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Abstract. We prove asymptotic formulas for mean square values of the
Euler double zeta-function ζ2(s0, s), with respect to =s. Those formulas enable
us to propose a double analogue of the Lindelöf hypothesis.

1. Introduction and the statement of results.

Let N be the set of natural numbers, N0 := N∪{0}, Z the ring of rational integers, Q
the field of rational numbers, R the field of real numbers, C the field of complex numbers
and i =

√−1.
The Euler double zeta-function is defined by

ζ2(s1, s2) =
∞∑

m=1

1
ms1

∞∑
n=1

1
(m + n)s2

=
∞∑

k=2

( k−1∑
m=1

1
ms1

)
1

ks2
(1.1)

which is absolutely convergent for s1, s2 ∈ C with <s2 > 1 and <(s1 + s2) > 2 (Theorem
3 in [9]), and can be continued meromorphically to C2. The singularities are s2 = 1 and
s1 + s2 = 2, 1, 0,−2,−4, . . . (Theorem 1 in [1]). Euler himself considered the behaviour
of this function when s1, s2 are positive integers. It was Atkinson [3] who first studied
(1.1) from the analytic viewpoint, and he proved the analytic continuation of it. Recently
the active research of (1.1) revived, because it is the simplest example of multiple zeta-
functions. As for the studies on the analytic side of (1.1), for example, upper-bound
estimates were discussed in [5], [6], [7], and functional equations were discovered in [8],
[12].

It is the purpose of the present paper to prove certain mean square formulas for
(1.1). Let

ζ
[2]
2 (s1, s2) =

∞∑

k=2

∣∣∣∣
k−1∑
m=1

1
ms1

∣∣∣∣
2 1
ks2

. (1.2)

Since the inner sum is O(1) (if <s1 > 1), O(log k) (if <s1 = 1), or O(k1−<s1) (if <s1 <

1), the series (1.2) is convergent when <s1 ≥ 1 and <s2 > 1, or when <s1 < 1 and
2<s1 + <s2 > 3. Note that ζ

[2]
2 (1, q) (q ∈ N≥2) was already studied by Borwein et al.

(see [4]).
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Hereafter we write s0 and s instead of s1 and s2, respectively, and consider the mean
square with respect to s, while s0 is to be fixed.

Theorem 1.1. For s0 = σ0 + it0 ∈ C with σ0 > 1 and s = σ + it ∈ C with σ > 1,
t ≥ 2, we have

∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T + O(1) (T →∞). (1.3)

Theorem 1.2. For s0 = σ0 + it0 ∈ C with σ0 > 1 and s = σ + it ∈ C with
1/2 < σ ≤ 1, t ≥ 2 and σ0 + σ > 2, we have

∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T + O(T 2−2σ log T ) + O(T 1/2). (1.4)

The most important result in the present paper is the following Theorem 1.3, which
describes the situation under the condition 3/2 < σ0 + σ ≤ 2.

Theorem 1.3. Let s0 = σ0 + it0 ∈ C with 1/2 < σ0 < 3/2 and s = σ + it ∈ C with
1/2 < σ ≤ 1, t ≥ 2 and 3/2 < σ0 + σ ≤ 2. Assume that when t moves from 2 to T , the
point (s0, s) does not encounter the hyperplane s0 + s = 2 (which is a singular locus of
ζ2). Then

∫ T

2

|ζ2(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T

+





O(T 4−2σ0−2σ log T ) + O(T 1/2)
(

1
2

< σ0 < 1,
1
2

< σ < 1
)

O(T 2−2σ0(log T )2) + O(T 1/2)
(

1
2

< σ0 < 1, σ = 1
)

O(T 2−2σ(log T )3) + O(T 1/2)
(

σ0 = 1,
1
2

< σ < 1
)

O(T 1/2) (σ0 = 1, σ = 1)

O(T 2−2σ log T ) + O(T 1/2)
(

1 < σ0 <
3
2
,

1
2

< σ < 1
)

.

(1.5)

Remark 1.4. In Theorems 1.2 and 1.3, the error terms O(T 1/2) are coming from
the simple application of the Cauchy-Schwarz inequality. It is plausible to expect that
we can reduce these error terms by more elaborate analysis.

It is interesting to compare our theorems with the classical results on the mean
square of the Riemann zeta-function ζ(s). It is known that

∫ T

2

|ζ(σ + it)|2dt ∼ ζ(2σ)T
(

σ >
1
2

)
(1.6)
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and

∫ T

2

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt ∼ T log T (1.7)

(see Titchmarsh [15, Theorems 7.2, 7.3]). These simple results suggest two important
observations.

(a) First, it is trivial that ζ(σ + it) is bounded with respect to t in the region of
absolute convergence σ > 1, but (1.6) and (1.7) suggest that ζ(σ + it) seems not so large
in the strip 1/2 ≤ σ ≤ 1, too. In fact, the well-known Lindelöf hypothesis predicts that

ζ(σ + it) = O(tε)
(

1
2
≤ σ < 1

)
(1.8)

for any ε > 0. (For σ = 1, even a stronger estimate has already been known.) Formulas
(1.6) and (1.7) support this hypothesis.

(b) The second observation is that the coefficient ζ(2σ) on the right-hand side of
(1.6) tends to infinity as σ → 1/2, hence the form of the formula should be changed at
σ = 1/2, which is in fact embodied by (1.7). This is one of the special features of the
“critical line” <s = 1/2 in the theory of the Riemann zeta-function.

Our theorems proved in the present paper may be regarded as double analogues of
(1.6). Since the coefficient ζ

[2]
2 (s0, 2σ) tends to infinity as σ0 + σ → 3/2, it is natural to

raise, analogously to the above (a) and (b), the following two conjectures:
(i) (a double analogue of the Lindelöf hypothesis) For any ε > 0,

ζ2(s0, s) = O(tε) (1.9)

when (s0, s) (which is not in the domain of absolute convergence) satisfies σ0 > 1/2,
σ > 1/2, t ≥ 2, σ0 + σ ≥ 3/2 and s0 + s 6= 2;

(ii) (the criticality of σ0 + σ = 3/2) When σ0 + σ = 3/2, the form of the main term
of the mean square formula would not be CT (with a constant C; most probably, some
log-factor would appear).

Remark 1.5. It is not easy to find the “correct” double analogue of the Lindelöf
hypothesis. Nakamura and Pańkowski [14] raised the conjecture

ζ2(1/2 + it, 1/2 + it) = O(tε) (1.10)

(actually they stated their conjecture for more general multiple case), and gave a certain
result (their Proposition 6.3) which supports the conjecture. However, the value ζ2(1/2+
it1, 1/2+it2) is, if t1 6= t2, not always small. In fact, Corollary 1 of Kiuchi, Tanigawa and
Zhai [7] describes the situation when ζ2(s1, s2) is not small. For example, if t2 ¿ t

1/6−ε
1 ,

then

ζ2(1/2 + it1, 1/2 + it2) = Ω
(
t
1/3+ε
1

)
.
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Our theorems imply that our conjecture (1.9) is true in mean. That is, (1.9) is reasonable
in view of our theorems.

Remark 1.6. The above conjecture (ii) suggests that σ0 + σ = 3/2 might be the
double analogue of the critical line of the Riemann zeta-function <s = 1/2. On the other
hand, in view of the result of Nakamura and Pańkowski mentioned above, we see that
another candidate of the double analogue of the critical line is σ0 + σ = 1. At present it
is not clear which is more plausible.

Remark 1.7. We cannot expect the analogue of the Riemann hypothesis on the
location of zeros. In fact, Theorem 5.1 of Nakamura and Pańkowski [14] asserts (in the
double zeta case) that for any 1/2 < σ1 < σ2 < 1, ζ2(s, s) has ³ T non-trivial zeros in
the rectangle σ1 < σ < σ2, 0 < t < T .

The plan of the present paper is as follows. We first prove the simplest Theorem 1.1
in Section 2. To prove the other theorems, we need certain approximation formulas for
ζ2(s0, s). Using the Euler-Maclaurin formula, we show the first approximation formula
(Theorem 3.1) in Section 3, and using it, we prove Theorem 1.2 in Section 4. In Section
5 we introduce and discuss the double analogue of the Euler constant. The most difficult
part of the present paper is the proof of Theorem 1.3. In Section 6 we show the second
approximation formula (Theorem 6.3), by employing the method of Mellin-Barnes inte-
gral formula. Based on this second approximation formula, we give the proof of Theorem
1.3 in the final Section 7.

A possible direction of future study is to search for a strong type of approximate
functional equation (that is, similar to [15, Theorem 4.16]) for the double zeta-function,
based on our previous results on functional equations for the double zeta-function ob-
tained in [8], [12]. If we could succeed in finding such an equation, we would be able to
give a more precise version of mean value theorems for the double zeta-function.

A part of the results in this paper has been announced in [13].

2. Proof of Theorem 1.1.

In this section, we give the proof of Theorem 1.1. Throughout this paper, we fre-
quently use the following elementary estimations:

k−1∑
m=1

1
m
¿

∫ k

1

u−1du = log k,

k−1∑
m=1

1
mσ

¿
∫ k

0

u−σdu =
k1−σ

1− σ
(0 < σ < 1),

∞∑

m=k

1
mσ

¿
∫ ∞

k

u−σdu =
k1−σ

σ − 1
(σ > 1).

Proof of Theorem 1.1. Let s0 = σ0 + it0 ∈ C with σ0 > 1 and s = σ + it ∈ C
with σ > 1. We set
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S := ζ2(s0, s)ζ2(s0, s) =
∑

m1≥1
n1≥1

1
ms0

1 (m1 + n1)σ+it

∑
m2≥1
n2≥1

1
ms0

2 (m2 + n2)σ−it
.

Taking out the terms corresponding to m1 + n1 = m2 + n2 and setting k = m1 + n1, we
have

S =
∞∑

k=2

( k−1∑
m1=1

k−1∑
m2=1

1
ms0

1 ms0
2

)
1

k2σ
+

∑
m1,m2,n1,n2≥1
m1+n1 6=m2+n2

1
ms0

1 ms0
2 (m1 + n1)σ+it(m2 + n2)σ−it

= ζ
[2]
2 (s0, 2σ) +

∑
m1,m2,n1,n2≥1
m1+n1 6=m2+n2

1
ms0

1 ms0
2 (m1 + n1)σ(m2 + n2)σ

(
m2 + n2

m1 + n1

)it

.

Hence we have

∫ T

2

|ζ2(s0, s)|2dt

= ζ
[2]
2 (s0, 2σ)(T − 2) +

∑
m1,m2,n1,n2≥1
m1+n1 6=m2+n2

1
ms0

1 ms0
2 (m1 + n1)σ(m2 + n2)σ

∫ T

2

(
m2 + n2

m1 + n1

)it

dt.

The second term on the right-hand side is

∑
m1,m2,n1,n2≥1
m1+n1 6=m2+n2

1
ms0

1 ms0
2 (m1 + n1)σ(m2 + n2)σ

× eiT log((m2+n2)/(m1+n1)) − e2i log((m2+n2)/(m1+n1))

i log((m2 + n2)/(m1 + n1))

¿
∑

m1,m2,n1,n2≥1
m1+n1<m2+n2

1
(m1m2)σ0(m1 + n1)σ(m2 + n2)σ

1
log((m2 + n2)/(m1 + n1))

=

( ∑
m1,m2,n1,n2≥1

m1+n1<m2+n2≤2(m1+n1)

+
∑

m1,m2,n1,n2≥1
m2+n2>2(m1+n1)

)
1

(m1m2)σ0

× 1
(m1 + n1)σ(m2 + n2)σ log((m2 + n2)/(m1 + n1))

.

We denote the right-hand side by V1 + V2. Then we have

V2 ¿
∑

m1,m2,n1,n2≥1
m2+n2>2(m1+n1)

1
(m1m2)σ0(m1 + n1)σ(m2 + n2)σ

¿
∑

m1,m2,n1,n2≥1

1
(m1m2)σ0(n1n2)σ

= O(1).
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As for V1, setting r = (m2 + n2)− (m1 + n1), we have

V1 =
∑

m1,m2,n1≥1

1
(m1m2)σ0

m1+n1∑
r=1

1
(m1+n1)σ(m1+n1+r)σ

1
log((m1+n1+r)/(m1+n1))

.

Since m1 + n1 + r ³ m1 + n1, we obtain

V1 ¿
∑

m1,m2,n1≥1

1
(m1m2)σ0

1
(m1 + n1)2σ

m1+n1∑
r=1

1
log(1 + (r/(m1 + n1)))

¿
∑

m1,m2,n1≥1

1
(m1m2)σ0

1
(m1 + n1)2σ

m1+n1∑
r=1

m1 + n1

r

¿
∑

m1,m2,n1≥1

1
(m1m2)σ0

1
(m1 + n1)2σ−1

log(m1 + n1)

¿
∑

m2≥1

1
mσ0

2

∑

m1,n1≥1

log(m1 + n1)
mσ0

1 (m1 + n1)2σ−1
= O(1),

because σ0 > 1 and σ > 1. This completes the proof of Theorem 1.1. ¤

Remark 2.1. The fundamental idea of the above proof of Theorem 1.1 is similar
to that of the proof of [15, Theorem 7.2]. The basic structure of the proofs of Theorems
1.2 and 1.3 given below is the same, though the technical details are more complicated.

3. The first approximation theorem.

Hardy and Littlewood proved the following well-known result (see [15, Theorem
4.11]). Let σ1 > 0, x ≥ 1 and C > 1. Suppose s = σ + it ∈ C with σ ≥ σ1 and
|t| ≤ 2πx/C. Then

ζ(s) =
∑

1≤n≤x

1
ns
− x1−s

1− s
+ O(x−σ) (x →∞). (3.1)

Here we prove the double series analogue of (3.1) as follows.

Theorem 3.1. Let s0 = σ0 + it0 ∈ C, s = σ + it ∈ C \ {1}, x ≥ 1 and C > 1.
Suppose σ > max(0, 2− σ0) and |t| ≤ 2πx/C. Then

ζ2(s0, s) =
∞∑

m=1

∑

1≤n≤x

1
ms0(m + n)s

− 1
1− s

∞∑
m=1

1
ms0(m + x)s−1

+





O(x−σ) (σ0 > 1)

O(x−σ log x) (σ0 = 1) (x →∞).

O(x1−σ−σ0) (σ0 < 1)

(3.2)
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In order to prove this theorem, we quote the following lemma.

Lemma 3.2 ([15, Lemma 4.10]). Let f(x) be a real function with a continuous and
steadily decreasing derivative f ′(x) in (a, b), and let f ′(b) = α, f ′(a) = β. Let g(x) be a
real positive decreasing function with a continuous derivative g′(x), satisfying that |g′(x)|
is steadily decreasing. Then

∑

a<n≤b

g(n)e2πif(n) =
∑
ν∈Z

α−η<ν<β+η

∫ b

a

g(x)e2πi(f(x)−νx)dx

+ O(g(a) log(β − α + 2)) + O(|g′(a)|) (3.3)

for an arbitrary η ∈ (0, 1).

Proof of Theorem 3.1. By the Euler-Maclaurin formula (see [15, Equation
(2.1.2)]), we have

∑

a<l≤b

1
ls

=
b1−s − a1−s

1− s
− s

∫ b

a

y − [y]− 1/2
ys+1

dy +
1
2
(b−s − a−s) (3.4)

for 0 < a < b. At first assume σ0 > 1, σ > 1. Setting a = m+N (where m ∈ N, N ∈ N0)
in (3.4) and b →∞, we have

∞∑

l=m+N+1

1
ls

= − (m + N)1−s

1− s
− s

∫ ∞

m+N

y − [y]− 1/2
ys+1

dy − 1
2
(m + N)−s.

Therefore we have

∞∑
m=1

1
ms0

∞∑
n=1

1
(m + n)s

=
∞∑

m=1

1
ms0

N∑
n=1

1
(m + n)s

−
∞∑

m=1

(m + N)1−s

ms0(1− s)

− s

∞∑
m=1

1
ms0

∫ ∞

m+N

y − [y]− 1/2
ys+1

dy − 1
2

∞∑
m=1

1
ms0(m + N)s

= A1 −A2 −A3 −A4, (3.5)

say. The terms A1 and A4 are absolutely convergent in the region σ0 + σ > 1, and in
this region

A4 = O

( ∞∑
m=1

1
mσ0(m + N)σ

)
. (3.6)

The integral in A3 is absolutely convergent if σ > 0, and is O(σ−1(m+N)−σ). Therefore
A3 can be continued to the region σ > 0, σ0 + σ > 1 and
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A3 = O

( ∞∑
m=1

|s|/σ

mσ0(m + N)σ

)
(3.7)

there. The term A2 is absolutely convergent for σ0 +σ > 2, s 6= 1. Therefore we see that
the right-hand side of (3.5) gives the meromorphic continuation to the desired region.

Hereafter in this proof we assume N > x. The term A1 can be rewritten as

∞∑
m=1

∑

n≤x

1
ms0(m + n)s

+
∞∑

m=1

∑

x<n≤N

e−it log(m+n)

ms0(m + n)σ
. (3.8)

Fix m ∈ N and set

f(x) =
t

2π
log(m + x), g(x) = (m + x)−σ,

(a, b) = (x,N) in Lemma 3.2. Then we have

(α, β) =
(

t

2π(m + N)
,

t

2π(m + x)

)
.

We see that

|f ′(x)| = |t|
2π(m + x)

≤ |t|
2πx

≤ 1
C

< 1.

When σ > 0, the function g(x) is decreasing and so we can apply Lemma 3.2. By taking
a small η, we obtain from (3.3) that

∑

x<n≤N

eit log(m+n)

(m + n)σ
=

∫ N

x

1
(m + u)σ−it

du + O((m + x)−σ).

Considering complex conjugates on the both sides, we have

∑

x<n≤N

1
(m + n)s

=
∑

x<n≤N

e−it log(m+n)

(m + n)σ
=

∫ N

x

1
(m + u)s

du + O((m + x)−σ)

=
(m + N)1−s − (m + x)1−s

1− s
+ O((m + x)−σ). (3.9)

In other words, denoting the above error term by E(s;x,m, N), we find that this function
is entire in s (the point s = 1 is a removable singularity) and satisfies

E(s;x,m, N) = O((m + x)−σ) (3.10)

uniformly in N in the region σ > 0. Using (3.9), we find that the second term of (3.8) is
equal to
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1
1− s

∞∑
m=1

1
ms0(m + N)s−1

− 1
1− s

∞∑
m=1

1
ms0(m + x)s−1

+
∞∑

m=1

E(s;x,m, N)
ms0

(3.11)

(where the first two sums are convergent in σ0 + σ > 2, while the last sum is convergent
in σ0 + σ > 1 because of (3.10)), whose first term is cancelled with A2. Therefore now
we have

ζ2(s0, s) =
∞∑

m=1

∑

n≤x

1
ms0(m + n)s

− 1
1− s

∞∑
m=1

1
ms0(m + x)s−1

+
∞∑

m=1

E(s;x,m, N)
ms0

−A3 −A4 (3.12)

in the region σ > max(0, 2 − σ0), s 6= 1. Letting N → ∞, and noting (3.6), (3.7) and
(3.10), we obtain the proof of Theorem 3.1. ¤

4. Proof of Theorem 1.2.

In this section, using Theorem 3.1, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let s0 = σ0 + it0 ∈ C with σ0 > 1 and s = σ + it ∈
C \ {1} with 1/2 < σ ≤ 1, σ0 + σ > 2. Setting C = 2π and x = t in (3.2), we easily see
that the second term on the right-hand side is O(t−σ), so we have

ζ2(s0, s) =
∞∑

m=1

∑

1≤n≤t

1
ms0(m + n)s

+ O(t−σ) (t →∞). (4.1)

We denote the first term on the right-hand side by Σ1(s0, s). Let M(n1, n2) =
max{n1, n2, 2}. Then

∫ T

2

|Σ1(s0, s)|2dt

=
∫ T

2

∑

m1≥1

∑

n1≤t

1
ms0

1 (m1 + n1)σ+it

∑

m2≥1

∑

n2≤t

1
ms0

2 (m2 + n2)σ−it
dt

=
∑

m1≥1

∑

m2≥1

1
ms0

1 ms0
2

∑

n1≤T

∑

n2≤T

1
(m1 + n1)σ(m2 + n2)σ

∫ T

M(n1,n2)

(
m2 + n2

m1 + n1

)it

dt

=
∑

m1≥1

∑

m2≥1

1
ms0

1 ms0
2

∑

n1≤T

∑
n2≤T

m1+n1=m2+n2

1
(m1 + n1)2σ

(T −M(n1, n2))

+
∑

m1≥1

∑

m2≥1

1
ms0

1 ms0
2

∑

n1≤T

∑
n2≤T

m1+n1 6=m2+n2

1
(m1 + n1)σ(m2 + n2)σ
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× eiT log((m2+n2)/(m1+n1)) − eiM(n1,n2) log((m2+n2)/(m1+n1))

i log((m2 + n2)/(m1 + n1))
. (4.2)

We denote the first and the second term on the right-hand side by S1T − S2 and S3,
respectively. As for S1, setting k = m1 + n1(= m2 + n2), we have

S1 =
∞∑

k=2

( k−1∑
m1=1

k−1∑
m2=1

1
ms0

1 ms0
2

)
1

k2σ

−
∑

m1≥1
m2≥1

1
ms0

1 ms0
2

{ ∑
n1>T
n2≤T

m1+n1=m2+n2

+
∑

n1≤T
n2>T

m1+n1=m2+n2

+
∑

n1>T
n2>T

m1+n1=m2+n2

}
1

(m1 + n1)2σ
.

We further denote the second term on the right-hand side by −(U1 + U2 + U3), which is
equal to −(U1 + U3)− (U1 + U3) + U3 because U2 = U1. Since σ0 > 1, we have

U1 + U3 ¿
∑

m1≥1
m2≥1

1
(m1m2)σ0

∑

n1>T

1
(m1 + n1)2σ

¿
∑

m1≥1
m2≥1

1
(m1m2)σ0

∫ ∞

T

du

(m1 + u)2σ

¿
∑

m1≥1
m2≥1

1
(m1m2)σ0(m1 + T )2σ−1

¿ T 1−2σ.

Similarly we obtain U1 + U3, U3 ¿ T 1−2σ. Therefore we have

S1T = ζ
[2]
2 (s0, 2σ)T + O(T 2−2σ). (4.3)

As for S2, since

M(n1, n2) = max{n1, n2, 2} ≤ m1 + n1(= m2 + n2),

we have

S2 ¿
∑

m1≥1

∑

m2≥1

1
(m1m2)σ0

∑
n1≤T
n2≤T

m1+n1=m2+n2

1
(m1 + n1)2σ−1

¿
∑

m1≥1

∑

m2≥1

1
(m1m2)σ0

∑

n1≤T

1
(m1 + n1)2σ−1

¿
∑

m1≥1

1
mσ0

1

∑

m2≥1

1
mσ0

2

∑

n1≤T

1
n2σ−1

1
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¿





T 2−2σ

(
1
2

< σ < 1
)

log T (σ = 1),

because σ0 > 1.
As for S3, we have

S3 ¿
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m1+n1<m2+n2≤2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

1
log m2+n2

m1+n1

+
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m2+n2>2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

1
log m2+n2

m1+n1

.

We denote the first and the second term by W1 and W2, respectively. As for W2, we have

W2 ¿
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m2+n2>2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

¿
∑

m1,m2≥1

1
(m1m2)σ0

∑

n1≤T

1
nσ

1

∑

n2≤T

1
nσ

2

¿





T 2−2σ

(
1
2

< σ < 1
)

(log T )2 (σ = 1).

As for W1, setting r = (m2 + n2)− (m1 + n1), we have

W1 ¿
∑

m1,m2≥1

1
(m1m2)σ0

∑

n1≤T

m1+n1∑
r=1

1
(m1 + n1)σ(m1 + n1 + r)σ

1
log(1 + (r/(m1 + n1)))

¿
∑

m1,m2≥1

1
(m1m2)σ0

∑

n1≤T

1
(m1 + n1)2σ

m1+n1∑
r=1

m1 + n1

r

¿
∑

m1,m2≥1

1
(m1m2)σ0

∑

n1≤T

1
(m1 + n1)2σ−1

log(m1 + n1)

¿





T 2−2σ log T

(
1
2

< σ < 1
)

(log T )2 (σ = 1).

Combining these results, we obtain
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∫ T

2

|Σ1(s0, s)|2dt = ζ
[2]
2 (s0, 2σ)T +





O(T 2−2σ log T )
(

1
2

< σ < 1
)

O((log T )2) (σ = 1).

Therefore we have

∫ T

2

|ζ2(s0, s)|2dt

=
∫ T

2

|Σ1(s0, s) + O(t−σ)|2dt

=
∫ T

2

|Σ1(s0, s)|2dt + O

( ∫ T

2

|Σ1(s0, s)| t−σdt

)
+ O

( ∫ T

2

t−2σdt

)
. (4.4)

We see that the third term on the right-hand side is equal to O(1) because 1/2 < σ ≤ 1.
As for the second term, by the Cauchy-Schwarz inequality, we see that

∫ T

2

|Σ1(s0, s)| t−σdt ¿
( ∫ T

2

|Σ1(s0, s)|2dt

)1/2

·
( ∫ T

2

t−2σdt

)1/2

=

({
O(T ) + O(T 2−2σ log T ) (1/2 < σ < 1)

O(T ) + O((log T )2) (σ = 1)

)1/2

·O(1)1/2

¿ T 1/2.

This completes the proof of Theorem 1.2. ¤

5. The double analogue of the Euler constant.

Let γ be the Euler constant defined by

γ = lim
N→∞

( N∑
n=1

1
n
− log N

)
,

which satisfies that

lim
s→1

{
ζ(s)− 1

s− 1

}
= γ. (5.1)

Here we define analogues of the Euler constant corresponding to the double zeta-function
as follows. For s0 ∈ C with <s0 > 1, we let

γ2(s0) = lim
N→∞

∑

m≥1

1
ms0

{ ∑

1≤n≤N

1
(m + n)

− log(m + N)
}

. (5.2)
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Then we obtain the following.

Proposition 5.1. For s0 ∈ C with <s0 > 1,

lim
s→1

{
ζ2(s0, s)− ζ(s0)

s− 1

}
= γ2(s0). (5.3)

In particular,

γ2(s0) = ζ(s0)γ − ζ2(1, s0)− ζ(s0 + 1). (5.4)

Proof. Applying (3.5) with N = 0, we have

lim
s→1

{
ζ2(s0, s)− ζ(s0)

s− 1

}

= lim
s→1

{∑
m≥1 m−s0−s+1 − ζ(s0)

s− 1
− s

∑

m≥1

1
ms0

∫ ∞

m

u− [u]− 1/2
us+1

du− 1
2

∑

m≥1

1
ms0+s

}

= ζ ′(s0)−
∑

m≥1

1
ms0

∫ ∞

m

u− [u]
u2

du +
1
2

∑

m≥1

1
ms0

∫ ∞

m

1
u2

du− 1
2
ζ(s0 + 1),

where the third and the fourth terms are cancelled. Hence, from

ζ ′(s0) = −
∑

m≥1

log m

ms0
,

the right-hand side of the above equation can be rewritten as

ζ ′(s0)−
∑

m≥1

1
ms0

lim
K→∞

K+m−1∑

k=m

∫ k+1

k

u− [u]
u2

du

= ζ ′(s0)−
∑

m≥1

1
ms0

lim
K→∞

K+m−1∑

k=m

∫ k+1

k

(
1
u
− k

u2

)
du

= ζ ′(s0)−
∑

m≥1

1
ms0

lim
K→∞

(
log(m + K)− log m−

m+K−1∑

k=m

1
k + 1

)

= lim
K→∞

{ ∑

m≥1

1
ms0

( K∑
n=1

1
m + n

− log(m + K)
)}

= γ2(s0),

which implies (5.3). Note that Arakawa and Kaneko [2, Proposition 4] already showed
that ζ2(s0, s), as a function in s, has a simple pole at s = 1 with its residue ζ(s0), where
s0 ∈ C with <s0 > 1. Suppose s0 ∈ C with <s0 > 1 and <s > 1. Then it is well-known
that
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ζ(s0)ζ(s) = ζ2(s0, s) + ζ2(s, s0) + ζ(s0 + s).

By (5.1) and (5.3), we have

ζ(s0)
(

1
s− 1

+ γ + o(s− 1)
)

=
(

ζ(s0)
s− 1

+ γ2(s0) + o(s− 1)
)

+ ζ2(s, s0) + ζ(s0 + s).

Letting s → 1, we obtain (5.4). This completes the proof. ¤

6. The second approximation theorem.

In the previous section, we gave the proof of Theorem 1.2 by use of (4.1) which
comes from Theorem 3.1. However Theorem 3.1 holds under the conditions σ > 0 and
σ0 +σ > 2. Hence we cannot use it for 3/2 < σ0 +σ ≤ 2. In order to prove a mean value
result in the latter case, we have to prepare another approximate formula for ζ2(s0, s).

We begin with (3.12). As was discussed in the proof of Theorem 3.1, all but the
second term on the right-hand side of (3.12) are convergent in σ > 0, σ0 + σ > 1, so the
remaining task is to study the second term.

First we assume σ0 + σ > 2, s 6= 1. Then by the Euler-Maclaurin formula we have

1
1− s

∞∑
m=1

1
ms0(m + x)s−1

=
1

1− s

∫ ∞

1

dy

ys0xs−1(1 + y/x)s−1

+
1

1− s

∫ ∞

1

(
y − [y]− 1

2

)(
− s0

ys0+1(y + x)s−1
+

1− s

ys0(y + x)s

)
dy

+
1

2(1− s)
(1 + x)1−s

= g(s0, s;x) + Y2 + Y3, (6.1)

say. Obviously Y3 is defined for any s ∈ C \ {1} and satisfies Y3 = O(t−1x1−σ). Next
consider Y2. We have

1
1− s

∫ ∞

1

(
y − [y]− 1

2

)
s0

ys0+1(y + x)s−1
dy ¿ 1

t

∫ ∞

1

dy

yσ0+1(y + x)σ−1

¿ t−1x1−σ

∫ ∞

1

dy

yσ0+1
¿ t−1x1−σ

for σ0 > 0, and

1
1− s

∫ ∞

1

(
y − [y]− 1

2

)
1− s

ys0(y + x)s
dy ¿

∫ ∞

1

dy

yσ0(y + x)σ
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¿
( ∫ x

1

+
∫ ∞

x

)
dy

yσ0(y + x)σ

¿
∫ x

1

dy

yσ0xσ
+

∫ ∞

x

dy

yσ0+σ

=





O(x1−σ0−σ) (0 < σ0 < 1; σ0 + σ > 1)

O(x−σ log x) (σ0 = 1; σ0 + σ > 1)

O(x−σ) (σ0 > 1; σ0 + σ > 1).

Therefore now we find that Y2 + Y3 can be continued to the region σ0 > 0, σ0 + σ > 1
and s 6= 1, and in this region satisfies

Y2 + Y3 = O(t−1x1−σ) +





O(x1−σ0−σ) (0 < σ0 < 1; σ0 + σ > 1)

O(x−σ log x) (σ0 = 1; σ0 + σ > 1)

O(x−σ) (σ0 > 1; σ0 + σ > 1).

(6.2)

Next we consider g(s0, s;x). Here we invoke the classical Mellin-Barnes integral
formula, that is

(1 + λ)−s =
1

2πi

∫

(c)

Γ(s + z)Γ(−z)
Γ(s)

λzdz, (6.3)

where s, λ are complex numbers with σ = <s > 0, | arg λ| < π, λ 6= 0, c is real with
−σ < c < 0, and the path (c) of integration is the vertical line <z = c. (Formula (6.3)
has already been successfully used in the theory of multiple zeta-functions; see [9], [10],
[11]).

Lemma 6.1. The function g(s0, s;x) can be continued meromorphically to the re-
gion σ0 < 3/2 and σ > 1/2, and satisfies

g(s0, s;x) =

{
O(t−1x1−σ + tσ0−2x2−σ−σ0 + t−1/2x1/2−σ) (s0 6= 1)

O(t−1x1−σ(log t + log x) + t−1/2x1/2−σ) (s0 = 1)

in this region, except for the points on the singularities

s = 1, s0 + s = 2, 1, 0,−1,−2,−3,−4, . . . . (6.4)

Proof. First we assume that σ0 > 1 and σ > 1. Then, applying (6.3) with
λ = y/x and replacing s by s− 1 (because σ − 1 > 0), we have

g(s0, s;x) =
1

(2πi)(1− s)

∫ ∞

1

1
ys0xs−1

∫

(c)

Γ(s− 1 + z)Γ(−z)
Γ(s− 1)

(
y

x

)z

dz dy, (6.5)

where 1 − σ < c < 0. Here we see that it is possible to change the order of the integral
as follows. Since 1− σ < c < 0 < σ0 − 1, we have −σ0 + c < −1. This implies that (6.5)
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is absolutely convergent with respect to y. Moreover, by the Stirling formula, we can
easily check that (6.5) is absolutely convergent with respect to z. Therefore, changing
the order of the integral on the right-hand side of (6.5), we obtain

g(s0, s;x) =
x1−s

(2πi)(1− s)Γ(s− 1)

∫

(c)

Γ(s− 1 + z)Γ(−z)x−z

∫ ∞

1

yz−s0dy dz

=
x1−s

(2πi)(1− s)Γ(s− 1)

∫

(c)

Γ(s− 1 + z)Γ(−z)
xz(s0 − 1− z)

dz.

Now we temporarily assume that 1 < σ0 < 3/2. Then the pole z = s0−1 of the integrand
is located in the strip c < <z < 1/2. We shift the path (c) to <z = 1/2. Relevant poles
are at z = 0 and z = s0 − 1. Counting the residues of those poles, we obtain

g(s0, s;x) =
x1−s

(1− s)Γ(s− 1)

{
Γ(s− 1)
s0 − 1

+
Γ(s + s0 − 2)Γ(1− s0)

xs0−1

+
1

(2πi)

∫

(1/2)

Γ(s− 1 + z)Γ(−z)
xz(s0 − 1− z)

dz

}

=
x1−s

(1− s)(s0 − 1)
+

x1−s

(1− s)Γ(s− 1)
Γ(s + s0 − 2)Γ(1− s0)

xs0−1

+
x1−s

(2πi)(1− s)Γ(s− 1)

∫

(1/2)

Γ(s− 1 + z)Γ(−z)
xz(s0 − 1− z)

dz

= R1 + R2 + R3, (6.6)

say. The last integral can be holomorphically continued to the region σ0 < 3/2 and
σ > 1/2 (because in this region the path does not meet the poles of the integrand).
Therefore (6.6) gives the meromorphic continuation of g(s0, s;x) to this region. The
possible singularities of R1 and R2 are s0 = 1 and those listed as (6.4). But s0 = 1 is
actually not a singularity. Putting s0 = 1 + δ and calculating the limit δ → 0, we find
that

R1 + R2

∣∣
s0=1

=
x1−s

1− s

(
log x− γ − Γ′

Γ
(s− 1)

)
. (6.7)

We can easily check that R1 = O(t−1x1−σ) and R2 = O(tσ0−2x2−σ−σ0) by the Stirling
formula, if s0 6= 1 and (s0, s) is not on the singularities (6.4). If s0 = 1, then from (6.7)
we see that

R1 + R2 = O
(
t−1x1−σ(log t + log x)

)
.

As for R3, setting z = 1/2 + iy, we have

R3 ¿ x1−σeπt/2

t · tσ−3/2

∫ ∞

−∞

∣∣∣∣
Γ(σ − 1 + it + 1/2 + iy)Γ(−1/2− iy)

x1/2+iy(σ0 + it0 − 1− 1/2− iy)

∣∣∣∣dy
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¿ (tx)1/2−σeπt/2

∫ ∞

−∞
(|t + y|+ 1)σ−1e−π|t+y|/2(|y|+ 1)−2e−π|y|/2dy.

By Lemma 4 of [10], we find that the above integral is O(tσ−1e−πt/2), and hence R3 =
O(t−1/2x1/2−σ). This completes the proof of Lemma 6.1. ¤

Remark 6.2. By shifting the path more to the right, it is possible to prove that
g(s0, s;x) can be continued meromorphically to the whole space C2.

From (6.2) and Lemma 6.1 we find that the right-hand side of (6.1) can be continued
to the region σ0 < 3/2, σ > 1/2, σ0 + σ > 1, and satisfies the estimates proved above.
On the other hand, the last three terms on the right-hand side of (3.12) are estimated
by (3.6), (3.7), and (3.10), respectively.

Now set x = t. Then, using (3.10) we have

∞∑
m=1

E(s;x,m, N)
ms0

¿
∞∑

m=1

1
mσ0(m + t)σ

¿
∑

m≤t

1
mσ0tσ

+
∑
m>t

1
mσ0+σ

¿





t1−σ0−σ (0 < σ0 < 1)

t−σ log t (σ0 = 1)

t−σ (σ0 > 1),

while (3.6) and (3.7) imply that the contributions of A3 and A4 vanish when N →∞.
Collecting all the information, we obtain the following.

Theorem 6.3. Let s0 = σ0 + it0 ∈ C with 0 < σ0 < 3/2 and s = σ + it ∈ C with
σ > 1/2, σ0 + σ > 1, s 6= 1, and s0 + s 6= 2. Then

ζ2(s0, s) =
∞∑

m=1

∑

n≤t

1
ms0(m + n)s

+





O(t1−σ0−σ) (σ0 < 1)

O(t−σ log t) (σ0 = 1)

O(t−σ) (σ0 > 1).

(6.8)

7. Proof of Theorem 1.3.

Based on these results, we finally give the proof of Theorem 1.3.

Proof of Theorem 1.3. We let s0 ∈ C with 1/2 < σ0 < 3/2 and s ∈ C with
1/2 < σ ≤ 1 and 3/2 < σ0 + σ ≤ 2. We further assume that s0 + s 6= 2. Similarly to
Section 4, let

Σ1(s0, s) =
∞∑

m=1

∑

1≤n≤t

1
ms0(m + n)s

.

Then we can again obtain (4.2) and denote it by S1T − S2 + S3. As for S1, we similarly
set k = m1 + n1(= m2 + n2). Then we can write
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S1 =
∞∑

k=2

( k−1∑
m1=1

k−1∑
m2=1

1
ms0

1 ms0
2

)
1

k2σ
− (U1 + U2 + U3),

where U1 = U2. We have

U1 + U3 ¿
∑

m1≥1
m2≥1

1
(m1m2)σ0

∑

n1>T

1
(m1 + n1)2σ

¿
∞∑

k=2

1
k2σ

k−1∑
m1=1

k−m1>T

k−1∑
m2=1

1
(m1m2)σ0

,

where we set k = m1 + n1 = m2 + n2. Note that from the condition k −m1 > T , we
have k > T . Hence we obtain

U1 + U3 ¿
∑

k>T

1
k2σ

∫ k

1

u−σ0du

∫ k

1

v−σ0dv

¿





∑

k>T

k2−2σ−2σ0 = O(T 3−2σ−2σ0)
(

1
2

< σ0 < 1
)

∑

k>T

k−2σ(log k)2 = O(T 1−2σ(log T )2) (σ0 = 1)

∑

k>T

k−2σ = O(T 1−2σ)
(

1 < σ0 <
3
2

)
,

because 2− 2σ− 2σ0 < −1, and the same estimate holds for U1 + U3 and U3. As for the
second estimate we used the integration by parts for

∑

k>T

k−2σ(log k)2 ¿
∫ ∞

T

u−2σ(log u)2du.

Therefore

S1 = ζ
[2]
2 (s0, 2σ) +





O(T 3−2σ−2σ0)
(

1
2

< σ0 < 1
)

O(T 1−2σ(log T )2) (σ0 = 1)

O(T 1−2σ)
(

1 < σ0 <
3
2

)
.

(7.1)

Next we consider S2. Using M(n1, n2) = max{n1, n2, 2}, we have



Mean value theorems for the double zeta-function 401

S2 =
∑

m1≥1
m2≥1

1
ms0

1 ms0
2

∑
n1≤T
n2≤T

m1+n1=m2+n2

M(n1, n2)
(m1 + n1)2σ

=
∞∑

k=2

1
k2σ

∑
m1≥1
m2≥1

∑
n1≤T
n2≤T

m1+n1=k
m2+n2=k

M(n1, n2)
ms0

1 ms0
2

¿
∑

k≤T

k

k2σ

k−1∑
m1=1

k−1∑
m2=1

1
(m1m2)σ0

+
∑

k>T

T

k2σ

k−1∑
m1=1

k−1∑
m2=1

1
(m1m2)σ0

¿





∑

k≤T

k1−2σ(k1−σ0)2 + T
∑

k>T

k−2σ(k1−σ0)2
(

1
2

< σ0 < 1
)

∑

k≤T

k1−2σ(log k)2 + T
∑

k>T

k−2σ(log k)2 (σ0 = 1)

∑

k≤T

k1−2σ + T
∑

k>T

k−2σ

(
1 < σ0 <

3
2

)
.

Therefore we obtain

S2 =





O(T 4−2σ0−2σ)
(

1
2

< σ0 < 1,
1
2

< σ ≤ 1
)

O(T 2−2σ(log T )2)
(

σ0 = 1,
1
2

< σ < 1
)

O((log T )3) (σ0 = 1, σ = 1)

O(T 2−2σ)
(

1 < σ0 <
3
2
,

1
2

< σ < 1
)

,

(7.2)

where we have to note that 3/2 < σ0 + σ < 2 in the first case, and σ 6= 1 (because if
σ = 1 then σ0 + σ > 2) in the fourth case.

Finally we consider S3. Similarly to the argument in Section 4, we have

S3 ¿
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m1+n1<m2+n2≤2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

1
log m2+n2

m1+n1

+
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m2+n2>2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

1
log m2+n2

m1+n1

,

which we denote by W1 + W2.
First estimate W2. We have
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W2 ¿
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1,n2≤T

m2+n2>2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

=
∑

m1≥1
n1≤T

1
mσ0

1 (m1 + n1)σ

∑
m2≥1,n2≤T

m2+n2>2(m1+n1)

1
mσ0

2 (m2 + n2)σ

=
∑

m1≥1
n1≤T

1
mσ0

1 (m1 + n1)σ

∑

k>2(m1+n1)

1
kσ

∑
m2≥1,n2≤T

m2+n2=k

1
mσ0

2

=
∑

m1≤T
n1≤T

+
∑

m1>T
n1≤T

= W21 + W22,

say. Consider W22. Since m1 > T , we have k > 2T , so m2 = k − n2 ≥ k − T > k/2.
Therefore the innermost sum of W22 is

∑

k−T≤m2≤k−1

1
mσ0

2

¿ Tk−σ0 ,

and hence

W22 ¿ T
∑

m1>T
n1≤T

1
mσ0

1 (m1 + n1)σ

∑

k>2(m1+n1)

k−σ0−σ

¿ T
∑

m1>T

m−σ0
1

∑

n1≤T

(m1 + n1)1−σ0−2σ

≤ T
∑

m1>T

m−σ0
1

∑

n1≤T

m1−σ0−2σ
1

¿ T 2
∑

m1>T

m1−2σ0−2σ
1 .

Since 1− 2σ0 − 2σ < −1, we have

W22 ¿ T 2T 2−2σ0−2σ = T 4−2σ0−2σ. (7.3)

As for W21, we further divide the inner double sum of W21 into two parts D1 and D2

according to 2(m1 + n1) < k ≤ 2T and k > 2T , respectively. We handle the innermost
sum of D2 similarly to the case of W22. We have

D2 ¿ T
∑

k>2T

1
kσ

1
kσ0

¿ T 2−σ0−σ.

The innermost sum of D1 is
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¿
∑

m2≤k−1

1
mσ0

2

¿





k1−σ0

(
1
2

< σ0 < 1
)

log k (σ0 = 1)

1
(

1 < σ0 <
3
2

)
,

which gives

D1 ¿





T 2−σ0−σ

(
1
2

< σ0 < 1,
1
2

< σ ≤ 1
)

T 1−σ log T

(
σ0 = 1,

1
2

< σ < 1
)

(log T )2 (σ0 = 1, σ = 1)

T 1−σ

(
1 < σ0 <

3
2
,

1
2

< σ < 1
)

.

Substituting the estimates of D1 and D2 into W21, and estimating the remaining sum

∑
m1≤T
n1≤T

1
mσ0

1 (m1 + n1)σ
≤

∑

m1≤T

1
mσ0

1

∑

n1≤T

1
nσ

1

in the obvious way, we obtain

W21 ¿





T 4−2σ0−2σ

(
1
2

< σ0 < 1,
1
2

< σ < 1
)

T 2−2σ0 log T

(
1
2

< σ0 < 1, σ = 1
)

T 2−2σ(log T )2
(

σ0 = 1,
1
2

< σ < 1
)

(log T )4 (σ0 = 1, σ = 1)

T 2−2σ

(
1 < σ0 <

3
2
,

1
2

< σ < 1
)

.

(7.4)

Next consider W1. We have

W1 =
∑

m1,m2≥1

1
(m1m2)σ0

∑
n1, n2≤T

m1+n1<m2+n2
≤2(m1+n1)

1
(m1 + n1)σ(m2 + n2)σ

1
log

(
1 + m2+n2−m1−n1

m1+n1

)

¿
∑

m1≥1

∑

n1≤T

1
mσ0

1 (m1 + n1)2σ

∑

n2≤T

∑
m2≥1

m1+n1<m2+n2
≤2(m1+n1)

m1 + n1

mσ0
2 (m2 + n2 −m1 − n1)
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=
∑

m1≤2T

∑

n1≤T

+
∑

m1>2T

∑

n1≤T

= W11 + W12,

say. Consider W12. Since m1 > 2T , we have n2 ≤ T < m1/2, so m2 > m1 + n1 − n2 >

m1/2. Therefore, setting r = m2 + n2 −m1 − n1, we have

W12 ¿
∑

m1≥2T

∑

n1≤T

1
m2σ0

1 (m1 + n1)2σ−1

∑

n2≤T

∑
m2≥1

m1+n1<m2+n2
≤2(m1+n1)

1
(m2 + n2 −m1 − n1)

¿
∑

m1≥2T

∑

n1≤T

1
m2σ0

1 (m1 + n1)2σ−1

∑

n2≤T

m1+n1∑
r=1

1
r

¿ T
∑

m1≥2T

∑

n1≤T

1
m2σ0

1 (m1 + n1)2σ−1
log(m1 + n1)

¿ T
∑

m1>2T

m−2σ0
1 ×





(m1 + T )2−2σ log(m1 + T )
(

1
2

< σ < 1
)

(log(m1 + T ))2 (σ = 1)

¿





T 4−2σ0−2σ log T

(
1
2

< σ < 1
)

T 2−2σ0(log T )2 (σ = 1).
(7.5)

Next, since m2 < 2(m1 + n1), the innermost sum of W11 is

¿
∑

m2<2(m1+n1)

m−σ0
2 log(m1 + n1)

¿





(m1 + n1)1−σ0 log(m1 + n1)
(

1
2

< σ0 < 1
)

(log(m1 + n1))2 (σ0 = 1)

log(m1 + n1)
(

1 < σ0 <
3
2

)
.

Therefore, when 1/2 < σ0 < 1, we have

W11 ¿
∑

m1≤2T
n1≤T

m−σ0
1 (m1 + n1)2−σ0−2σ log(m1 + n1)

¿
∑

m1≤2T

m−σ0
1 (m1 + T )3−σ0−2σ log(m1 + T )

¿ T 4−2σ0−2σ log T,
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because 2 < σ0 + 2σ < 3. Similarly, we have

W11 ¿
∑

m1≤2T
n1≤T

m−1
1 (m1 + n1)1−2σ(log(m1 + n1))2

¿





T 2−2σ(log T )3
(

1
2

< σ < 1
)

(log T )4 (σ = 1)

when σ0 = 1, and

W11 ¿
∑

m1≤2T
n1≤T

m−σ0
1 (m1 + n1)1−2σ log(m1 + n1) ¿ T 2−2σ log T

when 1 < σ0 < 3/2. By (7.3), (7.4), (7.5) and the above estimates, we now obtain

S3 = W1 + W2

¿





T 4−2σ0−2σ log T

(
1
2

< σ0 < 1,
1
2

< σ < 1
)

T 2−2σ0(log T )2
(

1
2

< σ0 < 1, σ = 1
)

T 2−2σ(log T )3
(

σ0 = 1,
1
2

< σ < 1
)

(log T )4 (σ0 = 1, σ = 1)

T 2−2σ log T

(
1 < σ0 <

3
2
,

1
2

< σ < 1
)

.

(7.6)

Denote the right-hand side of the above by E(T ). Combining (7.1), (7.2) and (7.6), we
obtain

∫ T

2

|Σ1(s0, s)|2dt = S1T − S2 + S3 = ζ
[2]
2 (s0, 2σ)T + O(E(T )). (7.7)

Now, using the Cauchy-Schwarz inequality, we estimate the second term on the right-
hand side of (4.4) with replacing t−σ by the error term on the right-hand side of (6.8).
Denoting by E(t) the error term on the right-hand side of (6.8), we have

∫ T

2

|Σ1(s0, s)|E(t)dt ¿
( ∫ T

2

|Σ1(s0, s)|2dt

)1/2

·
( ∫ T

2

E(t)2dt

)1/2

= {O(T ) + O(E(T ))}1/2 ·O(1)1/2 ¿ T 1/2.

Thus we obtain the proof of Theorem 1.3. ¤
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