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Abstract. It was conjectured, twenty years ago, the following result
that would generalize the so-called rank rigidity theorem for homogeneous
Euclidean submanifolds: let Mn, n ≥ 2, be a full and irreducible homoge-
neous submanifold of the sphere SN−1 ⊂ RN such that the normal holonomy
group is not transitive (on the unit sphere of the normal space to the sphere).
Then Mn must be an orbit of an irreducible s-representation (i.e. the isotropy
representation of a semisimple Riemannian symmetric space).

If n = 2, then the normal holonomy is always transitive, unless M is a
homogeneous isoparametric hypersurface of the sphere (and so the conjecture
is true in this case). We prove the conjecture when n = 3. In this case M3

must be either isoparametric or a Veronese submanifold. The proof combines
geometric arguments with (delicate) topological arguments that use informa-
tion from two different fibrations with the same total space (the holonomy
tube and the caustic fibrations).

We also prove the conjecture for n ≥ 3 when the normal holonomy acts
irreducibly and the codimension is the maximal possible n(n+1)/2. This gives
a characterization of Veronese submanifolds in terms of normal holonomy. We
also extend this last result by replacing the homogeneity assumption by the
assumption of minimality (in the sphere).

Another result of the paper, used for the case n = 3, is that the number of
irreducible factors of the local normal holonomy group, for any Euclidean sub-
manifold Mn, is less or equal than [n/2] (which is the rank of the orthogonal
group SO(n)). This bound is sharp and improves the known bound n(n−1)/2.

1. Introduction.

The holonomy of the normal connection turns out to be a useful tool in Euclidean
submanifold geometry [BCO]. The most important applications of this tool were the
alternative proof of Thorbergsson theorem [Th], given in [O2], and the rank rigidity
theorems for submanifolds [O3], [CO], [DO] (see Section 2.1). Moreover, the extension
of Thorbergsson’s result to infinite dimensional geometry, given by [HL], makes also use
of normal holonomy.

It is interesting to remark that normal holonomy is related, in a very subtle way, to
Riemannian holonomy. Namely, by using submanifold geometry, with normal holonomy
ingredients, one can give short and geometric proofs of both Berger holonomy theorem
[B] and Simons holonomy (systems) theorem [S] (see [O5], [O6]). Moreover, by applying
this methods, it was proved in [OR] the so-called skew-torsion holonomy theorem with
applications to naturally reductive spaces.
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The starting point for this theory was the normal holonomy theorem [O1] which
asserts that the (restricted) normal holonomy group representation, of a submanifold
of a space form, is, up to a trivial factor, an s-representation (equivalently, the normal
holonomy is a Riemannian non-exceptional holonomy). This implies that the so-called
principal holonomy tubes have flat normal bundle (holonomy tubes are the image, under
the normal exponential map, of the holonomy subbundles of the normal bundle). Such
tubes, despite to the classical spherical tubes, behave nicely with respect to products of
submanifolds.

But the normal holonomy, which is invariant under conformal transformations of
the ambient space, gives much weaker information in submanifold geometry than the
Riemannian holonomy in Riemannian geometry. For instance, the reducibility of the
normal holonomy representation does not imply that the manifold splits. So, interesting
applications of the normal holonomy can be expected only within a restrictive class of
submanifolds. For instance:

(1) submanifolds with constant principal curvatures,
(2) complex submanifolds of the complex projective space,
(3) homogeneous submanifolds.

For the first two classes of submanifolds there are “Berger-type” theorems.
For (1) one has the following reformulation of the Thorbergsson theorem [Th]: a

full and irreducible submanifold with constant principal curvatures, such that the normal
holonomy, as a submanifold of the sphere, is non-transitive must be either a inhomoge-
neous isoparametric hypersurface or an orbit of an s-representation.

For (2) we have the following result [CDO]: a complete full and irreducible complex
submanifold M of the complex projective space with non-transitive normal holonomy is
the complex orbit (in the projectivized tangent space) of the isotropy representation of a
Hermitian symmetric space or, equivalently, M is extrinsically symmetric. This result is
not true without the completeness assumption.

For the class (3) we have the rank rigidity theorem for submanifolds [O3], [DO]:
if the normal holonomy of a full and irreducible Euclidean homogeneous submanifold
Mn = K.v, n ≥ 2 has a fixed non-null vector, then M is contained in a sphere. If the
dimension of the fixed set of the normal holonomy has dimension at least 2, then M is
an orbit of an s-representation (perhaps by enlarging the group K).

But this last result would be only a particular case of a Berger-type result that it was
conjectured twenty years ago in [O3]: if the normal holonomy of a full and irreducible
homogeneous submanifold Mn of the sphere, n ≥ 2, is non-transitive then M is an orbit
of an s-representation.

For n = 2 the normal holonomy must be always transitive or trivial (see [BCO,
Section 4.5 (c)]).

The goal of this article is twofold. On the one hand, to give some progress on
this conjecture. On the other hand, to characterize the classical (Riemannian) Veronese
submanifolds in terms of normal holonomy.

If a submanifold Mn of the sphere has irreducible and non-transitive normal holon-
omy, then the first normal space, as a Euclidean submanifold, coincides with the normal
space (see Remark 2.11). This imposes the restriction that the codimension is at most
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n(n + 1)/2. We will prove the above mentioned conjecture in the case that the normal
holonomy acts irreducibly and the (Euclidean) codimension is the maximal one n(n+1)/2.
The proof uses most of the techniques developed in the theory of submanifolds and holon-
omy [BCO]. Moreover, the most difficult case is in dimension n = 3 for which we have
to use also delicate topological arguments involving two different fibrations on a partial
holonomy tube: the holonomy tube fibration and the caustic fibration.

We extend these results by replacing the homogeneity by the property that the
submanifold is minimal in a sphere. But the proof of this result is simpler than the
homogeneous case and a general proof works also for n = 3.

We also prove the sharp bound n/2 on the number of irreducible factors of the
normal holonomy, which implies, from the above mentioned result, the conjecture for
n = 3 (see Proposition 6.1).

Let us explain our main results which are related to the so-called Veronese subman-
ifolds.

The isotropy representation of the symmetric space SL(n+1)/SO(n+1) is naturally
identified with the action of SO(n+1), by conjugation, on the traceless symmetric matri-
ces. A Veronese (Riemannian) submanifold Mn, which has parallel second fundamental
form, is the orbit of a matrix with exactly two eigenvalues, one of which has multiplic-
ity 1. Being M a submanifold with constant principal curvatures, the first normal space
ν1(M) coincides with the normal space ν(M). Moreover, ν1(M) has maximal dimension.
Namely, the codimension of M is n(n + 1)/2.

The restricted normal holonomy of M , as a submanifold of the sphere, is the image,
under the slice representation, of the (connected) isotropy. Then the normal holonomy
representation of M is irreducible and it is equivalent to the isotropy representation of
SL(n)/SO(n). So, the normal holonomy of M is non-transitive if and only if n ≥ 3.
We have the following geometric characterization of Veronese submanifolds in terms of
normal holonomy, which proves a special case of the conjecture on normal holonomy of
orbits, when the normal holonomy, of a submanifold of the sphere, acts irreducibly, not
transitively and the codimension is maximal.

Theorem A. Let Mn ⊂ Sn−1+n(n+1)/2, n ≥ 3, be a homogeneous submanifold of
the sphere. Then M is a (full) Veronese submanifold if and only if the restricted normal
holonomy group of M acts irreducibly and not transitively.

For dimension 3 the conjecture on normal holonomy is true. Namely,

Theorem B. Let M3 ⊂ SN−1 be a full irreducible homogeneous 3-dimensional
submanifold of the sphere. Assume that the restricted normal holonomy group of M

is non-transitive. Then M is an orbit of an s-representation. Moreover, M is either a
principal orbit of the isotropy representation of SL(3)/SO(3) or a Veronese submanifold.

The irreducibility and fullness conditions on M are always with respect to the Eu-
clidean ambient space.

We can replace, in Theorem A, the homogeneity condition by the assumption of
minimality in the sphere.



906 C. Olmos and R. Riaño-Riaño

Theorem C. Let Mn, n ≥ 3, be a complete (immersed) submanifold of the sphere
Sn−1+n(n+1)/2. Then Mn is, up to a cover, a (full) Veronese submanifold if and only if
M is a minimal submanifold and the restricted normal holonomy group acts irreducibly
and not transitively.

The assumptions of homogeneity or minimality, in our main results, cannot be
dropped, since a conformal (arbitrary) diffeomorphism of the sphere transforms M into
a submanifold with the same normal holonomy but in general not any more minimal.
Last theorem admits a local version.

We will explain the main ideas in the proof of Theorem A, when n ≥ 4.
Let Ã be the traceless shape operator of M = H.v, i.e. Ãξ = Aξ − (1/n)〈 ~H, ξ〉Id,

where ~H is the mean curvature vector. Let us consider the map Ã, from the normal
space ν̄q(M) to sphere into the traceless symmetric endomorphisms Sim0(TqM). Then
Ã maps normal spaces to the Φ(q)-orbits into normal spaces to the SO(n)-orbits, by
conjugation, in Sim0(TqM). By using the results in Section 2, which are related to
Simons theorem, we obtain that Ã is a homothecy which maps the normal holonomy
group Φ(q) into SO(n). This implies that the eigenvalues of Ãξ do not change if ξ is
parallel transported along a loop. From the homogeneity, since the group H is always
inside the ∇⊥-transvections, we obtain that the eigenvalues of Ãξ(t) are constant, if ξ(t) is
a parallel normal field along a curve. Now we pass to an appropriate, singular, holonomy
tube, Mξ, where Aξ has exactly two eigenvalues one of them of multiplicity 2. Let ξ̂ be the
parallel normal field of Mξ such that M coincides with the parallel focal manifold (Mξ)−ξ̂

to Mξ. One obtains that the three eigenvalue functions, λ̂1, λ̂2 and λ̂3 = −1, of the shape
operator Âξ̂ of Mξ have constant multiplicities. The two horizontal eigendistributions
of Âξ̂, let us say E1 and E2, have multiplicities 2 and (n− 2) respectively. The vertical
distribution is the eigendistribution associated to the constant eigenvalue −1. From the
above mentioned properties of Ã and the tube formulas one obtains that λ̂1 and λ̂2

are functionally related (so if one eigenvalue is constant along a curve, the other is also
constant). From the Dupin condition, since dim(E1) ≥ 2, λ̂1, and so λ̂2, as previously
remarked, are constant along the integral manifolds of E1. If n ≥ 4, the same is true
for the distribution E2. So, the eigenvalues of Âξ̂ are constant along horizontal curves.
But any two points in a holonomy tube can be joined by a horizontal curve. Then Âξ̂

has constant eigenvalues and so ξ̂ is an isoparametric non-umbilical parallel normal field.
Then, by the isoparametric rank rigidity theorem, the holonomy tube Mξ, and therefore
M , is an orbit of an s-representation. From this we prove, without using classification
results, that M must be a Veronese submanifold.

If n = 3, the proof is much harder, since the Dupin condition does not apply for E2,
and requires topological arguments, not valid for n > 3, as pointed out before.

2. Preliminaries and basic facts.

In this section, as well as in the appendix, for the reader convenience, we recall the
basic notions and results that are needed in this article. We also include in this part
some new results that are auxiliary for our purposes. Some of them have a small interest
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in its own right, or the proofs are different from the standard ones.
The general reference for this section is [PT], [Te], [BCO].

2.1. Orbits of s-representations and Veronese submanifolds.
A submanifold M ⊂ RN has constant principal curvatures if the shape operator

Aξ(t) has constant eigenvalues, for any ∇⊥-parallel normal vector field ξ(t) along any
arbitrary (piece-wise differentiable) curve c(t) in M . If, in addition, the normal bundle
ν(M) is flat, then M is called isoparametric.

A submanifold M with constant principal curvatures (extrinsically) splits as M =
Rk ×M ′, where M ′ is compact and contained in a sphere.

The (extrinsic) homogeneous isoparametric submanifolds are exactly the principal
orbits of polar representations [PT]. The other orbits have constant principal curvatures
(and, in particular, this family of orbits contains the submanifolds with parallel second
fundamental form). But it is not true that all homogeneous submanifolds with constant
principal curvatures are orbits of polar representations (there exists a homogeneous focal
parallel manifold to an inhomogeneous isoparametric hypersurface of the sphere [FKM]).
It turns out, from Dadok’s classification [Da], that polar representations are orbit-like
equivalent to the so-called s-representations, i.e. the isotropy representations of semisim-
ple simply connected Riemannian symmetric spaces. So, a full and homogeneous (not
contained in a proper affine subspace) Euclidean submanifold M is isoparametric if and
only if it is a principal orbit of an s-representation. It is interesting to remark that there
is a classification free proof [EH], for cohomogeneity different from 2, of the fact that
any polar representation is orbit-like to an s-representation.

One has the following remarkable result.

Theorem 2.1 (Thorbergsson, [Th], [O3]). A compact full irreducible isoparamet-
ric Euclidean submanifold of codimension at least 3 is homogeneous (and so the orbit of
an irreducible s-representation).

The rank at p, of a Euclidean submanifold M , rankp(M), is the maximal number
of linearly independent parallel normal fields, locally defined around p. The rank of
M , rank(M), is the minimum, over p ∈ M , of rankp(M). If M is homogeneous then
rankp(M) = rank(M), independent of p ∈ M . The submanifold M is said to be of higher
rank if its rank is at least 2.

One has the following important result.

Theorem 2.2 (Rank Rigidity for Submanifolds, [O3], [O4], [DO], [BCO]). Let
Mn, n ≥ 2, be a Euclidean homogeneous submanifold which is full and irreducible. Then,

(a) rank(M) ≥ 1, if and only if M is contained in a sphere.
(b) If rank(M) ≥ 2, then M is an orbit of an s-representation.

A parallel normal field ξ of M is called isoparametric if the shape operator Aξ has
constant eigenvalues. If the shape operator Aξ, of a parallel isoparametric normal field,
is umbilical, i.e. a multiple λ of the identity, then M is contained in a sphere, if λ 6= 0,
or M is not full, if λ = 0.

One has the following result (see, [BCO, Theorem 5.5.2 and Corollary 5.5.3]).
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Theorem 2.3 (isoparametric local rank rigidity, [CO]). Let Mn be a full (local)
and locally irreducible submanifold of SN−1 ⊂ RN which admits a non-umbilical parallel
isoparametric normal field. Then M is an inhomogeneous isoparametric hypersurface or
M is (an open subset of ) an orbit of an s-representation.

One has also a global version of the above result (see [DO, Theorem 1.2] and [BCO,
Section 5.5 (b)]).

Theorem 2.4 (isoparametric rank rigidity, [DO]). Let Mn be a connected, simply
connected and complete Riemannian manifold and let f : M → RN be an irreducible
isometric immersion. If there exists a non-umbilical isoparametric parallel normal sec-
tion, then f : M → RN has constant principal curvatures (and so, if f(M) is not an
isoparametric hypersurface of a sphere, then it is an orbit of an s-representation).

Let K act (by linear isometries) on RN as an s-representation. Let (G,K) be
the associated simple (simply connected) symmetric pair with Cartan decomposition
g = k⊕ p, where p ' RN . Let M = K.v be an orbit where v ∈ p.

One has that the normal space to M at v is given by [BCO]

νv(M) = C(v) := {x ∈ p : [x, v] = 0} (∗)

where [ , ] is the bracket of g.
An s-representation is always the product of irreducible ones. Then the orbit M =

K.v is a full submanifold if and only if the component of v, in any K-irreducible subspace
of RN , is not zero.

Let M be a full orbit of an s-representation and let p ∈ M . Then the map ξ 7→ Aξ,
from νp(M) into the symmetric endomorphisms of TpM , is injective. In other words, the
first normal space of M at p coincides with the normal space (see [BCO]).

One has the following result from [HO]; see also [BCO, Theorem 4.1.7].

Theorem 2.5 ([HO]). Let K act on RN as an s-representation and let M = K.v

be a full orbit. Then the normal holonomy group Φ(v) of M at v coincides with the image
of the representation of the isotropy Kv on νv(M) (the so-called slice representation).

For a Euclidean vector space (V, 〈 , 〉), let Sim(V) denote the vector space of (real)
symmetric endomorphisms of V. The inner product on Sim(V) is the usual one, 〈A,B〉 =
trace(A.B).

We denote by Sim0(V) the vector space of traceless symmetric endomorphisms.

Corollary 2.6. Let K act (by linear isometries) on RN as an s-representation
and let M = K.v, where |v| = 1. Assume that the normal holonomy group Φ(v) acts
irreducibly on ν̄v(M) := {v}⊥ ∩ νv(M). Then M is a minimal submanifold of the sphere
SN−1 ⊂ RN . Moreover, the map ξ 7→ Aξ is a homothecy, from ν̄v(M) onto its image in
Sim0(TvM).

Proof. The mean curvature vector ~H(v) must be fixed by the isotropy, repre-
sented on the normal space. Then, from Theorem 2.5, ~H(v) must be fixed by Φ(v).
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Then, from the assumptions, ~H(v) must be proportional to v (which is fixed by the
normal holonomy group). Then M is a minimal submanifold of the sphere.

Let us consider the following inner product ( , ) of ν̄v(M): (ξ, η) = 〈Aξ, Aη〉. Then,
( , ) is Φ(v)-invariant. In fact, if φ ∈ Φ(v), there exists, from Theorem 2.5, g ∈ Kv such
that g|ν̄v(M) = φ. Then

(φ(ξ), φ(η)) = (g.ξ, g.η) = 〈Ag.ξ, Ag.η〉 = 〈gAξg
−1, gAηg−1〉 = 〈Aξ, Aη〉 = (ξ, η).

Since Φ(v) acts irreducibly, then ( , ) is proportional to 〈 , 〉. Then ξ 7→ Aξ is a
homothecy. ¤

Recall that the normal holonomy (group) representation, of a submanifold of a space
form, on the normal space, is, up to the fixed set, an s-representation [O1], [BCO].

The proof of the above mentioned result depends on the construction of the so-called
adapted normal curvature tensor R⊥ (see [O1] and [BCO, Section 4.3 c]). In fact, if M

is an arbitrary submanifold of a space of constant curvature, then R⊥ is an algebraic
curvature tensor on the normal space ν(M). Namely, if p ∈ M and R⊥ is the normal
curvature tensor at p, regarded as a linear map for Λ2(TpM) → Λ2(νp(M)), the adapted
normal curvature tensor is defined by

R⊥ = R⊥ ◦ (R⊥)t

where ( )t is the transpose endomorphism. This implies that R⊥ has the same image as
R⊥.

From the Ricci identity one has the nice formula, if ξ1, ξ2, ξ3, ξ4 ∈ νp(M),

〈R⊥ξ1,ξ2
ξ3, ξ4〉 = trace([Aξ1 , Aξ2 ] ◦ [Aξ3 , Aξ4 ])

= −〈[Aξ1 , Aξ2 ], [Aξ3 , Aξ4 ]〉 = −〈[[Aξ1 , Aξ2 ], Aξ3 ], Aξ4〉 (∗∗)

where A is the shape operator of M .
Since R⊥(Λ2(νp(M))) = R⊥(Λ2(TpM)), one has that R⊥ξ1,ξ2

belongs to the normal
holonomy algebra at p (since curvature tensors, take values in the holonomy algebra).

Since the isotropy representation of a semisimple symmetric space coincides with
that of the dual symmetric space, we may always assume that the symmetric space is
compact. Let then (G,K) be a compact simply connected symmetric pair and let g = k⊕p

be the Cartan decomposition associated to such a pair. The isotropy representation of
K is naturally identified with the Ad-representation of K on p. The Euclidean metric
on p is −B, where B is the Killing form of g. We denote by a dot the Ad-action of K on
p. Let 0 6= v ∈ p and let us consider the orbit M = K.v ' K/Kv which is a Euclidean
submanifold with constant principal curvatures (and rank at least 2 if and only if it is
not most singular, i.e. the isotropy type of M is not maximal).

Let us consider the restriction 〈 , 〉 of −B to k. This is an Ad-K invariant positive
definite inner product on k. Let us consider the (normally) reductive decomposition



910 C. Olmos and R. Riaño-Riaño

k = kv ⊕m

where kv is the Lie algebra of the isotropy group Kv and m is the orthogonal complement,
with respect to 〈 , 〉, of k. The restriction of 〈 , 〉 to m ' T[e]K/Kv ' TvM induced a
so-called normal homogeneous metric on M , which is in particular naturally reductive,
that we also denote by 〈 , 〉. Such a Riemannian metric on M will be called the canonical
normal homogeneous metric. In general this metric is different from the induced metric
as a Euclidean submanifold. Namely,

Proposition 2.7. Let K act on RN as an irreducible s-representation and let
M = K.v, v 6= 0. If the (canonical) normal homogeneous metric on M coincides with
the induced metric, then M has parallel second fundamental form (or equivalently, M is
extrinsically symmetric [Fe]).

Proof. We keep the notation previous to this proposition. Let ∇c be the canon-
ical connection on M associated to the reductive decomposition k = kv ⊕ m. Then the
second fundamental form α of M is parallel with respect to the connection ∇̄c = ∇c⊕∇⊥,
i.e. ∇̄cα = 0 [OSa], [BCO]. Let ∇̄ = ∇ ⊕∇⊥, where ∇ is the Levi-Civita connection
on M associated to the induced metric which coincides, by assumption, with the normal
homogeneous metric. Then

(∇̄xα)(y, z) = α(Dxy, z) + α(y, Dxz)

where D = ∇ − ∇c. We have that Dxy = −Dyx. This is a general fact, for naturally
reductive spaces, since the canonical geodesics coincide with the Riemannian geodesics
(see, for instance, [OR]).

Then

(∇̄xα)(x, x) = 2α(Dxx, x) = 0.

But, from the Codazzi identity, (∇̄xα)(y, z) is symmetric in all of its three variables.
Then ∇̄α = 0 and so M has parallel second fundamental form. ¤

Corollary 2.8. Let K act on RN as an s-representation and let M = K.v, v 6= 0.
Assume that Kv acts irreducibly on TvM . Then M has parallel second fundamental form
(or, equivalently, M is extrinsically symmetric [Fe]).

Remark 2.9. A submanifold of the Euclidean space with parallel second funda-
mental form is, up to a Euclidean factor, an orbit of an s-representation [Fe] (see also
[BCO]).

Lemma 2.10. Let Mn, M̄n ⊂ SN−1 be submanifolds of the sphere with parallel
second fundamental forms (or, equivalently, extrinsically symmetric spaces). Assume also
that M is a full submanifold of the Euclidean space RN and that there exists p ∈ M ∩ M̄

with TpM = TpM̄ . Assume, furthermore, that the associated fundamental forms at p,
α, ᾱ of M and M̄ , respectively, as submanifolds of the sphere, are proportional (i.e.
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ᾱ = λα, λ 6= 0). Then M = M̄ (and so λ = 1) or M = σ(M̄), where σ is the orthogonal
transformation of RN which is the identity on Rp ⊕ TpM and minus the identity on
ν̄p(M̄) = (Rp⊕ TpM)⊥ (and so λ = −1).

Proof. Observe, in our assumptions, that the second fundamenal forms of M

and M̄ , as Euclidean submanifolds, are not proportional, unless they coincide (since the
shapes operators of M and M̄ , coincide in the direction of the position vector p).

Let us write M = K.p where K acts as an irreducible s-representation. One has
that the restricted holonomy at p, of the bundle TM ⊕ ν̄(M), is the representation, of
the connected isotropy (Kp)0, on TpM ⊕ ν̄p(M). This is a well-known fact that follows
form the following property: if X belongs to the Cartan subalgebra associated to the
symmetric pair (K, Kp), then dlExp(tX) gives the Levi-Civita parallel transport, when
restricted to TpM , along the geodesic γ(t) = Exp(tX).p, and at the same time, when
restricted to ν̄p(M), the normal parallel transport along γ(t).

Since curvature endomorphisms take values in the holonomy algebra, one has that
(Rx,y, R⊥x,y) ∈ tp, where tp = Lie(Kp) = Lie((Kp)0) ⊂ so(TpM)⊕ so(ν̄p(M)) and R, R⊥

are the tangent and normal curvature tensors of M at p, respectively.
Let RS be the curvature tensor of the sphere SN−1 at p, restricted to TpM . Then,

from the Gauss equation,

Rx,y = Tx,y + RS
x,y

where 〈Tx,yz, w〉 = 〈α(x,w), α(y, z)〉 − 〈α(x, z), α(y, w)〉.
For M̄ = K̄.p we have similar objects R̄, R̄⊥, t̄p, T̄ . From the assumptions one has

that T̄ = λ2T . So,

R̄x,y = λ2Tx,y + RS
x,y. (a)

From the assumptions, and Ricci equation, one has that

R̄⊥x,y = λ2R⊥x,y. (b)

Now observe that, for any X ∈ tp ⊂ so(TpM)⊕ so(ν̄p(M)),

X.α = 0 = X.(λ.α) = X.ᾱ (c)

and the same is true for any X̄ ∈ t̄p (the actions of X and X̄ are derivations).
As we observed, (Rx,y, R⊥x,y) ∈ tp, and (R̄x,y, R̄⊥x,y) ∈ t̄p. Then, from (a), (b) and

(c) one obtains, if λ 6= ±1 that

(RS
x,y, 0).α = 0 = (RS

x,y, 0).ᾱ.

Since the linear span of {RS
x,y : x, y ∈ TpM} is so(TpM), one has that

α(g.x, g.y) = α(x, y)
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for all g ∈ SO(TpM). Then, from the Gauss equation 〈Aξx, y〉 = 〈α(x, y), ξ〉, one obtains
that all the shape operators of M at p commute with any element of SO(TpM). Then
M is umbilical at p and hence, since it is homogeneous, at any point. Then M is an
extrinsic sphere. Since M is full we conclude that M = SN−1. Then, since n = N − 1,
M = M̄ .

Observe that the fullness condition is essential. In fact, if M and M̄ are umbilical
submanifolds of the sphere of different radios, the second fundamental forms at p are
proportional.

If λ = 1, then M and M̄ have both the same second fundamental form at p. Since
both submanifolds have parallel second fundamental forms, it is well-known and standard
to prove that M = M̄ .

If λ = −1, then we replace M̄ by σ(M̄) and the second fundamental forms of M

and M̄ must coincide. Therefore, M = σ(M̄). ¤

Remark 2.11. Let us enounce Theorem 4.1 in [O6]: let Mn be a locally full sub-
manifold either of the Euclidean space or the sphere, such that the local normal holonomy
group at p acts without fixed non- zero vectors. Assume, furthermore, that no factor of
the normal holonomy is transitive on the sphere. Then there are points in M , arbitrary
close to p, where the first normal space coincides with the normal space. In particular,
codim(M) ≤ n(n + 1)/2.

This bound on the codimension is correct. But the better and sharp estimate is
codim(M) ≤ n(n + 1)/2− 1. In fact, from the proof one has that if the shape operator,
at a generic q ∈ M , Aξ is a multiple of the identity (it needs not to be zero, as in that
proof), then ξ is in the nullity of the adapted normal curvature tensor R⊥. But this last
tensor is not degenerate. This implies that the injective map A : νq(M) → Sim(TqM)
cannot be onto. Then dim(νq(M)) = codim(M) ≤ dim(Sim(TqM))−1 = n(n+1)/2−1.

If M , in the above assumptions, is a submanifold of the sphere, then the codimension
of M , as a Euclidean submanifold, is bounded by n(n + 1)/2.

2.2. Holonomy systems.
We recall here some facts about holonomy systems that are useful in submanifold

geometry.
A holonomy system is a triple [V, R, H], where V is a Euclidean vector space, H

is a connected compact Lie subgroup of SO(V) and R 6= 0 is an algebraic Riemannian
curvature tensor on V that takes values Rx,y ∈ h = Lie(H). The holonomy system is
called:

- irreducible, if H acts irreducibly on V.
- transitive, if H acts transitively on the unit sphere of V.
- symmetric, if h(R) = R, for all h ∈ H.

Observe that a Lie subgroup H ⊂ SO(V) that acts irreducibly on V must be com-
pact, as it is well-known (since the center of H has dimension at most 1).

A holonomy system [V, R, H] is the product (eventually, after enlarging H) of irre-
ducible holonomy systems (up to a Euclidean factor).

One has the following remarkable result.
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Theorem 2.12 (Simons holonomy theorem, [S], [O6]). An irreducible and non-
transitive holonomy system [V, R, H] is symmetric. Moreover, R is, up to a scalar mul-
tiple, unique.

Remark 2.13. If [V, R, H] is an irreducible symmetric holonomy system, then h

coincides with the linear span of Rx,y, x, y ∈ V. In this case, since 〈Rx,yv, ξ〉 = 〈Rv,ξx, y〉,
one has that the normal space at v to the orbit H.v is given by

νv(H.v) = {ξ ∈ V : Rv,ξ = 0}.

From a symmetric holonomy system one can build an involutive algebraic Rieman-
nian symmetric pair g = h⊕ V. The bracket [ , ] is given by:

a) [ , ]|h×h coincides with the bracket of h.
b) [X, v] = −[v, X] = X.v, if X ∈ h ⊂ so(V) and v ∈ V.
c) [v, w] = Rv,w, if v, w ∈ V.

This implies the following: if [V, R, H] is an irreducible and symmetric holonomy
system, then H acts on V as an irreducible s-representation.

Observe that, in this case, the scalar curvature sc(R) of R is different from 0 (since
this is true for the curvature tensor of an irreducible symmetric space).

Lemma 2.14. Let [V, R, K] be an irreducible and non-transitive holonomy system.
Let T ∈ SO(V) be such that Rx,y = 0 if and only if RT (x),T (y) = 0. Then T (R) = R.

Proof. Let R′ = T (R). If ξ ∈ νv(K.v) = {ξ ∈ V : Rv,ξ = 0}, then, from
the assumptions, R′v,ξ = T.RT (v),T (ξ).T

−1 = 0. So, 0 = 〈R′v,ξx, y〉 = 〈R′x,yv, ξ〉, for all
x, y ∈ V. Then the Killing field R′x,y ∈ so(V) of V is tangent to any orbit K.v. This
implies that R′x,y ∈ h̃ = Lie(K̃), where K̃ = {g ∈ SO(V) : g preserves any K-orbit}.
Observe that K̃ is a (compact) Lie subgroup of SO(V) which is non-transitive (on the
unit sphere of V). Since K ⊂ K̃ we have that [V, R, K̃] is also an irreducible and non-
transitive holonomy system. From the Simons holonomy theorem we have that [V, R, K]
and [V, R, K̃] are both symmetric. Then h and h̃ are (linearly) spanned by Rx,y, x, y ∈ V.
Then h = h̃ and therefore, K = K̃.

Since R′ takes values in h̃ = h, then [V, R′,K] is also an irreducible and non-transitive
holonomy system. Then, from the uniqueness part of Simons theorem, R′ = λR, for some
scalar λ 6= 0. Since T is an isometry, it induces an isometry on the space of tensors. Then
λ = ±1. But 0 6= sc(R) = sc(R′). Then λ = 1 and hence R′ = R. ¤

Remark 2.15. Let Mn = K.v, where K acts (by linear isometries) on Rn+n(n+1)/2

as an s-representation (|v| = 1). Assume that the restricted normal holonomy group Φ(v)
acts irreducibly on ν̄v(M) = {v}⊥ ∩ νv(M). In this case M is a minimal submanifold of
the sphere Sn−1+n(n+1)/2 (see Corollary 2.6).

Let A be the shape operator of M and let Sim0(TpM) be the space of traceless
symmetric endomorphisms of TpM . Then the map A : ν̄v(M) 7→ Sim0(TvM) is a linear
isomorphism. In fact, it is injective, since the first normal space of M coincides with the
normal space, and dim(ν̄v(M)) = dim(Sim0(TvM)). Moreover, by the second part of
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Corollary 2.6, A is a homothecy from ν̄v(M) onto Sim0(TvM), let us say, of constant
β > 0.

Let us consider the following two irreducible and symmetric holonomy systems:

[Sim0(TpM), R, SO(TpM)] and [ν̄v(M),R⊥,Φ(v)],

where R⊥ is the adapted normal curvature tensor of M at v and R is the curvature
tensor of SL(n)/SO(n) (which is explicitly given by (∗∗∗) of Section 2.3).

Observe that [ν̄v(M),R⊥,Φ(v)] is symmetric since, by Theorem 2.5, the restricted
normal holonomy group is given by

Φ(v) = {k|ν̄v(M) : k ∈ (Kv)0}

and R⊥ is left fixed by Kv.
Both algebraic curvature tensors are related by the formula (∗∗) of Section 2.1. This

implies that the homothecy A maps R⊥ into R. Then the isometry β−1A maps R⊥ into
β4R.

Since in a symmetric irreducible holonomy system the Lie algebra of the group is
(linearly) generated by the curvature endomorphisms, we conclude that A maps Φ(v)
onto SO(TpM) ' SO(n). In particular, the two holonomy systems are equivalent and
Φ(v) ' SO(n).

2.3. Veronese submanifolds.
Let us consider the isotropy representation of the symmetric space of the non-

compact type X = SL(n+1)/SO(n+1) (which coincides with the isotropy representation
of its compact dual SU(n+1)/SO(n+1)). The Cartan decomposition of such a space is

sl(n + 1) = so(n + 1)⊕ Sim0(n + 1)

where Sim0(n + 1) denotes the vector space of the traceless symmetric (real) (n + 1)×
(n+1)-matrices. The Ad-representation of SO(n+1) on Sim0(n+1) coincides with the
action, by conjugation, of SO(n + 1) on Sim0(n + 1).

The curvature tensor of X at [e] is given (up to a positive multiple) by

RA,BC = −[[A,B], C]

and

〈RA,BC, D〉 = −〈[[A,B], C], D〉 = 〈[A,B], [C, D]〉 (∗∗∗)

where A,B, C, D ∈ Sim0(n + 1) ' T[e]X.
Let S ∈ Sim0(n + 1) with exactly two eigenvalues, one of multiplicity 1 (whose

associated eigenspace we denote by E1) and the other of multiplicity n (whose associated
eigenspace we denote by E2).

The orbit V n = SO(n + 1).S = {kSk−1 : k ∈ SO(n + 1)} is called a Veronese-type
orbit (see Appendix).
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The following assertions are easy to verify or well-known.

Facts 2.16.

( i ) The Veronese-type orbit V n = SO(n + 1).S is a full and irreducible submanifold
of Sim0(n+1) which has dimension n and codimension n(n+1)/2. Moreover, V n

is a minimal submanifold of the sphere of radius ‖S‖.
( ii ) An orbit of SO(n + 1) in Sim0(n + 1) has minimal dimension if and only if it is of

Veronese-type; see Lemma 8.1.
(iii) The normal holonomy group at S, of the Veronese-type orbit V n, coincides with

the image of the slice representation of the isotropy group (SO(n + 1))S =
S(O(E1) × O(E2)) ' S(O(1) × O(n)). So, from (∗), the restricted normal holon-
omy representation, on ν̄S(V n) = {S}⊥ ∩ νS(V n), is equivalent to the isotropy
representation of the symmetric space SL(n)/SO(n) of rank n − 1. Then, this
normal holonomy representation is irreducible. Moreover, it is non-transitive (on
the unit sphere of ν̄S(V n)) if and only if n ≥ 3.

(iv) A Veronese-type orbit V n = SO(n+1).S = SO(n+1)/(SO(n+1))S is intrinsically
a real projective space RPn. Moreover, (SO(n + 1), (SO(n + 1))S) is a symmetric
pair and so (SO(n+1))S acts irreducibly on TSV n. Then, from Corollary 2.8, V n

has parallel second fundamental form (as it is well known).

A submanifold M ⊂ RN is called a Veronese submanifold if it is extrinsically iso-
metric to a Veronese-type orbit.

Proposition 2.17. Let Mn = K.v ⊂ Rn+n(n+1)/2, where K acts on Rn+n(n+1)/2

as an s-representation (n ≥ 2). Assume that the restricted normal holonomy group
Φ(v) of M at v, restricted to ν̄v(M) = {v}⊥ ∩ νv(M), acts irreducibly (eventually, in a
transitive way). Then,

( i ) The normal holonomy representation of Φ(v) on ν̄v(M) is equivalent to the isotropy
representation of the symmetric space Sl(n)/SO(n).

( ii ) Mn is a Veronese submanifold.

Proof. Part (i) is a consequence of Remark 2.15.
Since K acts as an s-representation, then the image under the slice representation,

of the (connected) isotropy group (Kv)0, coincides with the restricted normal holonomy
group Φ(v). But, from part (i), dim(Φ(v)) = dim(SO(n)). Then the isotropy group Kv

has dimension at least dim(SO(n)) = dim(SO(TvM)).
Observe that the isotropy representation of Kv on TvM is faithful. Otherwise, M

would be contained in the proper subspace which consists of the fixed vector of Kv in
RN .

Then, (Kv)0 = SO(TvM). So, Kv acts irreducibly on TvM . Then, from Corollary
2.8, M has parallel second fundamental form.

Let V n be a Veronese submanifold of Rn+n(n+1)/2. We may assume that v ∈ V n and
that TvM = TvV n = Rn ⊂ Rn+n(n+1)/2. For V n we have, from Corollary 2.6 and Remark
2.15, that its shape operator Ā : {v}⊥ ∩ νv(V n) = {v}⊥ ∩ νv(M) → Sim0(TvV n) =
Sim0(TvM) is a homothecy which induces an isomorphism from the normal holonomy
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group Φ̄(v) of V n onto SO(n).
The same is true, again from Corollary 2.6 and Remark 2.15, for the shape operator

A of M . Namely, A : {v}⊥ ∩ νv(M) → Sim0(TvV n) = Sim0(TvM) = Sim0(Rn) is a
homothecy which induces an isomorphism from the (restricted) normal holonomy group
Φ(v) of M onto SO(n). Then the map A−1 ◦ Ā is a homothecy with constant, let us say,
β > 0, of the space {v}⊥ ∩ νp(M). Let h = β−1A−1 ◦ Ā. Then h is a linear isometry of
{v}⊥ ∩ νv(M).

Let now g be the linear isometry of Rn+n(n+1)/2 defined by the following properties:

( i ) g(v) = v.
( ii ) g|{v}⊥∩νv(M) = h−1.
(iii) g|TvM = Id.

Then V n and g(M) have proportional second fundamental forms and satisfy all the
other assumptions of Lemma 2.10. Then, by this lemma, g(M), and hence M , is a
Veronese submanifold. ¤

2.4. Coxeter groups and holonomy systems.
The goal of this section is to prove Proposition 2.21 that will be important for proving

our main theorems. In order to prove this proposition we need some basic results, related
to Coxeter groups, that we have not found through the mathematical literature. So, and
also for the sake of self-completeness, we include the proofs.

Lemma 2.18. Let C be a Coxeter group acting irreducibly, by linear isometries,
on the Euclidean n-dimensional vector space (V, 〈 , 〉). Let H1, . . . , Hr be the family of
(different) reflection hyperplanes, associated to the symmetries of C (that generates C).
Let us define the group G = {g ∈ End(V) : g permutes H1, . . . , Hr and det(g) = ±1}.
Then G is finite.

Proof. Let Pr be the (finite) group of bijections of the set {1, . . . , r}. Let ρ :
G → Pr be the group morphism defined by ρ(g)(i) = j, if g(Hi) = Hj . The group G

is finite if and only if ker(ρ) is finite. Let us prove that ker(ρ) is finite. If g ∈ ker(ρ)
then it induces the trivial permutation on the family H1, . . . , Hr. Then, its transpose
gt, with respect to 〈 , 〉, induces the trivial permutation on the set of lines L1, . . . , Lr,
where Li is the line which is perpendicular to Hi, i = 1, . . . , r (and hence, any vector in
any line L1, . . . , Lr is an eigenvector of gt). Let us define, for i 6= j, the 2-dimensional
subspace Vi,j := the linear span of (Li ∪ Lj). This subspace is called generic if there
exists k ∈ {1, . . . , r}, i 6= k 6= j such that Lk ⊂ Vi,j . In other words, Vi,j is generic if
there are at least three different lines of {L1, . . . , Lr} which are contained in Vi,j . We
have, if Vi,j is generic, that gt : Vi,j → Vi,j is a scalar multiple of the identity Idi,j

of Vi,j . In fact, any vector in Li ∪ Lj ∪ Lk is an eigenvector of (gt)|Vi,j
. Then, since

dim(Vi,j) = 2, (gt)|Vi,j
= λIdi,j , for some λ ∈ R. Let us define the following equivalence

relation ∼ on the set {1, . . . , r}: i ∼ i′ if there exist i1, . . . , il ∈ {1, . . . , r} with i1 = i,
il = i′ and such that Vis,is+1 is generic, for s = 1, . . . , l − 1. Let i ∈ {1, . . . , r} be fixed.
By the previous observations one has that there must exist λ ∈ R such that for any
j ∈ [i] (the equivalence class of i) and for any vj ∈ Lj , gt(vj) = λvj . In order to prove
this lemma, it suffices to show that there is only one equivalence class on {1, . . . , r}. In



Normal holonomy of orbits and Veronese submanifolds 917

fact, if [i] = {1, . . . , r}, then gt = λId, since L1, . . . , Lr span V (because of its othogonal
complement is point-wise fixed by g). So g = λId. But det(g) = ±1. Then λn = ±1 and
hence λ = ±1. So, g = ±Id and therefore there are at most two elements in ker(ρ).

Let i ∈ {1, . . . , r} be fixed. Let us show that [i] = {1, . . . , r}. If j /∈ [i] then Lj is
perpendicular to any Lk, for all k ∈ [i]. In fact, assume that this is not true for some
k ∈ [i]. Let sj ∈ C be the symmetry across the hyperplane Hj . Then sj(Lk) is a line,
which belongs to {L1, . . . , Lr}, that is contained in Vk,j and it is different from both Lk

and Lj . Then j ∼ k and therefore j ∼ i. A contradiction. Then, if j /∈ [i], Lk ⊂ Hj , for
all k ∈ [i]. So, sj acts trivially on V[i], the subspace spanned by

⋃
k∈[i] Lk. Observe that

sj commutes with sk, for all k ∈ [i]. Let now V0 be the maximal subspace of V such
that it is point-wise fixed by all the symmetries sj with j /∈ [i]. Observe that this space
is not the null subspace, since V[i] ⊂ V0. If there exists j /∈ [i], then V0 must be a proper
subspace of V, since sj 6= Id. On the other hand, if k ∈ [i], then sk(V0) ⊂ V0, since
sk commutes with all the symmetries sj , j /∈ [i]. Then V0 is a proper and non-trivial
subspace of V which is invariant under the irreducible Coxeter group C. A contradiction.
So, [i] = {1, . . . , r}. ¤

Lemma 2.19. We are under the assumptions and notation of the above lemma.
Then G acts by isometries.

Proof. By the above lemma, G is finite. By averaging the inner product 〈 , 〉 over
the elements of G, we obtain a G-invariant inner product ( , ) on V. Since C ⊂ G, then
( , ) is C-invariant. Since C acts irreducible, 〈 , 〉 must be proportional to ( , ). Then G

acts by isometries on (V, 〈 , 〉). ¤

Corollary 2.20. Let (Vi, 〈 , 〉i) be a Euclidean vector spaces and let Ci be a
Coxeter group acting irreducibly, by linear isometries, on (Vi, 〈 , 〉i), i = 1, 2. Let h :
V1 → V2 be a linear map such that it induces a bijection from the family of reflection
hyperplanes of C1 into the family of reflection hyperplanes of C2. Then h is a homothetical
map.

Proof. Let ( , ) = h∗(〈 , 〉2) and let C∗ = h∗(C2) = h−1C2h. Observe that the
determinant of any element of C2 is ±1, since it is an isometry of (V2, 〈 , 〉2). So, any
element in C∗ has determinant ±1. From the assumptions, we obtain that the family
of reflection hyperplanes of the irreducible Coxeter group C∗ of (V1, ( , )) coincides with
the family H1, . . . , Hr of reflection hyperplanes of C1. Then any element of C∗ induces a
permutation in this family of hyperplanes. Then, by Lemma 2.19, C∗ acts by isometries
on (V1, 〈 , 〉1). Since C∗ acts irreducibly, one has that 〈 , 〉1 is proportional to ( , ). This
implies that h is a homothecy. ¤

Proposition 2.21. Let (V, R, K) and (V′, R′,K ′) be irreducible, non-transitive
(and hence symmetric) holonomy systems. Let h : V→ V′ be a linear isomorphism such
that, for any K-orbit K.v in V, h(νv(K.v)) = νh(v)(K ′.h(v)), where ν denotes the normal
space. Then h is a homothecy and h−1

∗ (K ′) = K.

Proof. Observe that the groups K and K ′ act as irreducible s-representations.
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We have that K.v is a maximal dimensional orbit if and only if K ′.h(v) is so.
Recall that, for s-representations, an orbit is maximal dimensional if and only if it

is principal.
Let K.v be a principal K-orbit. This orbit is an irreducible (homogeneous) isopara-

metric submanifold of V. There is an irreducible Coxeter group C, associated to this
isoparametric submanifold, that acts on the normal space νv(K.v) [Te], [PT], [BCO].
If H1, . . . , Hr are the reflection hyperplanes of the symmetries of C, then

r⋃

i=1

Hi = {z ∈ νv(K.v) : K.z is a singular orbit}. (a)

If v′ = h(v) one has the similar objects K ′.v′, νv′(K ′v′), C ′ and H ′
1, . . . , H

′
s and

s⋃

i=1

H ′
i = {z′ ∈ νv′(K ′.v′) : K ′.z′ is a singular orbit}. (b)

Moreover, from (a) and (b), one has that h maps, bijectively, the family H1, . . . , Hr onto
the family H ′

1, . . . , H
′
s. Then, s = r and so we may assume that h(Hi) = H ′

i, i = 1, . . . , s.
Then, from Corollary 2.20, one has that

h : νw(K.w) → νw′(K ′.w′)

is a homothecy, for any principal K-vector w, where w′ = h(w). Denote by λ(w) > 0 the
homothecy constant of this map.

Observe, since w ∈ νw(K.w) and w′ ∈ νw′(K ′.w′), that

〈h(w), h(w)〉′ = λ(w)〈w, w〉

where 〈 , 〉 and 〈 , 〉′ are the inner products on V and V′, respectively.
Let v0 be a fixed K-principal vector and let M = K.v0.
Let TM = E1⊕ . . .⊕Er, where E1, . . . , Er are the (autoparallel) eigendistributions

of TM associated to the commuting family of shape operators Aξ of the isoparametric
submanifold M ⊂ V. Associated to any Ei there is a parallel normal field ηi, a so-called
curvature normal, such that, for any normal field ξ,

Aξ|Ei
= 〈ξ, ηi〉IdEi

.

Let, for q ∈ M , Si(q) denote the integral manifold of Ei by q. Such integral manifold
is a so-called curvature sphere. If x ∈ Si(q) then

νx(M) ∩ νq(M) = (ηi(q))⊥

where the orthogonal complement is inside νq(M). Observe that this intersection is non-
trivial, since the codimension of M in V is at least 2. This implies λ(x) = λ(q). Since
the eigendistributions span TM , one has that moving along different curvature sphere
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one can reach, from v0, any other point of M . Then λ(x) = λ(v0), for all x ∈ M .
Observe now that, for any y ∈ V, there exists x̄ ∈ M such that y ∈ νx̄(M). In fact,

such an x̄ can be chosen as a point where the function, from M into R, x → 〈x, y〉 attains
a maximum.

Then

〈h(y), h(y)〉′
〈y, y〉 =

〈h(x̄), h(x̄)〉′
〈x̄, x̄〉 = λ(x̄) = λ(v0),

for all 0 6= y ∈ V. Then h is a homothecy of constant λ := λ(v0). This proves the first
assertion.

Let g ∈ K ′ and let T = h−1 ◦ g ◦h. Since h is a homothecy, T ∈ SO(V). Then, from
the assumptions and Remark 2.13 one has that T satisfies hypothesis of Lemma 2.14.
Then, by this lemma, T (R) = R. This implies, since the Lie algebra of K is generated by
{Rx,y}, that T belongs to N(K), the normalizer of K in O(V). Moreover, T must belong
to the connected component N0(K) (because of T can be deformed to the identity, since
K ′ is connected). But N0(K) = K, since K acts as an s-representation (see [BCO,
Lemma 6.2.2]). Then T ∈ K, thus h−1

∗ (K ′) = K. ¤

Remark 2.22. The above proposition is not true if the holonomy systems are
transitive. In fact, let (V, R, K) and (V′, R′,K ′) be the (symmetric) holonomy systems
associated to the rank 1 symmetric spaces S2n = SO(2n + 1)/SO(2n) and CPn =
SU(n+1)/S(U(1)×U(n)), respectively. In this case dim(V) = dim(V′) = 2n. Then any
linear isomorphism from V into V′, satisfies the assumption of Proposition 2.21, since
the normal spaces of non-trivial K or K ′-orbits are lines.

3. Non-transitive normal holonomy.

Let Mn = H.v ⊂ Sn−1+n(n+1)/2 be a homogeneous submanifold of the sphere.
Assume that the (restricted) normal holonomy group, as a submanifold of the sphere,
acts irreducibly and it is not transitive (on the unit normal sphere).

From now on, we will regard Mn as a submanifold of the Euclidean space
Rn+n(n+1)/2. Let ν(M) be the normal bundle and let Φ(v) be the restricted normal
holonomy group at v (regarding M as a Euclidean submanifold). Observe that Φ(v)
acts trivially on R.v and that Φ(v), restricted to ν̄v(M) := {v}⊥ ∩ νv(M), is naturally
identified with the (restricted) normal holonomy group of M at v, as a submanifold of
the sphere.

Observe that the irreducibility of the normal holonomy group representation on
{v}⊥ ∩ νv(M) implies that rank(M) = 1. Namely, v is the only vector of νv(M) which is
fixed by Φ(v). This implies that M is a full and irreducible submanifold of the Euclidean
space. In fact, if M is not full then any non-zero constant normal vector is a parallel
normal field which is not a multiple of the position vector. Then rank(M) ≥ 2. A
contradiction. If M is reducible it must be a product of submanifolds contained in
spheres. Then rank(M) ≥ 2. Also a contradiction.

One has, from Remark 2.11, that the first normal space ν1(M) coincides with the
normal space ν(M), regarding M as a Euclidean submanifold. This means, that the linear
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map, from νv(M) into Sim(TvM), ξ 7→ Aξ is injective, where A is the shape operator of
M . Since dim(νv(M)) = n(n + 1)/2 = dim(Sim(TvM)), then A : νv(M) → Sim(TvM)
is a linear isomorphism.

Let R⊥ξ1,ξ2
be the adapted normal curvature tensor (see Section 2). This tensor is

given by

〈R⊥ξ1,ξ2
ξ3, ξ4〉 = trace([Aξ1 , Aξ2 ] ◦ [Aξ3 , Aξ4 ])

= −〈[Aξ1 , Aξ2 ], [Aξ3 , Aξ4 ]〉 = −〈[[Aξ1 , Aξ2 ], Aξ3 ], Aξ4〉.

Observe that the right hand side of the above equality is, with the usual identifi-
cations, the Riemannian curvature tensor 〈R̃Aξ1 ,Aξ2

Aξ3 , Aξ4〉 of the symmetric space
GL(n)/SO(n).

Observe that such a symmetric space is isometric to the following product:

GL(n)/SO(n) = R× SL(n)/SO(n).

The tangent space of the second factor is canonically identified with the traceless sym-
metric matrices Sim0(n).

Let us consider the so-called traceless shape operator Ã of M . Namely,

Ãξ := Aξ − 1
n

trace(Aξ)Id = Aξ − 1
n
〈ξ, ~H〉Id

where ~H is the mean curvature vector.
Observe that

〈R⊥ξ1,ξ2
ξ3, ξ4〉 = −〈[Ãξ1 , Ãξ2 ], [Ãξ3 , Ãξ4 ]〉

= 〈R̃Aξ1 ,Aξ2
Aξ3 , Aξ4〉 = 〈RÃξ1 ,Ãξ2

Ãξ3 , Ãξ4〉 (∗∗∗∗)

where R is the curvature tensor at [e] of the symmetric space SL(TvM)/SO(TvM) (see
formula (∗∗∗) of Section 2.3).

If ν̄v(M) = {v}⊥ ∩ νv(M), we have the following two symmetric non-transitive
irreducible holonomy systems: [ν̄v,R⊥,Φ(v)] and [Sim0(TvM), R, SO(TvM)].

Recall that for a symmetric irreducible holonomy system [V, R̄, K], from Remark
2.13, the normal space to an orbit K.v is given by νv(K.v) = {ξ ∈ V : R̄v,ξ = 0}.

Then, from (∗∗∗∗), we have that the map Ã is a liner isomorphism that maps normal
spaces to Φ(v)-orbits into normal spaces to SO(TvM)-orbits. Then, by Proposition 2.21,
Ã is a homothecy and Ã : ν̄v(M) → Sim0(TvM) transforms Φ(v) into SO(TvM). Then
Φ(v) is isomorphic to SO(TvM). Therefore, we have the following result:

Lemma 3.1. Let Mn = K.v ⊂ Sn−1+n(n+1)/2 be a homogeneous submani-
fold. Assume that the restricted normal holonomy group of M acts irreducibly and
it is non-transitive. Then the representation of the normal holonomy group Φ(v) on
ν̄v(M) is (orthogonally) equivalent to the isotropy representation of the symmetric
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space SL(n)/SO(n) ' SL(TvM)/SO(TvM). Moreover, the traceless shape operator
Ã : ν̄v(M) → Sim0(TvM) is a homothecy that transforms, equivariantly, Φ(v) into
SO(TvM). (In particular, dim(Φ(v)) = n(n− 1)/2 = dim(SO(n))).

Proposition 3.2. Let Mn = K.v ⊂ Sn−1+n(n+1)/2 be a homogeneous submani-
fold. Assume that the restricted normal holonomy group of M acts irreducibly and it is
non-transitive. Then, for any parallel normal section ξ(t) along a curve, the traceless
shape operator Ãξ(t) has constant eigenvalues.

Proof. Note that M must be full and irreducible as a Euclidean submanifold
(see the beginning of this section). Let p ∈ M be arbitrary and let Kp be the isotropy
subgroup of K at p. Let us decompose

Lie(K) = m⊕ Lie(Kp)

where m is a complementary subspace of Lie(Kp). Let Br(0) be an open ball, centered
at the origin, of radius r of m such that Exp : Br(0) → M is a diffeomorphism onto its
image U = Exp(Br(0)), which is a neighbourhood of p (the inner product on Lie(K) is
irrelevant).

Let β : [0, 1] → U be an arbitrary piece-wise differentiable curve with β(0) = p.
Since β(1) ∈ U , there exits X ∈ m such that β(1) = Exp(X).p. Let γ : [0, 1] → M be
defined by γ(t) = Exp(tX).p. Let us denote, for k ∈ K, by lk the linear isometry v 7→ k.v

of V. Let τ⊥t denote the ∇⊥-parallel transport along γ|[0,t]. Then, from remarks 6.2.8
and 6.2.9 of [BCO],

τ⊥t = (dlExp(tX))|νp(M) ◦ e−tAX (A)

where AX belongs to the normal holonomy algebra Lie(Φ(p)) and it is defined by

AX =
d
dt |t=0

τ⊥−t ◦ (dlExp(tX))|νp(M).

Let τ⊥β be the ∇⊥-parallel transport along β and φ = (τ⊥1 )−1 ◦ τ⊥β . Then φ belongs
to Φ(p), the restricted normal holonomy group at p. In fact, φ coincides with the ∇⊥-
parallel transport along the null-homotopic, since it is contained in U , loop β∗γ̃, obtained
from gluing the curve β together with the curve γ̃, where γ̃(t) = γ(1− t).

We have that τ⊥β = τ⊥1 ◦ φ and so, by (A),

τ⊥β = ((dlExp(X))|νp(M) ◦ e−AX ) ◦ φ = (dlExp(X))|νp(M) ◦ φ̄

where φ̄ = e−AX ◦ φ belongs to Φ(p). Then, for any ξ ∈ νp(M),

Ãτ⊥β (ξ) = ÃdlExp(X)(φ̄(ξ)) = dlExp(X) ◦ Ãφ̄(ξ) ◦ (dlExp(X))−1

= Exp(X).Ãφ̄(ξ).(Exp(X))−1.
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Then, from the paragraph just before Lemma 3.1, we have that there exists g ∈
SO(Tp(M)) such that Ãφ̄(ξ) = g.Ãξ.g

−1. Then

Ãτ⊥β (ξ) = (Exp(X).g).Ãξ.(Exp(X).g)−1.

This shows that the eigenvalues of Ãτ⊥β (ξ) are the same as the eigenvalues of Ãξ.
The curve β was assumed to be contained in U . Since p is arbitrary, one obtains

that the eigenvalue of Ãξ(t) are locally constant for any parallel normal section ξ(t) along
a curve c(t). This implies that the eigenvalues of Ãξ(t) are constant. ¤

The following lemma is well known and the proof is similar to the case of hypersur-
faces of a space form.

Lemma 3.3 (Dupin Condition). Let M be a submanifold of a space of constant
curvature and let ξ be a parallel normal field such that the eigenvalues of the shape
operator Aξ have constant multiplicities. Let λ : M → R be an eigenvalue function
of Aξ such that its associated (and integrable from Codazzi identity) eigendistribution
E has dimension at least 2. Then λ is constant along any integral manifold of E (or
equivalently, dλ(E) = 0).

Theorem 3.4. Let Mn ⊂ Sn−1+n(n+1)/2 be a homogeneous submanifold, where
n > 3. Assume that the restricted normal holonomy group acts irreducibly and not
transitively. Then M is a Veronese submanifold.

Proof. Note that M must be full and irreducible as a Euclidean submanifold (see
the beginning of this section).

We will regard M as a submanifold of the Euclidean space Rn+n(n+1)/2. Then,
as we have observed at the beginning of this section, A : νp(M) → Sim(TpM) is an
isomorphism (p ∈ M is arbitrary). Now choose ξ ∈ νp(M) such that Aξ has exactly two
eigenvalues λ1(p), λ2(p) with multiplicities m1,m2 ≥ 2 (this is not possible if n ≤ 3).
In particular, we assume that m1 = 2 and m2 = n − 2. We may assume that ξ is small
enough such that the holonomy tube [BCO] Mξ is an immersed Euclidean submanifold
(see Remark 3.5). We may also assume that ξ is perpendicular to the position (normal)
vector p, since Ap = −Id.

There is a natural projection π : Mξ → M , π(c(1)+ξ̄(1)) = c(1). Moreover, ξ̂ defines
a parallel normal field to Mξ, where ξ̂(q) = q − π(q). In this way M is a parallel focal
manifold to Mξ. Namely, M = (Mξ)−ξ̂. Observe that the holonomy tube Mξ is not a
maximal one and so it has not a flat normal bundle (this would have been the case, in our
situation, where all of the eigenvalues of Aξ have multiplicity one). Let ξ̄(t) be a parallel
normal field along an arbitrary curve c(t) with c(0) = p, ξ̄(0) = ξ. Then, from Proposition
3.2, the eigenvalues of the traceless shape operator Ãξ̄(t) are constant and hence the
same as the eigenvalues of Ãξ which are λ̃1 = λ1(p)− (1/n)(2λ1(p) + (n− 2)λ2(p)), with
multiplicity 2 and λ̃2 = λ2(p)− (1/n)(2λ1(p) + (n− 2)λ2(p)), with multiplicity n− 2.

Let ~H be the mean curvature vector field on M . Then the eigenvalues of the shape
operator Aξ̄(1) can be written as
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λi(c(1)) = λ̃i +
1
n
〈ξ̄(1), ~H(c(1))〉 i = 1, 2

with multiplicities 2 and n− 2, respectively (independent of c(1) ∈ M).
From the tube formula [BCO], one has that the eigenvalues functions λ̂1 and λ̂2 of

the shape operator Âξ̂ of the holonomy tube, restricted to the horizontal subspace Hq of
the holonomy tube Mξ, at a point q = c(1) + ξ̄(1) are:

λ̂1(q) =
λ̃1 + (1/n)〈ξ̄(1), ~H(c(1))〉

1− λ̃1 − (1/n)〈ξ̄(1), ~H(c(1))〉

and

λ̂2(q) =
λ̃2 + (1/n)〈ξ̄(1), ~H(c(1))〉

1− λ̃2 − (1/n)〈ξ̄(1), ~H(c(1))〉

or, equivalently,

λ̂1(q) =
λ̃1 + (1/n)〈ξ̂(q), ~H(π(q))〉

1− λ̃1 − (1/n)〈ξ̂(q), ~H(π(q))〉

and

λ̂2(q) =
λ̃2 + (1/n)〈ξ̂(q), ~H(π(q))〉

1− λ̃2 − (1/n)〈ξ̂(q), ~H(π(q))〉

with (constant) multiplicities 2 and n− 2, respectively. Observe that Âξ̂(q), restricted to
the vertical distribution (tangent to the orbits in Mξ of the normal holonomy group of
M at projected points) is minus the identity. So, Âξ̂(q) has a third eigenvalue λ̂3(q) = −1
with constant multiplicity m3 = dim(Mξ)− dim(M).

The real injective function s
f7→ s/(1 + s) transforms λ̂i(q) into λ̃i + (1/n)〈ξ̂(q),

~H(π(q))〉 (i = 1, 2). Then,

λ̂1(q) = λ̂1(q′) ⇐⇒ λ̂2(q) = λ̂2(q′). (I)

In fact, any of both equalities implies (1/n)〈ξ̂(q), ~H(π(q))〉 = (1/n)〈ξ̂(q′), ~H(π(q′))〉.
This, by the above equalities, implies (I).

Let now E1 and E2 be the (horizontal) eigendistributions associated to eigenvalue
functions λ̂1 and λ̂2 of the shape operator Âξ̂. Observe that dim(E1) = 2 and dim(E2) =
n− 2 ≥ 2.

Up to here everything is valid, except the last inequality, also for n = 3. (II)
(This will be used in next section where we deal with the case n = 3).

If γ(t) is a curve that lies in E1 then, from the Dupin Condition (see Lemma 3.3)
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we have that λ̂1 is constant along γ. So, by (I), λ̂2 is also constant along γ. The same is
true if γ lies in E2. This implies that 0 = v(λ̂1) = v(λ̂2) = v(λ̂3) for any vector v that lies
in H. Then the eigenvalues of the shape operator Âξ̂ are constant along any horizontal
curve. Since any two points, in a holonomy tube, can be joined by a horizontal curve we
conclude that the (three) eigenvalues of Âξ̂ are constant on Mξ.

Then ξ̂ is a parallel isoparametric (non-umbilical) normal section. Observe that Mξ

is a full irreducible Euclidean submanifold, since M is so. Moreover, Mξ is complete
with the induced metric (see Remark 3.5). Then, by [BCO], [DO], Mξ must be a
submanifold with constant principal curvatures. Since M = (Mξ)−ξ̂, we have that M is
also a submanifold with constant principal curvatures. Any principal holonomy tube of
M has codimension at least 3 in the Euclidean space, since the normal holonomy of M ,
as a submanifold of the sphere, is non-transitive. Then, by the theorem of Thorbergsson
[Th], [O2], [BCO], M is an orbit of an (irreducible) s-representation.

The fact that M is a Veronese submanifold follows from Proposition 2.17. ¤

Remark 3.5. Let Mn = H.v be a full irreducible homogeneous submanifold of
RN which is (properly) contained in the sphere SN−1. We are not assuming that M is
compact (in which case the assertions of this remark are trivial).

By making use of the homogeneity of M one obtains that there exists ε > 0 such
that: if ξ ∈ ν(M) with 0 < ‖ξ‖ < ε then any of the eigenvalues λ of the shape operator
Aξ satisfies |λ| < 1− a, for some 0 < a < 1.

Let us assume that rank(M) = 1, i.e., M is not a submanifold of higher rank
(otherwise, M would be an orbit of an s-representation and hence compact).

Let ξ ∈ νv(M) with 0 < ‖ξ‖ < ε and let us consider the normal holonomy subbundle
by ξ [BCO] of the normal bundle π : ν(M) → M .

Holξ(M) =
{
η ∈ ν(M) : η

H∼ ξ
}

where H is the horizontal distribution of ν(M) and η
H∼ ξ if η and ξ can be joined by a

horizontal curve. Equivalently, η
H∼ ξ implies η is the ∇⊥-parallel transport of ξ along

some curve.
One has that the fibres of π : Holξ(M) → M are compact. In fact, π−1({π(η)}) =

Φ(π(η)).η, where Φ denotes the normal holonomy group. Observe that such a group is
compact, since its connected component acts as an s-representation (see the discussion
inside the proof of Theorem 4.1, Case (2), (c)).

Let us consider the normal exponential map expν : ν(M) → RN , given by expν(η) =
π(η) + η. Let η ∈ νp(M) and identify, as usual, via dπ, TpM ' Hη. The vertical
distribution νη = Tηνp(M) is canonically identified to νp(M). With this identification
one has the well-known expression for the differential of the normal exponential map:

d(expν) |Hη
= (I −Aη), d(expν) |νη

= Idνp(M). (C)

Then expν : Holξ(M) → RN is an immersion. The image of this map is the so-called
holonomy tube Mξ of M by ξ. It is given by
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Mξ =
{
c(1) + ξ̄(1) : ξ̄(t) is ∇⊥-parallel along c(t) where c(0) = p, ξ̄(0) = ξ

}
.

Many times, and in particular in the proof of Theorem 3.4, for the sake of simplifying
the notation, the immersed submanifold expν : Holξ(M) → RN will be also denoted by
Mξ.

One has that the Euclidean submanifold expν : Holξ(M) → RN , with the induced
metric 〈 , 〉, is a complete Riemannian manifold. In fact, let ( , ) be the Sasaki metric on
Holξ(M). In such a metric the horizontal distribution is perpendicular to the vertical
one. Moreover, π is a Riemannian submersion and the metric in the vertical space Φ(p).η
is that induced from the metric on the normal space νp(M). Since M is complete and
the fibres are compact, then ( , ) is complete. Then, from (C), a2( , ) ≤ 〈 , 〉. This implies
that the induced metric is also complete.

4. The proof of the conjecture in dimension 3.

Theorem 4.1. Let M3 = H.p be a 3-dimensional homogeneous submanifold of the
sphere SN−1 which is full and irreducible (as a submanifold of the Euclidean space RN ).
Assume that the normal holonomy group of M is non-transitive. Then M is an orbit of
an s-representation.

Proof. Assume that rank(M) = 1. Otherwise, by Theorem 2.2, M is an orbit of
an s-representation. Then, by Lemma 4.2, the normal holonomy of M , as a submanifold
of the sphere acts irreducibly and N = 9 = 3 + 3(3 + 1)/2. We have also that the first
normal bundle, which coincides with the normal bundle, has maximal codimension.

Keeping the notation and general constructions in the proof of Theorem 3.4, we have
that everything is still valid up to (II). The only difference is that the eigenvalue λ̂2 has
multiplicity 1. So, we have the Dupin condition only for the eigendistribution E1 but
not for the 1-dimensional eigendistribution E2.

Let M̄ = Mξ/E1 be the quotient of the (partial) holonomy tube Mξ by the (maximal)
integral manifolds of the 2-dimensional integrable distribution E1.

Observe that the (partial) holonomy tube Mξ has dimension 5. In fact, from Lemma
4.2, any focal orbit of the restricted normal holonomy group Φ(p) ' SO(3) has dimension
2 (and it is isometric to the Veronese V 2).

By [BCO, Theorem 6.2.4 part (2)], one has that H ⊂ SO(9) acts by (extrinsic)
isometries on Mξ. Moreover, the projection π : Mξ → M is H-equivariant.

If H.(p + ξ) = Mξ, then Mξ is a full and irreducible homogeneous Euclidean sub-
manifold which is of higher rank. Then, in this case, by the rank rigidity theorem for
submanifolds, Mξ is an orbit of an s-representation. Hence M = (Mξ)−ξ̂ is an orbit of
an s-representation.

So, we may assume that H.(p + ξ) ( Mξ. Let h = Lie(H). Let us consider the
subspace h.(p+ξ) of Tp+ξMξ. This subspace has dimension at least 3, since dπ(h.(p+ξ)) =
h.p = TpM . The horizontal subspace H(p+ξ) of Tp+ξMξ has dimension 3. Since Tp+ξMξ

has dimension 5, dim(H(p+ξ) ∩ h.(p + ξ)) ≥ 1.

Case (1): E1(x) + (Hx ∩ h.x) = Hx, for some x ∈ Mξ.
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We may assume that x = p + ξ. Observe that if the above equality holds at (p + ξ)
then it also holds for q in some open neighbourhood U of (p + ξ) in Mξ.

Recall, continuing with the notation in the proof of Theorem 3.4, that the eigenvalues
functions (which are differentiable) of the shape operator Âξ̂ at q are: λ̂1(q) with multi-
plicity 2, λ̂2(q) with multiplicity 1 and λ̂3(q) = −1 with multiplicity 2 (whose associated
eigenspace is the vertical distribution νq).

On one hand, from the Dupin condition, since dim(E1) = 2, and the equivalence (I)
in the proof of the above mentioned theorem, we have that

0 = v(λ̂1) = v(λ̂2) = v(λ̂3)

for any v ∈ E1(q). Or, briefly,

{0} = E1(q)(λ̂1) = E1(q)(λ̂2) = E1(q)(λ̂3).

On the other hand, if X ∈ h,

0 = (X.q)(λ̂1) = (X.q)(λ̂2) = (X.q).(λ̂3).

In fact, this follows from the fact that the parallel normal field ξ̂ of Mξ is H-invariant
and that Âh.ξ̂(q) = h.Âξ̂(q).h

−1, for all h ∈ H.
Then, from the assumptions of this case,

{0} = Hq(λ̂1) = Hq(λ̂2) = Hq(λ̂3) (III)

for any q ∈ U .
Since M is (extrinsically) homogeneous, the local normal holonomy groups have all

the same dimension. Then the local normal holonomy group at any x ∈ M coincides
with the restricted normal holonomy group Φ(x).

The ∇⊥-parallel transport along short loops, based at p ∈ M , produces a neigh-
bourhood Ω of e in the local normal holonomy group (see [CO], [DO]). This implies,
from (III), that the eigenvalues of Âξ̂(p+ω.ξ) are the same as the eigenvalues λ̂1(p + ξ),

λ̂2(p+ ξ), λ̂3(p+ ξ) = −1 of Âξ̂(p+ξ), for all ω ∈ Ω. From this it is standard to show that

the eigenvalues of Âξ̂(p+φ.ξ) are the same of those of Âξ̂(p+ξ), for all φ ∈ Φ(p). Therefore,

the eigenvalues of Âξ̂ are constant on p + Φ(p).ξ = π−1({p}). Since H acts transitively
on M , then H.π−1({p}) = Mξ. This implies, since ξ̂ is H-invariant, that the eigenvalues
of Âξ̂ are constant on Mξ.

Observe that the parallel normal field ξ̂ is not umbilical, since Âξ̂ has three distinct
(constant) eigenvalues. Then, from [DO] (see Theorem 5.5.8 of [BCO]), Mξ has constant
principal curvatures. So, M = (Mξ)−ξ̂ has constant principal curvatures. If M̃ is a
principal holonomy tube of M , then M̃ is isoparametric [HOT]. Observe that M̃ is not
a hypersurface of a sphere (since the normal holonomy group, in the Euclidean space, is
not transitive on the orthogonal complement of the position vector), then by the theorem
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of Thorbergsson [Th], [O2] M̃ is an orbit of an s-representation. Then M is an orbit of
an s-representation, since it is a focal (parallel) manifold to M̃ .

Case (2): E1(x) + (Hx ∩ h.x) ( Hx, for all x ∈ Mξ

or equivalently, (Hx ∩ h.x) ⊂ E1(x), since dim(E1(x)) = 2 and dim(Hx) = 3.
This case splits into several sub-cases, depending on how big is the group H. Namely,

depending on dim(H) ≥ 3 = dim(M). The most difficult case is the generic one where
dim(H) = 3. For this case we will have to use topological arguments.

Note that dim(H) ≤ 6. In fact, H acts effectively on M , since M is a full sub-
manifold. Otherwise, if h ∈ H acts trivially on M then it acts trivially on the (affine)
span of M which is R9. But the dimension of the isometry group of an n-dimensional
Riemannian manifold is bounded by (n + 1)n/2 (the dimension of the isometry group of
an n-dimensional space of constant curvature). In our case, since n = 3, dim(H) ≤ 6.

Observe that H cannot be abelian. In fact if H is abelian, since the dimension of the
ambient space N = 9 is odd, the (connected) subgroup H ⊂ SO(9) must fix a vector, let
us say v 6= 0. So, no H-orbit H.q is a full submanifold, since it is contained in q + {v}⊥.
A contradiction, since M = H.p is full.

Observe that dim(H) cannot be 5. In fact, if dim(H) = 5 then the isotropy Hp has
dimension 2 and so it is abelian. We regard Hp ⊂ SO(TpM) ' SO(3), via the isotropy
representation. But the rank of SO(3) is 1 and so it has no abelian two dimensional
subgroups. A contradiction.

(a) dim(H) = 6.
In this case we must have that (Hp)0 = SO(3), since dim(Hp) = 3. Since SO(3) is

simple, the slice representation sr of (Hp)0 on the normal space νp(M) must be either
trivial or its image has dimension 3. In the first case we obtain that all shape operators
Aµ of M at p are a multiple of the identity, since they commute all with (Hp)0. Note
that Aµ = Ah.µ = h.Aµ.h−1. So M = M3 is an umbilical submanifold of S8 ⊂ R9. So,
M is not full. A contradiction.

Let us deal with the case that the image of the slice representation has dimension
3. By [BCO, Corollary 6.2.6] sr((Hp)0) ⊂ Φ(p) where Φ(p) is the restricted normal
holonomy group of M as a Euclidean submanifold. Since dim(Φ(p)) = 3, we conclude
that sr((Hp)0) = Φ(p). Then, any holonomy tube of M is an H-orbit. In particular
the principal ones, which have flat normal bundle. But the holonomy tubes are full and
irreducible Euclidean submanifolds, which have codimension at least 3 (since Φ(p) acts
on the 6-dimensional normal space νp(M) with cohomogeneity 3). Then, by the theorem
of Thorbergsson [Th], [O2], any holonomy tube is an orbit of an s-representation and
so M is an orbit of an s-representation. By Proposition 2.17 one has that M = M3 is a
Veronese submanifold.

(b) dim(H) = 4.
In this case the isotropy Hp has dimension 1. If the slice representation sr of

(Hp)0 is trivial, then, as in (a), all shape operators at p commute with (Hp)0 ' S1. A
contradiction, since the family of shape operators is Sim(TpM).

Let us then restrict to the case that the slice representation is not trivial. For this we
have to use a result of [OS] (see [BCO, Theorem 6.2.7]). In fact, we need the following
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weaker version, which was the main step in the proof of Simons holonomy theorem given
in [O6]. Namely, Proposition 2.4 of [O6]: for a full and irreducible H-homogeneous
Euclidean submanifold Mn, n ≥ 2, the projections, on the normal space νp(M), of the
(Euclidean) Killing fields given by the elements of h = Lie(H), belong to the normal
holonomy algebra g.

Then, in our situation, since dim(h) = 4 and dim(g) = 3, there must exist 0 6= X ∈ h

such that it projects trivially on the normal space. Such an X cannot be in the isotropy
algebra, since we assume that the slice representation of (Hp)0 ' S1 is non-trivial. This
implies that 0 6= X.p ∈ TpM .

Let us consider the H-invariant parallel normal field ξ̂ of Mξ. Recall that (Mξ)−ξ̂ =
M (and so M is a parallel focal manifold of Mξ).

Since X projects trivially on νp(M), X.q ∈ Hq, for all q ∈ (p + Φ(p).ξ) =
((π)−1({p}))q ⊂ Mξ.

Recall that we are in Case (2). Then, X.q ∈ E1(q), for all q ∈ (p + Φ(p).ξ). Let
us consider the curve γ(t) = Exp(tX).p of M3. One has that γ′(0) = X.p 6= 0. Let
q ∈ (p + Φ(p).ξ) and let ψ(t) be the normal parallel transport of (q − p) ∈ νp(M) along
γ(t). Then ψ(t) = ξ̂(γ(t) + ψ(t)), as it is well known, from the construction of holonomy
tubes [HOT], [BCO] (observe that Mξ = Mq−p). From the tube formula of [BCO,
Lemma 4.4.7] (the notation in this lemma permutes our objects),

A(q−p) = Â(q−p)|H.((Id− Â(q−p))|H)−1

one has that E1(q) is an eigenspace of the shape operator A(q−p) of M .
On the one hand, since π(q) = q − ξ̂(q),

dπ(E1(q)) = (Id + Âξ̂)(E1(q)) ⊂ E1(q).

On the other hand, since ξ̂ is H-invariant and ξ̂(q) = (q − p),

dπ(X.q) =
d

dt

∣∣∣∣
0

(Exp(tX).q − ξ̂(Exp(tX).q))

=
d

dt

∣∣∣∣
0

(Exp(tX).q − Exp(tX).(q − p)) = X.p.

Therefore, X.p belongs to an eigenspace of any shape operator Aq−p of M , such
that q ∈ (p + Φ(p).ξ) (recall that we have assumed, without loss of generality, that ξ is
perpendicular to the position vector p).

Observe that Φ(p).ξ spans {p}⊥, since Φ(p) acts irreducibly on {p}⊥. So X.p is an
eigenvector of any shape operator Aη, where 〈η, p〉 = 0.

Since Ap = −Id, we conclude that X.p is an eigenvector of all shape operators of
M at p. This is a contradiction, since the family of shape operators at p coincides with
Sim(TpM).
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(c) dim(H) = 3.
Since we have excluded the case where H is abelian, then H must be simple, with

universal cover the (compact) group Spin(3) ' S3. This case is the generic one where
the isotropy is finite. Note that M must be compact.

Also note that the (full) normal holonomy group Φ̃(p) of M is compact. In fact,
(Φ̃(p))0 coincides with the restricted normal holonomy group Φ(p). Moreover, Φ̃(p) is
included in the compact group N(Φ(p)), the normalizer of Φ(p) in O(νp(M)). Observe
that (N(Φ(p)))0 = Φ(p), since Φ(p) acts as an s-representation (see [BCO, Lemma
6.2.2]). Then Φ̃(p) has a finite number of connected components, as well as Φ̃(p).ξ. This
implies that Mξ is compact.

Let us construct the so-called caustic fibration. The eigenvalues functions of Âξ̂

are bounded on Mξ. Since M is contained in a sphere, Mξ is contained in a (different)
sphere. If η is the position vector field of Mξ, then η is an umbilical parallel normal
field. In fact, Âη = −Id. By adding, eventually, to the parallel normal field ξ̂ a (big)
constant multiple of −η we obtain a new parallel and H-invariant normal field, such that
its associated shape operator has the same eigendistributions as Âξ̂ and all of the three
eigenvalues functions are everywhere positive and so nowhere vanishing. Just for the
sake of simplifying the notation, we also denote this perturbed normal field by ξ̂. The
eigenvalues of Âξ̂ are also denoted by λ̂1, λ̂2, λ̂3, which differ from the original ones by
a (same) constant c.

The caustic map ρ, from Mξ into R9, q
ρ7→ q + (λ̂1(q))−1ξ̂(q) has constant rank.

In fact, ker(dρ) = E1 has constant dimension 2, since from the Dupin condition, λ̂1 is
constant along any integral manifold Q1(q) of E1. Observe that λ̂2 is also constant along
Q1(q), due to equivalence (I) in the proof of Theorem 3.4 (and the same is true, of course,
for the third eigenvalue λ̂3 ≡ −1 + c).

Let M̄ = Mξ/E1 be the quotient of Mξ by the family E1 of (maximal) integral
manifolds of E1. From Lemma 4.3 we have that M̄ is a compact 3-manifold immersed
in R9, via the projection ρ̄, of the caustic map ρ, to the compact quotient manifold
M̄ . Moreover, π̄ : Mξ → M̄ is a fibration, where π̄ : Mξ → M̄ is the projection. The
distribution E1 is H-invariant, since ξ̂ is so. So, the action of H on Mξ projects down to
an action on M̄ . So, π̄ is H-equivariant.

Observe that ρ is H-equivariant, since ξ̂ is H-invariant. Then, since π̄ is H-
equivariant, the immersion ρ̄ : M̄ → R9 is H-equivariant.

We have the following two H-equivariant fibrations on Mξ:

0 → Φ(p).ξ → Mξ
π̃→ M̃ → 0 (holonomy tube fibration)

0 → Q → Mξ
π̄→ M̄ → 0 (caustic fibration)

where Q is any integral manifold of E1 and M̃ is the quotient manifold of Mξ over the
connected component of the fibres of π : Mξ → M , which are orbits of the restricted
normal holonomy groups Φ(p), p ∈ M . We have that M̃ is a finite cover of M .

Recall that we are under the assumptions of Case (2)
We will derive a topological contradiction. This is by using that the holonomy tube

Mξ is the total space of above two different fibrations.
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On the one hand the holonomy tube has a finite fundamental group π1(Mξ). This
follows from the long exact sequence of homotopies, associated to the holonomy tube
fibration. In fact, the fibres are (real) projective 2-spaces (which have a finite fundamental
group). Moreover, the base space M̃ has also a finite fundamental group, since it is an
orbit, with finite isotropy, of the group Spin(3) ' S3. Since the fibres of the caustic
fibration are connected and the total space Mξ has finite fundamental group, then the
caustic (base) manifold M̄ has a finite fundamental group.

On the other hand, from Lemma 4.4 we have that the fundamental group of the
caustic manifold M̄ is not finite (this is by showing that H acts with cohomogeneity 1
and without singular orbits on M̄).

A contradiction. So we can never be under the assumptions of Case (2) if H '
Spin(3).

This finishes the proof that M is an orbit of an s-representation. ¤

Lemma 4.2. We are in the assumptions of Theorem 4.1. Then, if rank(M) = 1, the
(restricted) normal holonomy group Φ(p), as a submanifold of the sphere, acts irreducibly
and N = 9. Moreover, the (restricted) normal holonomy acts as the action of SO(3), by
conjugation, on the traceless 3× 3-symmetric matrices. Furthermore, the traceless shape
operator Ã of M at p is SO(3)-equivariant.

Proof. Let us regard M3 as a submanifold of the Euclidean space RN . If M is
not of higher rank one has, from Proposition 6.1, that the (restricted) normal holonomy
group Φ(p) acts irreducibly on ν̄(p) (the orthogonal complement of the position vector
p). Since Φ(p) is non-transitive (on the unit sphere of ν̄p(M)), the first normal space,
as a submanifold of the Euclidean space, coincides with the normal space (see Remark
2.11). Then, the codimension k = N − 3 satisfies k ≤ 6 = 3(3 + 1)/2. Then the
normal holonomy group representation coincides with the isotropy representation of an
irreducible symmetric space of rank at least 2 and dimension at most 5. Then, by Remark
4.6, the normal holonomy representation is equivalent to the isotropy representation of
SL(3)/SO(3). So the codimension of M , in the sphere, is 5 and hence N = 9. The
equivariance follows from Lemma 3.1. ¤

Lemma 4.3 (Caustic fibration lemma). Let M̂ be a compact immersed submanifold
of RN which is contained in the sphere SN−1. Let ξ̂ be a parallel normal field to M̂ such
that the eigenvalues of the shape operator Aξ̂ have constant multiplicities on M̂ . Let λ̂ :
M̂ → R be an eigenvalue function of Aξ̂ whose associated (integrable) eigendistribution E

has (constant) dimension at least 2. Let E be the family of (maximal) integral manifolds
of E. Assume that the eigenvalue function λ̂ never vanishes (this can always be assumed
by adding to ξ̂ an appropriate constant multiple of the umbilical position vector). Then

( i ) Any integral manifold Q ∈ E is compact.
( ii ) The quotient space M̄ = M̂/E is a (compact) manifold and the projection π : M̂ →

M̄ is a fibration (in particular, a submersion).
(iii) The caustic map ρ : M̂ → RN , ρ(q) = q + (λ̂(q))−1ξ̂(q), projects down to an

immersion ρ̄ : M̄ → RN (i.e. ρ = ρ̄ ◦ π).
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Proof. From the Dupin condition, see Lemma 3.3, one has that λ̂ is constant
along any integral manifold Q of E.

Consider the caustic map ρ(q) = q + (λ(q))−1ξ̂(q) (see the proof of Theorem 4.1,
Case (2)(c)). Then ker(dρ) = E and so dρ has constant rank. From the local form of
a map with constant rank and the compactness of M̂ one has that there exists a finite
open cover V1, . . . , Vd of M̂ such that, for any i = 1, . . . , d and q, q′ ∈ Vi, the following
equivalence holds:

ρ(q) = ρ(q′) ⇐⇒ q and q′ belong both to a same integral manifold of E.

This implies that any (maximal) integral manifold Q of E must be a closed subset
of M̂ and hence compact. Moreover, the above equivalence implies that the foliation E
is a regular foliation in the sense of Palais [P].

In order to prove that the quotient is a manifold we need to prove that this quotient
is Hausdorff. But this can be done as follows: let E⊥ be the distribution which is
perpendicular, with respect to the metric, induced by the ambient space, on M̂ . Let us
define a new Riemannian metric 〈 , 〉 on M̂ by changing the induced metric ( , ) on the
distribution E⊥ in such a way that ρ is locally a Riemannian submersion onto its image.
Namely,

• 〈E, E⊥〉 = 0.
• 〈 , 〉 coincides with ( , ) when restricted to E

• d|qρ is a linear isometry from (E⊥)q onto its image.

Such a metric is a bundle-like metric in the sense of Reinhart [Re]. Since M̂ is
compact, 〈 , 〉 is a complete Riemannian metric. Then, [Re, Corollary 3, p. 129], the
quotient space M̄ is Hausdorff and π is a fibration (cf. [DO, Proposition 2.4, p. 83]).

Then one has that the map ρ projects down to an immersion ρ̄ : M̄ → RN and
ρ = ρ̄ ◦ π. ¤

Lemma 4.4. We keep the assumptions of Theorem 4.1. Moreover, we are in the
assumptions and notation of Case (2)(c), inside the proof of this theorem (in particular,
H ' Spin(3), up to a cover). Then:

( i ) All orbits of the action of H on M̄ have dimension 2.
( ii ) The universal cover M̃ of M̄ splits off a line and hence the fundamental group of

M̄ is not finite (since M̄ is compact).

Proof. The action of H on Mξ projects down to M̄ , since ξ̂ is H-invariant and so
any eigendistribution of Âξ̂ is H-invariant. Let q ∈ Mξ. Then the 3-dimensional subspace
h.q ⊂ TqMξ intersects the 3-dimensional horizontal subspaceHq in a non-trivial subspace,
since dim(Mξ) = 5. Since we are in Case (2),

{0} 6= (h.q ∩Hq) ⊂ E1(q).

Let Hq̄ be the isotropy group of H at the point q̄ = π̄(q) ∈ M̄ . Let hq̄ = Lie(Hq̄). Then
one has that
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hq̄ = {X ∈ h : X.q′ ∈ E1(q′)}

where it is independent of q′ ∈ S1(q) = (π̄)−1(π̄({q})), since a Killing field that is tangent
to an integral manifold S1(q) of E1, at some point, must be always tangent to it (since
the action projects down to the quotient).

If dim(hq̄) = 3. Then hq̄ = h. Then H leaves invariant the 2-dimensional integral
manifold S1(q) of E1 by q. Then the isotropy Hq has positive dimension. But Hq ⊂ Hπ(q),
where Hπ(q) is the isotropy group of H at the point π(q) ∈ M3 = H.p. A contradiction,
since dim(H) = 3.

Observe that dim(hq̄) 6= 2. In fact, if this dimension is 2, then hq̄ is an ideal of the
3-dimensional (compact type) Lie algebra h. A contradiction, since h is simple. We have
used that a Lie subalgebra of codimension 1 of a Lie algebra which admits a bi-invariant
metric must be an ideal. (Also, this 2-dimensional Lie subalgebra should be abelian, in
contradiction with rank(h) = 1).

Then dim(hq̄) = 1 for all q ∈ Mξ. This implies that all H-orbits in M̄ have dimension
2. Since H acts with cohomogeneity 1 on M̄ then, the universal cover of M̄ cannot be
compact. Otherwise, as it is well-known, there would exist a singular orbit (after lifting
the action to the universal cover).

For the sake of self-completeness we will show the argument of this assertion.
We define an auxiliary Riemannian metric on M̄ , by changing, along the H-orbits,

the metric 〈 , 〉 induced by the immersion ρ̄.
Since H acts with cohomogeneity 1 on M̄ , H acts locally polarly. In particular, the

one dimensional distribution D on M̄ , perpendicular to the H-orbits, is an autoparallel
distribution. If q̄ ∈ M̄ then we put on the orbit H.q̄ the normal homogeneous metric.
That is, the metric associated to the reductive decomposition

h = hq̄ ⊕ (hq̄)⊥

where the orthogonal complement is taken with respect to a (fixed) bi-invariant metric
on h.

We define 〈 , 〉′ by:

a) 〈 , 〉′|D = 〈 , 〉|D.
b) 〈U ,D〉′ = 0, where U is the distribution given by the tangent spaces of the H-orbits

on M̄ .
c) 〈 , 〉′|Uq̄

coincides with the normal homogeneous metric of H.q̄, for any q̄ on M̄ .

Since M̄ is compact, the metric 〈 , 〉′ is complete. Let 〈 , 〉′ also denote the lift of the
Riemannian metric 〈 , 〉′ to the universal cover M̃ of M̄ . Then (M̃, 〈 , 〉′) is a complete
Riemannian manifold. Let us denote by Ũ and D̃ the lifts to M̃ of the distributions U
and D, respectively. Let us also lift the H-action on M̄ to M̃ . Then, since M̃ is simply
connected, the one dimension distribution D̃ is parallelizable. Namely, there exists a
nowhere vanishing vector field X̃ of M̃ such that R.X̃ = D̃. Let Z̃ = (1/‖X̃‖)X̃, where
the norm is with the metric 〈 , 〉′. Then, the flow φt, associated to Z̃, is by isometries. So
Z̃ is a Killing field. Then 〈∇.Z̃, .〉′ is skew-symmetric. So, in particular, 〈∇vZ̃, v〉′ = 0,
for any vector v that lies in Ũ . But, if ÃZ̃ is the shape operator of the orbit H.x,
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x ∈ M̃ , then 〈ÃZ̃v, v〉′ = 〈∇vZ̃, v〉′ = 0. Then Ũ = D̃⊥ is an autoparallel distribution.
The distribution D̃ is also autoparallel, since the Killing fields induced by H are always
perpendicular to it. But two complementary perpendicular autoparallel distribution must
be parallel. Then, by the de Rham decomposition theorem, M̃ is a Riemannian product.
Since one of the parallel distributions is one dimensional then M̃ = R×M ′. ¤

Remark 4.5. In this paper, for dealing with homogeneous submanifolds of dimen-
sion 3, we need to know which are the compact Lie groups G of dimension at most 4.
For the sake of self-completeness we will briefly show, without using classification results,
which are these compact Lie groups G (up to covering spaces).

We will use the following fact that it is well-known and standard to show: a codimen-
sion 1 subgroup, of a Lie group with a bi-invariant metric, must be a normal subgroup.

( i ) dim(G) ≤ 2.
In this case, from the above fact, one has that G must be abelian.

( ii ) dim(G) = 3.
If rank(G) ≥ 2 then, from the above fact, G must be abelian. If rank(G) = 1,
then G is, up to a cover, Spin(3). This well-known result follows from a topological
argument that proves that a rank 1 simply connected compact group is isomorphic
to Spin(3) (a proof can be found in Remark 2.6 of [OR]).

(iii) dim(G) = 4.
If G is neither simple nor abelian, then, from the previous cases, we have that a
finite cover of G splits as S1 × Spin(3).
If G is simple then rank(G) ≤ 2. Otherwise G would have a codimension 1 (abelian)
subgroup (which must be normal).
If G is simple, then rank(G) > 1. Otherwise, G = Spin(3) which has dimension 3.
Let G be simple and rank(G) = 2. Then the Ad-representation of G on g = Lie(G)
must have a focal (non-trivial) orbit G.v. Such an orbit must have codimension
3. The 3-dimensional normal space νv(G.v) is Lie triple system, since it coincides
with the commutator of v. Then νv(G.v) is an ideal of g. A contradiction.

Remark 4.6. Let X = G/K be an irreducible simply connected symmetric space
of the non-compact type and rank at least 2, where G is the connected component of
the full isometry group of X. Assume that the dimension of X is at most 5. Then,
X ' SL(3)/SO(3).

We will next outline a classification free proof of this fact.
Observe, since rank(X) ≥ 2, that the isotropy representation of K on TpX has a

non-trivial focal orbit M = K.v (p = [e]). Such an orbit M must have dimension 2. In
fact, M cannot have dimension 3. Otherwise, a principal K-orbit must have dimension
4 and so K would act transitively on the sphere. Observe also that the dimension of M

cannot be 1. In fact, since K acts irreducibly on TpX, then K acts effectively on any
non-trivial orbit. If dim(M) = 1, then dim(K) = 1. Then, since dim(X) > 2, K does
not act irreducibly on TpX. A contradiction.

Observe that the isotropy Kv of the focal orbit M2 = K.v at v must have positive
dimension. Moreover, since M is not a principal orbit, the image under the slice rep-
resentation of Kv is not trivial. So, by Corollary 2.5, the restricted normal holonomy
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group Φ(v) of M at v is not trivial. Then Φ(v) must act irreducibly on the 2-dimensional
space ν̄v(M) = {v}⊥ ∩ νv(M). Observe that the codimension of M2 is 3 = 2(2 + 1)/2.
Then, by Proposition 2.17, M is a Veronese submanifold, i.e. orthogonally equivalent to
a Veronese-type orbit V 2 of SO(3) on Sim0(3) (the action is by conjugation). So, one
may assume that Sim0(3) = TpX and that M = V 2. Then both K and SO(3) are Lie
subgroups of K̃ = {g ∈ SO(Sim0(3)) : g.M = M}. Observe that K̃ is not transitive on
the unit sphere of Sim0(3) since the codimension of M is 3. Let R′ and R be the curva-
ture tensors at p = [e] of X and SL(3)/SO(3). Then we have the following irreducible
non-transitive holonomy systems: [Sim0(3), R, K̃] and [Sim0(3), R′, K̃].

Then by the holonomy theorem of Simons 2.12, R is unique up to scalar multiple and
K̃ = K = SO(3), since its Lie algebra is spaned by R. This implies that the symmetric
space X is homothetical to SL(3)/SO(3).

Remark 4.7. Let M3 = K.v ⊂ RN be a 3-dimensional full and irreducible homo-
geneous (Euclidean) submanifold. Assume that rank(M) ≥ 2. In this case, by the rank
rigidity theorem, M is an orbit of an s-representation. So, we may assume, that K acts
as an s-representation.

Let ξ be a K-invariant parallel normal field to M which is not umbilical. If the
shape operator Aξ has two different (constant) eigenvalues then its associated eigendis-
tributions, let us say E1 and E2 are autoparallel distributions that are invariant under
the shape operators of M (recall that Aξ commutes with any other shape operator due
to Ricci equality). Then, by the so-called Moore’s lemma [BCO, Lemma 2.7.1], M is
product of submanifolds. A contradiction.

If Aξ has three eigenvalues, then the multiplicities of any of them are 1. Since Aξ

commutes with any other shape operator, all shape operators of M must commute. Then,
by the Ricci identity, M has flat normal bundle. Then M is isoparametric, since it is an
orbit of an s-representation.

Therefore, a full irreducible and homogeneous Euclidean 3-dimensional submanifold
M3, of higher rank, must be isoparametric with exactly three curvature normals. This
implies that the irreducible Coxeter group associated to M [Te], [PT] has exactly three
reflection hyperplanes. This is only possible if the dimension of the normal space is 2.
Otherwise, the curvature normals must be mutually perpendicular and hence M would
be a product of circles.

This implies that N = 5 and that M is an isoparametric hypersurface of the sphere
S4. Moreover, from Remark 4.6, M is a principal orbit of the isotropy representation of
SL(3)/SO(3).

Proof of Theorem A. If Mn is a (full) Veronese submanifold, n ≥ 3, then the
normal holonomy, as a submanifold of the sphere, acts irreducibly and non-transitively
(see Facts 2.16, (iii)).

For the converse observe that M must be a full and irreducible Euclidean submani-
fold, since the normal holonomy group (as a submanifold of the sphere) acts irreducibly
(see the beginning of Section 3). Then, from Theorem 3.4, Theorem 4.1 and Proposition
2.17, M is a Veronese submanifold. ¤

Proof of Theorem B. From Theorem 4.1 M is an orbit of an s-representation.
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Assume that rank(M) = 1. Then, by Lemma 4.2, the (restricted) normal holonomy
group of M , as a submanifold of the sphere, acts irreducibly and N = 9 = 3+3(3+1)/2.
Then, by Proposition 2.17, M is a Veronese submanifold.

If M is of higher rank, then, by Remark 4.7, M is a principal orbit of the isotropy
representation of SL(3)/SO(3). ¤

5. Minimal submanifolds with non-transitive normal holonomy.

In this section we prove Theorem C of the Introduction.
We use many of the ideas used for the homogeneous case, when n > 3. But now the

situation is much more simple, for n = 3.

Proof of Theorem C. Observe that M must be full and irreducible as a Eu-
clidean submanifold (since the normal holonomy group, as a submanifold of the sphere,
acts irreducibly; see Section 3). Note, by the minimality, that the traceless shape opera-
tors coincide with the shape operators (of vectors which are perpendicular to the position
vector).

We keep the notation in the proof of Theorem 3.4.
Let p ∈ M be such that the adapted normal curvature tensor R⊥(p) 6= 0, or equiva-

lently, R⊥(p) 6= 0. Let us consider the irreducible and non-transitive holonomy systems
[ν̄p(M),R⊥(p),Φ(p)] and [Sim0(TpM), R, SO(TpM)].

We have, from formula (∗∗∗∗) of Section 3 and Proposition 2.21, that the shape op-
erator at p, Ap : ν̄p(M) → Sim0(TpM) is a homothecy and ApΦ(p)(Ap)−1 = SO(TpM).
This implies, if φ ∈ Φ(p), that the eigenvalues of Ap

η coincide with the eigenvalues of
Ap

φ(η).
Let U be a contractible neighbourhood of p in M such that R⊥ never vanishes on

U . Let now p′ ∈ U be arbitrary and let γ : [0, 1] → U be a piece-wise differentiable
curve from p to p′. Let τt be the ∇⊥-parallel transport along γ[0,t]. We have that
τtΦ(p)(τt)−1 = Φ(γ(t)).

Let us choose ξ ∈ ν̄p(M) such that Ap
ξ ∈ Sim0(TpM) has exactly two eigenvalues

λ1 = 1/2 of multiplicity 2 and λ2 = −1/(n− 2) of multiplicity (n− 2).
Recall that the shape operator Aγ(t) : ν̄γ(t) → Sim0(Tγ(t)) maps Φ(γ(t)) into

SO(Tγ(t)). Then, the homothecy gt := Aγ(t) ◦ τt ◦ (Ap)−1 : Sim0(TpM) → Sim0(Tγ(t)M)
maps the group SO(TpM) into SO(Tγ(t)M). Then gt maps the isotropy subgroup
SO(TpM)Ap

ξ
' S(O(2) × O(n − 2)) into the isotropy subgroup SO(Tγ(t)M)B(t), where

B(t) = A
γ(t)
τt(ξ)

. This implies, as it is not difficult to see, that B(t) has two eigenvalues,
let us say λt

1 of multiplicity 2 and λt
2 of multiplicity n − 2. Since B(t) ∈ Sim0(Tγ(t)),

λt
2 = −(2/(n− 2))λt

1.
Then the two eigenvalues of B(t) are constant up to the multiplication by a(t) =

λt
1 6= 0. Note, if γ is a loop by p, that τ1 ∈ Φ(p). Then, as we have previously observed,

the eigenvalues of Ap
ξ are the same as those of B(1). Then a(t) depends only on γ(t). So

there is a non-vanishing f : U → R such that a(t) = f(γ(t)). It is standard to show that
f must be C∞. Note that f(p) = 1/2.

Let us consider (eventually, by making U smaller) the holonomy tube Uξ. We use
the notation in the proof to Theorem 3.4. We will modify the arguments in this proof.
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We have the parallel normal field ξ̂ of Uξ. The eigenvalues of the shape operator Âξ̂

at q ∈ Uξ are given by

λ̂1(q) =
f(π(q))

1− f(π(q))

associated to the (horizontal) eigendistribution E1 of dimension 2,

λ̂2(q) =
−f(π(q))/(n− 2)

1 + (f(π(q))/(n− 2))

associated to the (horizontal) eigendistribution E2 of dimension n− 2.
The third eigenvalue of Âξ̂, is λ̂3 = −1, associated to the vertical distribution ν,

tangent to the normal holonomy orbits.
By the Dupin condition, d(λ̂1)(E1) = 0 which implies that

d(f ◦ π)(E1) = 0. (J)

If n > 3 this is also true for the eigendistribution E2, since it has dimension at least 2.
But we will not assume this and the proof will also work for n = 3.

From the tube formula, as we have observed in the proof of Theorem 4.1, Case (2)(b),
dπ(E1(q)) = E1(q), as linear subspaces. Moreover, E1(q) is an eigenspace of Aq−π(q) =
Aξ̂(q), where A is the shape operator of M (we drop the supra-index π(q) of A). Let now
q ∈ Uξ with π(q) = p and let V be the subspace of TpM which is generated by E1(q′),
with q′ ∈ Φ(p).q = (π−1({p}))q. If V = TpM , then, from formula (J), df(TpM) = {0}.
If V is properly contained in TpM , then let 0 6= v ∈ V⊥. We will derive, in this case, a
contradiction. In fact, since any shape operator Aq′−p has only two eigenvalues and v is
perpendicular to the eigenspace E1(q′) of Aq′−p, then v is an eigenvector of this shape
operator, for any q′ ∈ Φ(p).q. Observe that the linear span of Φ(p).q is ν̄p(M), since
q′ 6= 0 and Φ(p) acts irreducibly on this normal space. Then v is a common eigenvector
for all shape operators Aη, η ∈ νp(M). But A : ν̄p(M) → Sim0(TpM) is an isomorphism.
This is a contradiction. Then df(TpM) = {0} and the same is valid for all p′ ∈ U . Then
f = f(p) = 1/2 is constant on U .

Then the eigenvalues λ̂1, λ̂2, λ̂3 are constant on Uξ. Then ξ̂ is a (non-umbilical)
parallel normal isoparametric field of Uξ. Then, by [CO] (see [BCO, Theorem 5.5.2]),
Uξ and hence U has constant principal curvatures. But this is true provided one shows
that Uξ is full and locally irreducible around some point q ∈ π−1({p}).

Let us show that the local normal holonomy group of M at p coincides with the
restricted normal holonomy group. In fact, the holonomy system [ν̄p(M),R⊥(p),Φ(p)]
is irreducible and non-transitive. Then, by the holonomy theorem of Simons [S], it is
symmetric. Moreover, Lie(Φ(p)) is linearly generated by the endomorphisms {R⊥ξ,η(p)}.
This implies that the local normal holonomy at p coincides with Φ(p). Then the local
rank of M , as submanifold of the Euclidean space, is 1. This implies that M is full
and locally irreducible around p. Hence Uξ is full and irreducible around any point
q ∈ π−1({p}). Then U is a submanifold with constant principal curvatures.
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Since the normal holonomy of M is not transitive on the unit sphere, of the normal
space to the sphere, any principal holonomy tube (which is isoparametric) has codimen-
sion at least 3 in the Euclidean space. Then, by the theorem of Thorbergsson [Th], U

is locally an orbit of an s-representation. Then ‖R⊥‖ is constant on U . From this one
obtains that ‖R⊥‖ is constant on Ω, where Ω is a connected component of the open
subset {p ∈ M : R⊥(p) 6= 0}. But if p′ ∈ M is a limit point of Ω then, R⊥(p′) 6= 0.
This implies that Ω can be enlarged unless p′ ∈ Ω. This shows that the open subset Ω
is also closed in M . Then M has constant principal curvatures. Hence, the image of M

(under the isometric immersion), is an embedded submanifold with constant principal
curvatures. Moreover, it is an orbit of an s-representation. From Proposition 2.17, the
image of M is a Veronese submanifold.

The converse is true by Facts 2.16, (i) and (iii). ¤

Remark 5.1. We keep the notation of the proof of Theorem C. The fact that f

is constant can also be proved in the following way. Let p ∈ M be such that R⊥(p) 6= 0.
Then, since the shape operator A maps Φ(p)-orbits into SO(TpM)-orbits of Sim0(TpM),
one obtains that the second fundamental form is λ-isotropic. That is, the length of
α(X, X) is λ(p) independent of X in the unit sphere of TpM , where α is the second fun-
damental form. The function λ must be a constant multiple of f . Then, by Proposition
4.1. of [IO], λ, and hence f , must be constant (n ≥ 3).

6. The number of factors of the normal holonomy.

In this section we will prove a sharp linear bound, depending on the dimension n

of the submanifold, of the number of irreducible factors of the local normal holonomy
representations. This improves, substantially, the quadratic bound n(n − 1)/2 given in
Theorem 4.5.1 of [BCO].

Proposition 6.1. Let Mn be a submanifold of the Euclidean space RN . Assume
that at any point of M the local normal holonomy group and the restricted normal holon-
omy group coincide (or, equivalently, the dimensions of the local normal holonomy groups
are constant on M). Let p ∈ M and let r be the number of irreducible (non-abelian) sub-
spaces of the representation of the restricted normal holonomy group Φ(p) on νp(M).
Then r ≤ n/2. Moreover, this bound is sharp for all n ∈ N (also in the class of irre-
ducible submanifolds).

Proof. Let us decompose νp(M) = ν0
p(M) ⊕ ν1

p(M) ⊕ · · · ⊕ νr
p(M), where Φ(p)

acts trivially on ν0
p(M) and irreducibly on νi

p(M), for i = 1, . . . , r. From the assump-
tions we obtain that νi

p(M) extends to a ∇⊥-parallel subbundle νi of the normal bundle
ν(M), i = 0, . . . , r (eventually, by making M smaller around p). Note that we have the
decomposition ν(M) = ν0(M) ⊕ ν1(M) ⊕ · · · ⊕ νr(M). Moreover, we obtain from the
assumptions, for any q ∈ M , that the local normal holonomy group Φ(q) acts trivially
on ν0

q (M) and irreducibly on νi
q(M), for any i = 1, . . . , r.

Let R⊥ξ,ξ′ be the adapted normal curvature tensor (see Section 2.1). From the ex-
pression of R⊥ in terms of shape operator A, one has that R⊥ξ,ξ′ = 0 if and only if
[Aξ, Aξ′ ] = 0.
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Observe, if i 6= j, that R⊥ξi,ξ′j
= 0 if ξi, ξ

′
j are normal sections that lie in νi(M) and

νj(M), respectively.
There must exist q ∈ M , arbitrary close to p, such that R⊥νi

q,νi
q
6= {0}, for all

i = 1, . . . , r. In fact, there exists q1 ∈ M , arbitrary close to p such that R⊥ν1
q1

,ν1
q1
6= {0}

(otherwise, ν1(M) would be flat). The above inequality must be true in a neighbourhood
V1 of q1. Now choose q2 ∈ V1 such that R⊥ν2

q2
,ν2

q2
6= {0}. Continuing with this procedure

we find q := qr with the desired properties.
Let us show that for any i = 1, . . . , r there exist ξi, ξ

′
i in νi

q(M) such that [Aξi
, Aξ′i ]

does not belong to the algebra of endomorphisms generated by {Aηi}, where ηi ∈ νq(M)
has no component in νi

q(M). In fact, if this is not true, then, for any ξi, ξ
′
i in νi

q(M),
[Aξi

, Aξ′i ] commutes with Aξi
(since the shape operators of elements of the subspaces

νj
q (M) commute with Aξi

, if j 6= i). Then

〈[[Aξi
, Aξ′i ], Aξi

], Aξ′i〉 = 0 = −〈[Aξi
, Aξ′i ], [Aξi

, Aξ′i ]〉

and hence [Aξi
, Aξ′i ] = 0. A contradiction, since R⊥νi

q,νi
q
6= {0}. This proves our assertion.

Observe that [Aξ1 , Aξ′1 ], . . . , [Aξr , Aξ′r ] are linearly independent and commuting skew-
symmetric endomorphisms of TqM . Then r ≤ rank(SO(TpM)) = [n/2] (the integer part
of n/2). This proves the inequality.

Let us see that it is sharp. For M2 ⊂ Sk1−1, M̄3 ⊂ Sk2−1 be a surface and a 3-
dimensional submanifold such that the normal holonomies have one irreducible factor
(for example, the Veronese V 2 and V 3). Let n > 3 and write n = 2d if n is even or
n = 2d + 3 if n is odd.

Let Mn be the product of d times M2 or Mn be the product of d times M2 by M̄3.
Such submanifolds are contained in the product of Euclidean ambient spaces. Moreover,
the number of irreducible factors of the normal holonomy group (representation) of Mn

is exactly the upper bound [n/2]. Moreover, since Mn is contained in a sphere, we can
apply to Mn a conformal transformation of the sphere (the normal holonomy group is a
conformal invariant) in such a way that Mn is an irreducible (Riemannian) submanifold
of the Euclidean space. ¤

7. Further comments.

Remark 7.1. There is a beautiful result of Little and Pohl [LP] which charac-
terizes Veronese submanifolds Mn, modulo projective diffeomorphisms, by the two-piece
property and the fact that the codimension is the maximal one n(n + 1)/2 (for subman-
ifolds with the two-piece property). Note that a tight submanifold has the two-piece
property. This result generalizes the well-known result of Kuiper for n = 2. A projective
transformation, in general, does not preserve the normal holonomy (unless it induces a
conformal transformation of the ambient sphere).

Remark 7.2. A natural question that arises, since the normal holonomy group is
a conformal invariant, is the following: is a compact submanifold Mn ⊂ Sn−1+n(n+1)/2,
with irreducible and non-transitive (restricted) normal holonomy, equivalent, modulo con-
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formal transformations of the sphere, to a Veronese submanifold?

Remark 7.3. The symmetric space X = SU(4)/SO(4), dual to SL(4)/SO(4), is
isometric to the Grassmannian SO(6)/SO(3)×SO(3). In this last model, T[e]X = R3×3

and the isotropy representation is given by (g, h).T = gTh−1, (g, h) ∈ SO(3) × SO(3).
The Veronese submanifold V 3 is given by

SO(3)× SO(3).Id = SO(3)× {Id}.Id = SO(3) ⊂ R3×3.

Thus V 3 is also an orbit of the smaller group SO(3) ' SO(3)× {Id}. The other orbits
SO(3).A, where A is invertible and near Id, must be full and irreducible submanifolds
of R3×3, since V 3 is so. Note that the action of SO(3) on R3×3 is reducible. In fact, it is
the sum of three times the standard representation of SO(3) on R3. The orbit, SO(3).A
is not minimal in the sphere, for a generic A. So, the normal holonomy group of this
orbit must be transitive on the unit sphere (of the normal space to the sphere).

Observe that the linear isomorphism rA−1 of R3×3, rA−1(T ) = TA−1, transforms
SO(3).A into V 3. In particular, since V 3 is a tight submanifold, that orbit is so. Hence,
as it is well known, SO(3).A is a taut submanifold, since it lies in a sphere (see [CR],
[G]).

8. Appendix.

8.1. The Veronese embedding.
We recall here some basic definitions and facts about the well-known Veronese sub-

manifolds.
Let Sn, n ≥ 2, be the unit sphere of the Euclidean space Rn+1 and let Rn+1⊗sRn+1

be the space of symmetric 2-tensors of Rn+1. Let h : Rn+1⊗sRn+1 → Sim(n + 1) the
usual isomorphism onto the symmetric matrices of Rn+1. Namely, let e1, . . . , en+1 be the
canonical basis of Rn+1. Then, h(ei ⊗ ej + ej ⊗ ei) is the matrix whose coefficients ak,l

are all zero except:

ai,j = aj,i = 1, if i 6= j; ai,i = 2, if i = j.

The Veronese map Q : Sn → Sim(n + 1) is defined by

Q(v) = h(v ⊗ v).

Observe that (Q(v))i,j = vivj , where v = (v1, . . . , vn+1). Let 〈 , 〉 be the inner product
on Sim(n + 1) given by 〈A,B〉 = (1/2)trace(AB). Then Q is an isometric immersion.
Observe that trace(Q(v)) = 1, for all v ∈ Sn. So, the image of Q is contained in the
affine hyperplane of Sim(n + 1), given by the linear equation

〈 · , Id〉 =
1
2
.

Let ρ̃ : Sn → Sim0(n + 1) be defined by ρ̃(v) = Q(v) − (1/(n + 1))Id, where
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Sim0(n + 1) are the symmetric traceless matrices. The map ρ̃ is called the Veronese
Riemannian immersion of the sphere Sn into Sim0(n + 1). One has that ρ̃, (as well as
Q) is O(n + 1)-equivariant. Namely, if g ∈ O(n + 1), then

ρ̃(g.v) = g.ρ̃(v).g−1.

In fact, if we regard v ∈ Rn+1 as a column vector, then

ρ̃(v) = v.vt − 1
n + 1

Id.

From the above formula it follows easily O(n + 1)-equivariance of ρ̃. It is also not
difficult to verify, as it is well known, that ρ̃(v) = ρ̃(w) if and only if w = ±v. Therefore,
ρ̃ projects down to an isometric O(n+1)-equivariant embedding ρ : RPn → Sim0(n+1),
the so-called Veronese Riemannian embedding.

Let us consider the simple symmetric pair (SL(n+1), SO(n+1)) of the non-compact
type. The Cartan decomposition associated to such a pair is

sl(n + 1) = so(n + 1)⊕ Sim0(n + 1).

Then the (irreducible) isotropy representation of X = SL(n + 1)/SO(n + 1) is naturally
identified with the action, by conjugation, of SO(n+1) on Sim0(n+1). Then, the image
of the Veronese embedding, is the orbit

M = SO(n + 1).S

where S ∈ Sim0(n + 1) is the diagonal matrix with exactly two eigenvalues. Namely,
1 − 1/(n + 1) and −1/(n + 1). The first one, with multiplicity 1, is associated to the
eigenspace Re1 and the second one, with multiplicity n, is associated to the eigenspace
(Re1)⊥.

Let S′ ∈ Sim0(n + 1) with exactly two eigenvalues λ1 of multiplicity 1 and λ2 with
multiplicity n. Assume that ‖S′‖ = ‖S‖ (i.e. S and S′ have the same length). It is
easy to verify that either λ1 = 1− 1/(n + 1), λ2 = −1/(n + 1) or λ1 = −1 + 1/(n + 1),
λ2 = 1/(n+1). In the first case one has that S′ ∈ SO(n+1).S = ρ(RPn). In the second
case, −S′ ∈ SO(n + 1).S.

Observe that S′ and −S′ cannot be both in the image of the Veronese embedding,
since the respective eigenvalues of multiplicity 1 are different. In general, if S̄ ∈ Sim0(n+
1) has two different eigenvalues, one of multiplicity 1 and the other of multiplicity n, then
S̄ = λS, for some 0 6= λ ∈ R. The orbit SO(n + 1).S̄ is called a Veronese-type orbit
(see Section 1.1). Observe that there are exactly two Veronese-type orbits in any given
sphere, centered at 0, of Sim0(n + 1). Moreover, any of these two Veronese-type orbits
is isometric to the other, via the isometry −IdSim0(n+1) of Sim0(n + 1).

We have the following well-known fact.

Lemma 8.1. Let SO(r) acts by conjugation on Sim0(r), the traceless symmetric
r × r-matrices, and let M = SO(r).A be an orbit, A 6= 0. Then r − 1 ≤ dim(M).
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Moreover, the equality holds if and only if M is an orbit of Veronese-type.

Proof. Let us assume that M has minimal dimension. We will first prove that
A has exactly two eigenvalues. If not, let λ1, . . . , λd be the different eigenvalues of A

with associated eigenspaces E1, . . . , Ed (d ≥ 3). Then the isotropy subgroup SO(r)A =
S(SO(E1) × · · · × SO(Ed)) has less dimension than S(SO(E1) × SO(E2 ⊕ · · · ⊕ Ed)),
which is the isotropy group of some A′ ∈ Sim0(r) with two different eigenvalues whose
associated eigenspaces are E1 and E2 ⊕ · · · ⊕ Ed. Then dim(M) > dim(SO(r).A′). A
contradiction. Therefore, d = 2. (Observe that d = 1 implies that A = 0, since it is
traceless).

Let now k = dim(E1) and so r − k = dim(E2).
We have the well-known formula for the dimension of the Grassmannians,

dim(M) = dim(SO(r))− dim(SO(k))− dim(SO(r − k)) = k(r − k).

But the quadratic q(x) = x(r − x), x ∈ [0, r], is increasing in the interval [0, r/2) and it
is decreasing in (r/2, r]. So, the minimum of q, restricted to the finite set {1, . . . , r − 1}
is attained at both, x = 1 and x = r− 1. Then k = 1 or k = r− 1, in which case M is a
Veronese-type orbit (of dimension r − 1). ¤
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