in general. We will use the

standard basis of sl2, {H,X+, X−} (where H is diagonal with Eigen(H) = {±1}), for
which [X+, X−] = H and [H,Xϵ] = 2ϵXϵ.

We start by analyzing a simple metabelian case: h = V ⋊α C, where V is abelian

and α ∈ gl(V ). It is easy to check that h is non-nilpotent if and only if α has a non-

zero eigenvalue. Choose a basis {zi} of V for which α is in Jordan normal form. For

an eigenvalue λ ∈ Eigen(α), and an r-Jordan block of type λ, V (λ), αz1 = λz1 and

αzi = λzi + zi−1 for 1 < i ≤ r. We will use the basis {zi, u} for h, where u corresponds

to 1 ∈ C.
For φ ∈ Rep(h, sl2), we know that, on V , φzi = tiZ with ti ∈ C, for some Z ∈ sl2,

since V is abelian. We set φu = U ∈ sl2. When h is not nilpotent, we denote by f the

regular function on Hom(h, sl2) defined by f(φ) =
∏
(detU + λ2/4), where the product

is taken over the non-zero eigenvalues λ ∈ Eigen(α). Clearly, f(0) ̸= 0.

Lemma 4.3. For h = V ⋊α C as above, the following hold.

(1) Assuming that h is non-nilpotent, φ ∈ Rep(h, sl2) \Rep1(h, sl2) if and only if there

is 0 ̸= λ ∈ Eigen(α) and ϵ ∈ {±1} such that φ has the following form (up to

GL2-conjugation):

• φu = λ/2ϵH ;

• φ = 0, on each Jordan block V (λ′) with λ′ ̸= λ ;

• on each r-Jordan block V (λ), φzi = tiXϵ for 1 ≤ i ≤ r, with ti = 0 for i < r ;

• tr ̸= 0, for at least one such block V (λ).

Furthermore, in this situation f(φ) = 0.

(2) Rep(h, sl2) = Rep1(h, sl2) if and only if h is nilpotent.
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Proof. Part (1). The rank condition on φ translates to the fact that rank{U,Z} =

2 plus the property that the vector t = (t1, . . . , tr) is non-zero for at least one Jordan

block. Clearly, φ ∈ Rep(h, sl2) if and only if, for every r-Jordan block V (λ), φαzi =

φ[u, zi] = ti[U,Z], for 1 ≤ i ≤ r. In more detail, this means that

λt1Z = t1[U,Z] and (λti + ti−1)Z = ti[U,Z] , for 1 < i ≤ r . (15)

When t ̸= 0, (15) may be solved as follows. Let i be the first value for which ti ̸= 0.

We deduce from (15) that [U,Z] = λZ. Since Z ̸= 0, it follows that (15) is equivalent to

ti = 0 for 1 ≤ i < r.

We are left with solving the equation [U,Z] = λZ, which implies that λ ̸= 0,

since otherwise our assumption rank{U,Z} = 2 would be violated. This in turn forces

detU ̸= 0. Indeed, otherwise U would be nilpotent, hence ad-nilpotent, which implies

λ = 0. Thus, we may assume that U = tH with t ∈ C×, modulo GL2-conjugation. This

implies that we may also assume Z = Xϵ for some ϵ ∈ {±1} and t = λ/2ϵ. Plainly,

[tH,Xϵ] = λXϵ.

This completes our explicit description of Rep(h, sl2) \ Rep1(h, sl2). The property

f(φ) = 0 becomes a direct consequence of the construction of f , since detH = −1.

Part (2). If h is nilpotent, the claim is proved in [18]. If h is non-nilpotent, then

Rep(h, sl2) ̸= Rep1(h, sl2), by Part (1). □

At the next step, we settle the solvable case.

Lemma 4.4. Let s be a finite-dimensional solvable Lie algebra. There is a Zariski

closed subset W ⊆ Hom(s, sl2) not containing 0 such that Rep(s, sl2) ⊆ Rep1(s, sl2)∪W .

In particular, Rep(s, sl2)(0) = Rep1(s, sl2)(0).

Proof. We argue by induction on the length of the derived series, {s(k)}. If s(1) =
s′ = 0, then s is nilpotent and we may takeW = ∅. For the inductive step, we assume that

s(k+1) = 0 and we consider the Lie extension 0 → V −→ s
p−→ h → 0, where V = s(k)

is abelian and h = s/s(k) satisfies h(k) = 0. Hence, Rep(h, sl2) ⊆ Rep1(h, sl2) ∪W ′, with

W ′ ⊆ Hom(h, sl2) Zariski closed and 0 ̸∈ W ′. Clearly, p∗W ′ ⊆ Hom(s, sl2) is Zariski

closed and 0 ̸∈ p∗W ′.

Let {ui} ⊆ s be a lift of an h-basis. Plainly, for each i, hi := V ⊕ C · ui is a

Lie subalgebra of s, and hi = V ⋊αi C, where αi = adV (ui). If hi is nilpotent for all

i, we claim that Rep(s, sl2) ⊆ Rep1(s, sl2) ∪ p∗ Rep(h, sl2). Consequently, we are done

by induction, since clearly p∗ Rep1(h, sl2) ⊆ Rep1(s, sl2). To prove the claim, suppose

that φ ∈ Rep(s, sl2) \ p∗ Rep(h, sl2). This implies that φ(V ) is 1-dimensional, since V

is abelian. By our nilpotence assumption, we infer that φui ∈ φ(V ) for all i, whence

φ ∈ Rep1(s, sl2), as claimed.

Thus, we may assume that hi is non-nilpotent, for some i. For each such i, let

fi be a regular lift to Hom(s, sl2) of the polynomial function f on Hom(hi, sl2) from

Lemma 4.3(1). Let V (F ) ⊆ Hom(s, sl2) be the zero set of F :=
∏

fi, which clearly does

not contain 0. We claim that we may take W = p∗W ′ ∪ V (F ).

Indeed, let φ ∈ Rep(s, sl2) \ Rep1(s, sl2) be arbitrary. If φ ∈ p∗ Rep(h, sl2) ⊆
p∗ Rep1(h, sl2) ∪ p∗W ′, we are done. If φ ̸∈ p∗ Rep(h, sl2), pick i such that φi ̸∈
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Rep1(hi, sl2), where φi denotes the restriction of φ to hi, using an argument as before.

In particular, hi is non-nilpotent. By Lemma 4.3(1), fi(φ) = 0. Therefore, F (φ) = 0,

which completes our proof. □

Now, we describe a procedure that reduces the study of germs at 0 of arbitrary

Lie representation varieties to the case when the domain is solvable. We begin with the

semisimple case.

Lemma 4.5. Let g be a semisimple and k be an arbitrary finite-dimensional Lie

algebra. Then Rep(g, k)(0) = {0}.

Proof. By Ado’s theorem, k may be embedded in gl(V ), for some finite-

dimensional vector space V . Note that GL(V ) acts by conjugation on Rep(g, gl(V )),

and the GL(V )-orbit of 0 is {0}. By a classical result of Nijenhuis and Richard-

son [20, p. 3], Rep(g, gl(V )) is the union of finitely many Zariski closed GL(V )-

orbits, provided g is semisimple. (This is due to the fact that H1(g, U) = 0 when

dimU < ∞, see [12, p. 247].) Our claim follows then from the obvious equality

Rep(g, k) = Rep(g, gl(V )) ∩Hom(g, k). □

For an arbitrary finite-dimensional Lie algebra h, pick a Levi decomposition h =

s ⋊α g, with s solvable, g semisimple and α a Lie homomorphism from g to the Lie

algebra of derivations, Der(s) ⊆ gl(s). Let k be another finite-dimensional Lie algebra.

The semi-direct product structure of h implies that the map

φ ∈ Hom(h, k) 7→ (Φ := φ|s,Ψ := φ|g) ∈ Hom(s, k)×Hom(g, k)

identifies the variety Rep(h, k) with the Zariski closed subset of Rep(s, k)×Rep(g, k) given

by the equations

Φ(α(y)x) = [Ψy,Φx] , for x ∈ s and y ∈ g . (16)

Denote by s̃ the (solvable) quotient of s by the Lie ideal generated by α(y)x, for

x ∈ s and y ∈ g. Let q : s ↠ s̃ be the quotient map. Consider the regular map

Q : Rep(s̃, k) ↪→ Rep(h, k) , (17)

which sends Φ̃ to (q∗Φ̃, 0). It follows from (16) that Q identifies the variety Rep(s̃, k)

with the Zariski closed subvariety Rep(h, k) ∩ Rep(s, k)× 0.

Proposition 4.6. Let h and k be finite-dimensional Lie algebras. The map Q from

(17) induces an analytic isomorphism Rep(s̃, k)(0) ≃ Rep(h, k)(0).

Proof. By the above discussion, it is enough to show that, for (Φ,Ψ) ∈ Rep(h, k)

near the origin, Ψ = 0. This follows from Lemma 4.5. □

Corollary 4.7. For any finite-dimensional Lie algebra h, F (C.h, sl2)(0) =

F 1(C.h, sl2)(0).
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Proof. We have to show that Rep(h, k)(0) = Rep1(h, k)(0), when k = sl2. For

φ = (Φ,Ψ) ∈ Rep(h, k) near 0, we know from Proposition 4.6 that Ψ = 0 and Φ =

q∗Φ̃ with Φ̃ ∈ Rep(s̃, k) near 0. Lemma 4.4 implies that dim im(Φ̃) ≤ 1, and therefore

dim im(Φ) ≤ 1. We deduce that φ ∈ Rep1(h, sl2), which completes the proof. □

We end with the following Lie analog of Theorem 3.3.

Theorem 4.8. Let h be a finite-dimensional complex Lie algebra and let

θ : sl2(C) → gl(V ) be a finite-dimensional Lie representation with V ̸= 0. Then

F (C.h, sl2)(0) is equal to {0} when H1(h) = 0, and otherwise is isomorphic to

cone(P(H1(h)) × P(sl2))(0). In the first case, Ri
1(C.h, θ)(0) is empty or equal to {0},

depending on whether Hi(h) vanishes or not. In the second case, the embedded germs of

depth 1 resonance varieties are given by

Ri
1(C
.
h, θ)(0) =

{
∅ if Hi(h) = 0,

cone(P(H1(h))× V (det ◦θ))(0) otherwise.

Proof. By Proposition 4.2 and Corollary 4.7, the hypotheses of Corollary 2.5 are

satisfied by A = C.h and g = sl2, if H
i(h) ̸= 0. The proof goes as in Theorem 3.3, when

H1(h) ̸= 0. Finally, assume H1(h) = 0. Then F (C.h, sl2)(0) = {0}, since F 1(C.h, sl2) =
{0}, by definition (4). The remaining assertions, on Ri

1(C.h, θ)(0), follow then from

(3). □
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