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Abstract. It was conjectured, twenty years ago, the following result
that would generalize the so-called rank rigidity theorem for homogeneous
Euclidean submanifolds: let M™, n > 2, be a full and irreducible homoge-
neous submanifold of the sphere SV =1 C R such that the normal holonomy
group is not transitive (on the unit sphere of the normal space to the sphere).
Then M™ must be an orbit of an irreducible s-representation (i.e. the isotropy
representation of a semisimple Riemannian symmetric space).

If n = 2, then the normal holonomy is always transitive, unless M is a
homogeneous isoparametric hypersurface of the sphere (and so the conjecture
is true in this case). We prove the conjecture when n = 3. In this case M3
must be either isoparametric or a Veronese submanifold. The proof combines
geometric arguments with (delicate) topological arguments that use informa-
tion from two different fibrations with the same total space (the holonomy
tube and the caustic fibrations).

We also prove the conjecture for n > 3 when the normal holonomy acts
irreducibly and the codimension is the maximal possible n(n+1)/2. This gives
a characterization of Veronese submanifolds in terms of normal holonomy. We
also extend this last result by replacing the homogeneity assumption by the
assumption of minimality (in the sphere).

Another result of the paper, used for the case n = 3, is that the number of
irreducible factors of the local normal holonomy group, for any Euclidean sub-
manifold M™, is less or equal than [n/2] (which is the rank of the orthogonal
group SO(n)). This bound is sharp and improves the known bound n(n—1)/2.

1. Introduction.

The holonomy of the normal connection turns out to be a useful tool in Euclidean
submanifold geometry [BCO]. The most important applications of this tool were the
alternative proof of Thorbergsson theorem [Th], given in [O2], and the rank rigidity
theorems for submanifolds [03], [CO], [DO] (see Section 2.1). Moreover, the extension
of Thorbergsson’s result to infinite dimensional geometry, given by [HL], makes also use
of normal holonomy.

It is interesting to remark that normal holonomy is related, in a very subtle way, to
Riemannian holonomy. Namely, by using submanifold geometry, with normal holonomy
ingredients, one can give short and geometric proofs of both Berger holonomy theorem
[B] and Simons holonomy (systems) theorem [S] (see [O5], [O6]). Moreover, by applying
this methods, it was proved in [OR] the so-called skew-torsion holonomy theorem with
applications to naturally reductive spaces.

2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C42, 53C29.
Key Words and Phrases. normal holonomy, orbits of s-representations, Veronese submanifolds.
This work was supported by FaMAF-Universidad Nacional de Cérdoba and CIEM-Conicet.


http://dx.doi.org/10.2969/jmsj/06730903

904 C. OLMOS and R. RIANO-RIANO

The starting point for this theory was the normal holonomy theorem [O1] which
asserts that the (restricted) normal holonomy group representation, of a submanifold
of a space form, is, up to a trivial factor, an s-representation (equivalently, the normal
holonomy is a Riemannian non-exceptional holonomy). This implies that the so-called
principal holonomy tubes have flat normal bundle (holonomy tubes are the image, under
the normal exponential map, of the holonomy subbundles of the normal bundle). Such
tubes, despite to the classical spherical tubes, behave nicely with respect to products of
submanifolds.

But the normal holonomy, which is invariant under conformal transformations of
the ambient space, gives much weaker information in submanifold geometry than the
Riemannian holonomy in Riemannian geometry. For instance, the reducibility of the
normal holonomy representation does not imply that the manifold splits. So, interesting
applications of the normal holonomy can be expected only within a restrictive class of
submanifolds. For instance:

(1) submanifolds with constant principal curvatures,
(2) complex submanifolds of the complex projective space,
(3) homogeneous submanifolds.

For the first two classes of submanifolds there are “Berger-type” theorems.

For (1) one has the following reformulation of the Thorbergsson theorem [Th]: a
full and irreducible submanifold with constant principal curvatures, such that the normal
holonomy, as a submanifold of the sphere, is non-transitive must be either a inhomoge-
neous isoparametric hypersurface or an orbit of an s-representation.

For (2) we have the following result [CDO]: a complete full and irreducible complex
submanifold M of the complex projective space with non-transitive normal holonomy is
the complex orbit (in the projectivized tangent space) of the isotropy representation of a
Hermitian symmetric space or, equivalently, M is extrinsically symmetric. This result is
not true without the completeness assumption.

For the class (3) we have the rank rigidity theorem for submanifolds [O3], [DOJ:
if the normal holonomy of a full and irreducible Euclidean homogeneous submanifold
M™ = K, n > 2 has a fized non-null vector, then M is contained in a sphere. If the
dimension of the fized set of the normal holonomy has dimension at least 2, then M 1is
an orbit of an s-representation (perhaps by enlarging the group K).

But this last result would be only a particular case of a Berger-type result that it was
conjectured twenty years ago in [O3]: if the normal holonomy of a full and irreducible
homogeneous submanifold M™ of the sphere, n > 2, is non-transitive then M is an orbit
of an s-representation.

For n = 2 the normal holonomy must be always transitive or trivial (see [BCO,
Section 4.5 (¢)]).

The goal of this article is twofold. On the one hand, to give some progress on
this conjecture. On the other hand, to characterize the classical (Riemannian) Veronese
submanifolds in terms of normal holonomy.

If a submanifold M™ of the sphere has irreducible and non-transitive normal holon-
omy, then the first normal space, as a Euclidean submanifold, coincides with the normal
space (see Remark 2.11). This imposes the restriction that the codimension is at most
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n(n 4+ 1)/2. We will prove the above mentioned conjecture in the case that the normal
holonomy acts irreducibly and the (Euclidean) codimension is the maximal one n(n+1)/2.
The proof uses most of the techniques developed in the theory of submanifolds and holon-
omy [BCO]. Moreover, the most difficult case is in dimension n = 3 for which we have
to use also delicate topological arguments involving two different fibrations on a partial
holonomy tube: the holonomy tube fibration and the caustic fibration.

We extend these results by replacing the homogeneity by the property that the
submanifold is minimal in a sphere. But the proof of this result is simpler than the
homogeneous case and a general proof works also for n = 3.

We also prove the sharp bound n/2 on the number of irreducible factors of the
normal holonomy, which implies, from the above mentioned result, the conjecture for
n = 3 (see Proposition 6.1).

Let us explain our main results which are related to the so-called Veronese subman-
ifolds.

The isotropy representation of the symmetric space SL(n+1)/SO(n+1) is naturally
identified with the action of SO(n+1), by conjugation, on the traceless symmetric matri-
ces. A Veronese (Riemannian) submanifold M™, which has parallel second fundamental
form, is the orbit of a matrix with exactly two eigenvalues, one of which has multiplic-
ity 1. Being M a submanifold with constant principal curvatures, the first normal space
v1 (M) coincides with the normal space v(M). Moreover, v*(M) has maximal dimension.
Namely, the codimension of M is n(n + 1)/2.

The restricted normal holonomy of M, as a submanifold of the sphere, is the image,
under the slice representation, of the (connected) isotropy. Then the normal holonomy
representation of M is irreducible and it is equivalent to the isotropy representation of
SL(n)/SO(n). So, the normal holonomy of M is non-transitive if and only if n > 3.
We have the following geometric characterization of Veronese submanifolds in terms of
normal holonomy, which proves a special case of the conjecture on normal holonomy of
orbits, when the normal holonomy, of a submanifold of the sphere, acts irreducibly, not
transitively and the codimension is maximal.

THEOREM A. Let M™ C S»—1+n(n+1)/2 'y > 3 be a homogeneous submanifold of
the sphere. Then M is a (full) Veronese submanifold if and only if the restricted normal
holonomy group of M acts irreducibly and not transitively.

For dimension 3 the conjecture on normal holonomy is true. Namely,

THEOREM B. Let M3 C SN~ be a full irreducible homogeneous 3-dimensional
submanifold of the sphere. Assume that the restricted normal holonomy group of M
is non-transitive. Then M is an orbit of an s-representation. Moreover, M is either a
principal orbit of the isotropy representation of SL(3)/SO(3) or a Veronese submanifold.

The irreducibility and fullness conditions on M are always with respect to the Eu-
clidean ambient space.

We can replace, in Theorem A, the homogeneity condition by the assumption of
minimality in the sphere.
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THEOREM C. Let M™, n > 3, be a complete (immersed) submanifold of the sphere
Sn=14n(nt1)/2 - Then M™ is, up to a cover, a (full) Veronese submanifold if and only if
M is a minimal submanifold and the restricted normal holonomy group acts irreducibly
and not transitively.

The assumptions of homogeneity or minimality, in our main results, cannot be
dropped, since a conformal (arbitrary) diffeomorphism of the sphere transforms M into
a submanifold with the same normal holonomy but in general not any more minimal.
Last theorem admits a local version.

We will explain the main ideas in the proof of Theorem A, when n > 4.

Let A be the traceless shape operator of M = H.v, i.e. Az = A¢ — (1/n)(H,&)Id,
where H is the mean curvature vector. Let us consider the map A, from the normal
space T4(M) to sphere into the traceless symmetric endomorphisms Simg(T,M). Then
A maps normal spaces to the ®(g)-orbits into normal spaces to the SO(n)-orbits, by
conjugation, in Simo(T,M). By using the results in Section 2, which are related to
Simons theorem, we obtain that A is a homothecy which maps the normal holonomy
group ®(g) into SO(n). This implies that the eigenvalues of A¢ do not change if ¢ is
parallel transported along a loop. From the homogeneity, since the group H is always
inside the V+-transvections, we obtain that the eigenvalues of flg(t) are constant, if £(¢) is
a parallel normal field along a curve. Now we pass to an appropriate, singular, holonomy
tube, Mg, where A¢ has exactly two eigenvalues one of them of multiplicity 2. Let é be the
parallel normal field of M, such that M coincides with the parallel focal manifold (M) _ ¢

to M¢. One obtains that the three eigenvalue functions, ;\1, A2 and 5\3 = —1, of the shape
operator Aé of M, have constant multiplicities. The two horizontal eigendistributions

of Ag, let us say F; and Es, have multiplicities 2 and (n — 2) respectively. The vertical
distribution is the eigendistribution associated to the constant eigenvalue —1. From the
above mentioned properties of A and the tube formulas one obtains that 5\1 and 5\2
are functionally related (so if one eigenvalue is constant along a curve, the other is also
constant). From the Dupin condition, since dim(E7) > 2, A1, and so \g, as previously
remarked, are constant along the integral manifolds of Fy. If n > 4, the same is true
for the distribution Fs. So, the eigenvalues of flé are constant along horizontal curves.

But any two points in a holonomy tube can be joined by a horizontal curve. Then Aé

has constant eigenvalues and so f is an isoparametric non-umbilical parallel normal field.
Then, by the isoparametric rank rigidity theorem, the holonomy tube M¢, and therefore
M, is an orbit of an s-representation. From this we prove, without using classification
results, that M must be a Veronese submanifold.

If n = 3, the proof is much harder, since the Dupin condition does not apply for Fs,
and requires topological arguments, not valid for n > 3, as pointed out before.

2. Preliminaries and basic facts.

In this section, as well as in the appendix, for the reader convenience, we recall the
basic notions and results that are needed in this article. We also include in this part
some new results that are auxiliary for our purposes. Some of them have a small interest
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in its own right, or the proofs are different from the standard ones.
The general reference for this section is [PT], [Te|, [BCO].

2.1. Orbits of s-representations and Veronese submanifolds.

A submanifold M C RY has constant principal curvatures if the shape operator
Ag ) has constant eigenvalues, for any V-+-parallel normal vector field £(¢) along any
arbitrary (piece-wise differentiable) curve ¢(t) in M. If, in addition, the normal bundle
v(M) is flat, then M is called isoparametric.

A submanifold M with constant principal curvatures (extrinsically) splits as M =
R* x M’, where M’ is compact and contained in a sphere.

The (extrinsic) homogeneous isoparametric submanifolds are exactly the principal
orbits of polar representations [PT]. The other orbits have constant principal curvatures
(and, in particular, this family of orbits contains the submanifolds with parallel second
fundamental form). But it is not true that all homogeneous submanifolds with constant
principal curvatures are orbits of polar representations (there exists a homogeneous focal
parallel manifold to an inhomogeneous isoparametric hypersurface of the sphere [FKM]).
It turns out, from Dadok’s classification [Da], that polar representations are orbit-like
equivalent to the so-called s-representations, i.e. the isotropy representations of semisim-
ple simply connected Riemannian symmetric spaces. So, a full and homogeneous (not
contained in a proper affine subspace) Euclidean submanifold M is isoparametric if and
only if it is a principal orbit of an s-representation. It is interesting to remark that there
is a classification free proof [EH], for cohomogeneity different from 2, of the fact that
any polar representation is orbit-like to an s-representation.

One has the following remarkable result.

THEOREM 2.1 (Thorbergsson, [Th], [03]). A compact full irreducible isoparamet-
ric Buclidean submanifold of codimension at least 3 is homogeneous (and so the orbit of
an irreducible s-representation).

The rank at p, of a Euclidean submanifold M, rank, (M), is the maximal number
of linearly independent parallel normal fields, locally defined around p. The rank of
M, rank(M), is the minimum, over p € M, of rank,(M). If M is homogeneous then
rank, (M) = rank(M ), independent of p € M. The submanifold M is said to be of higher
rank if its rank is at least 2.

One has the following important result.

THEOREM 2.2 (Rank Rigidity for Submanifolds, [03], [O4], [DO], [BCO]). Let
M™ n > 2, be a Euclidean homogeneous submanifold which is full and irreducible. Then,

(a) rank(M) > 1, if and only if M is contained in a sphere.
(b) If rank(M) > 2, then M is an orbit of an s-representation.

A parallel normal field  of M is called isoparametric if the shape operator A¢ has
constant eigenvalues. If the shape operator A¢, of a parallel isoparametric normal field,
is umbilical, i.e. a multiple A of the identity, then M is contained in a sphere, if A # 0,
or M is not full, if A = 0.

One has the following result (see, [BCO, Theorem 5.5.2 and Corollary 5.5.3]).
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THEOREM 2.3 (isoparametric local rank rigidity, [CO]). Let M™ be a full (local)
and locally irreducible submanifold of SN—1 C RN which admits a non-umbilical parallel
1soparametric normal field. Then M is an inhomogeneous isoparametric hypersurface or
M is (an open subset of ) an orbit of an s-representation.

One has also a global version of the above result (see [DO, Theorem 1.2] and [BCO,
Section 5.5 (b)]).

THEOREM 2.4 (isoparametric rank rigidity, [DO]). Let M™ be a connected, simply
connected and complete Riemannian manifold and let f : M — RY be an irreducible
isometric immersion. If there exists a mon-umbilical isoparametric parallel normal sec-
tion, then f : M — RN has constant principal curvatures (and so, if f(M) is not an
isoparametric hypersurface of a sphere, then it is an orbit of an s-representation).

Let K act (by linear isometries) on RY as an s-representation. Let (G, K) be
the associated simple (simply connected) symmetric pair with Cartan decomposition
g="E®p, where p ~RY. Let M = K.v be an orbit where v € p.

One has that the normal space to M at v is given by [BCO|

vy(M)=C(v):={z €p:[z,v] =0} (%)

where [, ] is the bracket of g.

An s-representation is always the product of irreducible ones. Then the orbit M =
K.v is a full submanifold if and only if the component of v, in any K-irreducible subspace
of R¥, is not zero.

Let M be a full orbit of an s-representation and let p € M. Then the map § — A,
from v, (M) into the symmetric endomorphisms of T, M, is injective. In other words, the
first normal space of M at p coincides with the normal space (see [BCO]).

One has the following result from [HOJ; see also [BCO, Theorem 4.1.7].

THEOREM 2.5 ([HO)]). Let K act on RY as an s-representation and let M = K.v
be a full orbit. Then the normal holonomy group ®(v) of M at v coincides with the image
of the representation of the isotropy K, on v,(M) (the so-called slice representation).

For a Euclidean vector space (V, (, )), let Sim(V) denote the vector space of (real)
symmetric endomorphisms of V. The inner product on Sim(V) is the usual one, (4, B) =
trace(A.B).

We denote by Simg(V) the vector space of traceless symmetric endomorphisms.

COROLLARY 2.6. Let K act (by linear isometries) on RY as an s-representation
and let M = K.v, where |v| = 1. Assume that the normal holonomy group ®(v) acts
irreducibly on 7,(M) = {v}* Nv,(M). Then M is a minimal submanifold of the sphere
SN=1 c RN. Moreover, the map & — A¢ is a homothecy, from ,(M) onto its image in
Simo(Tv M) .

PROOF. The mean curvature vector H (v) must be fixed by the isotropy, repre-
sented on the normal space. Then, from Theorem 2.5, H(v) must be fixed by ®(v).
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Then, from the assumptions, H (v) must be proportional to v (which is fixed by the
normal holonomy group). Then M is a minimal submanifold of the sphere.

Let us consider the following inner product (, ) of 7,(M): (§,1) = (A¢, A;). Then,
(, ) is ®(v)-invariant. In fact, if ¢ € ®(v), there exists, from Theorem 2.5, g € K, such
that 9|5, (M) = ¢. Then

(6(&),0(n) = (9:€,9-n) = (Age, Agy) = (9Acg™ ", gAng™") = (Ac, Ay) = (&),

Since ®(v) acts irreducibly, then (, ) is proportional to (, ). Then £ — A¢ is a
homothecy. O

Recall that the normal holonomy (group) representation, of a submanifold of a space
form, on the normal space, is, up to the fixed set, an s-representation [O1], [BCO].

The proof of the above mentioned result depends on the construction of the so-called
adapted normal curvature tensor R+ (see [01] and [BCO, Section 4.3 c). In fact, if M
is an arbitrary submanifold of a space of constant curvature, then R+ is an algebraic
curvature tensor on the normal space v(M). Namely, if p € M and R* is the normal
curvature tensor at p, regarded as a linear map for A?(T,M) — A%(v,(M)), the adapted
normal curvature tensor is defined by

RL — RL o (RL)t

where ( ) is the transpose endomorphism. This implies that R+ has the same image as
R+
From the Ricci identity one has the nice formula, if &1, &3, €3,84 € vp(M),

<R§1,§2£3754> = trace([A§17A§2] 0 [A§37AE4])
= _<[A517A52]5 [A537A54]> = _<[[A517A52]5A53]7A54> (**)

where A is the shape operator of M.
Since R+ (A2(v,(M))) = R+(A%(T,M)), one has that Ré@ belongs to the normal
holonomy algebra at p (since curvature tensors, take values in the holonomy algebra).

Since the isotropy representation of a semisimple symmetric space coincides with
that of the dual symmetric space, we may always assume that the symmetric space is
compact. Let then (G, K) be a compact simply connected symmetric pair and let g = ¢®p
be the Cartan decomposition associated to such a pair. The isotropy representation of
K is naturally identified with the Ad-representation of K on p. The Euclidean metric
on p is —B, where B is the Killing form of g. We denote by a dot the Ad-action of K on
p. Let 0 # v € p and let us consider the orbit M = K.w ~ K/K, which is a Euclidean
submanifold with constant principal curvatures (and rank at least 2 if and only if it is
not most singular, i.e. the isotropy type of M is not maximal).

Let us consider the restriction (, ) of —B to ¢. This is an Ad-K invariant positive
definite inner product on ¢. Let us consider the (normally) reductive decomposition
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E=¢ dm

where ¢, is the Lie algebra of the isotropy group K, and m is the orthogonal complement,
with respect to (, ), of €. The restriction of (, ) to m ~ T}y K/K, ~ T,M induced a
so-called normal homogeneous metric on M, which is in particular naturally reductive,
that we also denote by (, ). Such a Riemannian metric on M will be called the canonical
normal homogeneous metric. In general this metric is different from the induced metric
as a Euclidean submanifold. Namely,

PROPOSITION 2.7. Let K act on RN as an irreducible s-representation and let
M = Kw, v # 0. If the (canonical) normal homogeneous metric on M coincides with
the induced metric, then M has parallel second fundamental form (or equivalently, M is
extrinsically symmetric [Fe]).

Proor. We keep the notation previous to this proposition. Let V¢ be the canon-
ical connection on M associated to the reductive decomposition ¢ = £, ® m. Then the
second fundamental form o of M is parallel with respect to the connection V¢ = V@ V=,
i.e. Véa =0 [OSa], [BCO]. Let V = V @ V1, where V is the Levi-Civita connection
on M associated to the induced metric which coincides, by assumption, with the normal
homogeneous metric. Then

(vwa)(yvz) = a(Dw:%Z) + a(ya Da:Z)

where D = V — V¢ We have that D,y = —Dyx. This is a general fact, for naturally
reductive spaces, since the canonical geodesics coincide with the Riemannian geodesics
(see, for instance, [ORY)).

Then

(Vza)(z,z) = 2a(Dyx, x) = 0.

But, from the Codazzi identity, (V,a)(y, ) is symmetric in all of its three variables.
Then Va = 0 and so M has parallel second fundamental form. O

COROLLARY 2.8. Let K act on RY as an s-representation and let M = K.v, v # 0.
Assume that K, acts irreducibly on T,M. Then M has parallel second fundamental form
(or, equivalently, M is extrinsically symmetric [Fe]).

REMARK 2.9. A submanifold of the Euclidean space with parallel second funda-
mental form is, up to a Euclidean factor, an orbit of an s-representation [Fe] (see also

[BCO)).

LEMMA 2.10. Let M™, M™ C SN=! be submanifolds of the sphere with parallel
second fundamental forms (or, equivalently, extrinsically symmetric spaces). Assume also
that M is a full submanifold of the Euclidean space RN and that there exists p € M N M
with T,M = T,M. Assume, furthermore, that the associated fundamental forms at p,
a,a of M and M, respectively, as submanifolds of the sphere, are proportional (i.e.
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a=Ma, \#0). Then M = M (and so A\ =1) or M = o(M), where o is the orthogonal
transformation of RN which is the identity on Rp @ T,M and minus the identity on
(M) = (Rpa® T,M)* (and so A = —1).

PROOF. Observe, in our assumptions, that the second fundamenal forms of M
and M, as Euclidean submanifolds, are not proportional, unless they coincide (since the
shapes operators of M and M, coincide in the direction of the position vector p).

Let us write M = K.p where K acts as an irreducible s-representation. One has
that the restricted holonomy at p, of the bundle TM @ v(M), is the representation, of
the connected isotropy (K)o, on T, M & 7,(M). This is a well-known fact that follows
form the following property: if X belongs to the Cartan subalgebra associated to the
symmetric pair (K, K,), then digg,¢x) gives the Levi-Civita parallel transport, when
restricted to T, M, along the geodesic v(t) = Exp(tX).p, and at the same time, when
restricted to ,(M), the normal parallel transport along ().

Since curvature endomorphisms take values in the holonomy algebra, one has that
(Rz,y, Rjy) € t,, where t, = Lie(K,) = Lie((K,)o) C so(T,M) & so(7,(M)) and R, R+
are the tangent and normal curvature tensors of M at p, respectively.

Let R® be the curvature tensor of the sphere SV=1 at p, restricted to Tp,M. Then,
from the Gauss equation,

Ryy=Toy+ RS,
where (T 2, w) = (a(z,w), oy, 2)) — (a(z, 2), a(y, w)).
For M = K.p we have similar objects R, R*, t, T. From the assumptions one has
that T = A\2T. So,
Ryy=NT,,+ RS, (a)
From the assumptions, and Ricci equation, one has that
Pl _y2pl
R, =R, (b)
Now observe that, for any X € t, C so(T,M) & so(,(M)),
Xa=0=X.(\a)=X.a (c)
and the same is true for any X € t, (the actions of X and X are derivations).
As we observed, (Rqy, Ry,) € t, and (R.,y, Ry,) € t,. Then, from (a), (b) and
(c) one obtains, if A # +1 that
(RS ,.0).00=0= (RS ,,0).0n

Since the linear span of {R  : x,y € T,M} is so(T,,M), one has that

a(g.z,9.y) = a(z,y)
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for all g € SO(T,M). Then, from the Gauss equation (A¢z,y) = (a(z,y),§), one obtains
that all the shape operators of M at p commute with any element of SO(T,M). Then
M is umbilical at p and hence, since it is homogeneous, at any point. Then M is an
extrinsic sphere. Since M is full we conclude that M = S™V—1. Then, since n = N — 1,
M =M.

Observe that the fullness condition is essential. In fact, if M and M are umbilical
submanifolds of the sphere of different radios, the second fundamental forms at p are
proportional.

If A =1, then M and M have both the same second fundamental form at p. Since
both submanifolds have parallel second fundamental forms, it is well-known and standard
to prove that M = M.

If A\ = —1, then we replace M by o(M) and the second fundamental forms of M
and M must coincide. Therefore, M = o(M). O

REMARK 2.11.  Let us enounce Theorem 4.1 in [O6]: let M™ be a locally full sub-
manifold either of the Fuclidean space or the sphere, such that the local normal holonomy
group at p acts without fized non- zero vectors. Assume, furthermore, that no factor of
the normal holonomy is transitive on the sphere. Then there are points in M, arbitrary
close to p, where the first normal space coincides with the normal space. In particular,
codim(M) < n(n+1)/2.

This bound on the codimension is correct. But the better and sharp estimate is
codim(M) < n(n+1)/2 — 1. In fact, from the proof one has that if the shape operator,
at a generic ¢ € M, A¢ is a multiple of the identity (it needs not to be zero, as in that
proof), then ¢ is in the nullity of the adapted normal curvature tensor R+. But this last
tensor is not degenerate. This implies that the injective map A : v4(M) — Sim(T,M)
cannot be onto. Then dim(v,(M)) = codim(M) < dim(Sim(T;M))—1 =n(n+1)/2—1.

If M, in the above assumptions, is a submanifold of the sphere, then the codimension
of M, as a Euclidean submanifold, is bounded by n(n + 1)/2.

2.2. Holonomy systems.

We recall here some facts about holonomy systems that are useful in submanifold
geometry.

A holonomy system is a triple [V, R, H|, where V is a Euclidean vector space, H
is a connected compact Lie subgroup of SO(V) and R # 0 is an algebraic Riemannian
curvature tensor on V that takes values R, , € hh = Lie(H). The holonomy system is
called:

- irreducible, if H acts irreducibly on V.
- transitive, if H acts transitively on the unit sphere of V.
- symmetric, it h(R) = R, for all h € H.

Observe that a Lie subgroup H C SO(V) that acts irreducibly on V must be com-
pact, as it is well-known (since the center of H has dimension at most 1).

A holonomy system [V, R, H| is the product (eventually, after enlarging H) of irre-
ducible holonomy systems (up to a Euclidean factor).

One has the following remarkable result.
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THEOREM 2.12 (Simons holonomy theorem, [S], [O6]). An irreducible and non-
transitive holonomy system [V, R, H] is symmetric. Moreover, R is, up to a scalar mul-
tiple, unique.

REMARK 2.13. If [V, R, H] is an irreducible symmetric holonomy system, then f
coincides with the linear span of R, ,, x,y € V. In this case, since (R, ,v,&) = (Ry ¢, y),
one has that the normal space at v to the orbit H.v is given by

vy(Hv) ={£ €V:R,¢ =0}

From a symmetric holonomy system one can build an involutive algebraic Rieman-
nian symmetric pair g = h @ V. The bracket [, ] is given by:

a) [, Jjpxp coincides with the bracket of b.
b) [X,v]=—[v,X]=Xv,if X € Cso(V)and v e V.
¢) [v,w] = Ry, if v,w e V.

This implies the following: if [V, R, H] is an irreducible and symmetric holonomy
system, then H acts on V as an irreducible s-representation.

Observe that, in this case, the scalar curvature sc(R) of R is different from 0 (since
this is true for the curvature tensor of an irreducible symmetric space).

LEMMA 2.14.  Let [V, R, K] be an irreducible and non-transitive holonomy system.
Let T € SO(V) be such that Ry, = 0 if and only if Ry ) = 0. Then T(R) = R.

PrOOF. Let R' = T(R). If ¢ € v,(Kv) = {{£ € V: R, = 0}, then, from
the assumptions, R; . = T.Ryp() )T~ = 0. So, 0 = (R], .x,y) = (R, v,§), for all
z,y € V. Then the Killing field R}, , € so(V) of V is tangent to any orbit K.v. This
implies that R} , € h = Lie(K), where K = {g € SO(V) : g preserves any K-orbit}.
Observe that K is a (compact) Lie subgroup of SO(V) which is non-transitive (on the
unit sphere of V). Since K C K we have that [V, R, K] is also an irreducible and non-
transitive holonomy system. From the Simons holonomy theorem we have that [V, R, K|
and [V, R, K] are both symmetric. Then h and h are (linearly) spanned by Ry, z,y € V.
Then b = b and therefore, K = K.

Since R’ takes values in h = b, then [V, R', K] is also an irreducible and non-transitive
holonomy system. Then, from the uniqueness part of Simons theorem, R’ = AR, for some

scalar A # 0. Since T is an isometry, it induces an isometry on the space of tensors. Then
A= =£1. But 0 # s¢(R) = sc¢(R'). Then A =1 and hence R’ = R. O

REMARK 2.15.  Let M™ = K.v, where K acts (by linear isometries) on R*+n(n+1)/2
as an s-representation (Jv| = 1). Assume that the restricted normal holonomy group ®(v)
acts irreducibly on #,(M) = {v}* Nv,(M). In this case M is a minimal submanifold of
the sphere §7~1+7("+1)/2 (see Corollary 2.6).

Let A be the shape operator of M and let Simo(T,M) be the space of traceless
symmetric endomorphisms of T, M. Then the map A : 7,(M) — Simo(T, M) is a linear
isomorphism. In fact, it is injective, since the first normal space of M coincides with the
normal space, and dim(#,(M)) = dim(Simo(T,M)). Moreover, by the second part of
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Corollary 2.6, A is a homothecy from , (M) onto Simy(T, M), let us say, of constant
6> 0.
Let us consider the following two irreducible and symmetric holonomy systems:

[Simo(T,M), R, SO(T,M)] and [o,(M),R*,®(v)],

where R+ is the adapted normal curvature tensor of M at v and R is the curvature
tensor of SL(n)/SO(n) (which is explicitly given by (%) of Section 2.3).

Observe that [7, (M), R+, ®(v)] is symmetric since, by Theorem 2.5, the restricted
normal holonomy group is given by

®(v) = {kjp, ()  k € (Ku)o}

and R* is left fixed by K,.

Both algebraic curvature tensors are related by the formula (xx) of Section 2.1. This
implies that the homothecy A maps R into R. Then the isometry 3~'A maps R into
BiR.

Since in a symmetric irreducible holonomy system the Lie algebra of the group is
(linearly) generated by the curvature endomorphisms, we conclude that A maps ®(v)
onto SO(T,M) ~ SO(n). In particular, the two holonomy systems are equivalent and
O (v) ~ SO(n).

2.3. Veronese submanifolds.

Let us consider the isotropy representation of the symmetric space of the non-
compact type X = SL(n+1)/SO(n+1) (which coincides with the isotropy representation
of its compact dual SU(n+1)/SO(n+1)). The Cartan decomposition of such a space is

sl(n+1)=s0(n+1) @ Simo(n+1)

where Simg(n + 1) denotes the vector space of the traceless symmetric (real) (n + 1) x
(n+1)-matrices. The Ad-representation of SO(n+1) on Simg(n+ 1) coincides with the
action, by conjugation, of SO(n + 1) on Simg(n + 1).

The curvature tensor of X at [e] is given (up to a positive multiple) by

RA,BC = —[[A,B],C}
and
<RA,BCv D> = _<[[A’B]7C]7D> = <[A7‘BL [Cv D]> (***)

where A, B,C, D € Simg(n + 1) ~ Tjy X.

Let S € Simg(n + 1) with exactly two eigenvalues, one of multiplicity 1 (whose
associated eigenspace we denote by E7) and the other of multiplicity n (whose associated
eigenspace we denote by FEs).

The orbit V" = SO(n+1).8 = {kSk™! : k € SO(n + 1)} is called a Veronese-type
orbit (see Appendix).



Normal holonomy of orbits and Veronese submanifolds 915

The following assertions are easy to verify or well-known.

Facts 2.16.

(1) The Veronese-type orbit V™* = SO(n + 1).S is a full and irreducible submanifold
of Simg(n+1) which has dimension n and codimension n(n+1)/2. Moreover, V"
is a minimal submanifold of the sphere of radius ||S||.

(i) An orbit of SO(n+ 1) in Simg(n + 1) has minimal dimension if and only if it is of
Veronese-type; see Lemma 8.1.

(iii) The normal holonomy group at S, of the Veronese-type orbit V™, coincides with
the image of the slice representation of the isotropy group (SO(n + 1))g =
S(O(E1) x O(Ey)) ~ S(0(1) x O(n)). So, from (x), the restricted normal holon-
omy representation, on vg(V") = {S}+ Nwvg(V"), is equivalent to the isotropy
representation of the symmetric space SL(n)/SO(n) of rank n — 1. Then, this
normal holonomy representation is irreducible. Moreover, it is non-transitive (on
the unit sphere of 7g(V™)) if and only if n > 3.

(iv) A Veronese-type orbit V" = SO(n+1).S = SO(n+1)/(SO(n+1))s is intrinsically
a real projective space RP™. Moreover, (SO(n+1),(SO(n+1))g) is a symmetric
pair and so (SO(n+1))s acts irreducibly on TsV™. Then, from Corollary 2.8, V"
has parallel second fundamental form (as it is well known).

A submanifold M C RY is called a Veronese submanifold if it is extrinsically iso-
metric to a Veronese-type orbit.

PROPOSITION 2.17.  Let M™ = K.v ¢ R*("+t1/2 yhere K acts on R +1)/2
as an s-representation (n > 2). Assume that the restricted normal holonomy group
®(v) of M at v, restricted to v,(M) = {v}*+ Nv,(M), acts irreducibly (eventually, in a
transitive way). Then,

(1) The normal holonomy representation of ®(v) on v, (M) is equivalent to the isotropy
representation of the symmetric space Sl(n)/SO(n).
(ii) M™ is a Veronese submanifold.

PrROOF. Part (i) is a consequence of Remark 2.15.

Since K acts as an s-representation, then the image under the slice representation,
of the (connected) isotropy group (K, )o, coincides with the restricted normal holonomy
group ®(v). But, from part (i), dim(®(v)) = dim(SO(n)). Then the isotropy group K,
has dimension at least dim(SO(n)) = dim(SO(T, M)).

Observe that the isotropy representation of K, on T, M is faithful. Otherwise, M
would be contained in the proper subspace which consists of the fixed vector of K, in
RN,

Then, (K,)o = SO(T,M). So, K, acts irreducibly on T, M. Then, from Corollary
2.8, M has parallel second fundamental form.

Let V™ be a Veronese submanifold of R*+("+1)/2 We may assume that v € V" and
that T,M = T,V = R" ¢ R*t"(»+1)/2_ For V" we have, from Corollary 2.6 and Remark
2.15, that its shape operator A : {v}t N1, (V"?) = {v}t N, (M) — Simg(T,V") =
Simo(T, M) is a homothecy which induces an isomorphism from the normal holonomy
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group ®(v) of V" onto SO(n).

The same is true, again from Corollary 2.6 and Remark 2.15, for the shape operator
A of M. Namely, A : {v}t Nv,(M) — Simo(T,V") = Simo(T,M) = Simo(R") is a
homothecy which induces an isomorphism from the (restricted) normal holonomy group
®(v) of M onto SO(n). Then the map A~!o A is a homothecy with constant, let us say,
B> 0, of the space {v}* Nv,(M). Let h = 71A" o A. Then h is a linear isometry of
{v}t Ny (M).

Let now ¢ be the linear isometry of R**("*+1)/2 defined by the following properties:

(1) g(v) =v.
(i) gjgoprwery =h7 "
(iii) 9T,M = Id.
Then V™ and g(M) have proportional second fundamental forms and satisfy all the
other assumptions of Lemma 2.10. Then, by this lemma, g(M), and hence M, is a
Veronese submanifold. O

2.4. Coxeter groups and holonomy systems.

The goal of this section is to prove Proposition 2.21 that will be important for proving
our main theorems. In order to prove this proposition we need some basic results, related
to Coxeter groups, that we have not found through the mathematical literature. So, and
also for the sake of self-completeness, we include the proofs.

LEMMA 2.18. Let C be a Coxeter group acting irreducibly, by linear isometries,
on the Euclidean n-dimensional vector space (V,(,)). Let Hy,...,H, be the family of
(different) reflection hyperplanes, associated to the symmetries of C' (that generates C).
Let us define the group G = {g € End(V) : g permutes Hy,...,H, and det(g) = £1}.
Then G is finite.

PROOF. Let P, be the (finite) group of bijections of the set {1,...,r}. Let p :
G — P, be the group morphism defined by p(g)(¢) = j, if g(H;) = H;. The group G
is finite if and only if ker(p) is finite. Let us prove that ker(p) is finite. If g € ker(p)
then it induces the trivial permutation on the family Hi,..., H.. Then, its transpose
g%, with respect to (, ), induces the trivial permutation on the set of lines Li,..., L,,
where L; is the line which is perpendicular to H;, i = 1,...,r (and hence, any vector in
any line Ly, ..., L, is an eigenvector of g*). Let us define, for i # j, the 2-dimensional
subspace V; ; := the linear span of (L; U L;). This subspace is called generic if there
exists k € {1,...,7}, i # k # j such that L, C V, ;. In other words, V;; is generic if
there are at least three different lines of {Ls, ..., L,} which are contained in V, ;. We
have, if V;, ; is generic, that ¢* : V;; — V;; is a scalar multiple of the identity Id; ;
of V; ;. In fact, any vector in L; U L; U Ly, is an eigenvector of (gt)‘vw.. Then, since
dim(V; ;) = 2, (9")v;, = Ald; j, for some A € R. Let us define the following equivalence
relation ~ on the set {1,...,7}: @ ~ ¢’ if there exist 41,...,4 € {1,...,r} with iy = 1,
iy = 4" and such that V;_; ., is generic, for s =1,...,1 —1. Let i € {1,...,r} be fixed.
By the previous observations one has that there must exist A € R such that for any
j € [i] (the equivalence class of i) and for any v; € L;, ¢'(v;) = Avj. In order to prove
this lemma, it suffices to show that there is only one equivalence class on {1,...,r}. In
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fact, if [i] = {1,...,r}, then g' = \Id, since L1,..., L, span V (because of its othogonal
complement is point-wise fixed by g). So g = A d. But det(g) = £1. Then \* = +1 and
hence A = £1. So, g = £Id and therefore there are at most two elements in ker(p).

Let ¢ € {1,...,r} be fixed. Let us show that [¢] = {1,...,r}. If j ¢ [i] then L; is
perpendicular to any Lyg, for all & € [i]. In fact, assume that this is not true for some
k € [i]. Let s; € C be the symmetry across the hyperplane H;. Then s;(Lg) is a line,
which belongs to {L1, ..., L, }, that is contained in Vj, ; and it is different from both L
and L;. Then j ~ k and therefore j ~ 4. A contradiction. Then, if j ¢ [i], L, C Hj, for
all k € [i]. So, s; acts trivially on V[;, the subspace spanned by Uke[i] Lj,. Observe that
s; commutes with sg, for all £ € [i]. Let now V, be the maximal subspace of V such
that it is point-wise fixed by all the symmetries s; with j ¢ [i]. Observe that this space
is not the null subspace, since Vi;; C Vy. If there exists j ¢ [i], then Vo must be a proper
subspace of V, since s; # Id. On the other hand, if k € [i], then s,(Vo) C Vo, since
s, commutes with all the symmetries s;, j ¢ [{]. Then Vj is a proper and non-trivial
subspace of V which is invariant under the irreducible Coxeter group C. A contradiction.
So, [i] ={1,...,r}. O

LemMMA 2.19.  We are under the assumptions and notation of the above lemma.
Then G acts by isometries.

PROOF. By the above lemma, G is finite. By averaging the inner product (, ) over
the elements of GG, we obtain a G-invariant inner product (, ) on V. Since C' C G, then
(, ) is C-invariant. Since C acts irreducible, (, ) must be proportional to (, ). Then G
acts by isometries on (V, (, )). O

COROLLARY 2.20. Let (V;,(, );) be a Euclidean vector spaces and let C; be a
Coxeter group acting irreducibly, by linear isometries, on (V;,(,);), i = 1,2. Let h :
V1 — V5 be a linear map such that it induces a bijection from the family of reflection
hyperplanes of Cy into the family of reflection hyperplanes of Co. Then h is a homothetical
map.

PROOF. Let (,) = h*((, )2) and let C* = h*(Cy) = h=1Cyh. Observe that the
determinant of any element of Cy is £1, since it is an isometry of (Vy,(, )2). So, any
element in C* has determinant £1. From the assumptions, we obtain that the family
of reflection hyperplanes of the irreducible Coxeter group C* of (V1,(, )) coincides with
the family Hy, ..., H, of reflection hyperplanes of C;. Then any element of C* induces a
permutation in this family of hyperplanes. Then, by Lemma 2.19, C* acts by isometries
on (Vy,(, )1). Since C* acts irreducibly, one has that (, ); is proportional to (, ). This
implies that h is a homothecy. U

ProposITION 2.21.  Let (V,R,K) and (V' R',K’) be irreducible, non-transitive
(and hence symmetric) holonomy systems. Let h : V — V' be a linear isomorphism such
that, for any K-orbit K.v in V, h(vy(K.v)) = V) (K'.h(v)), where v denotes the normal
space. Then h is a homothecy and h;'(K') = K.

PROOF. Observe that the groups K and K’ act as irreducible s-representations.
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We have that K.v is a maximal dimensional orbit if and only if K’.h(v) is so.

Recall that, for s-representations, an orbit is maximal dimensional if and only if it
is principal.

Let K.v be a principal K-orbit. This orbit is an irreducible (homogeneous) isopara-
metric submanifold of V. There is an irreducible Coxeter group C, associated to this
isoparametric submanifold, that acts on the normal space v, (K.v) [Te], [PT], [BCO].
If Hy,..., H, are the reflection hyperplanes of the symmetries of C', then

U H; = {z € v,(K.w) : K.z is a singular orbit}. (a)
i=1

If v" = h(v) one has the similar objects K'.v', v, (K'v"), C' and Hy,..., H. and
U H!={2 € vy (K'v'") : K'.2" is a singular orbit}. (b)
i=1

Moreover, from (a) and (b), one has that A maps, bijectively, the family Hy, ..., H, onto
the family Hy,..., H.. Then, s = r and so we may assume that h(H;) = H,i=1,...,s.
Then, from Corollary 2.20, one has that

h: vy (Kaw) — vy (K ')

is a homothecy, for any principal K-vector w, where w’ = h(w). Denote by A(w) > 0 the
homothecy constant of this map.
Observe, since w € v, (K.w) and w’ € v, (K'.w'), that

(h(w), h(w))" = Mw){w, w)

where (, ) and (, )’ are the inner products on V and V', respectively.

Let vy be a fixed K-principal vector and let M = K.vg.

Let TM = E1®...® E,, where Ey, ..., E, are the (autoparallel) eigendistributions
of T M associated to the commuting family of shape operators A of the isoparametric
submanifold M C V. Associated to any F; there is a parallel normal field 7;, a so-called
curvature normal, such that, for any normal field &,

A¢g, = (&, mi)ldE, .

Let, for ¢ € M, S;(q) denote the integral manifold of E; by ¢g. Such integral manifold
is a so-called curvature sphere. If x € S;(¢) then

va(M) Nvg(M) = (1:(9))*

where the orthogonal complement is inside v,(M). Observe that this intersection is non-
trivial, since the codimension of M in V is at least 2. This implies A(x) = A(g). Since
the eigendistributions span T'M, one has that moving along different curvature sphere
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one can reach, from vy, any other point of M. Then A(z) = A(vp), for all z € M.
Observe now that, for any y € V, there exists z € M such that y € vz(M). In fact,
such an Z can be chosen as a point where the function, from M into R, x — (z,y) attains
a maximum.
Then
/ = ~\\/
(h(y), h(y)) <h($<), hz))" AE) = Alvo),

z,I)

for all 0 # y € V. Then h is a homothecy of constant A := A(vg). This proves the first
assertion.

Let g € K’ and let T = h=*ogoh. Since h is a homothecy, T' € SO(V). Then, from
the assumptions and Remark 2.13 one has that T satisfies hypothesis of Lemma 2.14.
Then, by this lemma, T'(R) = R. This implies, since the Lie algebra of K is generated by
{R;,y}, that T belongs to N (K), the normalizer of K in O(V). Moreover, T' must belong
to the connected component Ny(K) (because of T can be deformed to the identity, since
K’ is connected). But No(K) = K, since K acts as an s-representation (see [BCO,
Lemma 6.2.2]). Then T € K, thus h; 1(K') = K. O

REMARK 2.22. The above proposition is not true if the holonomy systems are
transitive. In fact, let (V, R, K) and (V', R’, K’) be the (symmetric) holonomy systems
associated to the rank 1 symmetric spaces S** = SO(2n + 1)/SO(2n) and CP" =
SU(n+1)/S(U(1) x U(n)), respectively. In this case dim(V) = dim(V’) = 2n. Then any
linear isomorphism from V into V', satisfies the assumption of Proposition 2.21, since
the normal spaces of non-trivial K or K’-orbits are lines.

3. Non-transitive normal holonomy.

Let M" = Hwo c S 1t7(n+1)/2 he a homogeneous submanifold of the sphere.
Assume that the (restricted) normal holonomy group, as a submanifold of the sphere,
acts irreducibly and it is not transitive (on the unit normal sphere).

From now on, we will regard M"™ as a submanifold of the Euclidean space
R +7(+1)/2 - Let v(M) be the normal bundle and let ®(v) be the restricted normal
holonomy group at v (regarding M as a Euclidean submanifold). Observe that ®(v)
acts trivially on R.v and that ®(v), restricted to 7, (M) := {v}* Ny, (M), is naturally
identified with the (restricted) normal holonomy group of M at v, as a submanifold of
the sphere.

Observe that the irreducibility of the normal holonomy group representation on
{v}t Ny, (M) implies that rank(M) = 1. Namely, v is the only vector of v, (M) which is
fixed by ®(v). This implies that M is a full and irreducible submanifold of the Euclidean
space. In fact, if M is not full then any non-zero constant normal vector is a parallel
normal field which is not a multiple of the position vector. Then rank(M) > 2. A
contradiction. If M is reducible it must be a product of submanifolds contained in
spheres. Then rank(M) > 2. Also a contradiction.

One has, from Remark 2.11, that the first normal space v*(M) coincides with the
normal space v(M), regarding M as a Euclidean submanifold. This means, that the linear
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map, from v, (M) into Sim (T, M), £ — A¢ is injective, where A is the shape operator of
M. Since dim(v,(M)) = n(n + 1)/2 = dim(Sim(T,M)), then A : v,(M) — Sim(T,M)
18 a linear isomorphism.

Let Rg-l & be the adapted normal curvature tensor (see Section 2). This tensor is
given by

(RE .63, 6a) = trace([Ag,, Ag,] 0 [Ag,, Ae,])
= —([A¢,, Ae, ], [Aes, Agy]) = —([[Aey, Aes )]s Ay Aey)-

Observe that the right hand side of the above equality is, with the usual identifi-
cations, the Riemannian curvature tensor (Ra, 4., Ag;, Ag,) of the symmetric space
GL(n)/SO(n).

Observe that such a symmetric space is isometric to the following product:
GL(n)/SO(n) =R x SL(n)/SO(n).

The tangent space of the second factor is canonically identified with the traceless sym-
metric matrices Simg(n).
Let us consider the so-called traceless shape operator A of M. Namely,

/15 = Ag — %trace(Ag)Id = Ag — %@', ﬁﬂd

where H is the mean curvature vector.
Observe that

<Ré_1,€2£37£4> = _<[A€17‘21€2]7 [A£37A54]>
= <RA§17A€2A€37A€4> = <RA§1,AE2 4537A§4> (****)

where R is the curvature tensor at [e] of the symmetric space SL(T,M)/SO(T, M) (see
formula (x%x) of Section 2.3).

If ,(M) = {v}*+ N v, (M), we have the following two symmetric non-transitive
irreducible holonomy systems: [, R+, ®(v)] and [Simo (T, M), R, SO(T,M)].

Recall that for a symmetric irreducible holonomy system [V, R, K|, from Remark
2.13, the normal space to an orbit K.v is given by v,(K.v) = {{ € V: R, ¢ = 0}.

Then, from (xs%:%x), we have that the map Ais aliner isomorphism that maps normal
spaces to ®(v)-orbits into normal spaces to SO(T,, M )-orbits. Then, by Proposition 2.21,
A is a homothecy and A : 7,(M) — Simg(T, M) transforms ®(v) into SO(T,M). Then
®(v) is isomorphic to SO(T, M). Therefore, we have the following result:

LEMMA 3.1. Let M" = Ko c S* 1Hn0+0/2 pe o homogeneous submani-
fold. Assume that the restricted mormal holonomy group of M acts irreducibly and
it is non-transitive. Then the representation of the normal holonomy group ®(v) on
(M) is (orthogonally) equivalent to the isotropy representation of the symmetric
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space SL(n)/SO(n) ~ SL(T,M)/SO(T,M). Morecover, the traceless shape operator
A p,(M) — Simo(Ty,M) is a homothecy that transforms, equivariantly, ®(v) into
SO(T,M). (In particular, dim(®(v)) = n(n — 1)/2 = dim(SO(n))).

PROPOSITION 3.2. Let M" = K.v C S§"~1tn(+t1)/2 pe 4 homogeneous submani-
fold. Assume that the restricted normal holonomy group of M acts irreducibly and it is
non-transitive. Then, for any parallel normal section £(t) along a curve, the traceless
shape operator /ig(t) has constant eigenvalues.

PrOOF. Note that M must be full and irreducible as a Euclidean submanifold
(see the beginning of this section). Let p € M be arbitrary and let K, be the isotropy
subgroup of K at p. Let us decompose

Lie(K) = m & Lie(XK))

where m is a complementary subspace of Lie(K,). Let B,(0) be an open ball, centered
at the origin, of radius r of m such that Exp : B,.(0) — M is a diffeomorphism onto its
image U = Exp(B,(0)), which is a neighbourhood of p (the inner product on Lie(K) is
irrelevant).

Let 8 : [0,1] — U be an arbitrary piece-wise differentiable curve with 5(0) = p.
Since (1) € U, there exits X € m such that 5(1) = Exp(X).p. Let v :[0,1] — M be
defined by v(t) = Exp(tX).p. Let us denote, for k € K, by [, the linear isometry v — k.v
of V. Let 7/~ denote the V+-parallel transport along Yo,g- Then, from remarks 6.2.8
and 6.2.9 of [BCO],

73 = (Alsp(ex) ), a1y 0 € A% (A)

where Ax belongs to the normal holonomy algebra Lie(®(p)) and it is defined by

d

Ax = —
X dt|t=0

724 0 (Alkxp(tx) ) vy (1)

Let Té be the V-+-parallel transport along 3 and ¢ = (r{-) ! o T/@l. Then ¢ belongs
to ®(p), the restricted normal holonomy group at p. In fact, ¢ coincides with the V+-
parallel transport along the null-homotopic, since it is contained in U, loop B#*7, obtained
from gluing the curve § together with the curve 4, where 3(t) = v(1 — t).

We have that Té‘ = 7i- 0 ¢ and so, by (A),

75 = (Algxp(x)) 1wy (a0) © € %) © ¢ = (dlimp(x) )y (a1) © &

where ¢ = e~X 0 ¢ belongs to ®(p). Then, for any & € v, (M),

1 A A —1
Art(6) = Adigyy ) (3(6)) = Uixp(x) © Ag(e) © (dlixp(x))
= EXp(X).;ldg(f) (Exp(X))™*.
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Then, from the parag{aph just ~before Lemma 3.1, we have that there exists g €
SO(T,(M)) such that Az = g.A¢.g7". Then

ATE_(g) = (Exp(X).g). A¢.(Exp(X).g) '

This shows that the eigenvalues of /Lé (¢) are the same as the eigenvalues of flg.

The curve 3 was assumed to be contained in U. Since p is arbitrary, one obtains
that the eigenvalue of flg(t) are locally constant for any parallel normal section £(t) along
a curve ¢(t). This implies that the eigenvalues of jlg(t) are constant. O

The following lemma is well known and the proof is similar to the case of hypersur-
faces of a space form.

LEMMA 3.3 (Dupin Condition). Let M be a submanifold of a space of constant
curvature and let §& be a parallel normal field such that the eigenvalues of the shape
operator A¢ have constant multiplicities. Let X\ : M — R be an eigenvalue function
of A¢ such that its associated (and integrable from Codazzi identity) eigendistribution
E has dimension at least 2. Then X\ is constant along any integral manifold of E (or
equivalently, dA\(E) = 0).

THEOREM 3.4. Let M™ c S*~14n(n+1)/2 pe 4 homogeneous submanifold, where
n > 3. Assume that the restricted normal holonomy group acts irreducibly and not
transitively. Then M is a Veronese submanifold.

PROOF. Note that M must be full and irreducible as a Euclidean submanifold (see
the beginning of this section).

We will regard M as a submanifold of the Euclidean space R™+"("+1)/2  Then,
as we have observed at the beginning of this section, A : v,(M) — Sim(T,M) is an
isomorphism (p € M is arbitrary). Now choose ¢ € v,(M) such that A, has exactly two
eigenvalues A1(p), A2(p) with multiplicities mq,mo > 2 (this is not possible if n < 3).
In particular, we assume that m; = 2 and my = n — 2. We may assume that £ is small
enough such that the holonomy tube [BCO] M, is an immersed Euclidean submanifold
(see Remark 3.5). We may also assume that ¢ is perpendicular to the position (normal)
vector p, since A, = —Id.

There is a natural projection 7 : Mg — M, 7(c(1)+£(1)) = ¢(1). Moreover, £ defines
a parallel normal field to Mg, where é (¢) = q — 7(q). In this way M is a parallel focal
manifold to M¢. Namely, M = (M) ¢. Observe that the holonomy tube M is not a
maximal one and so it has not a flat normal bundle (this would have been the case, in our
situation, where all of the eigenvalues of A¢ have multiplicity one). Let £(¢) be a parallel
normal field along an arbitrary curve c(t) with ¢(0) = p, £(0) = &. Then, from Proposition
3.2, the eigenvalues of the traceless shape operator flg(t) are constant and hence the
same as the eigenvalues of A¢ which are \; = A1 (p) — (1/n)(2X1(p) + (n — 2)Aa(p)), with
multiplicity 2 and Ay = Aa(p) — (1/n)(2A1(p) + (n — 2)A2(p)), with multiplicity n — 2.

Let H be the mean curvature vector field on M. Then the eigenvalues of the shape
operator A§(1) can be written as
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Ai(e(1) = X+ —(€(1), H(e(1))  i=1,2

3=

with multiplicities 2 and n — 2, respectively (independent of ¢(1) € M).

From the tube formula [BCO], one has that the eigenvalues functions A; and Ay of
the shape operator Aé of the holonomy tube, restricted to the horizontal subspace H, of
the holonomy tube Mg, at a point ¢ = ¢(1) + £(1) are:

() — 2t (U/m Q). A(e()
1= A1 = (1/n){€(1), H(c(1)))
and
() — 2t (U/m Q). Ae()
1= X2 — (1/n)(€(1), H(c(1)))
or, equivalently,
() — it (/) (Ela). Ar()
1—=X —(1/n){&(q), H((q)))
and
Sala) = S+ (1/n)(E(a), H (n(2)))
1= X2 = (1/n){(q), H(m(q)))

with (constant) multiplicities 2 and n — 2, respectively. Observe that Aé(q), restricted to
the vertical distribution (tangent to the orbits in M, of the normal holonomy group of
M at projected points) is minus the identity. So, Aé(q) has a third eigenvalue 5\3(q) =-1
with constant multiplicity mgs = dim (M) — dim(M).

The real injective function s e s/(1 + s) transforms \;(q) into \; + (1/n)(£(q),
H(r(q))) (i =1,2). Then,

Ailg) = M) <= Xalq) = Xa(d). ey

In fact, any of both equalities implies (1/n)(E(q), H(w(q))) = (1/n)(E(¢), H(w(¢))).
This, by the above equalities, implies (I).

Let now F; and F3 be the (horizontal) eigendistributions associated to eigenvalue
functions A; and Ay of the shape operator flé. Observe that dim(E;) = 2 and dim(E») =
n—22>2.

Up to here everything is valid, except the last inequality, also for n = 3. (I1)
(This will be used in next section where we deal with the case n = 3).

If ~(¢) is a curve that lies in F; then, from the Dupin Condition (see Lemma 3.3)
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we have that \; is constant along 7. So, by ( ), Ao is also constant along v. The same is
true if y lies in Ey. This implies that 0 = v()\;) = v()\g) = v(\3) for any vector v that lies
in H. Then the eigenvalues of the shape operator A; are constant along any horizontal
curve. Since any two points, in a holonomy tube, can be joined by a horizontal curve we
conclude that the (three) eigenvalues of Aé are constant on M.

Then é is a parallel isoparametric (non-umbilical) normal section. Observe that M,
is a full irreducible Euclidean submanifold, since M is so. Moreover, M, is complete
with the induced metric (see Remark 3.5). Then, by [BCO], [DO], M must be a
submanifold with constant principal curvatures. Since M = (Mg)fé, we have that M is
also a submanifold with constant principal curvatures. Any principal holonomy tube of
M has codimension at least 3 in the Euclidean space, since the normal holonomy of M,
as a submanifold of the sphere, is non-transitive. Then, by the theorem of Thorbergsson
[Th], [02], [BCO], M is an orbit of an (irreducible) s-representation.

The fact that M is a Veronese submanifold follows from Proposition 2.17. O

REMARK 3.5. Let M™ = H.v be a full irreducible homogeneous submanifold of
R which is (properly) contained in the sphere SN ~!. We are not assuming that M is
compact (in which case the assertions of this remark are trivial).

By making use of the homogeneity of M one obtains that there exists € > 0 such
that: if &€ € v(M) with 0 < ||¢|| < € then any of the eigenvalues A of the shape operator
Ag satisfies |\| < 1 — a, for some 0 < a < 1.

Let us assume that rank(M) = 1, i.e., M is not a submanifold of higher rank
(otherwise, M would be an orbit of an s-representation and hence compact).

Let € € v,(M) with 0 < [|¢|| < € and let us consider the normal holonomy subbundle
by ¢ [BCO] of the normal bundle 7 : (M) — M.

Holg(M) = {n € v(M) : 7 ~ ¢}

where H is the horizontal distribution of v(M) and 7 X & if n and £ can be joined by a

horizontal curve. Equivalently, n X ¢ implies 7 is the V1-parallel transport of ¢ along
some curve.

One has that the fibres of 7 : Hol¢(M) — M are compact. In fact, 7= *({m(n)}) =
®(7(n)).n, where ® denotes the normal holonomy group. Observe that such a group is
compact, since its connected component acts as an s-representation (see the discussion
inside the proof of Theorem 4.1, Case (2), (c)).

Let us consider the normal exponential map exp” : v(M) — R, given by exp”(n) =
w(n) +n. Let n € vp,(M) and identify, as usual, via dm, T,M =~ H,. The vertical
distribution v, = T,v,(M) is canonically identified to v,(M). With this identification
one has the well-known expression for the differential of the normal exponential map:

d(exp”) jn, = (I — Ay), d(exp”) |, = Idy,(ar)- (C)

Then exp” : Holg (M) — R¥ is an immersion. The image of this map is the so-called
holonomy tube M, of M by &. It is given by
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Me = {c(1) + £(1) : £(t) is V*-parallel along c(t) where c(0) = p, £(0) = £}

Many times, and in particular in the proof of Theorem 3.4, for the sake of simplifying
the notation, the immersed submanifold exp” : Hol¢(M) — RY will be also denoted by
Me.

One has that the Euclidean submanifold exp” : Hol¢(M) — R, with the induced
metric (, ), is a complete Riemannian manifold. In fact, let (, ) be the Sasaki metric on
Holg(M). In such a metric the horizontal distribution is perpendicular to the vertical
one. Moreover, 7 is a Riemannian submersion and the metric in the vertical space ®(p).n
is that induced from the metric on the normal space v,(M). Since M is complete and
the fibres are compact, then (, ) is complete. Then, from (C), a?(, ) < (, ). This implies
that the induced metric is also complete.

4. The proof of the conjecture in dimension 3.

THEOREM 4.1. Let M3 = H.p be a 3-dimensional homogeneous submanifold of the
sphere SN=1 which is full and irreducible (as a submanifold of the Euclidean space RY).
Assume that the normal holonomy group of M is non-transitive. Then M is an orbit of
an s-representation.

PROOF. Assume that rank(M) = 1. Otherwise, by Theorem 2.2, M is an orbit of
an s-representation. Then, by Lemma 4.2, the normal holonomy of M, as a submanifold
of the sphere acts irreducibly and N = 9 = 3 + 3(3 + 1)/2. We have also that the first
normal bundle, which coincides with the normal bundle, has maximal codimension.

Keeping the notation and general constructions in the proof of Theorem 3.4, we have
that everything is still valid up to (II). The only difference is that the eigenvalue A2 has
multiplicity 1. So, we have the Dupin condition only for the eigendistribution E; but
not for the 1-dimensional eigendistribution Fj.

Let M = M¢/&; be the quotient of the (partial) holonomy tube M¢ by the (maximal)
integral manifolds of the 2-dimensional integrable distribution FEj.

Observe that the (partial) holonomy tube M has dimension 5. In fact, from Lemma
4.2, any focal orbit of the restricted normal holonomy group ®(p) ~ SO(3) has dimension
2 (and it is isometric to the Veronese V?).

By [BCO, Theorem 6.2.4 part (2)], one has that H C SO(9) acts by (extrinsic)
isometries on M. Moreover, the projection m : M — M is H-equivariant.

If H(p+ &) = Mg, then M is a full and irreducible homogeneous Euclidean sub-
manifold which is of higher rank. Then, in this case, by the rank rigidity theorem for
submanifolds, My is an orbit of an s-representation. Hence M = (M¢)_ ¢ is an orbit of
an s-representation.

So, we may assume that H.(p + &) C M¢. Let h = Lie(H). Let us consider the
subspace §).(p+¢) of T)y¢ M¢. This subspace has dimension at least 3, since dn(h.(p+§)) =
h.p =T, M. The horizontal subspace H,¢) of T)y¢M¢ has dimension 3. Since T}, ¢ M¢
has dimension 5, dim(H ,4¢) N h.(p+§)) > 1.

Case (1): Eq(x)+ (Hy Nh.x) = H,, for some x € M.
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We may assume that = p + £. Observe that if the above equality holds at (p + &)
then it also holds for ¢ in some open neighbourhood U of (p+ &) in M.

Recall, continuing with the notation in the proof of Theorem 3.4, that the eigenvalues
functions (which are differentiable) of the shape operator Aé at ¢ are: Ai(q) with multi-
plicity 2, Ao (¢) with multiplicity 1 and A3 (¢) = —1 with multiplicity 2 (whose associated
eigenspace is the vertical distribution vy).

On one hand, from the Dupin condition, since dim(FE;) = 2, and the equivalence (I)
in the proof of the above mentioned theorem, we have that

for any v € F1(q). Or, briefly,

{0} = Ei(q) (M) = Ei(q)(A2) = Ei(q)(N3).

On the other hand, if X € b,

0= (X.9)(A1) = (X.9)(A2) = (X.q).(X3).

In fact, this follows from the fact that the parallel normal field f of M is H-invariant
A _ A -1

and that Ah‘é(q) = h.Ag(q).h ,forall h € H.

Then, from the assumptions of this case,

{0} = Hy (M) = Hy(ha) = Hy(s) (I11)

for any ¢ € U.

Since M is (extrinsically) homogeneous, the local normal holonomy groups have all
the same dimension. Then the local normal holonomy group at any = € M coincides
with the restricted normal holonomy group ®(z).

The V-+-parallel transport along short loops, based at p € M, produces a neigh-
bourhood € of e in the local normal holonomy group (see [CO], [DO]). This implies,

from (III), that the eigenvalues of Aé(p-&-wf) are the same as the eigenvalues A\ (p + &),

Aa(p+8), As(p+€) = —1 of /Alé(pﬁ), for all w € Q. From this it is standard to show that

the eigenvalues of Aé( ) are the same of those of Aé(p+§)7 for all ¢ € ®(p). Therefore,

p+o.§
the eigenvalues of /15 are constant on p + ®(p).£ = 7~ 1({p}). Since H acts transitively
on M, then H.m~!({p}) = M¢. This implies, since ¢ is H-invariant, that the eigenvalues
of Aé are constant on Mp.

Observe that the parallel normal field é is not umbilical, since Aé has three distinct
(constant) eigenvalues. Then, from [DO] (see Theorem 5.5.8 of [BCOJ), M¢ has constant
principal curvatures. So, M = (Mg)_g has constant principal curvatures. If M is a
principal holonomy tube of M, then M is isoparametric [HOT]. Observe that M is not
a hypersurface of a sphere (since the normal holonomy group, in the Euclidean space, is
not transitive on the orthogonal complement of the position vector), then by the theorem
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of Thorbergsson [Th], [02] M is an orbit of an s-representation. Then M is an orbit of
an s-representation, since it is a focal (parallel) manifold to M.

Case (2): Eq(z) + (HeNh.x) C Hy, for all z € M,

or equivalently, (H, Nb.xz) C Eq(z), since dim(E(z)) = 2 and dim(H,) = 3.

This case splits into several sub-cases, depending on how big is the group H. Namely,
depending on dim(H) > 3 = dim(M). The most difficult case is the generic one where
dim(H) = 3. For this case we will have to use topological arguments.

Note that dim(H) < 6. In fact, H acts effectively on M, since M is a full sub-
manifold. Otherwise, if h € H acts trivially on M then it acts trivially on the (affine)
span of M which is R?. But the dimension of the isometry group of an n-dimensional
Riemannian manifold is bounded by (n + 1)n/2 (the dimension of the isometry group of
an n-dimensional space of constant curvature). In our case, since n = 3, dim(H) < 6.

Observe that H cannot be abelian. In fact if H is abelian, since the dimension of the
ambient space N = 9 is odd, the (connected) subgroup H C SO(9) must fix a vector, let
us say v # 0. So, no H-orbit H.q is a full submanifold, since it is contained in g + {v}+.
A contradiction, since M = H.p is full.

Observe that dim(H) cannot be 5. In fact, if dim(H) = 5 then the isotropy H, has
dimension 2 and so it is abelian. We regard H, C SO(T,M) ~ SO(3), via the isotropy
representation. But the rank of SO(3) is 1 and so it has no abelian two dimensional
subgroups. A contradiction.

(a) dim(H) = 6.

In this case we must have that (Hp)o = SO(3), since dim(H,) = 3. Since SO(3) is
simple, the slice representation sr of (Hp)o on the normal space v,(M) must be either
trivial or its image has dimension 3. In the first case we obtain that all shape operators
A, of M at p are a multiple of the identity, since they commute all with (H,)o. Note
that A, = Ap., = h.AH.h_l. So M = M?3 is an umbilical submanifold of S® c R?. So,
M is not full. A contradiction.

Let us deal with the case that the image of the slice representation has dimension
3. By [BCO, Corollary 6.2.6] sr((Hp)o) C ®(p) where ®(p) is the restricted normal
holonomy group of M as a Euclidean submanifold. Since dim(®(p)) = 3, we conclude
that sr((Hp)o) = ®(p). Then, any holonomy tube of M is an H-orbit. In particular
the principal ones, which have flat normal bundle. But the holonomy tubes are full and
irreducible Euclidean submanifolds, which have codimension at least 3 (since ®(p) acts
on the 6-dimensional normal space v,(M) with cohomogeneity 3). Then, by the theorem
of Thorbergsson [Th], [02], any holonomy tube is an orbit of an s-representation and
so M is an orbit of an s-representation. By Proposition 2.17 one has that M = M?3 is a
Veronese submanifold.

(b) dim(H) = 4.

In this case the isotropy H, has dimension 1. If the slice representation sr of
(Hp)o is trivial, then, as in (a), all shape operators at p commute with (H,)o ~ S*. A
contradiction, since the family of shape operators is Sim(T,M).

Let us then restrict to the case that the slice representation is not trivial. For this we
have to use a result of [OS] (see [BCO, Theorem 6.2.7]). In fact, we need the following
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weaker version, which was the main step in the proof of Simons holonomy theorem given
in [O6]. Namely, Proposition 2.4 of [O6]: for a full and irreducible H-homogeneous
Euclidean submanifold M™, n > 2, the projections, on the normal space v,(M), of the
(Fuclidean) Killing fields given by the elements of h = Lie(H), belong to the normal
holonomy algebra g.

Then, in our situation, since dim(h) = 4 and dim(g) = 3, there must exist 0 # X € b
such that it projects trivially on the normal space. Such an X cannot be in the isotropy
algebra, since we assume that the slice representation of (H,)g ~ S 1 ig non-trivial. This
implies that 0 # X.p € T,M.

Let us consider the H-invariant parallel normal field & of M. Recall that (M) ;=
M (and so M is a parallel focal manifold of M¢).

Since X projects trivially on v,(M), X.q € Hy, for all ¢ € (p + ®(p).§) =
((m) " ({p}) © M.

Recall that we are in Case (2). Then, X.q € F1(q), for all ¢ € (p + ®(p).£). Let
us consider the curve v(t) = Exp(tX).p of M?. One has that 7v/(0) = X.p # 0. Let
q € (p+ @(p).€) and let 9 (¢) be the normal parallel transport of (¢ — p) € v,(M) along
~4(t). Then ¢ (t) = E(y(t) +1(t)), as it is well known, from the construction of holonomy
tubes [HOT]|, [BCO)] (observe that My = M,_,). From the tube formula of [BCO,
Lemma 4.4.7] (the notation in this lemma permutes our objects),

Agep) = Agepype-(Td = A(g_p))p) ™

one has that F(q) is an eigenspace of the shape operator A(,_,) of M.
On the one hand, since 7(q) = ¢ — £(q),

dn(Ei(q)) = (Id + Ag)(E1() € Ei(q)-

On the other hand, since € is H-invariant and é(q) = (¢ —p),

0
= 31| (Bxp(tX).q — Exp(tX).(q = ) = X.p.
0

Therefore, X.p belongs to an eigenspace of any shape operator A,_, of M, such
that ¢ € (p + ®(p).£) (recall that we have assumed, without loss of generality, that £ is
perpendicular to the position vector p).

Observe that ®(p).¢ spans {p}*, since ®(p) acts irreducibly on {p}+. So X.p is an
eigenvector of any shape operator A,,, where (n,p) = 0.

Since A, = —Id, we conclude that X.p is an eigenvector of all shape operators of
M at p. This is a contradiction, since the family of shape operators at p coincides with
Stm(T,M).
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(c) dim(H) = 3.

Since we have excluded the case where H is abelian, then H must be simple, with
universal cover the (compact) group Spin(3) ~ S3. This case is the generic one where
the isotropy is finite. Note that M must be compact.

Also note that the (full) normal holonomy group ®(p) of M is compact. In fact,
(®(p))o coincides with the restricted normal holonomy group ®(p). Moreover, ®(p) is
included in the compact group N(®(p)), the normalizer of ®(p) in O(v,(M)). Observe
that (N(®(p)))o = P(p), since ®(p) acts as an s-representation (see [BCO, Lemma
6.2.2]). Then ®(p) has a finite number of connected components, as well as ®(p).£. This
implies that M, is compact.

Let us construct the so-called caustic fibration. The eigenvalues functions of A;
are bounded on M. Since M is contained in a sphere, M is contained in a (different)
sphere. If 7 is the position vector field of Mg, then 7 is an umbilical parallel normal
field. In fact, /177 = —Id. By adding, eventually, to the parallel normal field £ a (big)
constant multiple of —n we obtain a new parallel and H-invariant normal field, such that
its associated shape operator has the same eigendistributions as flé and all of the three
eigenvalues functions are everywhere positive and so nowhere vanishing. Just for the
sake of simplifying the notation, we also denote this perturbed normal field by 5 The
eigenvalues of /15 are also denoted by A1, A2, A3, which differ from the original ones by
a (same) constant c.

The caustic map p, from M into R, ¢ g + (5\1(q))_15(q) has constant rank.
In fact, ker(dp) = E; has constant dimension 2, since from the Dupin condition, A\ is
constant along any integral manifold Q;(q) of F;. Observe that Ao is also constant along
Q1(q), due to equivalence (I) in the proof of Theorem 3.4 (and the same is true, of course,
for the third eigenvalue A3 = —1 + ¢).

Let M = M¢/& be the quotient of Mg by the family & of (maximal) integral
manifolds of E;. From Lemma 4.3 we have that M is a compact 3-manifold immersed
in R?, via the projection p, of the caustic map p, to the compact quotient manifold
M. Moreover, 7 : M — M is a fibration, where 7 : M — M is the projection. The
distribution F; is H-invariant, since é is so. So, the action of H on M; projects down to
an action on M. So, 7 is H-equivariant.

Observe that p is H-equivariant, since é is H-invariant. Then, since 7 is H-
equivariant, the immersion p : M — R? is H-equivariant.

We have the following two H-equivariant fibrations on Mg:

0— ®(p).6 > Me 5 M —0  (