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Abstract. There is a one-to-one correspondence between associated
families of generic conformally flat (local-)hypersurfaces in 4-dimensional space
forms and conformally flat 3-metrics with the Guichard condition. In this
paper, we study the space of conformally flat 3-metrics with the Guichard
condition: for a conformally flat 3-metric with the Guichard condition in the
interior of the space, an evolution of orthogonal (local-)Riemannian 2-metrics
with constant Gauss curvature —1 is determined; for a 2-metric belonging to
a certain class of orthogonal analytic 2-metrics with constant Gauss curvature
—1, a one-parameter family of conformally flat 3-metrics with the Guichard
condition is determined as evolutions issuing from the 2-metric.

Introduction.

The aim of this paper is to study the space of generic conformally flat (local-)
hypersurfaces of dimension 3 in 4-dimensional space forms via conformally flat 3-metrics
with the Guichard condition. Here, a hypersurface is called generic if it has distinct prin-
cipal curvatures at each point.

A complete local classification of conformally flat hypersurfaces in n-dimensional
space forms, n > 5, was given by Cartan[4]: a hypersurface in an n-dimensional space
form, n > 5, is conformally flat if and only if it is a branched channel hypersurface, i.e.,
if and only if it is quasi-umbilic. 3-dimensional branched channel hypersurfaces in a 4-
dimensional space form are known to be conformally flat as well, but there are also generic
3-dimensional conformally flat hypersurfaces. To find the complete (local) classification
of these hypersurfaces is an open problem. However, several partial classification results
of generic conformally flat hypersurfaces were given in [8], [9], [13] (and see also [14]
and [15]). In this paper, we relate generic conformally flat hypersurfaces to families of
orthogonal (local-)Riemannian 2-metrics with constant Gauss curvature —1.

Any generic conformally flat hypersurface in a 4-dimensional space form has a special
curvilinear coordinate system (z,y, z) satisfying the following conditions:

(1) all coordinate lines are principal curvature lines.
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(2) its first fundamental form I is expressed as
I =13(dx)? 4+ 15(dy)* + 15(dz)>.

(3) the functions I7 (i = 1,2,3) satisfy a Guichard condition I 417 = I}, where {4, j, k}
is some permutation of {1, 2, 3}.

Such a coordinate system is called a principal Guichard net of a generic conformally
flat hypersurface. We note that the Guichard condition ((2) and (3)) is conformally in-
variant, that is, it is preserved under conformal changes of the induced metric. Therefore,
a principal Guichard net of a generic conformally flat hypersurface in a 4-dimensional
space form can be mapped to Euclidean 3-space R? using a conformal coordinate sys-
tem of the hypersurface to obtain a Guichard net in R*, which is unique up to M&bius
transformation. Thus, we can recognise that a Guichard net is a pair {(x,y, 2), [g]} of
a coordinate system (x,y,2) on a simply connected domain U in R® and the conformal
class [g] of a conformally flat metric g satisfying the Guichard condition with respect to
the coordinate system.

Conversely, for a given Guichard net {(x!, 22, 2%),[g]}, there exists a generic con-
formally flat hypersurface with its canonical principal Guichard net in a 4-dimensional
space form, uniquely up to Mébius transformation (cf. [7] Section 2.4.6). Here, the term
“canonical Guichard net” refers to the conditions ' = dx, #? = dy and 6% = dz for the
conformal fundamental 1-forms 6 (i = 1,2,3) of the hypersurface (cf. [7] Section 2.3.3).
Then, the coordinates x,y, z are determined up to sign and constant of integration, as
0" (i = 1,2,3) are only determined up to sign. Here, we assume that the domain U,
where ¢ is defined, intersects the plane z = 0 for the sake of simplicity for the description
later. This existence theorem was obtained by study of the integrability condition on a
generic conformally flat hypersurface with the canonical principal Guichard net in the
conformal 4-sphere. A method to determine the first and the second fundamental forms
for a generic conformally flat hypersurface realised in R* from a Guichard net has been
provided in [10].

Certain non-trivial transformations (resp. deformations) act on the space of generic
conformally flat hypersurfaces: each hypersurface has an associated family, which is a
one-parameter family of non-equivalent generic conformally flat hypersurfaces with the
same Guichard net (cf. [5], see also [9] and [14], or [3] for a more general statement);
each hypersurface in R* has its dual generic conformally flat hypersurface in R*, which
generally belongs to a different conformal class (or has a different Guichard net) from the
one of the original hypersurface (cf. [11], [2]), but, as to its principal coordinate system
determined from the Guichard net, we can take the same coordinate system as in the
original hypersurface (cf. [11]).

Let ¢, be an inversion acting on R* with respect to 3-sphere Sg of radius 1 and
center p. For a generic conformally flat hypersurface f in R?*, both duals (1, f)* and
(tqf)* of tpf and ¢y f, respectively, are generally non-equivalent if p # ¢ (cf. [11]).
Hence, a five dimensional set of generic conformally flat hypersurfaces is constructed
from one hypersurface (see [2] for another proof of this fact). When we further consider
(tq(tpf)*)* and so on, the space of generic conformally flat hypersurfaces seems to be
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very large.

Let x; (i = 1,2,3) be the principal curvatures corresponding to the coordinate lines
x, y and z, respectively, of a generic conformally flat hypersurface, and for the sake of
simplicity suppose that k3 is the middle principal curvature for the hypersurface, i.e.,
K1 > K3 > Ko or K1 < K3 < Kg. Then, by the Guichard condition there is a function
¢ = p(x,y, 2) such that a metric g,

g = cos? p(dx)? + sin’ p(dy)? + (dz)?, (1)

together with the coordinate system (z,y,z) is a representative of the Guichard net
determined by the hypersurface.

Thus, the existence problem of generic conformally flat hypersurfaces is reduced to
that of conformally flat metrics g (resp. functions ¢) given by (1).

Now, we assume that all metrics g given by (1) (resp. all hypersurfaces) are of
C>™-class. Let ¢, (resp. ¢..) be the first derivative (resp. the second derivative) of ¢
with respect to z (resp. with respect to 2 and z). Our main Theorem 1 is as follows (see
Theorem 1 in Section 1 and Theorem 2 in Section 2.1):

MAIN THEOREM 1. Let g be a conformally flat 3-metric defined by (1) from a
function o(x,y,z). Then, we have the following facts (1) and (2):

(1) There is a function Y(x,y, z) such that g, = —@g. cotp, Py, = @, tanp.

(2) Suppose that @, # 0 and p,, # 0 are satisfied. Let us define functions Alz,y, 2)
and B(z,y,z) by

A.:_ Pz — '(/}:vz B_: prz _ ’(/Jyz
. p.sing  p,cosp’ " p,cosp  p.sing

Then, the Riemannian 2-metric §(z) = A2(x,y, 2)(dx)? + B%(x,y, z)(dy)? for any z has
constant Gauss curvature Kg(z) =—1.

When ¢ in a conformally flat 3-metric g satisfies the conditions .. = ¢,. = 0,
g leads to a generic conformally flat hypersurface either of product-type or with cyclic
Guichard net. For hypersurfaces of product-type, see [14, Section 2.2] and [12]. All
generic conformally flat hypersurfaces with cyclic Guichard net were explicitly realised
in 4-dimensional space forms and completely classified in [8]. By the Main Theorem 1,
we know that two kinds of hypersurfaces of product-type and with cyclic Guichard net
determined from ¢ satisfying ¢,, = 0 and ¢,, = 0 lie in the boundary of the space of
generic conformally flat hypersurfaces.

Next, let § = A2(z,y)(dx)? + B%(x,y)(dy)? be a Riemannian 2-metric with constant
Gauss curvature —1 defined on a simply connected domain V' in the (z,y)-plane. Then,
there are three functions ¢(x,y), ¢.(x,y) and 9.(z,y) on V satisfying the following
condition:

A - _ Pzx — ’(/}zw B — (pzy — wzy )
p.sing Y, cosp’ p.Cco8p P, sing




620 F. E. BURSTALL, U. HERTRICH-JEROMIN and Y. SUYAMA

In these equations, p(z,y) is uniquely determined from § by giving ¢(0,0) = A, but
vz (z,y) and 9, (x,y) are only determined up to the same constant multiple ¢ # 0 even
if we assume v,(0,0) = 0, that is, p.(z,y) = ¢5(z,y) = cpl(z,y) and ¥,(z,y) =
Ye(x,y) == cpl(z,y) (see Theorem 3 in Section 2.2).

In Section 4, we study the following system of evolution equations in z,

Yoz = (Pex — Pyy) SIN 200 — (Pzz — Pyy) cos 2,

. (2)
0zz = (Poe — (Pyy) 08 2¢ + (Yzz — ¢yy) sin 2¢.

In Section 1, Theorem 1, we show that the functions ¢, ¢ arising from a Guichard net as
in Main Theorem 1 are solutions of the system (2) and investigate whether the converse
is true. The Cauchy—Kovalevskaya theorem ensures that solutions of (2) exist for given
real-analytic initial data ¢(x,y), v.(x,y), ¥(z,y) and ¥, (z,y) on the coordinate surface
z = 0. As we have seen, this data gives rise to a constant Gauss curvature metric § but
additional equations are required on that data for the corresponding solution of (2) to
give rise to a Guichard net (see Section 4, Proposition 4.2) and so an evolution §(z) of
constant curvature 2-metrics. In particular, not all such § can serve as the initial metric
for such an evolution (see Example 2 in Section 3.2).

In general, the necessary equations on initial data are complicated and difficult
to understand (see Proposition 3.2). However, some simplification can be achieved by
requiring that these equations are satisfied for all initial data giving rise to the same
2-metric §, that is, for p(x,y), ¢S(z,y) and ¥S(z,y), for all ¢ # 0. In this situation, we
can describe the requirements on initial conditions to get an evolution on 2-metrics and
then a 1-parameter family ¢¢ of 3-metrics providing Guichard nets. This is the content
of Main Theorem 2 which we now state.

Let Lf = (Lf)(z,y) = (foa — fyy)(x,y) for a function f = f(z,y) and p.(z,y) =
©¢(z,y) = cpl(x,y). Our main Theorem 2 is as follows (see Theorems 5, 6 in Section 3.2
and Theorem 7 in Section 4).

MAIN THEOREM 2. Let two classes (A) and (B) of pairs of functions o(x,y) and
ol(x,y) be defined as follows:

(A) @(z,y) and ©L(x,y) are given by

1

=T (@) (@)= () sin® oz, y),

cos? o(z,y) :

respectively, with non-constant analytic functions ((x), D(y) of one-variable. Sim-
ilarly, functions o(x,y) determined by cos® o(z,y) := 1/(1+e“®)) are also included
in this class, then the partners ¢'(x,y) are given in a similar form.

(B) For (p})%(z,y) = {(z)sin? p(x,y) — n(y) cos?® p(x,y) with analytic functions (x)
and n(y), ¢(z,y) and ¢L(z,y) are given, if there is an analytic function o(z,y)
such that it satisfies the following conditions (1) and (2):

With

A= -

A 1
¢'sing + 2(¢C 4+ n)py cos) and B == —n' cosp +2(¢ + sin ),
2(<p1)2( @ +2(¢ +n)pa cos ) 2((pi)Q( 1" cos o +2(C + 1)y sing)

z
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(1) (C+ 0Py + (M oa+py)/2= —AB((pl)Q holds.
(2) There are functions S = S(z,y), T = T(z,y) such that Sy = @, (Ly), T, =
wy(Ly) and Ly = S cot p — T tan .

Then, for any pair ¢(x,y) and pL(x,y) in the class (A) or (B), an analytic 2-metric
§ = A2(dx)? + B%(dy)? with constant Gauss curvature —1 is determined and a one-
parameter family g¢ of conformally flat 3-metrics given by (1) is obtained via evolution
of orthogonal 2-metrics with constant Gauss curvature —1 issuing from §.

Conversely, let g be an orthogonal analytic 2-metric with constant Gauss curvature
—1. If there is a one-parameter family g¢, ¢ € R\ {0}, of conformally flat 3-metrics given
by (1) such that their evolutions determined by g° satisfy §°(0) = g, then § is determined
from some ¢(z,y) and pl(z,y) in (A) or (B).

In this case, g¢ and gc/ give distinct Guichard nets if ¢ # ¢/ (Theorem 7 in Section 4).

The class (A) (resp. (B)) is characterised by the condition on ¢(x,y) such that
(Pzy— 200y cot 20)(z,y) = 0 (resp. (Yay—2@atpy cot 2¢)(z,y) # 0) (see Corollary 3.3 in
Section 3.2). Main Theorem 2 proceeds by applying the Cauchy—Kovalevskaya Theorem
(which is why our data must be real-analytic) to solve the system (2) with initial data
at z = 0. For p(x,y) and ¢l(z,y) in (A), respectively (B), we have (Ly°)(z,y) =
(1/2)[c*¢(x) — 5/ cos® g] = pyy tan @ and (Ly©)(z,y) = (*/2)(¢(x) +n(y)) + S(z,y) +
T(x,y), respectively, and these equations determine the initial ¢°(z, y) by solving a wave
equation. From Main Theorem 2, we obtain many initial metrics § belonging to (A) by
taking arbitrary ¢(«) and D(y), and we shall also obtain many examples of § belonging
to (B) (see Section 2.2 and Section 3.2).

Finally, remark that this analysis starts by distinguishing the principal coordinate
direction z. However, a completely analogous account may be given after distinguishing
either the z- or the y-direction although, in these cases, the 2-metrics will have indefinite
signature and constant curvature 1.

1. Existence condition for generic conformally flat hypersurfaces.

The existence of generic conformally flat hypersurfaces in 4-dimensional space forms
is equivalent to that of functions ¢ = ¢(x,y,z) such that the following Riemannian
3-metric g determined from ¢ are conformally flat:

g = cos? pdz? + sin? dy? + dz*. (1.1)

Then, two conformally flat 3-metrics g determined from ¢(x,y, z) and @(x,y, z) define
the same Guichard net if and only if there are three constants a;, as and az such that
o(x,y,2) = o(£x + a1, £y + a2, £z + a3), as mentioned in the introduction. That is, ¢
is determined up to parameter shifts. Furthermore, such a 3-metric g is conformally flat
if and only if the covariant derivative V.S of the Schouten tensor S is totally symmetric,
where S = Ric — (R/4)g for the Ricci curvature Ric and the scalar curvature R of g.
In terms of ¢, the condition for g to be conformally flat reads (see [8, Lemma 1 in
Section 3]):
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PROPOSITION 1.1. A metric g given by (1.1) is conformally flat if and only if the
function ¢ satisfies the following four equations:

(1) Pryz + PrPyz tanp — PyPrz cotp = O,
_ _ 90 —
(2) Prrx @;yz + Pzzx _ (@xw Qoyy) COS 2 Pzz Oz — Purps cot o= 07
sin 2¢p
— — — cos 2¢p —
(3) Pazy ‘P?;yy Przy _ (Pox %y,) L. Oy — Pyzp. tanp =0,
sin 2¢
wr + + o — — cos 2
(4) Prrz @;yz Pzzz + Pra %Oysyin 2izz @(pz — PPy Ot o+ Oy Py tan o = 0.

The four equations in Proposition 1.1 are equivalent to the fact that the following
two differential 1-form « and 2-form [ determined from ¢ are closed:

z — wy?{ — ¥z, COS 2g47dz7
sin 2¢

(Ve — Sayy) COS2p — Py

sin 2¢

o = —pg, cot pdx + @, tan pdy + L

B = @z cot pdy A dz + @, tan pdz A dx —

dz A dy.

More precisely, « is closed if and only if the first three equations (1)—(3) for ¢ in Proposi-
tion 1.1 hold, and § is closed if and only if the last equation (4) holds. Thus, the problem
to find a generic conformally flat hypersurface is reduced to that of finding a function ¢
such that the two differential forms « and (3 are closed.

From now on, let us assume that all functions are defined on a simply connected
domain U = D x I in R® = R? x R, where 0 € I.

THEOREM 1. For a given ¢(z,y,z) such that da = df = 0, there is a function
U(x,y, z) satisfying the following four equations:

(1) wzz = —Pzz cot 2 (2) "/)yz = Pyz tan@v
(3) Y2z = (Paz — Pyy) SIN 20 — (Yaz — Pyy) cos 20,
(4> Pzz = (‘pwz - (Pyy) COs 2()0 + (wza: - '(/}yy) sin 290-

Conversely, if there are two functions ¢ and 1 satisfying these four equations, then
the 1-form « and 2-form B determined by ¢ are closed.
In this case, we can assume that i does not have any linear term for x, y, z.

By Theorem 1, the system of the third order differential equations for ¢ in Propo-
sition 1.1 are reduced to the system of the second order differential equations for two
functions ¢ and . However, 1 is not uniquely determined by ¢ even if we insist on van-
ishing linear term since, as we see in equations (3) and (4), ¥ (x,y, z) has the ambiguity
of terms k(x + ) and k(z — y) of 1-variable functions. We shall investigate this fact in
Section 4, where we impose additional constraints (in Proposition 4.1) after which v is
uniquely determined by .

Theorem 1 is obtained from the following Proposition 1.2:
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PROPOSITION 1.2.  The existence of a function ¢(x,y,z) such that da = df =0 is
equivalent to the existence of functions p(z,y,z) and ¥ = ¥(x,y,z) such that ¢ and
satisfy the following four equations:

(1) %z = —paz cot p, (2) y: = @y, tanp,

Pz — Pyy — Pzz CO82p (Paa — Pyy) cOS2p — @2,
3 zz = . ) 4 Tx T = - . .
( ) ’(/} sin 2@ ( ) d] wyy sin 230

Then, we can choose the function v such that it does not have any linear term for x, y, z.

We can rewrite (3) and (4) in Proposition 1.2 to (3) and (4) in Theorem 1, in
particular, Theorem 1-(3) is obtained by substituting ., in Proposition 1.2-(4) into (3).

ProoOr oF PROPOSITION 1.2. Firstly, we assume da = 0.
da = 0 is equivalent to the existence of a function p = p(x,y, z) which satisfies the
following three equations:

Pra — Spyy — Pzz COS 290
sin 2¢ ’

Pz = —Pzz cot ©, Py = Pyz tan ©, Pz =

Such a function p is determined up to a constant term. We choose the constant as zero,
then p is uniquely determined from ¢. We define a function ¢ = ¢(x,y, z) by

U(x,y,2) ::/0 p(x,y, 2)dz.

Then ) satisfies 1/}(;10, y,0) = 0 and

~ ~ 7 Prz — Pyy — Pzz COS 2()0
1 zz = — Pz COL 2 z = 2t 3 zz = . .
(1) ¥ Pzz COLY (2) by Pyz tan @ (3) ¥ sin 2

We note that, even if we replace 1) by (x,y,2) = ﬂ(x,y,z) + f(z,y) with function
f(z,y), ¥ also satisfies the equations (1), (2), (3) and ¢ (z,y,0) = f(x,y), that is, da =0
determines v, (not ).

Next, we express the 2-form 8 by using ¢ as follows:

($rz = Pyy) COS20 — .,
sin 2¢p

B = —thgedy A dz + 1by.dz A dz — dx A dy.

The condition df = 0 is equivalent to the equation

(ze — Soyy) COS2¢0 —
sin 2¢p

(szcac - J)yy)z = -

Thus, there exists a function f (z,y) such that

_ (P22 — Pyy) COS 20 — s,
sin 2¢p '

Z;mw _"Eyy +f($,y) =
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We find a function f(z,y) by solving the wave equation fro — fyy = f . However, such a
function f(z,y) is not unique, i.e., we can replace f(z,y) by f(z,y) + k(z,y) with any
function k(z,y) satisfying k,, — ky, = 0. Here, we may assume that f(z,y) does not
have any linear term for z, y. Even under this assumption, f(x,y) still has the ambiguity
of terms k(z + y) and k(z — y) of 1-variable functions.

Since v vanishes on z = 0, f(z,y) satisfies

Txr 2 — zz
(for — F)) =~ wiw £ (2,,0). (1.2)

We now define the required function 1 = ¥ (x,y, z) by

¢(I’yvz) = 1/’(1?»y72)+f($7y)a (’l/)(l',y,O) :f(zvy)) (13)

Then, we obtain (4) in the Proposition.
In particular, we can express « and ( in terms of the function ¢ as follows:

a = d(wz) = wwzdx + wyzdy + wzde,
B = d(tyds + Yady) = —usdy A dz + yadz A ds + (Yaw — )z A dy.

This fact shows that the converse of the statement in the Proposition is also true. O
For df = 0, we also have the following fact:

ProposITION 1.3 ([9]). Suppose daw = 0. Then, d = 0 holds if and only if the
following equation is satisfied:

[22]: = [-A% + {(‘Pm)z + (‘z"y)2 + (‘PZ)2}]Z7
where A = (02022 + 92 /0y*).

Proor. We firstly note that d8 = 0 is equivalent to Proposition 1.1-(4). With
respect to the coefficients of a, Proposition 1.1-(4) is formulated as the following:

Pz — Pyy — Pzz COS 2@
sin 2¢

(—@az cot @) + (py= tan ), + ( ) = (05 + 92+ ©2)z

In fact, for the equation, we have

2cos2¢

0 = (the left side) — (the right side) = x (the left side of Proposition.1.1-(4)).

sin 2¢
Hence, under the condition dav = 0, (¥z2)z + (¥yz)y + (¥22): = (2 + cpf/ +?), is

satisfied. The proposition now follows. O
2. Geometrical meaning of functions ¢ and .

In this section, in particular, in Section 2.1, we study a geometrical meaning of the
equations (1) and (2) in Theorem 1 (resp. Proposition 1.2). In Section 2.2, we study the
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converse proposition of the result in Section 2.1.

In Section 2.1, we assume that g given by (1.1) is conformally flat and that ¢ satisfies
Yz 7 0 and @y, # 0. We recall that, in the case ¢, = ¢,. = 0, the metric g determined
by ¢ leads to a generic conformally flat hypersurface either of product-type or with cyclic
Guichard net.

2.1. Evolution of metrics on surfaces with constant Gauss curvature —1.
Let us define the functions A(z,y, z) and B(x,y, z) from (1) and (2) in Theorem 1 by

A — (sz _ wxz B — @yz _ wyz
© @esing  p.cosg’ © p.cosp posing

Then, we have the following Theorem:

THEOREM 2. Suppose that p(z,y,z) and ¥(x,y,z) satisfy the equations (1), (2)
in Theorem 1. Let A and B be defined as above. Then, for each z, the Riemannian
2-metric §(z) on the (x,y)-plane,

g(z) = AQ(x,y, 2)dz? + Bz(x,y, 2)dy?, (2.1)
has constant Gauss curvature Kg,y = —1.
Proor. Firstly, we have the following equations from the definitions of A and B:
gz = —Agoz sin ¢, Pyz = Bg@z cos @, Ypy = flapz oS ©, Py, = Bgoz sin .
Then, by the integrability condition (¢z.)y = (¢y-)z, we have
(A, — By,)singp + (B, + Agp,) cos o = 0. (2.2)
By the integrability condition (¢z.)y = (¥y2)sz, we have
(A, — Byy)cosp — (By + Ap,)sing = —AB. (2.3)
When we substitute (2.2) into (2.3), we obtain
B, + Awy = ABsin g, Ay — By, = —AB cos p. (2.4)
The integrability condition (), = (¢y). implies
A,

= (Bsing), — (Acosp), = (B, + Ap,) sinp — (Ay — Byp,)cosp = AB,

which shows Kz = —1.

In this construction, we note that, for each zg, the metric g(zo) is defined so long
as (1) and (2) of Theorem 1, viewed as equations on ¢.|.—,,, ¥.|.=, are satisfied along
z = 2. O

In the proof of Theorem 2, we have obtained the following Corollary.
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COROLLARY 2.1.  We have

Ay ~ Baj A .
a s = —— + Acosp, = —— + Bsin,
(a) P = 3 © Py 7 @
(b) (IOg |<pz‘)z = _ASin ¥, (log |Sﬂz|)y = BCOS 1)
(C) Yzz = —Pgz cOL @, "/}yz =y, tan .

Now, when we regard ¢, (z,y,2) and ¥, (z,y, z) as 2-variable functions of z and y
with parameter z, we also have the following Corollary of Theorem 2.

COROLLARY 2.2. We have

i(2) !

= Ay () @) + (@) @ y.2)}.

PrROOF. We have the following two equations:

dp, = prp.dr + @ .dy = —/Ahpz sin pdz + ngz cos @dy,
dv, = Vg.dr + Py dy = Agp, cos pdz + B, sin ody.

Hence, we have (dp.)?+ (di.)? = p2(A%dz? 4+ B2dy?). O

REMARK. When we define

A.__Sﬁrz _ Vg and B = Pyz _ ¢yz

sing  cosy " cosp sing’

a metric §(z) := A%(z,vy,2)(dz)? + B%(z,vy, 2)(dy)? is flat for each z. In this case, we also
have a similar fact to Corollary 2.1 and, in particular, (b) is replaced by the following

(b"):
(b/) Prx = —A sin @, Pzy = BCOS ©.

There is a crucial difference between (b) and (b’), and it is essential for our study to
consider metrics §(z) with constant Gauss curvature —1 (see Theorem 3-(2) below and
Theorem 5, Proposition 3.4 in Section 3.2).

2.2. Characterization of 2-metrics with constant Gauss curvature —1.

Let g(z) be an evolution of orthogonal 2-metrics with constant Gauss curvature —1,
given in Theorem 2. Then, for each z = zy, §(z0) has been defined from ¢(z,y, 2p),
w.(x,y,20) and ¥, (x,y, z0). Here, we study the converse construction.

Let g be a (local-)Riemannian 2-metric of C*° with constant Gauss curvature —1,
defined by

§ = A2(x,y)(dx)* + B*(2,y)(dy)*. (2.5)

In the following Theorem 3, we show that three functions ¢(z,y,0), ¢.(z,y,0) and
Y. (x,y,0) are determined from g. Our notation anticipates that, in arguments to follow,
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v, (z,y,0) and ¥, (x,y,0) will be the z-derivatives on z = 0 of functions ¢(z,y, z) and
Y(x,y,z). However, in Theorem 3, we do not assume the existence of such extensions
and work only with ¢(z,y,0), ¢.(z,y,0) and ¥,(x,y,0).

THEOREM 3. Let a 2-metric § given by (2.5) have constant Gauss curvature —1.
Then:

(1) A function ¢(z,y,0) is well-defined by the equations (a)

0a(@,9,0) = (Ay/B)(z,y) + A(z,y) cos p(z,y,0),

(a) pr(x’ y,O) = _(BI/A)(xvy) + B(m,y) sin cp(ac,y70),

i.e., (p2)y(x,y,0) = (y)z(x,y,0) is satisfied. In particular, for any given A € R,
o(z,y,0) satisfying ©(0,0,0) = X is uniquely determined.

(2) Functions p,(x,y,0) and ¥, (x,y,0) are also well-defined by the following equations
(b) and (c), respectively:

(IOg |¢z|)$(l‘7 Y, 0) = —A(J), y) sin @(xa Y, 0)7

(b) R
(IOg |@Z|)y(x7y’ 0) = B($7y) COS@(xvya O)a

(C) wza:(xai%o) = _((pzm cot 90)(2572!,0), wzy(m>y70) = ((sz tan LP)(%%O),

i.e, (Poz)y = (Pay)e and (Vu)y = (Yay)a are satisfied. In particular, ¢, (x,y,0)
and ¥, (x,y,0) are determined up to the same constant multiple ¢ # 0, if V. (z,y,0)
has no constant term. Furthermore, V.4 (2,y,0) = (@220y + @2@2y)(x,y,0) and

Pzry (xv Y, 0) = _(8011/};:1,/ + (wazz)(xv Y, 0) hold.

PROOF. The statement (1) is obtained by direct calculation from the assumption
that § has constant Gauss curvature —1. Here, we only show the statement (2).
By (a), we have

(A, — Byy)sing + (B, + Agp,) cos o = 0, (2.6)
(A, — Byy)cosp — (By + Ap,)sing = —AB. (2.7)

We may define ¢, (z,y,0) and ¥,(x,y,0) by
Dop 1= fflcpz Sin, @y = Bcpz cose and P, = flcpz COSQ, Yoy 1= ngz sin @,

respectively, as (¢.z)y = (P2y)z (resp. (V2z)y = (12y)2) is satisfied by (2.6) (resp. (2.7)).
Then, these definitions imply (b) and (c), respectively. Thus, we have shown that (b)
and (c) are well-defined for ¢, (x,y,0) and ¥, (z,y,0), respectively.

The last two equations of (2) follow from (c¢) by (¢z4)y (%, ¥,0) = (¥.y)e(z,y,0) and
(V22)y(2,9,0) = (¥2y)z(x, y,0), respectively.

The theorem now follows. O

In general, it seems difficult to solve the initial condition (a), (b), (c) from a metric
g with constant Gauss curvature —1. Here, we study the problem for the hyperbolic
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2-metric on the upper half plane.

EXAMPLE 1. Let § = (dz?+dy?)/(y+b)? with a constant b(> 0). Then, we obtain
the following functions from §: For the sake of simplicity, we denote « + a (a: const.),
y+band ¢(x,y,0) by z, y and ¢, respectively.

L e 2wy e arcta 2y A = arcta _2ab
cosp = sinp = i.e., p = arctan , A = arctan ,
PR YT ® 22— 42 aZ — b2

2y 2z oy b, = —cx
_$2+y2’ Z_.’I,‘2+y2

(¢ # 0 : const.).

For the study in Section 3.2, we list other equations obtained in this case. Let
0:(2,9,0) = E(2,y,0) = cp;(w,y,0) and ¥.(2,y,0) = ¥i(z,y,0) = c¥;(z,y,0) by
Theorem 3-(2). We define functions ¢ = ((z) := 1/42?, S = S(z,y) = 4y /(2? + y?)?
and T = T(x,y) := —42?/(2® + y?)? + 1/22. Then, we have

Sz = (L), T, = oy (L),

) 3xy
(1) =(sin® ¢,  Lo(:= ze — pyy) = (

m, Ly = Scotp — T tan .

Next, ¥(x,y,0) is not determined from a metric § in Theorem 3. However, we can
determine 9 (x,y,0) for this metric under the assumption that the following equations
(d) and (e) are satisfied:

(d) thay = ooy, (&) — AP+l + 0l + 2 = (L) sin 2 — (Ly)) cos 2.
Furthermore, ¢¢(x,y,0) := ¢(x,y,0) for each ¢ is uniquely determined

2
¥° =log(a? +¢%) — (1 + %) log .

under the additional condition for ¢(z,y,0) not to have linear terms with respect to x
and y. The meaning of (d) and (e) becomes clear in the next section and these facts
are verified in Section 4 in a general situation. In particular, (d) and (e) in this case are
given as follows:

c dxy
Vay = Papy = T @+ y2)?
—AY° 4+ @7 + 97+ (95)? = (L) sin 20 — (L) cos 2¢

S Y N s
- 8 .'L'2 .’I}2 + yQ (a«:Q + y2)2 :

PROOF. Here, we only show that 1 is uniquely determined as above by (d), (e) and
the additional condition, as other functions are directly obtained from the definitions.
We firstly have

¢ =log(z® + ) + X(z) + Y(y)



Curvilinear coordinates on conformally flat hypersurfaces 629
with suitable functions X and Y of one variable, by (d). Then, from (e), we obtain
8X"x?y? +2Y"(2? — y?)? = (8 + )y>. (2.8)

Taking first and second derivatives of (2.8) with respect to x, we have

X2y 1 X 2 ! 27"
ﬂyQ +Y"2? =Y"y? and — (( ) ) = ——5 = c1 (const.).
T T T Y

Substituting 2Y” = —cyy? into (2.8), we have 8 X"2% — ¢ (2* — 222y + ¢*) = 8 + 2.
This equation implies ¢; = 0. Then, we have X” = (1 + ¢?/8)/x2. Thus, ¢ has been
determined for each c. O

3. Choice of initial data.

We firstly study the integrability conditions on ¢, and v, in Theorem 1, in Sec-
tion 3.1. Next, in Section 3.2, we study the relation between the equations (3), (4) of
Theorem 1 and orthogonal 2-metrics g with constant Gauss curvature —1. Through these
studies, we determine a class of initial data § for our system of evolution equations (2)
mentioned in the introduction.

3.1. Integrability condition on ¢, and ..
The following Theorem 4 and Proposition 3.1 are fundamental for our study.

THEOREM 4. Let p(z,y, z) and Y(x,y, z) satisfy all equations (1), (2), (3) and (4)
in Theorem 1. Then, we have the following facts (1) and (2):

(1) The conditions of (V.e)y = (Vay)s and (@zz)y = (P2y)e, Tespectively, are given by

Pray + (mezy + Soywzaz = 0; (31)
'(/}z:ry = Q2 Pry T PyPra-

(2) The equations obtained from (Vy.). = (Vz2)2 and (¥y.). = (¥.z)y, respectively,
are the same as those obtained from (pg.). = (¢22)e and (pyz): = (@22)y. Fur-
thermore, these equations imply that there are two l-variable functions k(x + y)
and k(z — ) such that ¥(z,y, 2) := P(x,y,2) + k(z +y) + k(z — y) satisfies the
following (3.3) and (3.4):

f&zy = Pz Py, (33)

(Ly) sin 2 — (L) cos 20 = —A + (¢a)? + (9,)? + (2)7. (3.4)

We note that ¢ (z,y, z) in Theorem 4-(2) also satisfies the all equations of Theorem
1, (3.1) and (3.2). Hence, the equation (3.4) means that the equation

szz = (Paz — Pyy) sin 2¢ — (J’zcc - zzyy) cos2¢p = _A@Z’ + (9096)2 + (Spy)Q + (‘PZ)2

is satisfied, by Theorem 1-(3).
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PROOF. The statement (1) is obtained by direct calculation. In this proof, we
only verify the statement (2), in particular, as the parameter z varies on some interval,
then, for the first statement of (2), we only study the equations induced from (¢,,). =
(¥22)e and (Yy.). = (¥.2)y, as we can obtain the equations from (¢z.), = (¢:.). and
(pyz)z = (¢22)y in the same way.

Before proceeding, we pause to consider that our goal in Section 3.2 is to view
Y, Yz, ¥, ¥, as initial data along a hypersurface z = zy and we want to know under
what conditions the conclusions of the present theorem hold in that setting. We shall
therefore attempt to confine and pinpoint our use of the equations of Theorem 1 and the
integrability conditions (¢,z), = (%..). and so on.

Let Ly = gz — @yy. Using (¥zz). = (¥22). and (1), (3), (4) of Theorem 1, we
firstly have

20222 = 2{(Lp)z + 202 (L) } sinp cos ¢ + 2{ (L)) — 2p.(Lep) } sin” ¥ (3.5)
= [(Ly) sin2¢ — (Ly) cos 2], + {(Lt))e — 202 (L)}

For the second term of the last equation in (3.5), we have:
(Li)a — 20(Lg) = [AY — (05 + @})]a — 20thzy — Patpyly-
By (3.5), we obtain the equation
(L) sin 2 — (L) cos 20 + A — (92 + o + 92)]e — 2[tay — apyly =0.  (3.6)
Similarly, using (¥.). = (¥..), and (2), (3), (4) of Theorem 1, we have
202 0y: = 2(Lep)y + 2y (L)] sinpcos g — 2{ (L)), — 20 (L)} cos® o (3.7)
= [(Lg) sin 2¢ — (Ly) cos 2¢]y — {(Le))y — 20y (Lep) }-

and

—{(Lah)y — 20y (L)} = [AY — (02 + ©2)y — 2y — Popyla-

Hence, we obtain

[(Lep) sin 2¢ — (Ltp) cos 20 4+ A — (05 + @5 + 02)]ly — 2[ey — Papyla =0.  (3.8)

Remark that the equivalence of (3.5), (3.7) with (3.6), (3.8) uses only differentiations
in z,y and so is valid along z = zj.
Furthermore, we have

[(Le) sin2p — (Ltp) cos 2¢ + Ay — (2 + @2 + ¢2)]. =0

by Proposition 1.3. However, for this equation, our argument can not be restricted to
zZ = Z-.

The equations (3.6) and (3.8) imply that there are two 1-variable functions [(x + y)
and I(z — y) such that
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(L) sin 2 — (L) cos 20 + Ay — (92 + ¢2 + ¢2)|(2,y, 2) = —l(z +y) — I(z — y),
2thay — @apyl(@,y,2) = —l(x +y) + (z — y),

as pz(x,y) = qy(2,y) and py(z,y) = ¢(z,y) imply pea — pyy =0 and gze — gyy = 0.
Finally, when we define 2k"(z + y) := l(x + y) and 2k"(x — y) := l(z — y) and
O(x,y, z) == U(x,y, 2) + k(z +y) + k(z — y), the function 1 satisfies (3.3) and (3.4).
Remark again that this argument uses only (3.6) and (3.8) and differentiations along
x,y and so hold on a fixed coordinate surface z = const.
We have therefore proved the Theorem. O

Equation (3.2) means that g, (x,y, 2) = (p2y)(x,y, 2) is satisfied for any (z,y, 2)
if Yy (2, v,0) = (pzy)(x,y,0) holds at any (z,y,0).

In the following proposition, we give another proof of the fact that (3.5) and (3.7),
respectively, are induced from (¢,), = (¥.2)s and (¥y:). = (¥22)y, then it will be
clear how (3.5), (3.7) are related with the equations in Proposition 1.1. Furthermore, we
summarise equations equivalent to (3.5) and (3.7), which we have obtained in the proof
of Theorem 4-(2).

In particular, (1) of the following Proposition 3.1 has an interesting geometric inter-
pretation, that we shall come back to in Section 3.2; the other equations (2)-(5) provide
analytic conditions on ¢ and . We shall come back to these results in Section 3.2 and
Section 4.

PROPOSITION 3.1.  Suppose that all equations of Theorem 1 are satisfied. Then,
the equation (3.9) below is satisfied for any z. Furthermore, suppose that all equations
of Theorem 1 are satisfied at arbitrarily fived z = zg. Then, the following five statements
(1), (2), (3), (4) and (5) are equivalent to each other at z = 2.

(1) The following equations are satisfied:
(Va2 + @z cot 9] =0, [thy= — py= tan ], = 0. (3.9)
(2) The following equations from (3.5) and (3.7) are satisfied:
Yooz + L)z = 202 (Lp) = 202002 =0, Yyzz — (L) + 20y (L) — 2020y, = 0.
(3) The following equations from (3.5) and (3.7) are satisfied:
(L0)e = 257 — {(Lg)a + 2pal L)} cobip + 260(L0),
(L) = = 257 +{(Lo)y + 20 (L)} tan o + 20, (L),

(4) (2) and (3) in Proposition 1.1 are satisfied:

Przz+ (LQO)I + 2<pw (L¢) + 2<pz¢wz = 0, Pyzz — (LQO)y - 2<py(L¢) + 2@z¢yz =0.
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(5) There are two 1-variable functions k(z +y) and k(z —y) such that {(z,y,z) =
Y(z,y, 2) + k(x +y) + k(z — y) satisfies (3.3) and (3.4):

Voy = Patpy, (L) sin2p — (L) cos 20 = =AY + (p2)* + (p)* + (02)2

In particular, the first (resp. second) equations of (1), (2), (3) and (4) are equivalent
to each other.

PrROOF. It follows from (1) and (2) of Theorem 1 that (3.9) is satisfied for any z.

From now on, let us fix z = 2zy. Here, we only prove the equivalence between (1),
(2) and (4) at z = zp simultaneously, as we showed other equivalences in the proof of
Theorem 4.

Firstly, we study the equation

0= ("/}rz sin ¢ + g, cos 90)2
= (Vazz — P2P22) SN O+ (Przz + P2Vaz) COS Q. (3.10)

When we substitute (3) and (4) of Theorem 1 into (3.10), we have

0= (Yu:Sinp + @, cos ),
= {(L)z + 20 (L)) + 02tbz2} cos @ + {(La)) s — 20:(Lp) — - zz}sing.  (3.11)

From these equations, we have

0= (3.10) 4 (3.11) =

{@azz + (Lp)a + 20 (L)) + 201052} €08 @ + {thazz + (L)) e — 20, (L) — 200042 } sin .
(3.12)

Now, in the equation (3.12), we have
the coefficient of sin ¢ = tan ¢ x (the coeflicient of cos ), (3.13)

which shows that both sides of the equation (3.13) vanish.
In fact, we consider the right hand side of (3.13):

(‘Pa:x — Qyy + (Pzz)w
2

the coefficient of cosp = 2 ( + 0. L(Y) — 0204 cOt <p> ,  (3.14)

where L(v)) is given by Proposition 1.2-(4) from Theorem 1-(4), then the right hand side
of (3.14) is same as the left hand side of Proposition 1.1-(2).

Next, we shall prove the equality of (3.13): Substitute Theorem 1-(3) into ., and
express ¥ by ¢, then we have

’lpmzz + (Lw)x - 2@1 (L(P) - QSDZQOIZ
= (Ly)2(1 — cos 2¢) + (Lep)o Sin 20 + 200022 — 202(Lep) — 202 0az
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P22 — (L) cos2¢p .
- |: = sin 2(,0 (1 —cos 280) + (LQD)L S 24,0 + 2@1(_([’()0) + szz) - 2@2@1‘2
(L) cos2¢p — s,
sin 2¢

= tany [(‘sz — Qyy + szz)m — 2, — 20, pg. COL Q| ,
which shows the equality of (3.13).
Thus, we have that (3.10) holds if and only if

which is (3.5) by the proof of Theorem 4. In consequence, the first equation of (1) is
equivalent to the first equations of (2) and (4), respectively.

By starting from [ty cos ¢ — ¢y sin ¢|.(x,y, z) = 0, we also have that the equation
is equivalent to

the left hand side of (3) in Propositionl.1 = v, — (L), + 2¢,(Ly) — 20,0, = 0.

Hence, the second equation of (1) is equivalent to the second equations of (2) and (4),
respectively. O

We shall study more an interesting condition induced from (3.9), in the following
section.

3.2. Infinitesimal deformation of 2-metrics with constant Gauss curva-
ture —1.
Let g be a (local-)Riemannian 2-metric of C*° with constant Gauss curvature —1,
given by

§:= A%(z,y)(dz)? + B*(2,y)(dy)*,

as in Section 2.2. We now study the relation between such metrics § and the equations
(3) and (4) of Theorem 1. In particular, we study an infinitesimal deformation of § in
the z-direction of orthogonal metrics with constant Gauss curvature —1.

For such a metric g, we have obtained, in Theorem 3, functions ¢(z,y,0), ¢.(z,y,0)
and v, (x,y,0) satisfying

'(/)zw(xvyao) = _(ingc cot <p)(x,y,0), wzy(xvyvo) = (@Zy tan go)(x,y,O). (3'15)

The system is uniquely determined by giving ¢(0,0,0) = X and a constant ¢ # 0, where
we assumed that ¢, (z,y, 0) has no constant term. We now formally assume the equations
(3), (4) of Theorem 1 along z = 0:

V22(2,9,0) = [(@aa — Pyy) sin2¢ — (L) cos 2¢] (x,y,0),

¢22(2,9,0) = [(Paz — @yy) cos2p + (L) sin 2¢] (z,y, 0) (3.16)

with some function (Lt)(x,y,0) from which we will recover ¢ (x,y,0) by solving (¢, —
wyy) = Ly.
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Under the preparation above, we recall the fact in Theorem 2 that the existence
of an evolution of orthogonal metrics §(z) with constant Gauss curvature —1 has been
obtained from the equation

Vox(2,Y,2) = —(Pze Ot ©) (2,9, 2),  Vay(2, 9, 2) = (0zy tan ) (x, y, 2).

Hence, for any fixed z = 2, the condition for §(zg) to deform infinitesimally in z-direction
to orthogonal metrics with constant Gauss curvature —1, is given by the equations

[d)zr + Pz cot @]z (l’, Y, ZO) = Ov szy — P2y tan QO]Z (:Ca Y, ZO) =0.

Applying the fact above, the condition for § to have infinitesimal deformation in
z-direction to orthogonal metrics with constant Gauss curvature —1, is given by the
equations

[wzx + P2z cOt ‘P]z (z,y,0) =0, szy — P2y tan SO]Z (z,y,0) =0, (3.17)

where we do not necessarily assume the existence of any extensions of ¢(z,y,0),
v, (z,y,0) and 9.(z,y,0) around z = 0, that is, we interpret derivatives in (3.17) as
Vowz (2,9,0) 1= V.e(2,y,0), [cot ). (2,y,0) := —(p./sin® p)(x,y,0) and so on. Hence,
(3.17) means that Proposition 3.1-(1) is satisfied at z = 0. It then follows that statements
(2)—(5) of Proposition 3.1 hold along z = 0.

Our aim here is to study the condition (3.17) for ¢ (x, y,0) only under the conditions
(3.15) and (3.16) at z = 0.

ProposiTION 3.2. Let g be an orthogonal Riemannian 2-metric with constant
Gauss curvature —1, given as above. Let us take a system of functions ¢(x,y,0),
. (x,y,0) and . (x,y,0) determined from g, by arbitrarily fived A and c. Suppose that
(3.16) and (3.17) are satisfied with some function (Ly)(x,y,0). Then, the following
equation is satisfied:

(L) (2,9, 0) X (@ay Sin 20 — 2050, cos 2¢)(x,y,0) =

sin 2¢p .
[_‘PZSDzmy + OzaPzy — ((L@)xy + 4oy (L)) 5 P (LSD)y sin’ ©

+ @y (L), cos® ¢](z,y,0).  (3.18)

PrROOF. We know that (3.17) is equivalent to Proposition 3.1-(3) at z = 0. When
we regard ¢, and ¢,. in two equations of Proposition 3.1-(3) as ¢., and ¢.,, we arrive
at (3.18) by direct calculation from (Lt))zy(z,y,0) = (Lt))yz(z, y,0). In this calculation,
we note that (L), and (L), respectively, appear again in (L)), and (L),. O

Proposition 3.2 implies a necessary condition for § to arise from a Guichard net:
it is not necessarily the case that Ly given by (3.18) actually satisfies Proposition 3.1-
(3). In general, this requirement amounts to a very complicated differential equation
for p(z,y,0) and ¢, (z,y,0). However, we may simplify matters somewhat by requiring
solutions of (3.18) for all ¢ # 0 as we now see.
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We arbitrarily fix A such that ¢(0,0,0) = X from now on: we wish to get conformally
flat metrics with the Guichard condition (or conformally flat metrics given by (1.1)),
then, for @(x,y, z) such that ¢(z,y,2) := ¢(x + a,y + b, z) with constants a and b, @
and ¢ determine the same Guichard net. Hence, ¢(z,y,0) is uniquely determined from
g. However, ¢, (x,y,0) depends on constants ¢ # 0 as well as § by Theorem 3. Let us
denote ¢, (7,y,0) = ¢<(x,y,0) := cpl(z,y,0). Then, we have the following Corollary of
(3.18):

COROLLARY 3.3. Let g be an orthogonal Riemannian 2-metric with constant Gauss
curvature —1. Let p(z,y,0) and ¢S(z,y,0) for any ¢ # 0 be functions determined from
g as above. Then, p(x,y,0) satisfies one of the following two cases (A) and (B):

(A) (@aysin2ep — 2p,p, cos 2¢)(z,y,0) = 0. Then, for each ¢ we have

sin 2¢
2
— @a(Lg)y sin® @ + @y (L), cos® @] (z,y,0) = 0.

[~ Pouy T PoaPsy — (Lp)ay + dpzpy (L))

(B) (uy sin2¢ —2p4p, cos2¢)(z,y,0) # 0. Then, for each ¢, (Ly°)(z,y,0) is uniquely
determined by (3.18).

REMARK. Case A has a pretty geometric interpretation:  the vanish-
ing of (puysin2¢ — 2¢.p,cos2¢)(x,y,0) is equivalent to the vanishing of
(Incos ¢/sin @),y (z,y,0) which happens precisely when the coordinate surface z = 0
is an isothermic surface in any Guichard net (R3, g) arising from §. We thank the anony-
mous referee for this nice observation.

THEOREM 5.  Let § be a 2-metric with constant Gauss curvature —1. Suppose that
o(z,y,0) and ¢<(x,y,0) := cpl(z,y,0) determined by g satisfy the condition of Corollary
3.3-(A) for any c # 0 and that o(x,y,0), ©5(z,y,0) and (L°)(x,y,0) satisfy Proposition
3.1-(3) at z = 0 for any c # 0. Then, p(x,y,0) satisfies either cos® p(z,y,0) = 1/(1 +
ePW) or cos? p(z,y,0) = 1/(1 + @), where C(x) and D(y) are any non-constant
functions of one-variable. Furthermore, in the case of cos® p(z,y,0) = 1/(1 4 eP®), we
have

(¢2)? = *C(a)sin® . Ly° = (1/2)[c*(() — ¢/ cos® ¢] — gy tan g,

where ((x) > 0 is any non-constant one-variable function.

Conversely, if we define ¢(x,y,0), ¢S(x,y,0) and (Ly°)(z,y,0) for any D(y) and
¢(z) > 0 as above, then an orthogonal 2-metric § with constant Gauss curvature —1,
which is independent of ¢, is determined such that o(x,y,0) and ©S(x,y,0) for g satisfy
the condition of Corollary 3.3-(A) and that ¢(z,y,0), ¢S(x,y,0) and (Ly°)(x,y,0) satisfy
Proposition 3.1-(3) at z = 0.

In the case of cos? p(z,y,0) = 1/(1 + @), we also have similar results.

We can assume that ¢°(z, y, 0) determined from (L) (z,y,0) in Theorem 5 satisfies
Proposition 3.1-(5) at z = 0, as the statements (1)—(5) at z = 0 in Proposition 3.1 are
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equivalent to each other. Hence, Theorem 5 provides many 2-metrics § of this kind.

PRrROOF. Let § be a 2-metric satisfying the assumption of the Theorem.

We firstly consider the two equations in Corollary 3.3-(A). By the first equation, we
have cos?p = 1/(1 4 e(C@+PW)) and sin? ¢ = (C@+PW) /(1 4 (C@+DPW))  where
C(z) and D(y) are one-variable functions. Since [—@lol, + ol ol ](x,y,0) =0 by the
first two terms in the left hand side of the second equation, we have @} = fe(F(@+G ),

Next, let R(z,y,0,c?) := (L) (x,y,0) be a solution of Proposition 3.1-(3). Then,
we have

(OR/Oc?), = ¢l L/ sin® o — 20, (OR/9c?) cot o,
(OR/0c?)y = —pL, L/ cos® o + 20, (OR/0c®) tan

by Proposition 3.1-(3). Hence, there are functions ¢(z, ¢?), 7j(y, ¢) such that
(OR/0c*)sin® ¢ = (1/2)[(02)? +ii(y, )], (OR/9c?) cos® p = (1/2)[~(p2)* +( (@, )],

and we have (p1)? = {(z, ¢?)sin® ¢ — ij(y, ¢?) cos? p.
Now, we have obtained

é($762)e(0(w)+D(y)) — ﬁ(yuc2) _ 62F(z)e2G(y)(_ ( 1)2)
L+ eC@+D) - )

If x(c?) := {(x, ) = —ij(y, c?), then x(c?) = 2F@+EW) = (p1)2. Since ¢! is indepen-
dent of ¢, x(c?) is constant and F(x), G(y) are also constants, which is contradiction to
L. #0and Lply # 0. Hence, this case does not occur.

Otherwise, we use (1 +e(C@+PW))=1 = ¢ (_e(C@+DPW)n where we assumed
e(C@)+DW) < 1 in the neighborhood of (0,0). If e(C@+PW®) > 1 then we can replace
e(C@HDW) < 1 by {@@+PW) — ¢} /(1 + a) < 1 with a suitable constant a from
14-e€@+PW) = (14 a)[1+{C@+PW) —q}/(14-a)]. Then, we have at least C'(z) =0
or D(y) = 0, and may assume C(z) = 0. Indeed, in the case of D(y) = 0, the argument
below proceeds in the same way when we consider (¢!)? = [{(z,¢?) —n(y, 2)e=C@®)]/(1+
e~C@)) — (2F () 26(),

Now, let us assume C(z) = 0. Since {(x,c?)eP® — q(y,c?) = [((z,c?) —
i(y, c?)/eP@ePW) | we have 7i(y,c?) = h(c?)eP® and that eP®) really depends on
y since G’(y) # 0. We also obtain ((z,c?) — h(c?) = ((x), where ((x) is independent of
¢ from (pl)? = 2(F@)+CGW)  In consequence, we have

(02)* = C(a)sin®p, DR[O = (1/2)[C(w) + h(c®)/ cos? ¢],
that is,
(¥9)? = H(x)sin o, Ly® = (1/2)[*((x) + H(c*)/ cos® o] + I(z,y),

where H'(c?) = h(c?) and that I(z,y) is independent of c2.
On the other hand, we consider the equations of Proposition 3.1-(3) under the
condition C(z) = 0, i.e., ¢z(x,y,0) = 0 and Ly = —¢,,. Then, there are functions
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5(:1:,62) and 7j(y, ¢?) such that (L) sin® ¢ = (1/2)((¢%)? + 7(y, ¢?)) and (L°) cos? p =
—(1/2)((¢%)? + 2 — (,¢?)) — pyy singcos . Hence, we have

Ly = —(1/2)¢} — pyy sinpcos o + (1/2)(((w, ) +7i(y, ),
(09)?* = C(x, c®)sin? p — ii(y, c*) cos? ¢ — 30?2/ sin? p — 204y sin® ¢ cos .

Then, we have ((z,¢?) = c*((x), 7i(y,¢*) =: n(y) and n(y)cos’p = —pZsin®p —
2py, sin® pcosp by (¢¢)2. Furthermore, we have h(c?) = H(c?) = 0 by Ly° and

iy, c*) =n(y).
By the argument above, we obtain, with cos? p = 1/(1 + eP®)),

(¢9)? = C(x)sin® o, Ly = —(1/2)¢] — pyysinpcosp + (1/2)(c*¢(x) +n(y)),

where 7(y) == [-¢} sin ¢ — 2¢,, sin® ¢ cos ]/ cos?  and that D(y) and ((x) > 0 can be
taken arbitrarily. These are functions ¢S(z,y,0) and (Ly°)(x,y,0) in the Theorem.

Conversely, these functions satisfy Proposition 3.1-(3) and determine 2-metrics ¢
with constant Gauss curvature —1 by Theorem 2, as there is a function ¥<(z,y, 0) such
that o7, = —¢%, cot o and ¢7, = ¢f, tanp for each pair of ¢ and ¢f. Furthermore,
these functions ¢(z,y,0), ¢S(x,y,0) and ¥<(z,y,0) are also defined from such a §, by
Theorem 3.

We can also obtain similar results in the case cos? ¢ = 1/(1 + e¢®)), O

Next, we study the condition on ¢ in the case of Corollary 3.3-(B) such that
(LY®)py(z,y,0) = (LY°)ya(z,y,0). Then, (Lyp°)(z,y,0) is divided into two terms by
the expression (3.18):

(L) (z,y,0) = EP(x,y) + Q(x,y),

where

d — 0Py + PraPr
P = | =5 Ly° 0) | = . . 0
(@)= (00" (2.0.0) ( e ()

Qy) = Loy + 4020y (L)) (sin20/2) — palLip)ysin’ o + oy (Le)r o0 o
e Payy SIN 20 — 20,0, COS 20 e

Our assumption for (Ly°)(z,y,0) of a 2-metric g that Proposition 3.1-(3) is satisfied for
arbitrary ¢ # 0 is equivalent to the following equations at z = 0:

o0l Py P
P, =222 _ 94, Pcot o, P,=—-"Y2"2 1 25, Ptany, 3.19
sin? ¢ Pol COLY Y cos? ¢ gy tan g (3.19)
Qe = —{(L@)z + 2¢,Q} cot ¢ + 2¢, (L), Qy = {(Lp)y + 2¢,Q} tan p + 20, (Lep).

(3.20)

PROPOSITION 3.4. Let g be an orthogonal 2-metric with constant Gauss curva-

ture —1. Let us define p(r,,0), ¢5(x,5,0), (L) (z,9,0), P(a,y) and Q(z,y) for §
as above under the assumption that (Ly°)(x,y,0) is expressed by (3.18). Suppose that
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(Ly°)(z,y,0) with arbitrary ¢ # 0 satisfies Proposition 3.1-(3) at z = 0. Then, we have
the following facts:

(1) There are functions ( = ((z), n = n(y) such that (p})?> = (sin®p — ncos® ¢ and
P=(C+n)/2.

(2) There are functions S = S(z,y) and T = T(z,y) such that S, = ¢,(Ly), T, =
©y(Lp), Lo(:= Qupa — @yy) = Scoto —T'tang and Q =S+ T.

(3) (Ly)(@,y,0) = *(C(x) + n(y))/2+ S(x,y) + T(x,y) is satisfied.

Conversely, suppose that, for ¢(z,y,0) and ¢l(x,y,0) determined from §, there
are functions ((z), n(y), S(x,y) and T(x,y) satisfying (1) and (2). Then, if we take
(Ly©)(z,y,0) given in (3), (L°)(x,y,0) satisfies Proposition 3.1-(3) at z = 0, that is, for
such a 2-metric §, (Ly°)(x,y,0) is determined such that it satisfies Proposition 3.1-(3)
and Corollary 3.3-(B).

PROOF. Let us assume that (Ly¢)(x,y,0) is given by (3.18) and (L¢°)(x,y,0)
with any ¢ # 0 satisfies the equations of Proposition 3.1-(3), that is, P(x,y) and Q(z,y)
satisfy (3.19) and (3.20), respectively. We shall verify that the assumption is equivalent
to (1) and (2).

Now, since we have the following equations from (3.19):

12 1)2
Psin® ¢ — 7@;) ] = {P cos® ¢ + 7(%05) =0,
x Y
there are functions ¢ = {(z) and n = n(y) such that
1y2 1)2
Psin? ¢ — (('05) :g, P cos® p + <(p22) :g.

Hence, we obtain P = (¢ +17)/2 and (¢!)? = ¢sin? ¢ — ncos? p.
Next, since we have the following equations from (3.20):

[@sin® ¢ + (Ly) sinpcos ol = a (L),  [Qcos® o — (L) sinp cos g, = o, (L),
there are functions S = S(z,y) and T = T'(z, y) such that S, = ¢, (Ly), T, = ¢, (Ly),
Qsin® o + (Ly)sinpcosp =S and Qcos? ¢ — (Ly)sinpcosp =T

are satisfied. Hence, we obtain @ =S + T and Ly = Scot p — T tan .

In each argument above, the converse is also valid. Finally, we obtain Li¢ from
Ly =c*P + Q.

We note about the converse statement: (3.18) has been obtained from the assump-
tion that (L) (x,y,0) satisfies Proposition 3.1-(3) (resp. Proposition 3.1-(1)). Further-
more, suppose that there is a solution ¢(z,y,0) and ¢,(z,y,0) such that ¢, (z,y,0) =
n(y) = 0 in this case. Then, Ly = (1/2)[c*¢(x) — (¢y)?] 4 const. is different from the
ones in Theorem 5. This fact implies that there is not such a solution in this case. Hence,
the 2-metrics § obtained here are included in Corollary 3.3-(B). O
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Now, ¢¢(x,y,0) has been determined from §, by Theorem 3. Hence, the property of
¢L(z,y,0) in Proposition 3.4-(1) induces a condition for §. Next, we study this condition.

Let us assume ()2 = (sin?¢ — ncos®p as in Proposition 3.4. Then, for § =
A?(dzx)? + B2(dy)?, we have

1

A== 2p)?

(=1 cos o + 2(¢ 4 n)py sin @)

(3.21)
by Theorem 2 and Corollary 2.1-(b). Furthermore, the condition that § has constant
Gauss curvature —1 is equivalent to the existence of ! such that ¢l = —pl cote
and wly = gpiy tan ¢, by Theorem 2, Corollary 2.1 and Theorem 3. By the integrability

z

1 .
2(901)2(@ sin ¢ + 2(¢ + 7))z cos ), B =

z

condition of !, we have the following Proposition.

PROPOSITION 3.5. A 2-metric § = A2(dz)? + B2(dy)? defined by (3.21) from
(p)? = ¢sin? ¢ — neos? ¢ with C(x) and 1(y) has the constant Gauss curvature —1, if
and only if the following equation is satisfied:

1 .
(C+Mpay + 5 (0a +py) = —AB(0)*.

PROOF. We have the equation in Proposition 3.5 from (—¢pl, cote), =
((p;y tan ), by direct calculation. In this calculation, when we multiply both sides
of the equation by 2! and use (gpi)zw = QQDiIQDiy + 250;90;@, we arrive at the desired
equation. O

We have the following Theorem by summarising Propositions 3.4 and 3.5:

THEOREM 6. For functions ( = ((z), n = n(y) of one wvariable, let us set
(e))2(z,y,0) := (¢sin® ¢ — ncos? p)(x,y,0). Suppose that there is a function p(z,y,0)
such that it satisfies the following equations (1) and (2):

(1) (C40)@ay + (0 x +C'py))2 = —AB(p1)?, where A and B are given by (3.21).

(2) There are functions S = S(x,y), T =T (z,y) satisfying Sy = 0. (L), Ty, = v, (L)
and Lo = S cotp — T tan .

Then, a 2-metric § = A?(dx)? + B?(dy)? with constant Gauss curvature —1 and func-
tions (LY°)(z,,0) == (2/2)(C + 1) + S + T, ¢(2,9,0) 1= cp}(2,9,0), ¥°(2,9,0) and
Y<(x,y,0) are determined.

Furthermore, let us define ¢S, ¥<, by (3.16). Then, we can choose a suitable
¥e(x,y,0) such that the system {p, ¥, S, ¥<, } of functions with arbitrary ¢ # 0 satisfies
Proposition 3.1-(5) at z = 0.

Conversely, if every one-parameter system {p, ¢, oS, <.} at z =0 for any ¢ # 0
determined by a metric g with constant Gauss curvature —1 satisfies Proposition 3.1-(5)
and (Ygy sin 2¢ — 240, cos 2¢)(z, y, 0) # 0, then the metric § is obtained from ¢(x,y,0)

and @l (z,y,0) satisfying (1) and (2).

PrOOF. The condition (1) determines a 2-metric § with constant Gauss curvature
—1, as in Proposition 3.5. ¢(z,y,0), 5(z,y,0) and ¥<(z,y,0) arise from the metric g,
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by Theorem 3. Then, these functions coincide with the ones stated in the Theorem by
the construction of § in (3.21), Theorem 2, Corollary 2.1 and Theorem 3.

Let P:= ((+1)/2, Q@ :== S+ T and Ly° = c*P + Q. For the Ly°, we define ¢¢,
and ¥¢, by (3.16). Then, Ly° satisfies the equations of Proposition 3.1-(3) at z = 0, by
Proposition 3.4.

Furthermore, since Ly¢ = 5, — ¢ , we can determine 1°(z,y,0) up to two 1-
variable functions k(z + y) and k(z — y). Taking a suitable ¢¢(z,y,0), the system
{o, ¥, 0%, 1S, } of functions satisfies Proposition 3.1-(5) at z = 0.

The converse also follows from Propositions 3.2, 3.4 and 3.5, as (pzysin2¢ —
20,y cos2¢)(x,y,0) # 0 is the condition that § belongs to the case of Corollary 3.3-
(B). O

We study some examples of ¢(z,y,0) and !(x,y,0) in Theorem 6 (see Example 1
in Section 2.2 and Examples 3, 4 below).

Now, let M be the space of (local) orthogonal 2-metrics § on (z,y)-plane with
constant Gauss curvature —1. Let g be a metric of M given in Theorem 5 or obtained
by the procedure in Theorem 6. Then, § has a z-direction such that, if there is a curve
through g in M which determines a conformally flat metric g with the Guichard condition,
then the curve evolves in the direction at g. Its direction is actually determined by a pair
of ¢, (x,y,0) and ¥<, (x,y,0) (see Theorem 7 in Section 4). In particular, the z-direction
at g is determined by a 1-parameter family with parameter ¢ # 0.

We shall show in Section 4 that such an analytic metric § really extends to an
evolution of 2-metrics §(z) for each ¢ # 0, which determines a conformally flat metric
g¢ with the Guichard condition. Then, g¢ and gc/ have different conformal structures if
¢ # ¢ by the definition. To find generic conformally flat hypersurfaces was the problem to
obtain general solutions ¢(z, y, z) of four complicated differential equations of third order
in Proposition 1.1. In consequence, under a generic condition, the problem is reduced
to find functions ¢(x,y,0) and @!(x,y,0) stated in Theorem 6, as their functions in
Theorem 5 are already obtained explicitly. Here, we used the term “generic” in the
meaning that g gives rise to a one parameter family ¢°.

We note that the conditions (d) ¥4y (z,y,0) = (Yupy)(z,y,0) and

(e) V.2 (2,y,0) = [(Lyp) sin 2¢ — (L) cos 2¢](z, y, 0)
= [-AY% + (p2)? + (9y)? + (¢2)*](,y,0)

are satisfied, for metrics § given in Theorem 5 and obtained by the procedure in Theorem
6, i.e., Proposition 3.1-(5) is satisfied for such metrics g.

EXAMPLE 2 (Counter example). On z =0, we set

y—x y—x
e (cos +sin ), Ys = 662 (—cos p + sin @)

olz,y) =v+y,  ¢i(z,y):=
with constant ¢ # 0. Then, for (b) and (c¢) of Theorem 3, we have

Voa(,y) = iy (z,y) = ce? " eosp(z,y), V5, (x,y) = —pl.(x,y) = ce’ " sinp(z, y).
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The 2-metric § = 4/(cosp + sing)? ((dz)? + (dy)?) defined by the functions above has
the constant Gauss curvature —1. Then, we obtain

Lo 0262(3;—27)
(L) (z,y) = ~Tcos20(r,7)
from (3.18) for §. However, this (L)°)(x,y) does not satisfy Proposition 3.1-(3). Hence,
this metric § does not extend into the z-direction.

In fact, from the first equation of Proposition 3.1-(3) we have

sin ¢ + cos 2¢(cos ¢ + sin @) = adid 4 ,
cos 2¢
and from the second equation, we have
cos p — cos2¢(cos + sinp) = f%.
cos 2y

If these two equations are satisfied, then we obtain
cos 2p(cos ¢ + sin p) = cos ¢ — sin

by adding two equations. Then, we simultaneously have cos2p = 41, which can not
occur.

EXAMPLE 3. Let us take (p1)2 = ¢;sin®p — cacos? ¢, that is, ((z) = ¢; and
n(y) = ¢2. Then, the function ¢(z,y,0) such that ¢, = c3v/c1sin? o — ¢3 cos? p, Yy =

C4 \/ c1sin? ¢ — ¢ cos? ¢ satisfies the condition (1) and (2) in Theorem 6, where ¢y, ca,
c3, ¢4 are constants. In particular, this case induces the Guichard net of Bianchi-type,
since we have

cA(e1 + o)

c2(c1 + o)
Orx = 5 Z

2

ci(er + ca)

3 2
5 sin 2¢p

sin 2¢, Pyy = sin 2¢, P =

and uniqueness of solutions for the evolution equation in z with respect to the initial
condition, which we shall study in Section 4 (and see Example 5 there).

PROOF. Let us set (¢!)? = ¢; sin® ¢ — ¢ cos? ¢. Then, we have

Pz COS P A Py Sin @
—, B=(c1+c)"F—.
(01)? (¥1)?

Then, Theorem 6-(1) is given by ¢, (c1sin? ¢ — cacos? ) = (1 + c2)Paipy, sin @ cos p.
Since (¢; sin” ¢ — 3 cos? )’ = (c1 + c2)¢’ sin 2, we have

A=—(c1 + )

(92)? = (2)(crsin® p —czc08” ), (py)* = o?(y)(crsin® p — ez cos? ).

Let c3 := o(z) and ¢4 := o(y). Then, we have Ly = (c3 — ¢3)(c1 + ca) sin ¢ cos p and
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2 _ 2 2 .2
ez (Lyp) = (4 64)2(61 o) Pz Sin 2 = <(C3 ) ) (c1sin® ¢ — ¢3 cos® @)) )
x
2 2 2 2
QDy(L(P) _ (C3 C4)2(Cl + 02)903; sin 2p = <<C3264)(Cl sin? ©—co cos? (P)>

Y

For Theorem 6-(2), we determine

(c1 sin? ¢ — o cos2<p+02), T := (a1 sin? ¢ — ¢9 coszga—cl). O

EXAMPLE 4. Let us take (p1)%(x,y,0) = ¢(z) sin® o(z, y,0) with any positive func-
tion ¢((z). Then, the function ¢(z,y,0) such that ¢, = ¢1 sin ¢ and ¢, = co sin ¢ satisfies
the condition (1) and (2) of Theorem 6, where ¢;, 2 are constants. In particular, this
case induces many metrics § determined by any c;, co and (), of which (L°)(x,y,0)
satisfies Proposition 3.1-(3).

PrROOF. Let us set (pl)%(x,y,0) = (z)sin® ¢(z,y,0). Then, we have

!/
A= (C+230wcotnp>, B=Yv

¢ sinp’

For Theorem 6-(1), we have ¢, = @z, cot p. This equation is independent of {(z)
and we have ¢, = o(z)siny and ¢, = o(y) sin p.

Now, when we take ((z) := 1/422%, o(x) := —1/z and o(y) := 1/y, we obtain
o(z,y,0) and the metric § of Example 1 in Section 2.2. Then, for any ¢((x), ¢(z,y,0)
satisfies Theorem 6-(2) with respect to S(z,y) and T(z,y) of Example 1, as ¢(z,y,0)
is independent of ((z). Hence, in this case we obtain many examples of g, of which
(L°)(z,y,0) satisfies Proposition 3.1-(3), by giving arbitrary ¢(z).

Here, we assume c¢; := o(z) and ¢3 := o(y). Then, we have

_2sing0

2 2 2 2 2 _ 2

Ly = a ;CQ sin2¢, . (Ly) = (Cl 502 sin? gp) . py(Ly) = (Cl262 sin? <p> .
x Y

Hence, for Theorem 6-(2), we can take

2 _ 2 2 _ 2 2 _ 2
¢ . ¢t — —c
2 sin? o, T:= -2 2 cos? . g

Z(sin?p —1) = _a

4. System of evolution equations and construction of Guichard nets.

In this section, we show that a class of functions ¢(x, y, z) and ¥ (x, y, z) in Theorem 1
is obtained as solutions of a system of evolution equations in z from initial data g at z = 0,
which are orthogonal analytic Riemannian 2-metrics with constant Gauss curvature —1
determined by Theorems 5 and 6. Theorems 3, 5 and 6 will be useful to verify this fact.
Now, we consider the following system of evolution equations in z:

Y2z = (Pax — Pyy) SIN 20 — (Yoz — Py ) cos 2, (4.1)
oz = (Yoo — SDyy) 08 2¢0 + (Vzz — ql)yy) sin 2¢p,



Curvilinear coordinates on conformally flat hypersurfaces 643

under a suitable initial condition at z = 0.

Now, for the system of (4.1) and (4.2), the initial condition at z = 0 is obtained
from analytic 2-metrics § determined by Theorems 5 and 6: Let us choose analytic
functions D(y) and ¢((x) > 0 in cos? ¢(x,y,0) = 1/(1 + eP®) and (¢¢)%(z,y,0) =
c2¢(x)sin? (x,y,0) of Theorem 5 and choose analytic functions ¢(x), n(y) and p(z,y,0)
in (¢9)2(z,,0) = 2(¢sin® ¢ — ncos® ¢)(z,y,0) of Theorem 6. Then, an analytic metric

=A%z, y)(d2)? + B*(z,y)(dy)” (4.3)

is defined from these functions such that ¢ is independent of ¢ and has constant Gauss
curvature —1. Furthermore, ¢¢(z,y,0) and ¥<(z,y,0) are determined for such a metric
g, and all systems of four functions ¢(z,y,0), ¥°(z,y,0), S(x,y,0) and ¥<(x,y,0) de-
pending on ¢ # 0 satisfy (a), (b) and (c) in Theorem 3 and further satisfy the following
(d) and (e):

(d) ;y<x7y70) = (pr@y)(x7y70)7

(e)
[~ A+ (02)” + (0y)* + (05)%](, 5, 0) = [(Paz — yy) sin 20— (Y5, —15, ) cos 2¢] (2,3, 0).

Conversely, if a metric § defines systems of four analytic functions at z = 0 depending
on ¢ # 0 such that each system satisfies (a), (b), (c), (d) and (e), then § is obtained from
o(z,y,0) and pS(x,y,0) as above. We take systems of four functions determined from
such a g and ¢ # 0 as the initial condition for (4.1) and (4.2).

REMARK FOR THE INITIAL CONDITION. Firstly, we note that all initial functions
at z = 0 are analytic. This analyticity for initial functions is necessary because we will
apply the Cauchy—Kovalevskaya Theorem to obtain existence and uniqueness of solutions
of the system (4.1) and (4.2).

For ¢(z,y,0), we can arbitrarily take ©(0,0,0) = A. However, when we define
?(x,y,2) = p(x + a1,y + ag, z) with any constants a; and az, these ¢ and ¢ lead to the
same Guichard net. Hence, we may assume ¢(0,0,0) = 7 /4.

From ¢S(x,y,0), we determine ¥$(x,y,0) by (c) as follows:

(%,y,0)

s (x,y,0) :=/( ) {= (5. cot p)(z,y,0)dx + (py, tan ¢)(z,y,0)dy},
0,0,0

that is, ¢$(0,0,0) = 0 and ¥<(x,y,0) is determined up to the same constant multiple ¢
as ¢%(z,y,0).

¢(z,y,0) is determined from (Lt°)(z,y,0) up to terms of k(z + y) and k(z — y)
by Theorem 5 and Proposition 3.4. Then, it will be uniquely determined by (d), (e) and

the condition that it has no linear term for x and y: °(x,y,0) is generally expressed by
(d) in the form

w0 = [ ' / () @,y O)dady + X°(z) + Y°(y) (4.4)
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with functions X¢(z), Y¢(y), where we choose X¢(z) and Y(y) such that they do not
have any linear term for x and y. Then, X¢(x) and Y¢(y) are uniquely determined by
(e), of which fact will be verified in Proposition 4.1 below.

Thus, we have obtained from an initial data § determined by Theorems 5 and 6 a
one-parameter family {¢(x,y,0),¥(x,y,0), pS(x,y,0),¢¥<(x,y,0)} with parameter ¢ # 0
as the initial condition. Consequently, for a given metric §, there is a one-parameter
family {©°(z,vy, z),v°(z,y,2)} of solutions for the system of equations (4.1) and (4.2),
which will lead to distinct Guichard nets if ¢ # ¢’ (see Theorem 7 below).

PROPOSITION 4.1.  Suppose that ¥°(x,y,0) satisfies (d) and (e). Then, ¥°(x,y,0)
is uniquely determined, if it does not have any linear term for x and y.

PrOOF. In this proof, we omit the ¢ in ¥°(z,y,0), X°(x), Y°(y), etc.

Now, let 1[1(:5, y,0) be the first integral term in the right hand side of (4.4). Suppose
that ¢ (x,y, 0) has two expressions of ¥ (x,y,0) = (2, y,0)+X (z)+Y (y) and ¢ (z,y,0) =
U(x,y,0) + X (2) + Y (y). Then, since

X"sin? ¢ +Y" cos® o = X" sin® o+ Y" cos? o
1. . )
= —5lAY — 9% — ) — 9% + (L) sin 2 — (L)) cos 2¢)]

by (e), we firstly have (X — X)”sin? p + (Y — Y)" cos? p = 0 for (z,y,0).

Next, there are functions k(z + y) and k(z — y) such that (¢ — ) (z,y,0) = k(z +
y) + l%(x — 1), as ¥(x,v,0) is determined from (L1))(x,y,0). Taking derivatives of (¢ —
¥)(z,y,0) by z and y respectively, we have (X — X)"(z) = (Y —=Y)"(y) = k" (z +y) +
K (z —y).

From these two equations, we obtain (X — X)"(x) = (Y —Y)”(y) = 0, which shows
that ¥(z,y,0) is uniquely determined up to linear terms.

Finally, we note that, if p(z,y,0) is really a function of two variables z and y, then

the conclusion of the Proposition follows from only the first equation. O

Now, we define the functions I*(x,y, 2), IY(z,y, 2), J(z,y, z) and K(z,y, ), respec-
tively, by using the solutions p(z,y, z) and ¢ (z,y, z) for the system (4.1) and (4.2):

I" = wwz + Yz cot ©, IY = 'L/)yz — Pyz tan ®, J = wa:y — PPy,

K := (L) sin 2¢p — (L)) cos 2¢ + A — (p2)? — (¢,)? — (p2)2. (4.5)

PROPOSITION 4.2.  We have the following system of equations for any (z,y, z):
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r 1 0 1 0 1

0 0 ~sin® o dy in2 p O

@0y 2sin”pdr
I” 0 0 10 L oI
o\ cos2pdx 2cos2dy | | 1Y
82 J o .2 a 2 8 J
K sin cpa—y cos w% 0 0 K

_2 sin? gp% 2 cos? cpa%/ 0 0 |

PROOF. We obtain the equations of (I*), and (1Y), from the proof of Theorem 4,
where we showed that (I*), = 0 and (1Y), = 0, respectively, are satisfied if and only if
the right hand sides of them vanish, by using (4 1) and (4.2).

For the equation of J,, we firstly define I* := tan @I® and Iv := cot plY. We have

~ ~ 1 ~ ~
& ), =——[J. I — o, Iv],
(I%)y + (1Y) Slwcow[ + @y @z 1Y]

then we obtain the equation desired.
For the equation of K,, we have

K. = [(Ly)sin2p — (L) cos 2¢p + Ay — (‘PI)Z - (SDy)2 - (‘PZ)Q]Z

= (L), sin 2¢p — (L)) cos 2p + A, — 20502, — 2040y,
= (Pawz — Pyyz) SIN 20 + 2gq. SIN® @ + 2y, cOS" 9 — 200002 — 2040y
= 258i0% P(Vraz + Paaz €Ot P) 4 2€08° P(Pyyz — Pyyz tan @) — 202022 — 20y Py
= 2sin” p(I"), + 2 cos? p(1Y),. O

The matrix of the right hand side in Proposition 4.2 is a linear differential operator
of first order with respect to x and y, then the system in Proposition 4.2 is regarded as
an evolution equation in z. Hence, when we take solutions ¢(z,y,2) and ¥(z,y, z) of
(4.1) and (4.2) under the initial condition determined as above, we obtain I? = [¥ =
J =K =0 for any (x,y, z) by the uniqueness assertion of the Cauchy—Kovalevskaya, as
I*(z,y,0) = IY(x,y,0) = J(z,y,0) = K(x,y,0) = 0 are satisfied.

In the statement and the proof of Theorem 7 below, we assume that ¢ does not
have any linear term for x, y, z, that is, the initial function ¢ (x,y,0) (resp. ¥.(z,y,0))
not only satisfies (d) (resp. (c)) but they, respectively, are also defined by the conditions
given in the Remark above.

o

THEOREM 7. Let us take an analytic 2-metric G given in Theorem 5 or obtained
by the procedure in Theorem 6. Let functions o(x,y,0), ¥°(z,y,0), ¢S(x,y,0) and
Ye(z,y,0) be a system determined by § as above. We take such a system of functions
as the initial condition at z = 0 for the system (4.1) and (4.2). Then, all solutions
©°(z,y,2) and Y(z,y,z) depending on ¢ satisfy all equations of Theorem 1, that is, each
pair o°(x,y,2) and V°(x,y, z) defines an evolution of 2-metrics issuing from §, which
corresponds to a conformally flat 3-metric with the Guichard condition.

Conversely, if, for an orthogonal analytic 2-metric § with constant Gauss curvature
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—1, there is a one-parameter family of evolutions of 2-metrics issuing from § such that
each evolution corresponds to a conformally flat 3-metric with the Guichard net, then §
is a metric either in Theorem 5 or obtained by the procedure in Theorem 6.

PROOF. Let an analytic 2-metric § and a system of functions ¢(x,y,0), ¥ (x,y,0),
0. (z,y,0), ¥, (x,y,0) satisfy the hypotheses of the theorem. Since these four functions
given as an initial condition at z = 0 are analytic, a pair of solutions ¢(z,y,z) and
Y(x,y, z) for the system (4.1) and (4.2) uniquely exists for each initial condition depend-
ing on c¢. Hence, we can assume that ¢(z,y, z) and ¥ (z,y, z) satisfy (4.1), (4.2) for any
(z,y, z) and also satisfy the initial condition (a), (b), (¢), (d) and (e) at z = 0.

Then, we obtain I* = 1Y = J = K = 0 for any (x,y, 2) by Proposition 4.2. That
is, o(x,y,2) and ¥(x,y,z) not only satisfy (4.1), (4.2) but also satisfy the following
equations for any (z,y, 2):

¢wz = — gz COt Y, wyz = Pyz tan o, (46)
¢my = PPy,
Pz = (L) sin2p — (L) cos 20 = —A¢ + () + (0)° + (92)*. (4.8)

Thus, since the solutions ¢(z,y, z) and ¢ (z,y, z) of the system (4.1) and (4.2) under
our initial condition also satisfy (4.6), ¢(z,y,z) and ¥(x,y, z) satisfy all equations in
Theorem 1. In particular, each solution {°, 1°} obtained from § and ¢ # 0 defines an
evolution of 2-metrics issuing from § and the evolution corresponds to a conformally flat
3-metric with the Guichard condition.

Next, we verify the converse. Let us assume that there is a one-parameter family of
evolutions of 2-metrics issuing from a 2-metric § with constant Gauss curvature —1 and
that each evolution corresponds to a conformally flat 3-metric g¢ with the Guichard net.
Then, § determines systems of functions ¢(z,y,0), ¥°(x,y,0), ©S(z,y,0) and ¥S(z,y,0)
depending on ¢ such that each system satisfies (a), (b), (¢), (d) and (e) by Theorems 2
and 4. On the other hand, by Theorem 3, Corollary 3.3, Theorem 5 and Theorem 6,
an orthogonal 2-metric § with constant Gauss curvature —1 defines systems of functions
o(z,y,0), v°(z,y,0), ¢S (z,y,0) and ¥S(z,y,0) depending on ¢ such that each system
satisfies (a), (b), (¢), (d) and (e), if and only if § is a metric given in Theorem 5 or
obtained by the procedure in Theorem 6. Thus, the converse statement has been proved.

By these arguments, we have completely verified the Theorem. O

In general, it seems difficult to solve the system of evolution equations (4.1) and
(4.2). However, in the case of the Bianchi-type Guichard net, we may extract the function
¢(z,y, z) from the initial metric § and then we find ¥ (z,y, 2) as follows:

ExAMPLE 5 (Bianchi-type Guichard net).  All functions inducing the Bianchi-type
Guichard net are given by ¢(x,y, z) = g(az + by + cz), abc # 0, where g(t) is a 1-variable
function such that

g" = asin2g, (¢')?> = B — acos2g (4.9)
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with constants o and 3. Here, in this case, we study how ¢(z,y,2) and ¢(z,y, z) are
determined from the initial data g.

Firstly, we fix the initial data g: let us take

ng

Az, y) = —2aaC(;S/g(ax + by), B(z,y) := 2ba 7 (az + by)

as in Section 2.1. Then, the metric § = AQ(x y)dz® + B2(z,y)dy? has the constant Gauss
curvature —1. In fact, we can show it from A,/B = a(a+)/¢’ and B, /A = b(a—B)/g'
by direct calculation.

Next, we study the initial condition. We have ¢(z,y,0) = g(az + by) from (a). The
equation (b) implies the following equation:

(log |2])a(x,y,0) = (loglg'N)a(az + by),  (log|p:|)y(x,y,0) = (log|g'|)y(az + by).

Hence, we have ¢, (x,y,0) = cg’(ax + by) with any constant ¢(# 0). ¥, (z,y,0) satisfying
¥,(0,0,0) = 0 is determined by (c). From ., (x,y,0) = (¢zp,)(z,y,0) = abg’?(az + by)

by (d), we have
t s
Vla,,0) = X(@) + V(o) + [ ds [ gP(w)du
0 0
where t = ax 4+ by. Then, X (x) and Y (y) are determined by (e):

X(z) = (c1/2)2,  Y(y) = (c2/2)3,

where 2c; = (a + B)(—a? + b? + ¢?), 2¢co = (o — B)(—a® + b — 2).

Since we have obtained all initial conditions ¢(x,y,0), ¥(z,y,0), @.(z,y,0),
¥, (x,y,0) for the system (4.1) and (4.2), a pair of solutions ¢(z,y,z) and ¥(x,y, 2)
is uniquely determined. On the other hand, ¢(x,y, z) := g(azx + by + cz) satisfies this
initial condition and it is known that g(axz + by + ¢z) induces a conformally flat 3-
metric with the Guichard condition. Hence, we may obtain a one-parameter family
o(z,y,2) = glax + by + ¢z) with parameter ¢(#£ 0) from §, as the partner of ¥ (z,y, 2).

Now, we shall uniquely determine ¢ (z,y, z) from (4.1), (4.6), (4.7) and (4.8). Since
wmz(xa Y, Z) = —ac(g” cot g)(l‘, Y, Z) and ’L/)yz(x7 Y, Z) = bc(g// tang)(m, Y, Z) by (46)7 we
have

Vo (w,y, 2) = —ac(a+B)—g* (az+by+c2)],  y:(w,y, 2) = bel(a—p)+g" (az+by+ez)].

Thus, by (4.7), we firstly define ), from which ¢ will be produced, by
t s
V(T,y,2) = X($)+Y(y)+Z(Z)—(a+5)(a$)(cz)+(a—5)(by)(02)+/0 dS/O 9" (u)du

where ¢t = az + by + cz. Then, since 1., = —A) + 02+ gaf} + 2 by (4.8) and

A T o e e G S
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we have
X"4Y"+7" =0 <= X(z) = (c1/2)2?, Y(y) = (ca/2)y?, Z(2) = —[(c1+¢2)/2]2%

Since [~AY + 2 + 2 + p2)(w,y,2) = [L(p) sin 20 — L() cos 2¢](x,y, 2) by (4.1) and
(4.8), we have

—(c1 + ¢2) 4+ A(B — acos 2g) = afa® — b%) — [e1 — cz + Bla® — b?)] cos 2g.
Hence, we have again
c1 +co = —a(a® — b?) 4 B2, c1 —co = ac® — B(a® - b).
In consequence, we have obtained
p(x,y,2) = glax + by + cz),

t s
Y(x,y,2) = —ac(a+ B)xz + be(a — Byz + %xz + %ZyZ + %32'2 + / ds/ g% (u)du,
0 0

where 2¢1 = (o + B8)(—a® + b + %), 2co = (o — B)(—a® + b? — ¢?) and ¢; + ¢ + c3 = 0.
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