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Abstract. We determine the homeomorphism type of the space of

smooth complete nonnegatively curved metrics on S2, RP 2, and C equipped
with the topology of Cγ uniform convergence on compact sets, when γ is in-
finite or is not an integer. If γ = ∞, the space of metrics is homeomorphic

to the separable Hilbert space. If γ is finite and not an integer, the space
of metrics is homeomorphic to the countable power of the linear span of the
Hilbert cube. We also prove similar results for some other spaces of metrics
including the space of complete smooth Riemannian metrics on an arbitrary

manifold.

1. Introduction.

In this paper smooth means C∞, by a manifold we mean a smooth finite-dimensional

manifold without boundary, the Cγ topology on a set of maps between two fixed manifolds

is the topology of uniform Cγ convergence on compact smooth domains, where 0 ≤ γ ≤
∞, see Section 2. The Cγ topology is called Hölder if γ is finite and not an integer. Note

that the Cγ topology on any set of smooth maps is metrizable and separable.

Given a connected manifold M of positive dimension let Rγ(M) denote the space of

all complete smooth Riemannian metrics onM endowed with the Cγ topology. For finite

γ the mismatch between infinite smoothness of the metrics and their Cγ convergence

results in a larger number of converging sequences. This situation arises naturally in

applications, e.g., according to [AC92] if a sequence of smooth metrics gi on a closed

manifold has uniform lower bounds on injectivity radius and Ricci curvature as well as an

upper diameter bound, then for some diffeomorphisms ϕi the family of pullback metrics

ϕ∗i gi is C
γ precompact for every γ < 1, see [Pet97] for other results of this type.

Our first result recognizes the homeomorphism type of Rγ(M):

Theorem 1.1. If M is a connected manifold of positive dimension, then R∞(M)

is homeomorphic to ℓ2, and Rγ(M) is homeomorphic to Σω for every finite γ.

Here ℓ2 is the separable Hilbert space, Σ is the linear span of the standard Hilbert

cube in ℓ2, and Σω is the product of countably many copies of Σ. Since the space Σω

may be unfamiliar to the reader, let us mention that it is a locally convex linear space

which is a countable union of nowhere dense sets, so Σω is not completely metrizable. If

Ω is either ℓ2 or Σω, then it has the following properties, see Section 3:
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(a) Ω is not σ-compact, and in particular, not locally compact.

(b) Any two open homotopy equivalent subsets of Ω are homeomorphic.

(c) The complement to any compact subset of Ω is contractible.

(d) Any homeomorphism of two compact subsets of Ω extends to a homeomorphism

of Ω.

In (c) and (d) one can replace the phrase “compact subset” by “Z-set”; many examples

of Z-sets can be found in Section 3.

A starting point in the proof of Theorem 1.1 is the convexity of Rγ(M) in the locally

convex linear space of all smooth symmetric 2-tensors on M , with the Cγ topology. As

a caution we note that there is no meaningful homeomorphism classification of convex

subsets of locally convex linear spaces, e.g., the union of an open ball in ℓ2 with any

subset of its boundary sphere is convex. Such pathologies do not occur in the case at

hand. There is a standard machinery that makes recognizing the homeomorphism type

of R∞(M) quite easy. The case of finite γ is more delicate and it exploits a certain

argument in [Ban00] together with a substantial amount of established techniques.

For a constant λ letRγ
≥λ(M) denote the subspace ofRγ(M) consisting of the metrics

with sectional curvature ≥ λ; the space Rγ
>λ(M) is defined similarly. The subspaces are

generally non-convex in Rγ(M), and little is known about their topological properties. A

natural idea is to find a homeomorphic parametrization of Rγ
≥λ(M) by a space to which

techniques of infinite dimensional topology apply. In this paper we do that whenM is C,
S2 or RP 2, the surfaces admitting a complete non-flat metric of nonnegative curvature,

provided γ /∈ Z and also λ = 0 for M = C. Here are our main results:

Theorem 1.2. If M is S2 or RP 2, then for every real λ the spaces Rγ
≥λ(M) and

Rγ
>λ(M) are homeomorphic to

(1) ℓ2 if γ = ∞,

(2) Σω if γ is finite and not an integer.

Theorem 1.3. The spaces Rγ
≥0(C) and Rγ

>0(C) are homeomorphic to

(1) ℓ2 if γ = ∞,

(2) Σω if γ is finite and not an integer.

The homeomorphism of R∞
≥0(C) and ℓ2 was already established in [BH15].

To explain the assumption γ /∈ Z, let us sketch the analytic ingredients of Theo-

rem 1.3 in the case of Rγ
≥0(C). It is well-known, see [BF42], that any complete metric of

nonnegative curvature on C is conformally equivalent to the standard Euclidean metric

g0 . Hence it can be written as ϕ∗e−2ug0 where ϕ is an orientation-preserving diffeo-

morphism of C and u is a smooth function on C. By composing ϕ with a conformal

automorphism of C one can assume that ϕ fixes a pair of points, say 0 and 1, which

determines ϕ uniquely. Such ϕ’s form a closed contractible subgroup of the diffeomor-

phism group of C, which we denote Dγ+1(C); the superscript γ + 1 indicates that the
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group is equipped with the Cγ+1 topology, which is natural because ϕ∗e−2ug0 involves

the differential of ϕ. Nonnegativity of the curvature is equivalent to subharmonicity of

u. Completeness of e−2ug
0
imposes further restrictions on u, making it roughly speaking

of sublogorithmic growth, and such u’s form a convex subset Oγ
≥0(C) in the space of

smooth functions equipped with the Cγ topology, see [BH15]. With the above restric-

tions on ϕ and u the map (ϕ, u) → ϕ∗e−2ug0 becomes a continuous bijection. Moreover,

smooth dependence of solutions of Beltrami equation on the dilatation shows that the

continuous bijection is a homeomorphism for γ /∈ Z, see [BH15], [BH16]; we expect

this to fail when γ is an integer. In summary, for γ /∈ Z the space Rγ
≥0(C) is homeo-

morphic to the product Dγ+1(C)×Oγ
≥0(C) where Dγ+1(C) is a certain diffeomorphism

group and Oγ
≥0(C) is some convex set of smooth functions on C. The homeomorphism

type of the factors Dγ+1(C), Oγ
≥0(C) can be determined along the lines of the proof of

Theorem 1.1, and the conclusion is that Dγ+1(C), Oγ
≥0(C) are each homeomorphic to ℓ2

or Σω depending on whether γ is infinite or finite. The case Rγ
>0(C) is similar, and the

proof of Theorem 1.2 follows the same outline except that [BH15] is not needed.

The above proof requires that all metrics lie in the same conformal class, and in

particular, the proof does not extend to Rγ
≥λ(C) with λ < 0 or to Rγ

≥λ(M) where M

is a closed surface of nonpositive Euler characteristic. The space Rγ
≥λ(C) with λ > 0

is empty due to the Myers theorem: Any complete Riemannian manifold of curvature

≥ λ > 0 is compact. Another essential feature of the proof is the convexity of Oγ
≥0(C)

which prevents us from treating spaces of metrics with two sided curvature bounds such

as the subspace of Rγ
≥0(C) consisting of metrics with curvature ≤ 1.

Techniques of this paper apply to other convex sets of smooth maps not necessarily

equipped with the Cγ topology, and whenever possible the results are stated so that they

can be easily used in other contexts, see Sections 4–5.

Structure of the paper. Section 2 is a review of definitions and properties of

the Cγ topology. The necessary infinite dimensional topology background is collected in

Section 3. Sections 4 and 5 contain the main technical results needed to treat the case

when γ is finite. Theorem 1.1 is proved in Sections 6 and 7. Basic information on the

spaces of metrics on surfaces is collected in Sections 8 and 9. Finally, Theorems 1.2–1.3

are proved in Sections 10–12.
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sis [Hu15]. The results we prove here are much stronger, e.g., one of the main theorems

in [Hu15] is the topological homogeneity of Rγ
≥0(S

2) when γ ≥ 2 and γ ̸∈ Z, while we

determine the homeomorphism type of Rγ
≥0(S

2) for γ ̸∈ Z.

2. A review of Cγ topology.

In this section we recall definitions and basic properties of the Cγ topology. We

stress that smooth always means C∞. Fix γ ∈ [0,∞], and if γ is finite write it uniquely

as γ = k + α where k is a nonnegative integer and α ∈ [0, 1).
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If α = 0, then the linear space Ck(D,Rn) of k-times continuously differentiable maps

from a smooth compact domain D ⊂ Rm to Rn is Banach with respect to the norm

∥f∥
Ck(D,Rn)

= max{|f (p)(x)| : |p| ≤ k, x ∈ D} (2.1)

where f (p) is a partial derivative for the multi-index p of order |p|. If α ∈ (0, 1), we say

that a map f ∈ C0(D,Rn) is α-Hölder if the following quantity is finite

∥f∥
Cα(D,Rn)

= sup

{
|f(x)− f(y)|

|x− y|α
: x, y ∈ D, x ̸= y

}
where | · | is the Euclidean norm. The maps in Ck(D,Rn) whose k-th partial derivatives

are all α-Hölder form a linear subspace, denoted Ck+α(D;Rn), which is Banach with

respect to the norm

∥f∥
Ck+α(D,Rn)

= ∥f∥
Ck(D,Rn)

+ sup
|µ|=k

∥Dµf∥
Cα(D,Rn)

.

A map of smooth manifolds is called Ck+α if whenever it is written in local coor-

dinates as a map between open sets of Euclidean spaces its restriction to any compact

smooth domain has the property that all k-th partial derivatives are α-Hölder. With this

definition the elements of Ck+α(D,Rn) are precisely the Ck+α maps from D to Rn be-

cause if D′ is another compact domain in Rm, then the composite of a map in C∞(D′, D)

with a map in Ck+α(D,Rn) is in Ck+α(D′,Rn), see [BHS05, Section 2.2].

Clearly any Ck+α map is Ck. Less trivially, for every 0 < γ < β ≤ ∞ any Cβ map

is Cγ , see [GT01, Section 6.8] for the case when γ, β are not integers. The product of

two real valued Ck+α functions is Ck+α, see [GT01, Section 4.1]. If k ≥ 1, then the

composition of Ck+α maps is Ck+α, and the inverse of an invertible Ck+α map is Ck+α,

see [BHS05, Sections 2.1–2.2].

We are now ready to define the Cγ topology on the set Cγ(M,N) of Cγ maps between

smooth manifoldsM , N , cf. [Pal68, Chapters 7–8]. Fix a smooth embedding iN ofN as a

closed submanifold of some Rn. Postcomposing with i
N
defines an inclusion of Cγ(M,N)

into Cγ(M,Rn). We shall define the Cγ topology on Cγ(M,Rn) and then give Cγ(M,N)

the subspace topology. Cover M by a countable family of smooth compact domains Dj

each lying in some coordinate chart. The Banach norm ∥ · ∥
Ck+α(Dj,Rn)

on Cγ(Dj ,Rn)

defines a seminorm pj on Cγ(M,Rn) by restriction, i.e., pj(f) = ∥f |Dj
∥

Ck+α(Dj,Rn)
. The

countable family of seminorms pj gives Cγ(M,Rn) a Fréchet space structure, and one

can show that the structure is independent of the choices involved.

The space C∞(M,Rn) =
∩

k∈N C
k(M,Rn) gets the associated Fréchet structure

given by seminorms ∥ · ∥
Ck(Dj,Rn)

where both k and j vary. More details can be found

in [Trè67, Chapter 10, Example 1] and [Hir94, Sections 1 and 4 in Chapter 2].

Both Ck(M,Rn) and C∞(M,Rn) are separable, see e.g. [BH15, Lemma 3.2], while

it is well-known that Ck+α(M,Rn) is non-separable if α ̸= 0, except when dimM or n

vanish.
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3. Infinite dimensional topology background.

In this section any space is assumed metrizable and separable, and any map is

assumed continuous; we do not follow the convention in other sections.

By a subspace we always mean “subset with subspace topology”; we never use the

term to mean a linear subspace.

A basic goal of infinite-dimensional topology is to give a homeomorphism classifi-

cation of naturally occurring spaces such as topological groups, linear spaces and their

convex subsets. A closely related problem is a characterization of Ω-manifolds for a suit-

able space Ω. Here an Ω-manifold is a space in which every point has a neighborhood

homeomorphic to an open subset of Ω. Satisfactory answers are known, e.g., when Ω is

ℓ2 or Ω is absorbing in the sense of Bestvina-Mogilski [BM86].

The exposition below follows [BP75], [BRZ96], [BM86], [DM90]. The subject

is quite technical so we attempt to limit the terminology to what is relevant for our

applications.

A linear metric space is a vector space with a translation-invariant metric. A linear

metric space is locally convex if its topology is given by a countable family of seminorms.

Any normed space is locally convex. A Fréchet space is a complete locally convex linear

metric space. The dimension of a convex subset C is the dimension of the vector space

affinely isomorphic to the affine hull AffC of C.

Any convex set in a locally convex linear metric space is an AR (absolute retract),

see [BP75, Corollary II.5.3]. A space is an AR if and only if it is a contractible ANR

(absolute neighborhood retract), see [BP75, Theorem II.5.1]. A space that is locally an

ANR is an ANR [BP75, Theorem II.5.1].

A subsetB ⊂ X is homotopy dense if there is a homotopy h : X×I → X with h0 = id

and h(X × (0, 1]) ⊂ B. An embedding with a homotopy dense image is homotopy dense.

A subset is homotopy negligible if its complement is homotopy dense. If X is an ANR,

then a subset B of X is homotopy dense if and only if each map In → X with ∂In ⊂ B

can be uniformly approximated rel boundary by maps In → B, see [BRZ96, Theorem

1.2.2]. Other characterizations of homotopy dense subsets can be found in [BRZ96,

Exercise 12 in 1.2].

It follows that a subset B is homotopy dense if and only if it is locally homotopy

dense, see [BRZ96, Exercise 3 in 1.2]; the latter means that each point has a neighbor-

hood U such that U ∩B is homotopy dense in U .

Any homotopy dense subset of an ℓ2-manifold is infinite-dimensional [BRZ96, Ex-

ercise 6 in 1.3]. Any homotopy dense subset of an ANR is an ANR, so in particular, any

homotopy dense subset of an ℓ2-manifold is an ANR.

Given an open cover U two maps f, g : Y → X are U-close if for every y ∈ Y there

is U ∈ U with f(y), g(y) ∈ U . Let Q denote the Hilbert cube.

A space X has the Strong Discrete Approximation Property (SDAP) if for every

open cover U of X each map Q × N → X is U-close to a map g : Q × N → X such

that every point of X has a neighborhood that intersects at most one set of the family

{g(Q×{n})}n∈N. A space is homeomorphic to a homotopy dense subset of an ℓ2-manifold

if and only if it is an ANR with SDAP [BRZ96, Theorem 1.3.2].

The following is proved in [BRZ96, Propositions 5.2.1 and 5.2.6]:
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Lemma 3.1. Let C be a convex subset of a separable Fréchet space. If the closure

C̄ of C is either not locally compact, or not contained in AffC, then C is homeomorphic

to a homotopy dense subset of ℓ2.

A closed subset B of a space X is a Z-set if every map Q → X can be uniformly

approximated by a map whose range misses B. A space is called σZ if it is a countable

union of Z-sets. If X is an ANR, then a subset B of X is a Z-set if and only if B is

closed and homotopy negligible, see [BRZ96, Theorem 1.4.4] and [BP75, Proposition

V.2.1].

Example 3.2. (1) The union of a locally finite family of Z-sets in an ANR is a

Z-set [BRZ96, Exercise 1 in 1.4].

(2) If X, Y are ANR and B is a Z-set in X, then B × Y is a Z-set in X × Y .

(3) If X is homeomorphic to a homotopy dense subset of an ℓ2-manifold, then any

compact subset is a Z-set [BRZ96, Proposition 1.4.9].

There are some variations of the notion of a Z-set that are all equivalent when the

ambient space is a homotopy dense subset of an ℓ2-manifold, see [BRZ96, Section 1.4]

and [BP75, Proposition V.2.1]. In particular, a strong Z-set in a space X is a closed

subset A of X such that for any open cover U there is a map f : X → X that is U-close
to the identity and such that A is disjoint from the closure of f(X). Actually, we shall

never use the definition because any strong Z-set is a Z-set, while in a homotopy dense

subset of an ℓ2-manifold any Z-set is strong, see [BRZ96, Proposition 1.4.3]. If an ANR

is a countable union of strong Z-sets, then it admits a homotopy dense embedding into

an ℓ2-manifold, see [BM86, Proposition 1.9] and [BRZ96, Proposition 1.4.10].

Every Z-set is nowhere dense (otherwise, its closure, which equals to the Z-set

itself, contains an open set U and the constant map from the Hilbert cube to U cannot

be approximated by maps whose range misses U).

A map is a Z-embedding if its image is a Z-set. If C is a class of spaces, then a

space X is strongly C-universal if for every open cover U of X, every C ∈ C, every closed

subset B ⊂ C, and every map f : C → X that restricts to a Z-embedding on B there is

a Z-embedding f̄ : C → X with f̄ |B = f |B such that f , f̄ are U-close. Note that if X is

strongly C-universal, then any space in C is homeomorphic to a Z-set of X.

Given a class C of spaces, a space X is C-absorbing if the following holds:

(i) X is strongly C-universal,

(ii) X is the union of countably many Z-sets,

(iii) X is homeomorphic to a homotopy dense subset of an ℓ2-manifold,

(iv) X is the union of a countably many closed subsets homeomorphic to spaces in C.

Example 3.3. Since Z-sets are nowhere dense, any C-absorbing space is meager in

itself. Therefore by the Baire category theorem no C-absorbing space is locally compact

or completely metrizable (no matter what C is). In particular, ℓ2 is not C-absorbing.
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Example 3.4. The linear span Σ of the Hilbert cube in ℓ2 is M0-absorbing, where

M0 is the class of compact spaces, see [Mog84, Theorem 6]. Note that Σ is σ-compact.

Example 3.5. The space Σω is M2-absorbing, where M2 be the class of spaces

homeomorphic to Fσδ-sets in compacta, see [BRZ96, Exercise 3 in 2.4]. Note that Σω

is not σ-compact (the product of infinitely many σ-compact noncompact spaces is never

σ-compact).

The term “absorbing” seem to have come from the following property: If C is the class

of compact spaces, and X is a C-absorbing space embedded into ℓ2, then any compact

subset of ℓ2 can be mapped into X by a homeomorphism of ℓ2, see [BP75, Theorem

V.6.2].

Absorbing spaces have remarkable properties some of which are listed below (in a

weakened form). Suppose C is a class of spaces that is closed under homeomorphisms,

passing to closed subsets, and closed-unions (the last property means that if C is the

union of two closed subsets that belong to C, then C ∈ C). Suppose also that C is local ,

i.e., a space X belongs to C if and only if each point of X has a neighborhood that

belongs to C. Then the following holds:

• (Uniqueness) Any two homotopy equivalent C-absorbing spaces are homeomorphic,

see [BM86, Theorem 3.1].

• (Z-set unknotting) If A, B are Z-sets in a C-absorbing space X, then any home-

omorphism A → B that is homotopic to the inclusion of A into X extends to a

homeomorphism of X [BM86, Theorem 3.2].

• If X is C-absorbing, then X is F0(X)-absorbing, where F0(X) is the class of spaces

homeomorphic to closed subsets of X [BC00, Proposition 1.11]. In particular,

every closed subset of X admits a Z-embedding into X.

• If Ω is an C-absorbing AR, then one has:

(1) At each point of a C-absorbing space X there is a local basis of opens sets

homeomorphic to Ω.

(2) A space X is C-absorbing if and only if X is an Ω-manifold.

(3) Any Ω-manifold is homeomorphic to an open subset of any other Ω-manifold.

The assertions (2)–(3) are from [BRZ96, Exercise 4 in 1.6], and for completeness we

now prove (1). If X is C-absorbing, then X can be identified with a homotopy dense

subset of an ℓ2-manifold L, so for any open U ⊂ L the set U ∩ X is homotopy dense

in U [BRZ96, Corollary 1.2.3]. Hence if U is contractible, then so is U ∩ X (because

the inclusion of a homotopy dense subset is a homotopy equivalence). Since L has a

local basis of contractible open sets, so does X. Each of the contractible open sets is

homeomorphic to Ω by uniqueness of homotopy equivalent C-absorbing spaces.
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4. M2-universality of some functions spaces.

The main result of this section is Corollary 4.9 establishing M2-universality of a

certain class of function spaces. Throughout this section n is a nonnegative integer.

Fix a manifold V exhausted by an increasing sequence of compact domains Dj . As in

Section 2 we equip the linear space Cn(V ) of n-times continuously differentiable real

valued functions on V with the Fréchet space structure given by the family of seminorms

∥f∥Cn(Dj) = max{|f (k)(x)| : k ≤ n, x ∈ Dj}. (4.1)

This family of seminorms also endows C∞(V ) =
∩

n C
n(V ) with a Fréchet space struc-

ture.

Let M0 be the class of metrizable compacta, let M1 be the class of Polish (i.e.,

completely metrizable) spaces, and let M2 be the class of topological spaces that are

homeomorphic to Fσδ-sets in metrizable compacta. Note that M0 ⊂ M1 ⊂ M2. By

(M0,M2) we denote the class of pairs (K,M) where K is a compact metrizable space

and M is an Fσδ-set in K.

A space X is called M2-universal if each space in M2 is homeomorphic to a closed

subset of X. A pair (Y,X) of spaces with X ⊂ Y is called

• (M0,M2)-universal if for any pair (K,M) ∈ (M0,M2) there exists a topological

embedding f : K → Y such that f−1(X) =M ;

• (M0,M2)-preuniversal if for any pair (K,M) ∈ (M0,M2) there exists a continu-

ous map f : K → Y such that f−1(X) =M .

The following fundamental result is proved in [BRZ96, Theorems 3.1.1 and 3.2.11]: A

subspace X of a Polish space Y is M2-universal if and only if (Y,X) is (M0,M2)-

universal if and only if (Y,X) is (M0,M2)-preuniversal.

The following standard fact can be found in [BRZ96, Exercises 12–13 in 1.2].

Lemma 4.2. Let L be a locally convex space, X be a metrizable convex set in L

and D is a dense convex subset of X. Then D is homotopy dense in X.

The following lemma is an immediate consequence of [CDM93, Lemma 8.10] and

the previous lemma.

Lemma 4.3. Let X be a Polish convex subset of a Fréchet space and D be a dense

convex subset of X contained in a σZ-set Y ⊂ X. Then for any compact metrizable

space K and a σ-compact subset A ⊂ K there exists a continuous map f : K → X such

that f(A) ⊂ D and f(K \A) ⊂ X \ Y .

A subset C of a linear topological space L is called ∞-convex if for any bounded

sequence (xn)n≥0 in C and any sequence of nonnegative reals tn with
∑

n≥0 tn = 1 the

series
∑

n≥0 tnxn converges to some point of C. Recall that a subset B of L is bounded

if for every neighborhood U ⊂ L of zero B is contained in all but finitely many sets nU ,

n ∈ N.
Recall that a subspace A of a Polish space B is Polish if and only if A is Gδ in B.
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Theorem 4.4. For an integer l ≥ 0 let Cl
• be an ∞-convex Gδ subset of Cl(V ).

For γ ∈ [l,∞] set Cγ
• = Cl

• ∩ Cγ(V ). If n ≥ l is an integer such that for every integer

k ≥ n the subset C∞
• is dense in Ck

• , and C
k+1
• is contained in a σZ-subset of Ck

• , then

(Cn
• , C

∞
• ) is (M0,M2)-preuniversal.

Proof. We shall apply the technique used in the proof of [Ban00, Theorem 5.1,

p.73]. Fix n ≥ l and a pair (K,M) ∈ (M0,M2). We wish to construct a continuous

map f : K → Cn
• such that f(M) ⊂ C∞

• and f(K \M) ⊂ Cn
• \ C∞

• .

Since Cl
• is Gδ in Cl(V ), for each integer k ≥ l the subset Ck

• is Gδ in Ck(V ), and in

particular Ck
• is Polish. Since M ∈ M2 we can write M =

∩∞
k=nAk where (Ak)

∞
k=n is a

decreasing sequence of σ-compact subsets ofK. By Lemma 4.3 for each k ≥ n there exists

a continuous map fk : K → Ck
• such that fk(Ak) ⊂ C∞

• and fk(K \Ak)∩Ck+1(V ) = ∅.
Fix a basepoint b ∈ C∞

• ; we also think of b as a constant map taking K to {b}.
Replacing fk by (1− εk)b+ εkfk for a sufficiently small positive εk we can additionally

assume that

fk(K) ⊂ {g ∈ Ck
• : ∥g − b∥Ck(Dk) ≤ 2−k}. (4.5)

Let us show that the series ∑
k≥n

2−k(fk(z)− b) (4.6)

converges uniformly in Cn(V ) where z ∈ K. To this end we give Cn(V ) the metric∑
j≥n(pj/(pj + 1))2−j , where pj = ∥ · ∥

Cn(Dj)
, and check that the sequence of partial

sums of the series (4.6) is Cauchy. Fix j, suppose i > m > max(n, j), and estimate∥∥∥∥ i∑
k=m

2−k(fk(z)− b)

∥∥∥∥
Cn(Dj)

≤
i∑

k=m

2−k∥fk(z)− b∥
Ck(Dk)

≤ 2−m
i∑

k=m

2−k < 2−m

where in the first inequality we used the definition (4.1) and the fact that Dj ⊂ Dk for

all j < k, while the second inequality depends on (4.5). This proves uniform convergence

of (4.6) and therefore defines a continuous map f : K → Cn(V ) given by

f = b+ 2n−1 ·
∑
k≥n

2−k(fk − b) = 2n−1 ·
∑
k≥n

2−kfk. (4.7)

Next we show that for every z ∈ K the sequence (fk(z))k≥l is bounded in Cn(V ). Note

first that

∥fk(z)− b∥
Cl(Dl)

≤ ∥fk(z)− b∥
Ck(Dk)

≤ 2−k ≤ 2−l

so that

∥fk(z)∥
Cl(Dl)

≤ 2−l + ∥b∥
Cl(Dl)

and since any neighborhood of 0 in Cn(V ) contains a neighborhood of the form
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{g ∈ Cn(V ) : ∥g∥
Cl(Dl)

< ε}, the sequence (fk(z))k≥l is bounded in Cn(V ).

The ∞-convexity of Cl
• in Cl(V ) implies that Cγ

• is ∞-convex in Cγ(V ) for every

γ ∈ [l,∞]. Since fk(z) ∈ Cn
• for each z ∈ K and k ≥ n, the right hand side of (4.7) lies

in Cn
• , i.e., f(K) ⊂ Cn

• . By the same token f(M) ⊂ C∞
• .

It remains to prove that f(z) /∈ C∞(V ) for every z ∈ K \M . Fix such z and find a

unique m > n with z ∈ Am−1 \Am. Thus z ∈ Ak for k < m and z /∈ Ak for k ≥ m. The

choice of z and fk guarantee that

• fm(z) ∈ Cm(V ) \ Cm+1(V ),

• fk(z) ∈ C∞(V ) for all k < m,

• fk(z) ∈ Cm+1(V ) for all k > m.

In the right hand side of

21−n f(z) = 2−mfm(z) +
m−1∑
k=n

2−kfk(z) +
∑
k>m

2−kfk(z)

the second summand is in C∞(V ) and the third summand converges in the Fréchet space

Cm+1(V ). Since fm(z) is not in Cm+1(V ) neither is f(z). □

Lemma 4.8. If (A,B) is a (M0,M2)-preuniversal pair, and f : A → X is a

continuous injective map to a Hausdorff topological space X, then the subspace f(B)

of X is M2-universal and the pair (X, f(B)) is (M0,M2)-universal.

Proof. The pair (A,B) is (M0,M2)-universal by the above-mentioned equiva-

lence of universality and preuniversality. Thus for each pair (K,M) ∈ (M0,M2) there

is a topological embedding g : K → A such that g−1(B) = M . Since K is compact and

X is Hausdorff, the continuous injective map h = f ◦ g : K → X is a topological embed-

ding. The injectivity of f guarantees that h−1(f(B)) = g−1(B) = M . Thus the map h

witnesses (M0,M2)-universality of the pair (X, f(B)). We can choose the pair (K,M)

so that M is M2-universal (e.g., using that each separable metric space embeds into

the Hilbert cube). The homeomorphism h : K → h(K) restricts to a homeomorphism

M → h(M) = f(B), so the latter is M2-universal. □

Theorem 4.4 and Lemma 4.8 immediately imply the following corollary, which is the

main result of this section.

Corollary 4.9. Let (Cn
• , C

∞
• ) be as in Theorem 4.4. If f : Cn

• → X is a contin-

uous injective map to a Hausdorff topological space X, then the subspace f(C∞
• ) of X is

M2-universal.

5. M2-universal spaces of smooth functions.

In this section we give a construction of sequences (Cn
• , C

∞
• )n≥l satisfying the as-

sumptions of Theorem 4.4 which covers all examples arising in the present paper, and

also give a criterion of when a space of smooth maps belongs to the class M2.
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Let N be a smooth manifold, possibly with boundary. With the Cm topology the

space Cm(N) of m-differentiable functions on N is a separable Fréchet space, where m

is a nonnegative integer or ∞, see Section 2.

Theorem 5.1. Let N be a smooth manifold, possibly with boundary, and let D ⊂
Int N be a smoothly embedded top-dimensional closed disk that is mapped via a coordinate

chart to a Euclidean unit disk. Let l ≥ 0 be an integer and let D : Cl(N) → C0(N) be a

continuous linear map. Given η ∈ R suppose there exists h• ∈ C∞(N) with Dh•|D > η.

Let Cl
• denote the subspace of Cl(N) of functions u such that Du|D ≥ η and u|N\Int D =

h•. Then for Cn
• = Cl

• ∩ Cn(N) and C∞
• = Cl

• ∩ C∞(N) the sequence (Cn
• , C

∞
• )n≥l

satisfies the assumptions of Theorem 4.4.

Proof. For every n ≥ l the subset Cn
• is clearly convex and closed in the Fréchet

space Cn(N), so in particular, Cn
• is Gδ in Cn(N).

The ∞-convexity of Cl
• follows from the fact that any closed convex subset of a

Fréchet space is ∞-convex. (To prove the fact suppose xn, tn, C, L are as in the

definition of ∞-convexity given before Theorem 4.4, and the Fréchet structure on L is

given by a countable family of seminorms pk. Since {xn} is bounded, pk(xn) is bounded

by a constant depending only on k, which easily implies that the partial sums of the

series
∑

n≥0 tnxn form a Cauchy sequence in L. Their limit in L is also the limit of the

sequence (
∑m

n=0 tn)
−1

∑m
n=0 tnxn which lies in C).

For a positive integer m and a point p ∈ D let Zm be the set of all u ∈ Cn+1
• whose

Ck(p) norm is ≤ m (the norm is simply the sum of the absolute values of all partial

derivatives of u of orders ≤ k evaluated at p). It is easy to check that Zm is a Z-set, see

the proof of Lemma 12.1, and clearly Cn+1
• equals in the union of the sets Zm.

To show that C∞
• is dense in Cn

• fix u ∈ Cn
• . Replacing u with δh•+(1−δ)u, where δ

is small and positive, we can assume that Du|
D
> η. Henceforth we suppress distinctions

between the objects in the Euclidean space and their images under the coordinate chart

containing D. In the chart we fix a concentric closed disk Dε ⊂ Int D such that D,

Dε have radii 1, 1 − ε, respectively. Consider the partition of unity {ψε, 1 − ψε} such

that ψε|Dε = 1, the support of ψε equals D, and ψε is rotationally symmetric. We also

assume that the k-th radial derivative of ψε grows with ε as ε−k which can be arranged

as follows: Start with a smooth function ψ : R → [0, 1] with ψ|[−∞,1] = 1 and ψ|[2,∞] = 0,

and set ψε(r) = ψ(2− (1− r)/ε) for r ≥ 0.

Approximate u|D by a family {uτ}τ≥0 of smooth maps such that uτ → u|D in

Cn(D) as τ → 0. Then glue uτ and h• via the partition of unity {ψε, 1−ψε}. The result
(1− ψε)h• + ψεuτ ∈ C∞(N) equals uτ on Dε and h• on M \ Int D.

We are going to show that (1−ψε)h• +ψεuτ approximates u in Cn(N) for suitable

ε, τ . Since Du|
D
> η this would imply (1− ψε)h• + ψεuτ ∈ C∞

• . Write

(1− ψε)h• + ψεuτ − u = (1− ψε)(h• − u) + ψε(uτ − u).

On the right hand side for every fixed ε the second summand converges to zero in Cn(D)

as τ → 0, hence it suffices to show that the first summand converges to zero in Cn(D)

as ε→ 0.
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Set v = h• − u. Note that v ∈ Cn(N) and v vanishes on M \ Int D; in particular,

all derivatives of v of orders ≤ n vanish on ∂D. Arguing by contradiction suppose that

there is a sequence of points of D where the derivatives of v(1−ψε) of some order k ≤ n

do not approach zero as ε→ 0. By compactness we may assume that the points converge

to a point p, which has to lie on ∂D. Introduce new coordinates (r, θ) near p where r

is the distance to ∂D and θ represents the remaining coordinates along ∂D. Since ψε

does not depend on θ, the only derivatives of v(1−ψε) that might not approach zero are

the derivatives by r. Hence we need to analyze the terms (1 − ψε)
(k−m)(∂mv/∂rm) for

0 ≤ m < k; the case m = k is trivial since 1−ψε is bounded independently of ε. Consider

the order k−m Taylor expansion of ∂mv/∂rm at p with respect to r. The only (possibly)

nonzero term is the remainder (rk−m/(k −m)!)(∂kv/∂rk)(ξ, θ) where 0 < ξ < r. We can

restrict attention to r < ε because 1 − ψε vanishes for r ≥ ε. By the choice of ψε the

term |(1− ψε)
(k−m)|εk−m is bounded, so there is a constant C > 0 such that∣∣∣∣(1− ψε)

(k−m) ∂
mv

∂rm

∣∣∣∣ ≤ ∣∣∣∣(1− ψε)
(k−m) ∂

kv

∂rk
(ξ, θ)

εk−m

(k −m)!

∣∣∣∣ ≤ C

∣∣∣∣∂kv∂rk
(ξ, θ)

∣∣∣∣
where the right hand side approaches zero as ε→ 0 because 0 < ξ < ε. This contradiction

completes the proof that C∞
• is dense in Cn

• . □

Let Γγ(V,Rn) denotes the space of smooth maps from a manifold V to Rn endowed

with the Cγ topology, γ ∈ [0,∞]. Recall that M2 is the class of spaces homeomorphic

to Fσδ-sets in metrizable compacta.

Lemma 5.2. For every γ the identity map id : Γ∞(V,Rn) → Γγ(V,Rn) takes any

Gδ subset to a space in M2.

Proof. Fix a Gδ subset S∞ of Γ∞(V,Rn) and set Sγ = id(S∞). Recall that

a (not necessarily continuous) map is Fσ-measurable if the preimage of any open set

is Fσ. To prove the lemma it suffices to show that the inverse of the identity map

id: S∞ → Sγ is Fσ-measurable because in this case the fact that id is continuous (and

hence Fσ-measurable) implies that the map id is a (1, 1) homeomorphism in the ter-

minology of [Kur66, Corollary 3 in VII, section 35], where it is shown that any (1, 1)

homeomorphism maps a completely metrizable separable space (such as S∞) to a space

in M2.

Since the restriction and the enlarging of a co-domain of an Fσ-measurable map is

Fσ-measurable, it is enough to show that the inverse of the identity map id: Γ∞(V,Rn) →
Γγ(V,Rn) is Fσ-measurable.

If Y is separable and metrizable, then to prove that a map f : X → Y is

Fσ-measurable it (clearly) suffices to show that for each open set W ⊂ Y and each

y ∈ W there is a subset Ty ⊂ W with y ∈ Int Ty such that f−1(Ty) is closed. Let us

apply this to f = id: Γγ(V,Rn) → Γ∞(V,Rn).

Fix an exhaustion of V by compact subsets Dj , fix some norm on Rn, and denote

by ∥ · ∥
Cm(Dj)

the associated Cm norm. Given any m > γ note that

Ty = y + {f ∈ Γγ(V,Rn) : ||f ||
Cm(Dj)

≤ ε}
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is closed in Γγ(V,Rn) and y ∈ Int Ty. Also Ty lies inside any neighborhood of y in

Γ∞(V,Rn) if ε is small enough. □

6. Space of all complete Riemannian metrics: smooth topology.

In this section we prove Theorem 1.1 for γ = ∞. Let V be a smooth connected

manifold of positive dimension. The space Rγ(V ) of all complete smooth Riemannian

metrics on a manifold V is a convex subset in the metric linear space T γ(V ) of smooth

symmetric 2-tensors on V with the Cγ topology.

Lemma 6.1. Rγ(V ) is a Gδ subset of T γ(V ).

Proof. Let (Kn) be a countable family of compact subsets exhausting V . Then

Rγ(V ) is the intersection of the the sets {t ∈ T γ(V ) : t|Kn is positive definite} which are

open in T γ(V ). □

Remark 6.2. Rγ(V ) is (clearly) open if V is compact, and has empty interior if

V is noncompact, see [FM78].

Note that T ∞(V ) is Fréchet. To show that R∞(V ) is homeomorphic to ℓ2 it is

enough to check that the closure of R∞(V ) in T ∞(V ) is not locally compact [DT81,

Theorem 2]. The closure is the convex set N∞(V ) of smooth symmetric non-negative

definite 2-tensors.

Lemma 6.3. N∞(V ) is not locally compact.

Proof. This is a variation of [BH15, Lemma 2.5]. Suppose arguing by contra-

diction that every point of N∞(V ) has a compact neighborhood and let K be a compact

neighborhood of g ∈ R∞(V ) in N∞(V ). Fix a disk D ⊂ V inside a coordinate chart,

and consider the restriction map δ : N∞(V ) → T ∞(D). Continuity of δ implies that

δ(K) is compact.

Let us show that δ(K) is also a neighborhood of δ(g). If not, then there is a sequence

τ̌i /∈ δ(K) converging to δ(g) in T ∞(D). Extend τ̌i to τi ∈ T ∞(V ) converging to g. Let

ϕ a bump function on V with ϕ|D = 1. Then g+ ϕ(τi − g) converges to g and hence lies

in K for large i. The restriction of g + ϕ(τi − g) to D equals τ̌i so τ̌i ∈ δ(K), which is a

contradiction.

Thus δ(g) has a compact neighborhood in T ∞(D), which is a Fréchet space. Hence

any point in the Fréchet space has a compact neighborhood, which implies that T ∞(D)

is finite dimensional [Trè67, Theorem 9.2], which is clearly false. This contradiction

proves that N∞(V ) is not locally compact. □

7. Space of all complete Riemannian metrics: Cγ topology.

In this section we prove Theorem 1.1 for finite γ.

Lemma 7.1. If γ is finite, then Rγ(V ) is σZ.
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Proof. With minor modifications the argument of Lemma 12.1 works for Rγ(V ),

namely we choose α to take values in the space of nonnegative definite 2-tensors on V

which ensures that f(q) + α ∈ Rγ(V ) for all q. □

Lemma 7.2. Rγ(V ) belongs to M2.

Proof. By Lemma 6.1 the subspaceR∞(V ) is Gδ in the linear space of all smooth

2-tensors on V with C∞ topology, so Rγ(V ) is completely metrizable so that Lemma 5.2

applies. □

Lemma 7.3. Rγ(V ) is M2-universal for every finite γ.

Proof. It is enough to show thatRγ(V ) contains a closedM2-universal subspace.

Fix any integer l ≥ γ and let D : Cl(V ) → C0(V ) be the inclusion. Let h• ∈ C∞(V ) be

the constant function that equals 2 at all points, let η = 1, and let D be an embedded

coordinate disk in V . Let Cl
• be the set of functions u ∈ Cl(V ) with such that u|D ≥ η and

u|V \Int D = h•. Let X be the space of all metrically complete Cl-Riemannian metrics on

V with the Cγ topology. By Theorem 5.1 and Corollary 4.9 for any continuous injective

map from f : Cl
• → X the space f(C∞(V ) ∩ Cl

•) is M2-universal.

To define f fix g ∈ R∞(V ) and let f(u) = ug. The map f is continuous as l ≥ γ

and injective because g is positive definite. Each metric in f(C∞(V ) ∩ Cl
•) is smooth

because u is smooth, and complete since ug = 2g outside D and 2g is complete.

It remains to show that f(C∞(V ) ∩ Cl
•) is closed in Rγ(V ). To this end suppose

uig ∈ f(C∞(V ) ∩ Cl
•) converges in C

γ topology to a smooth complete metric g∗. Thus

g∗ = 2g outside D. Choose a g-unit vector field U on a neighborhood W of D. In the

Cγ topology on W the functions ui = uig(U,U) converge to g∗(U,U), which equals 2 on

W \D. Let u be a function that equals g∗(U,U) onW and equals 2 outside D; clearly u is

smooth. Hence the metrics uig converge to ug in the Cγ topology on V . By uniqueness

of the limit g∗ = ug. □

Remark 7.4. The same proofs show that the space of all (complete or not) smooth

Riemannian metrics on a manifold V equipped with the Cγ topology is homeomorphic

to ℓ2 when γ = ∞ and M2-universal if γ is finite.

Theorem 7.5. Rγ(V ) is M2-absorbing, and hence is homeomorphic to Σω.

Proof. Let T γ
(V ) be the closure of T γ(V ) of Section 6 in the Fréchet space of

all Cγ 2-tensors on V with the Cγ topology; thus T γ
(V ) is a separable Fréchet space.

The closure of Rγ(V ) in T γ
(V ) is not contained in AffRγ(V ) because it clearly contains

some non-smooth metrics. Hence by Lemma 3.1 Rγ(V ) is homeomorphic to a homotopy

dense subset of ℓ2. The proof of Lemma 7.3 actually shows that the M2-universal subset

f(C∞(V ) ∩ Cl
•) is closed in T γ(V ). Therefore [BRZ96, Proposition 5.3.5] implies that

Rγ(V ) is strongly M2-universal. Thus Lemmas 7.1 and 7.2 imply that Rγ(V ) is M2-

absorbing. Since Rγ(V ) is contractible, it is homeomorphic to Σω. □
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8. Diffeomorphism groups and uniformization of S2 and RP 2.

Let g1 denote the standard curvature 1 metric on S2 and RP 2, the unit sphere and

its quotient by the antipodal map. Henceforth we identify S2 with C so that the antipo-

dal map corresponds to z → −z̄−1, and the group of orientation-preserving conformal

transformation of (S2, g1) corresponds to PSL(2,C), which acts simply transitively on

triples of distinct points of S2. Fix any triple of distinct points of S2, and let Dβ(S2) be

the group of smooth orientation-preserving diffeomorphisms of S2 fixing the triple and

equipped with the Cβ topology, β ∈ [1,∞].

A diffeomorphism of RP 2 has two lifts to the orientation cover: a lift homotopic

to the identity of S2 and its composite with the antipodal map. So any diffeomor-

phism of RP 2 lifts to a unique orientation-preserving diffeomorphism of S2 which by

uniqueness must commute with the antipodal map. Since lifts of conformal diffeomor-

phism are conformal, the orientation-preserving lifts of conformal diffeomorphisms of

(RP 2, g1) are precisely the elements of PSL(2,C) commuting with the antipodal map.

It is straightforward to check that these lifts form the subgroup PSU(2) ⊂ PSL(2,C),
which corresponds under the above identification to SO(3) acting on the unit sphere,

and which acts simply transitively on the unit tangent bundle to RP 2. Fix a vector in

the unit tangent bundle of RP 2 and let Dβ(RP 2) be the group of all diffeomorphisms of

RP 2 that fix the vector.

If M is S2 or RP 2, then by the Uniformization Theorem any metric on M is of

the form ϕ∗e−2ug1 where u ∈ C∞(M) and ϕ is a diffeomorphism of M . (The standard

accounts such as e.g. [Don11, Chapter 10] omit the case of RP 2 which we include

for completeness. Let (S2, ϕ∗e−2ug1) be the pullback of a given metric (RP 2, g) to the

orientation cover. The covering isometry of ϕ∗e−2ug1 gives rise to an isometric involution

ι of e−2ug1 . Hence ι∗g1 = e2(u◦ι−u)g1 , and since the left hand side has a transitive

isometry group u ◦ ι − u is constant, which we denote λ. Precomposing u ◦ ι − u = λ

with ι gives u− u ◦ ι = λ, so λ = 0. Hence ι is an isometry of g1 and u is ι-invariant. It

follows that e−2ug1 descends to a metric on RP 2 of desired form).

It is routine to check that Dβ(M) is a topological group. (For β /∈ Z the relevant

properties of Hölder map and inverses of Hölder diffeomorphisms can be found, e.g.,

in [BHS05, Section 2.2]).

Thus if M equals S2 or RP 2 then no nontrivial element of Dβ(M) is conformal, and

any orientation-preserving diffeomorphism ofM can be written uniquely as the composite

of an element of Dβ(M) followed by a conformal automorphism.

For γ ∈ [0,∞] let Γγ(M) denote the linear space of all smooth functions on M with

the Cγ topology; thus as a set Γγ(M) equals C∞(M).

For M equal to S2 or RP 2 the above discussion shows that the map

Dγ+1(M)× Γγ(M) → Rγ(M) (8.1)

given by (ϕ, u) → ϕ∗e−2ug1 is a continuous bijection.

The sectional curvature of e−2ug
1 equals e2u(1 + △g1

u) where ∆g1
is the

g1 -Laplacian, see [KW74, p.15, (1.3)].

Let Oγ
≥λ(M) ⊂ Γγ(M) be the subset of functions u such that e−2ug1 has sectional
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curvature ≥ λ; the subset Oγ
>λ(M) is defined similarly.

Lemma 8.2. The subsets Oγ
≥λ(M) and Oγ

>λ(M) are convex in Γγ(M).

Proof. Let u = tu1 + (1− t)u0 where t ∈ [0, 1] and u0 , u1 ∈ Oγ
≥λ(M). Then

1 +△g1
u = t(1 +△g1

u1) + (1− t)(1 +△g1
u0) ≥ λ(te−2u1 + (1− t)e−2u0 ) ≥ λe−2u

where the last inequality holds by convexity of the exponential function. Thus the

sectional curvature of e−2ug1 is e2u(1 +△g1
u) ≥ λ. □

The map (8.1) restricts to the continuous bijections

Dγ+1(M)×Oγ
≥λ(M) → Rγ

≥λ(M) Dγ+1(M)×Oγ
>λ(M) → Rγ

>λ(M). (8.3)

Theorem 8.4. If γ /∈ Z, then the maps (8.1) and (8.3) are homeomorphisms, and

in particular, Dγ+1(M), Rγ
≥λ(M), Rγ

>λ(M) are contractible.

Proof. This is a minor modification of [BH15, Theorem 4.1] whose statement

incorrectly assumes γ ∈ Z instead of γ /∈ Z, cf. [BH16]. The proof is the same and the

main ingredient is that the solution of Beltrami equation in a chart depends in Hölder

topology on the dilatation, which is where γ /∈ Z is used. Relevant properties of Hölder

map can be found, e.g., in [BHS05, Section 2.2]. Since Dγ+1(M) is a retract of the

convex set Rγ(M), it is contractible. This together with convexity of Oγ
≥λ(M) and

Oγ
>λ(M) implies contractibility of Rγ

≥λ(M) and Rγ
>λ(M). □

Remark 8.5. S. Smale proved in [Sma59] that Dβ(S2) is contractible for every

integer β > 1. The same should be true for β = 1, as well as for Dβ(RP 2) where β is a

positive integer, but we have not checked the details and are not aware of any proof in

the literature.

Corollary 8.6. Let M be S2 or RP 2. Then D∞(M) is homeomorphic to ℓ2. If

β ∈ [1,∞), then Dβ(M) is locally homeomorphic to a normed space so that Dβ(M) is

an ANR.

Proof. Since Dβ(M) is topologically homogeneous it is enough to consider a

neighborhood of the identity. Any diffeomorphism ϕ of M that is sufficiently close to

the identity can be written as ϕ(p) = exppXϕ(p) where exp is the g1 -exponential map

and Xϕ is a smooth vector field. The map ϕ→ Xϕ defines a topological embedding of a

neighborhood of the identity of Dβ(M) into the linear space of smooth vector fields onM

with the Cβ topology. Conversely, every Cβ vector field on M can be exponentiated to

a Cβ self-map of M . If M = S2, then ϕ fixes a triple of points if and only if Xϕ vanishes

at the points. If M = RP 2, then ϕ fixes a point tangent vector v at p ∈ M if and only

if Xϕ(p) = 0 and the differential of Xϕ fixes v (where we used that the differential of

expp is the identity). We denote by X β(M) the linear space of smooth vector fields on

M equipped with the Cβ norm and subject to the above vanishing conditions. Note that

X β(M) is normed for finite β and Fréchet for β = ∞. Since β ≥ 1 andM is compact, Cβ

diffeomorphisms form an open subset in Cβ(M,M), so a sufficiently small neighborhood

of zero in X β(M) exponentiates to a neighborhood of the identity in Dβ(M). If β = ∞,
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then like any separable Fréchet space X β(M) is homeomorphic to ℓ2, and hence so is

D∞(M) being a contractible ℓ2-manifold. If β is finite, the identity in Dβ(M) has a

neighborhood homeomorphic to an open ball in X β(M), and since any open ball and the

ambient normed space are homeomorphic, the claim follows. Finally, any normed space

is an AR, and any locally ANR space is an ANR, see [BP75, Section II.5]. □

9. Uniformization of nonnegatively curved planes.

Let g0 be the standard Euclidean metric on R2, which we identify with C.
Orientation-preserving conformal automorphisms of C are precisely the affine maps

z → az + b, a, b ∈ C; the group acts simply transitively on pairs of distinct points

of C. Fix such a pair and let Dβ(C) be the group of smooth orientation-preserving

diffeomorphisms of C fixing the pair and equipped with the Cβ topology.

As in Section 8 we conclude that Dβ(C) is a topological group, but the proof of

Corollary 8.6 fails because Dβ(C) is no longer open in Cβ(C,C). It is shown in [Yag] that

D∞(C) is homeomorphic to ℓ2, and we adapt his argument for β ∈ [1,∞) in Lemma 11.5

to show that Dβ(C) is an ANR. Contractibility of D∞(C) is proved in Lemma 11.2 by

exhibiting a explicit deformation retraction to a point.

Remark 9.1. The proof of contractibility of Dβ(S2), β /∈ Z, given in Section 8

does not work for Dβ(C) because metrics on C are not all conformally equivalent, and

hence it is unclear how to define an analog of the map (8.1).

A basic property of a subharmonic function u is that the limit

α(u) := lim
r→∞

sup{u(z) : |z| = r}
log r

exists in [0,∞]. It is proved in [BH15, Theorem 1.1] that the nonnegatively curved

metric e−2ug0 is complete if and only if α(u) ≤ 1.

LetOγ
≥0(C) be the set of smooth subharmonic functions on C with α(u) ≤ 1 equipped

with the Cγ topology, and let Oγ
>0(C) be the subspace of functions u such that △g0

u is

positive. Both Oγ
≥0(C) and Oγ

>0(C) are convex by the proof of [BH15, Lemma 2.4].

It is well known, see e.g. [BF42] that any complete nonnegative curved plane is
conformally equivalent to (C, g0). This easily implies that the map (ϕ, u) → ϕ∗e−2ug0
induces continuous bijections

Dγ+1(C)×Oγ
≥0(C) → Rγ

≥0(C) Dγ+1(C)×Oγ
>0(C) → Rγ

>0(C) (9.2)

which are homeomorphisms if γ /∈ Z, see [BH15, Theorem 4.1] and [BH16].

Let M be S2, RP 2 or C equipped with a complete metric gκ of constant curvature

κ ∈ {0, 1}, and as in Section 8 we let Γγ(M) denote the locally convex linear metric

space of all smooth functions on M with the Cγ topology.

Lemma 9.3. Let M be S2, RP 2 or C, and if M = C assume λ = 0. Then Oβ
≥λ(M)

is closed in Γβ(M).

Proof. The convergence of ui ∈ Oβ
≥λ(M) to u ∈ Γβ(M) gives rise to the pointed
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Gromov-Hausdorff convergence e−2uigλ → e−2ugλ of the corresponding metrics. If M

is compact, then (M, e−2ug1) has curvature ≥ λ in the comparison sense, and hence

sectional curvature ≥ λ, i.e., u ∈ Oβ
≥λ(M). If M = C, then a priori the limiting

metric e−2ug0 might not be complete, but in any case the completion of (C, e−2ug0)

is an Alexandrov space of nonnegative curvature in the comparison sense. Like any

Riemannian manifold, (C, e−2ug0) is a locally convex subset of its completion, so it is

also an Alexandrov space of nonnegative curvature, and since u is smooth the metric

e−2ug0 has nonnegative sectional curvature, i.e., △g0
u ≥ 0. Since ui ∈ Oβ

≥λ(M) we have

△g0
ui ≥ 0 and α(ui) ≤ 1. Now the proof of [BH15, Lemma 2.4] applies to show that

α(u) ≤ 1 so that u ∈ Oγ
≥0(C). □

10. Recognizing ℓ2-manifolds: smooth topology.

In this section we prove Theorems 1.2–1.3 for γ = ∞. Let M denote C, S2, or RP 2

equipped with a metric gκ of constant curvature κ ∈ {0, 1}.
That O∞

≥0(C) is not locally compact is proved in [BH15, Lemma 2.5] where the

idea was to look at the point of C where the curvature of e−2ug0 is positive and note

that arbitrary small perturbations near the point rule out local compactness. The same

idea works for O∞
≥λ(M) when M is compact. Namely, if u is a constant function on M

such that the sectional curvature of e−2ug1 is > λ, then the proof of [BH15, Lemma 2.5]

shows that u has no compact neighborhood in O∞
≥λ(M).

By Lemma 9.3 the subset O∞
≥λ(M) is closed in the Fréchet space C∞(M). Like any

closed convex non-locally-compact subset of a Fréchet space, O∞
≥λ(M) is homeomorphic

to ℓ2, see [DT81, Theorem 2]. Similarly, D∞(M) is a contractible Fréchet manifold,

hence it is homeomorphic to ℓ2, see [ES70], [Yag], and the Fréchet space ℓ2 × ℓ2 is

isomorphic to ℓ2. Thus R∞
≥λ(M) is homeomorphic to ℓ2, where as usual λ = 0 for

M = C.
IfM is S2 or RP 2, then O∞

>λ(M) is an open contractible subset in the Fréchet space

C∞(M), and hence it is homeomorphic to ℓ2. It remains to prove the following.

Theorem 10.1. O∞
>0(C) is homeomorphic to ℓ2.

Proof. By Toruńczyk’s characterization theorem, see [BRZ96, Theorem 1.1.14],

a Polish AR is homeomorphic to ℓ2 if and only if it has the Strong Discrete Approximation

Property (SDAP). Also a space is an AR with SDAP if and only if it is homeomorphic to

a homotopy dense subset of ℓ2 [BRZ96, Theorem 1.3.2]. Note that O∞
>0(C) is dense in

O∞
≥0(C): Any u ∈ O∞

≥0(C) can be approximated by the convex combinations (1−t)u+tu0
which lie in O∞

>0(C) for t ∈ (0, 1) provided u0 ∈ O∞
>0(C). If a convex subset of a

linear metric space is dense in an AR, then it is homotopy dense in that AR [BRZ96,

Exercises 12–13 in 1.2]. Thus O∞
>0(C) is homotopy dense in O∞

≥0(C). Since O∞
≥0(C) is

homeomorphic to ℓ2, it remains to check that O∞
>0(C) is Polish. Recall that a subspace

of a Polish space is Polish if and only if it is Gδ. To show that O∞
>0(C) is Gδ note that

O∞
>0(C) =

∩
n

{u ∈ O∞
≥0(C) : △g0

u
∣∣{z : |z|≤n} > 0} ,
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which is a countable intersection of open sets. □

11. M2-absorbing diffeomorphism groups.

In this section β ∈ [1,∞) and M is S2, RP 2 or C. The group Dβ(M) was defined

in Section 8 for compact M and in Section 9 for M = C. The results of this section

combine to prove the following theorem.

Theorem 11.1. Dβ(M) is M2-absorbing for each β ∈ [1,∞).

Recall that any contractible M2-absorbing space is homeomorphic to Σω. We noted

in Section 8 that Dβ(S2) and Dβ(RP 2) are contractible for β /∈ Z, and Dβ(S2) is

contractible for every integer β > 1.

Lemma 11.2. Dβ(C) is contractible.

Proof. Denote by Diff+(C) the group of all smooth orientation-preserving dif-

feomorphisms of C; we equip its subgroups with the Cβ topology. Let Conf+(C) denote
the subgroup of conformal automorphisms of C, and let Dβ

∗ (C) be the subgroup of dif-

feomorphisms of C that fix 0 and whose differential at 0 is the identity. Again Dβ
∗ (C) is a

topological group. The subgroupsDβ
∗ (C) andDβ(C) are closed in Diff+(C) and intersects

Conf+(C) trivially. Any element of Diff+(C) can be written uniquely as the product of an

element of Conf+(C) with an element of either subgroup, which defines a homeomorphism

of Diff+(C) to the product of Conf+(C) with either subgroup. The group Dβ
∗ (C) are con-

tractible via the homotopy Ht(f)(v) = f(tv)/t for t ∈ (0, 1] and H0(f)(v) = f∗(0)(v).

Hence the inclusion Conf+(C) → Diff+(C) is a homotopy equivalence, which implies

the contractibility of Dβ(C). Indeed, the slice inclusion Dβ(C) → Dβ(C) × Conf+(C)
followed by the projection to the first factor is the identity, while the composition of the

slice inclusion with the projection on the second factor, which is a homotopy equivalence,

is a constant map. □

Lemma 11.3. Dβ(M) is in M2.

Proof. Since D∞(M) is homeomorphic to ℓ2, see Corollary 8.6 for compact M

and [Yag, Theorem 1.1] for M = C, the space D∞(M) is completely metrizable, and

hence Lemma 5.2 implies the claim. □

Lemma 11.4. Dβ(M) is σZ.

Proof. First assume that M is S2 or RP 2. Corollary 8.6 shows that Dβ(M)

is locally homeomorphic to the linear space V β of smooth vector fields on M equipped

with the Cβ topology. Hence V β is the image of the inclusion ι from the Fréchet space

V∞ of smooth vector fields on M to the Banach space of Cβ vector fields on M . Since

β is finite, V β is incomplete. As noted in [BDP00, Proposition 3.6] any incomplete

operator image (i.e. the image of a continuous linear operator between Fréchet spaces)

is σZ. More precisely, there is an open convex neighborhood U of 0 in V∞ such that

closure ι(U) of ι(U) in V β is a Z-set and so is n · ι(U) for every n ∈ N. Thus V β is a
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countable union of Z-sets n · ι(U). Moreover, one can choose U so that ι(U) is bounded

which implies that the homeomorphism of V β onto an open subset of Dβ(M) takes each

n · ι(U) to a closed subset. Since Dβ(M) is separable, it is covered by countably many

open sets homeomorphic to V β , hence Dβ(M) is σZ.

Let M = C, and let D be a closed disk embedded in C. Fix an integer n > β, set

r = n + 3, and let Zm be the subspace of all z ∈ Dβ(C) such that for every ρ ∈ (β, r)

the Cρ norm of z|
D

is at most m.

As in Lemma 12.1 below we see that Dβ(C) =
∪

m>0 Zm, and each Zm is closed in

Dβ(C). To show that Zm is a Z-set it remains to check that any continuous map f from

the Hilbert cube Q into Dβ(C) is a uniform limit of maps whose ranges miss Zm.

For X ∈ {C,C} let Cβ
D(X,X) be the subspace of Cβ(X,X) consisting of maps that

are the identity outside D. Here C = C ∪ {∞} is the Riemann sphere. The obvious

extension map Cβ
D(C,C) → Cβ

D(C,C) is a homeomorphism. Given h ∈ Cβ
D(C,C) we

denote its extension to C by h. Clearly h is a Cβ diffeomorphism if and only if so is h.

For a function p ∈ C∞(C) with support in D we set fp(q, t) = tp + (1 − t)f(q)

where q ∈ Q and t ∈ J = [0, 1). The associated map fp : Q × J → Cβ(C,C) is clearly

continuous. We are going to show that for a suitable p and small enough t the map

fp(·, t) takes values in Dβ(C) \ Zm and approximates f .

The map f0(q, t) = (1−t)f(q) lies in D∞(C) as the composite of f(q) and the scaling

by 1 − t. Set hp(q, t) = f0(q, t)
−1 ◦ fp(q, t); note that hp(q, t) is the identity outside D

for every q, t. Thus each hp gives rises to a continuous map hp : Q× J → Cβ
D(C,C).

Fix a real-valued function α ∈ Cn(C) such that α is not Cn+1 and the support of α

is in D. Then the map fα : Q × I → Cβ(C,C) is continuous, and fα(q, t) is not Cn+1

for each t > 0. Note that hα(q, 0) is the identity for every q. Recall that

(i) if L is a compact manifold without boundary, then C1 diffeomorphisms of L form

an open subset in C1(L,L) [Hir94, Theorem 1.7 in Chapter 2];

(ii) a Cl map with l ≥ 1 is a Cl-diffeomorphism if and only if it is a C1-diffeomorphism

(by the inverse function theorem).

Since n > β ≥ 1 and Q, C are compact, (i)–(ii) imply that there is an ε > 0 such that

hα(·, t) takes values in Dn(C) for all t ∈ (0, 2ε).

Next let us approximate α in the Cn topology by a sequence of functions αi ∈ C∞(C)
with supports in D. Since hα(q, ε) ∈ Dn(C) and hαi(q, ε) is C∞, (i)–(ii) again imply

that hαi(q, ε) ∈ D∞(C) for all large i. Restricting hαi(q, ε) to C and post-composing the

restriction with f0(q, t) gives fαi(q, ε) ∈ D∞(C) for all large i.
By the Arzelà-Ascoli theorem the Cn+2 norm of fαi(q, ε)|D tends to infinity uni-

formly in q (else some sequence fαi(qi, ε)|D would converge to a Cn+1 map of the form

fα(q, ε)|D contradicting the choice of α). In particular, the range of fαi(·, ε) misses Zm

for all large i. Finally, fαi(·, ε) is an approximation of f because f − fαi(·, ε) = ε(f −αi)

and the Cβ norm of f −αi is uniformly bounded as αi converges to α in the Cn topology

and n > β. □

Lemma 11.5. Dβ(M) is homeomorphic to a homotopy dense subset of ℓ2, and in

particular it is an ANR.
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Proof. If M is S2 or RP 2, then Corollary 8.6 implies that Dβ(M) is an ANR.

The fact that Dβ(C) is an ANR is proved using a method of Yagasaki [Yag]. To conform

to notations in [Yag] denote Dβ(C) by G, and let GK denote the subgroup fixing a subset

K pointwise. Fix an exhaustion of C by closed round disks Mi centered at 0 of radius

i > 0. Then GMi is contractible by the Alexander trick towards infinity. Now [Yag,

Theorem 3.1(2)(i)] gives a sufficient condition, called Assumption (A) in [Yag, p.8],

under which the identity component of G is an ANR. Since G is path-connected by

Lemma 11.2, it remains to check Assumption (A) which is somewhat technical to state

but the two main points are as follows. The group GC\Mi
is an ANR because it is locally

homeomorphic to a normed space by the proof of Corollary 8.6. The (one paragraph)

proof in [Lim64] of the parametrized isotopy extension theorem extends to the setting

of smooth maps with Hölder Cβ topology.

Finally, by [BRZ96, Theorem 4.2.1 and Theorem 1.3.2] any infinite-dimensional

ANR-group is homeomorphic to a homotopy dense subset of an ℓ2-manifold, which in

our case is ℓ2 because Dβ(M) is contractible. □

Lemma 11.6. Dβ(M) is strongly M2-universal.

Proof. As usual we plan to establish M2-universality by applying Theorem 5.1

in which we let N = [0, 1], h•(x) = x, η = 1/2, D = [1/2, 2/3], and Du = u′. For n ≥ 1

let Cn
• be the subspace of Cn([0, 1]) consisting of functions u that equal h• outside D

and satisfy u′ ≥ η on D. By Theorem 5.1 the assumptions of Corollary 4.9 are satisfied.

To apply the corollary fix n > β and construct a map f : Cn
• → Dβ(M) as follows. Fix

an closed coordinate disk B in M , identify it with a unit disk in C, and think of it in

polar coordinates. Let f(u) be the diffeomorphism of M that is the identity outside B,

while on B it takes reiθ to u(r)eiθ. Clearly f is injective and its continuity follows from

n > β. It is easy to check that the image of f is closed. Thus Dβ(M) is M2-universal.

ClearlyDβ(M) is infinite dimensional, and it is an ANR by Lemma 11.5. Hence [BRZ96,

Theorem 4.2.3] implies strong M2-universality of Dβ(M). □

12. The spaces Oγ
≥λ(M) and Oγ

>λ(M) are M2-absorbing.

Let γ ∈ [0,∞) and M be S2, RP 2 or C equipped with a complete metric gκ of

constant curvature κ ∈ {0, 1}.
In this section we adopt the following convention: whenever we write Oγ

≥λ(C) and

Oγ
>λ(C) we assume λ = 0. This will allow us to treat all surfaces at once.

Lemma 12.1. If γ is finite, then the following spaces are σZ

(1) Oγ
≥λ(S

2), Oγ
>λ(S

2), Oγ
≥λ(RP

2), Oγ
>λ(RP

2) for any λ ∈ R,

(2) Oγ
≥0(C) and Oγ

>0(C).

Proof. We first give a proof for Oγ
>λ(M) and then indicate necessary modifi-

cations for Oγ
≥λ(M). Fix r > max{γ, 2}, and let D be a closed disk embedded in M .

For a positive integer m let Zm be the set of all functions u ∈ Oγ
>λ(M) such that

∥u|
D
∥
Cρ(D)

≤ m for every ρ ∈ (max{γ, 2}, r).
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The equality Oγ
>λ(M) =

∪
m Zm follows from the facts that any smooth function on

D has finite Cr norm, and the Lipschitz constant of the identity map of Cr(D), where

the domain and the co-domain are given the Cr and Cρ norms respectively, is bounded

above independently of ρ, see [GT01, Lemma 6.35].

To show that Zm is closed consider ui → u in Oγ
>λ(M) with ui ∈ Zm, and fix

ρ < δ < r. Since {ui|D} is uniformly bounded in the Cδ norm, ui|D subconverges in the

Cρ topology, see [GT01, Lemma 6.36]. The limit equals u|
D

because ρ > γ, and hence

∥u|D∥Cρ(D)
≤ m.

To show that Zm is a Z-set we fix a continuous map f : Q → Oγ
>λ(M), where Q is

the Hilbert cube, and approximate it by a map whose range misses Zm.

For the first step of the approximation consider a partition of unity u = {ψi, Ui},
1 ≤ i ≤ k on Q where ψi is a continuous real-valued function on Q with support in Ui.

For each i pick a point qi ∈ Ui, and consider the function fu =
∑k

i=1 f(qi)ψi. Thus

fu takes values in the convex hull of the functions f(q1), . . . , f(qk), which is a finite

dimensional convex subset of Oγ
>λ(M). Let {pj} be a countable family of seminorms

defining the topology on the ambient vector space Γγ(M) with the associated metric d =∑
j≥1(pj/(pj + 1))2−j . For any ε > 0 there is a partition of unity as above such that for

any i, j, and x, y ∈ f(Ui) we have pj(x, y) < ε, and therefore supq∈Q d(f(q), fu(q)) < ε.

For the second stage of the approximation let fu,α(q) = fu(q) + α where α is a real

valued smooth function on M supported in D and such that ∥α|D∥Cγ (D)
and ∥α|D∥C2(D)

are small. If M = C, then for each q the functions fu,α(q) and fu(q) have the same

growth at infinity as α is compactly supported. Compactness of Q and strictness of

the inequality “> λ” makes the image of fu,α lie in Oγ
>λ(M) provided ∥α|

D
∥
C2(D)

is

sufficiently small.

The map q → fu(q)|D takes values in a finite dimensional vector subspace of Γγ(D),

and is continuous with respect to the Cγ norm on the co-domain, and hence with respect

to any norm, as they are all equivalent. In particular, compactness of Q implies that

there is R > 0 with ∥fu(q)|D∥Cρ(D)
≤ R for each q ∈ Q and every ρ ∈ (max{γ, 2}, r).

We can also choose α so that ∥α|
D
∥
Cσ(D)

> m + R for some σ ∈ (max{γ, 2}, r).
Then the image of fu,α is disjoint from Zm for if fu,α(q) ∈ Zm for some q, then

∥α|D∥Cσ(D)
= ∥fu,α(q)|D − fu(q)|D∥Cσ(D)

≤ m+R.

To treat the case of Oγ
≥λ(M) we need one more step in the approximation. Fix any

function v ∈ Oγ
>λ(M). (If M is compact, we can let v be a sufficiently large constant

such that e2v > λ, and if M = C, then take v be any function such that e−2vg0 has a

complete metric of positive curvature). Now any continuous map f : Q → Oγ
≥λ(M) can

be approximated by the map q → (1− t)f(q) + tv for small positive t, and the image of

the latter map lies in Oγ
>λ(M) (see the proof of Lemma 8.2 and note that the leftmost

inequality in the displayed formula applied to (1 − t)f(q) + tv is strict for t ∈ (0, 1)

because v ∈ Oγ
>λ(M)). □

Lemma 12.2. Each space in the statement of Lemma 12.1 belongs to M2.

Proof. By Lemma 5.2 it suffices to show that the corresponding spaces with

γ = ∞ are completely metrizable. A subspace of a complete metric space is completely
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metrizable if and only if it is Gδ. The latter is true for O∞
>0(C) because it is Gδ in the

ambient Fréchet spaces by the proof of Theorem 10.1. If M is S2 or RP 2, then O∞
≥λ(M)

and O∞
>λ(M) are respectively closed and open, and hence are Gδ. Finally, O∞

≥0(C) is

closed by [BH15, Lemma 2.4]. □

Lemma 12.3. Each space in the statement of Lemma 12.1 is M2-universal.

Proof. Recall that a space is M2-universal if it contains an M2-universal closed

subset, and to find one we are going to apply Corollary 4.9 and Theorem 5.1. To satisfy

the assumptions of Theorem 5.1 let N = M , l = 2, Du = e2u(κ +△gκ), fix a function

h• ∈ Oγ
>λ(M), fix a closed coordinate disk D in M , and let η be a constant such

that max{0, λ} < η < minDh•|D. With these data for n ≥ max{l, γ} define Cn
• as

in Theorem 5.1, i.e., let Cn
• denote the subspace of Cn(M) of functions u such that

Du|D ≥ η and u|M\Int D = h•. Corollary 4.9 applied to the inclusion of Cn
• into Γγ(M)

shows that C∞
• =

∩
n C

n
• is M2-universal. Using the proof of Lemma 9.3 we see that

that C∞
• =

∩
n C

n
• is closed in Γγ(M), and by construction C∞

• lies on Oγ
>λ(M). □

Theorem 12.4. Each space in the statement of Lemma 12.1 is M2-absorbing, and

in particular, is homeomorphic to Σω.

Proof. Let Γ
γ
(M) be the closure of Γγ(M) in the Fréchet space of all Cγ functions

on M with the Cγ topology; thus Γ
γ
(M) is a separable Fréchet space. The closure of

Oγ
>λ(M) in Γ

γ
(M) is not contained in Aff Oγ

>λ(M) because it clearly contains some non-

smooth rotationally symmetric functions; the same therefore holds for Oγ
≥λ(M). Hence

by Lemma 3.1 Oγ
>λ(M), Oγ

≥λ(M) are homeomorphic to homotopy dense subsets of ℓ2.

The proof of Lemma 12.3 actually shows that the M2-universal subset f(C
∞
• ) is closed

in Γγ(M). Therefore [BRZ96, Proposition 5.3.5] implies that Oγ
>λ(M), Oγ

≥λ(M) are

strongly M2-universal. Thus Lemmas 12.1, 12.2, imply that Oγ
>λ(M), Oγ

≥λ(M) are

M2-absorbing. □
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Warsaw, 1966.

[KW74] J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of

Math. (2), 99 (1974), 14–47.

[Lim64] E. L. Lima, On the local triviality of the restriction map for embeddings, Comment. Math.

Helv., 38 (1964), 163–164.

[Mog84] J. Mogilski, Characterizing the topology of infinite-dimensional σ-compact manifolds, Proc.

Amer. Math. Soc., 92 (1984), 111–118.

[Pal68] R. S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-

Amsterdam, 1968.

[Pet97] P. Petersen, Convergence theorems in Riemannian geometry, Comparison geometry (Berke-

ley, CA, 1993–94), Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997,

167–202.

[Sma59] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621–626.
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