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Abstract. Let k be a regular uncountable cardinal, and A be a cardinal

greater than x. Our main result asserts that if (A<®)<(A=") = <X then

<k
(pm)\(NInn,)\<”))+ - ((NSE:])\ )+7NSK,>\3+)3 and (pN,A(NAInn,)\<"))+

<K
— (NSK,)\S+)3, where NS, ys (respectively7 NSE‘]}\ ) denotes the smallest

seminormal (respectively, strongly normal) ideal on Py (X\), NIn,, y<x (respec-
tively, NAIn, <« ) denotes the ideal of non-ineffable (respectively, non-almost
ineffable) subsets of Pc(A<%), and py,\ : Pc(A<%) — Pc()) is defined by
Pea(T) =N

0. Introduction.

Let x be a regular uncountable cardinal, and A > k be a cardinal. In this paper
we study P, () versions of weak compactness and associated ideals, thus continuing [23]
which dealt with partitions of pairs. Here we are mostly concerned with partitions of
triples.

This area of research has been started by Jech in a paper [10] published in 1973.
Time has elapsed, but it remains unclear which structure we should investigate. What
is the right generalization of (k, Q)7 Is it (Pc(A),Z) or (P(A), <) (where a < b means
that a € Ppny(b))? Whenever we can, we give positive results in terms of the first one,
and negative results in terms of the second.

It seems to us that Johnson (see e.g. [12]) was right when he stressed the importance
of the notion of seminormality. The point is that any k-complete ideal J on & is trivially
seminormal (since given A € J*, v <k and f : A — ~, there must be B € J* N P(A)
such that f is constant on B), and therefore the noncofinal ideal I,, on x can be seen
as the smallest seminormal ideal on k. So each time we attempt to formulate a two-
cardinal version of a statement involving I, we should ponder whether I, should be
replaced by I » (the noncofinal ideal on P.(A)) or NSS,  (the smallest seminormal
ideal on P, (\)). Consider for example the partition property k — (x)? expressing that
k is a weakly compact cardinal. By the remarks above, it can be generalized in (at least)
four different ways, namely Py (\) - (I:,A)2v P.(\) — (I:,A)2’ P, (N - (NSSZA)2

and Py(\) — (NSS;; y)?. We do not know whether these four assertions are equivalent.
We just advocated the replacement of (some occurrences of) I, by NSS,; 5. Likewise
we plead for the replacement of (many occurrences of) NS, (the nonstationary ideal on
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k) by NSE‘];N (the smallest strongly normal ideal on P, (\)) which seems to us more
appropriaté than NS, » (the nonstationary ideal on P.())). Note that NS, x = NSS, »
in case cf()\) < k.

Take for instance ineffability. By work of Kunen (see [6]) and Baumgartner [6],
NIn, = {A C x : A /— (NS;')?}, where NIn,, denotes the nonineffable ideal on k. By
work of Abe-Usuba [5], Carr [8], and Magidor [14], if cf(A) > &, then NIn, y = {A C
P.()\) : A 7= (NS7 ) ={4AC P : A/ ((NSL’\’]/\“)Jr)Q}. The conclusion as
stated is no longer valid in case cf(A\) < k. In fact, it is observed in Section 3 that
NIn, , 7= (I )2 if 22 = A=,

Baumgartner [6] also showed that NIn,, = {A C x: A £— (NS, k)%}. We establish
the following;:

THEOREM 0.1 (Theorem 2.14).  Assume A<* = X\. Then NIn,, y = {A C P.(\) :
<K\ + 3
A 7= (NS ) T.NSST ) )

We also show that NIn;)\ - (NS;A)3 does not hold in case cf(\) > k (see Propo-

sition 2.19).

Note the cardinality assumption in Theorem 0.1. It entails that A is regular. In
the present paper we have little to say concerning the case where k < cf(A\) < A (for
some results in this case see [23]). Assuming A is regular, the cardinality assumption in
question is not known to be necessary. However, our guess is that there is some ideal
J on P,(X), whose definition is similar to that of NIn, x, such that J = {A C P.(\):

A 7% ((NSL):];K’)*_, NSS:}A)?’} (with J = NIn,_, in case 2<* = \). For examples of such
situations see [23].

Put H = {A C k: A #— (k)?}. If s is weakly compact, then
(a) H =1, and
(b) HY — (H)3.
In particular, NS? — (k)? just in case NS} — (x)3. The P.()) situation is different.
Assuming A<* = A, NS, — (I,J;A)3 if and only if x is almost A-ineffable (Corollary
5.11), whereas by a result of [23] NS, | - (I;/f,)\)2 if and only if k is A-Shelah.

The following provides a characterization of NAIn, » in terms of partition relations.

THEOREM 0.2 (Theorem 4.19).  Assume that \<* = X, but \ is not weakly compact.
Then NAIn, » ={AC P.(\): AnC 7? (I;A)?’} for some C € NS .

The paper grew out of a set of notes by the second author concerning the -

partition relation. Joint work of the authors led to the present version.

The paper is organized as follows. In Section 1 we review basic material concerning
the ideals on P, (\) considered in the paper. Sections 2 and 3 are devoted to the notion
of ineffability and concerned with partitions of triples, respectively in the case cf(\) = A
and cf(\) < k. Sections 4-6 are also concerned with partitions of triples, but this
time in connection with the notion of almost ineffability. They deal, respectively, with
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the following three cases: A is regular but not weakly compact, A\ is weakly compact,
cf(N) < k.

1. Basic material.
DEFINITION.  For a set A and a cardinal p, let P,(A) = {a C A:|a|] < p}.

DEFINITION. I, » denotes the collection of all A C P,(\) such that AN{a € P,;(\) :
bCa} =0 for some b € P.()\).

DEFINITION. By an 4deal on P.()\), we mean a collection J of subsets of P, ())
such that

(a) IH,/\gJ7
(b) P(A) C J for all A € J, and
(c) AuUBe Jforall A,BeJ.

J is proper if P,(\) & J.

For an ideal J on P,()), let J* ={A C P,(\): B;(A)\ A€ J}, JFt ={AC P.,()\):
A¢ J}, and JIX ={AC P.,(\): ANX € J} for every X € JT. cof(J) (respectively,
cof(.J)) denotes the smallest cardinality of X C J with the property that for any A € J,
there is @ C X such that |Q] < 2 (respectively, |Q| < k) and A C |J Q.

DEFINITION.  Let & < A. An ideal J on P, ()) is £&-normal if given A € J and
f+ A — & with the property that f(a) € a for every a € A, there is B € JT N P(A) such
that f is constant on B. NSi , denotes the smallest {-normal ideal on P, (). An ideal

J on P, (A) is normal if it is A-normal. We put NS, y = NSQ’)\.

Note that NS?/\ = I, for every £ < k.
The following is a generalization of the characterization of NS,; ».

LEMMA 1.1. Let k <& < Xand A C P.,(\). Then A € (NSE,,\)* if and only if
there is f : € X & — Pq(\) such that C',f)\ C A, where C,{’/\ is the set of all a € Pg(\)
such that
(a) an& #0, and
(b) f(a,B) € a for every (o, B) € (aNE) x (aNE).

DEFINITION.  Given four cardinals 7, p, x and o, cov(T, p, x, o) is defined as follows.
If one may find X C P,(r) with the property that for any a € P, (7), there is Q € P,(X)

with a C |J@Q, let cov(T, p,x,0) = the least cardinality of any such X. Otherwise let
cov(T, p,x,0) = 0. We set cov(r, p,x,0) = u(T, x) in case p = x and o = 2.

Note that u(k, \) = cov(k, A\, A\, 2) = min{|X|: X € I:)\}.

LEMMA 1.2 (Matet [18]). Let u be a cardinal with k < p < A. Then the following
are equivalent:

(i) NS} ,|C =T1,\|C for some C € NS}, ;.
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(i) cof(NS, ) <A =cov(A,ut,ut, k).

DEFINITION.  An ideal J on P, (\) is seminormal if it is £&-normal for every £ < A.
NSS,. » denotes the smallest seminormal ideal on P ().

LEMMA 1.3 (Abe [2]).  Suppose A is regular. Then NSS, x = U,y NSi)\,

LEMMA 1.4 (Matet-Shelah [22]).  Assuming X is regular, the following are equiva-
lent:

(i) NSS,A|C =1, ,|C for some C € NS ;.
(ii) cof(NS...) < A for every cardinal T with k < T < \.

LEMMA 1.5 (Abe [2]). Suppose k < cf(A) < XA. Then NS, x = NSS, »|C for some
C eNS; ;.

DEFINITION. Let 6 < A. An ideal J on P,(\) is [6]<%-normal if given A € J*
and f : A — P.(d) with the property that f(a) € Plansj(aNd) for all a € A, there is
B e Jt N P(A) such that f is constant on B. J is strongly normal if it is [A\]<"-normal.

The following is a generalization of a result of Carr-Levinski-Pelletier [9].

LEMMA 1.6. Suppose k is a limit cardinal, and let kK < § < . Then there exists a
[0]<*-normal ideal if and only if k is Mahlo.

Assuming there exists a [6]<"-normal ideal on P, ()), NSE’]; " denotes the smallest
such ideal.

LEMMA 1.7 (Carr-Levinski-Pelletier [9], Matet [15]).  Suppose & is Mahlo and A<*
= \. Then there is E € (NSL/\’];R)* such that NSL’\)];H = NS, ,\|E.

LEMMA 1.8 (Matet-Péan-Shelah [20]). (i) Suppose k is Mahlo and cof (NS, )
< A<K. Then there is E € (NSL):];N)* such that NS, z|E =1, 5| E.
(ii) Suppose cf(\) < k. Then cof (NS, ) < Un<rean cof (NS, ;).
Thus if cf(\) < &, then cof (NS, ) <2<
DEFINITION.  For a,b € P, (\), a < b means that a € Pyn, (D).

DEFINITION. Let n € w\ 2. For A C P,(\), let [A]2 = {(a1,...,a,) € A" 1 a1 <
- < an} and [A]" = {(a1,...,an) € A" a1 € -+ C ap}. Given A, B C P(P,()\))

= =

and n € On, A - (B)y (vespectively, A — (B))) asserts that for any A € A and

any F': [A]™ — n, there is B € BN P(A) such that F' is constant on [B]Z (respectively,
[B]™). For A,B,C C P(P.(\)), A — (B,C)™ (respectively, A — (B,C)™) asserts that

for any A € A and any F' : [A]™ — 2, there is either B € BN P(A) such that F' takes
the constant value 0 on [B]? (respectively, [B]™), or C' € C N P(A) such that F' takes

n

the constant value 1 on [C]% (respectively, [C]™). A - (B)™ (respectively, A — (B)")
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means that A4 - (B, B)" (respectively, A — (B,B)"). For A C P,(\), A — (B,C)"
(respectively, A — (B,C)™) means that {A} — (B,C)™ (respectively, {A} — (B,C)™).

Similarly, A — (B)y (vespectively, A — (B)}) means that {A} — (B),, (respectively,

{A} — (B)}). Each of the above partition relations is negated by crossing the arrow.

LEMMA 1.9 (Jech [10]). Suppose P, ()) - (I:’)\)Q. Then k is weakly compact.

DEFINITION. K is mildly A-ineffable if given f, : a — 2 for a € P,()\), there is
g : A — 2 such that for any a € P,()\), we may find b € P.(\) such that a C b and

fola = gla.

LEMMA 1.10 (Carr [8], Matet [17]). If P.()\) - (1:}937 then k is mildly \<"-
ineffable.

LEMMA 1.11 (Usuba [27]). Suppose cf(X) > k and r is mildly A-ineffable. Then
ASE =\,

DEFINITION.  NSJ,  denotes the set of all A C P, ()) for which one can find
fa:a— 2 for a € A so that for every g : A\ — 2, there is £ € X such that {a € A :Vy €

aN€(fa(y) = g(7))} € NSE .

It was observed in [23] that if cf(A) > x and P,(\) ¢ NSJ, x, then & is mildly
A-ineffable.

DEFINITION.  NSh,, is the set of all B C « for which one may find k3 : 8 — 3 for
B € B such that for any ¢ : kK — &, there is § < k with the property that kg|d # t|d for
all 6 € B with g8 > 6.

NShy, 5 is the set of all A C P,(\) with the property that we may find f, : a — a
for a € A such that for every g : A — A, there is b € P;(\) with {a € A : b C a and
glb = falb} = 0. K is A-Shelah if P,(\) ¢ NShy, .

DEFINITION. NAln, ) (respectively, NIn, ») is the set of all A C P,()\) with the
property that one may find f, : @ — 2 for a € A such that there does not exist g : A — 2
and B in I:,/\ N P(A) (respectively, NS;A N P(A)) such that gla = f, for any a € B. K is
A-ineffable (respectively, almost A-ineffable) if P, (\) does not lie in NIn, » (respectively,
NAIHN)J.

LEMMA 1.12. (i) (Matet-Usuba [23]) NSJ,  is a (possibly improper) seminor-
mal ideal on P, (X).
(ii) (Carr [7]) Each of NShy x, NAIn, », NIn, » is a (possibly improper) normal ideal
on P;(\). Moreover NShy, » € NAIn, » C NIn, ».

It is simple to see that if p is a cardinal with x < g < A, and P,(\) ¢ NSJ, A
(respectively,  is A-Shelah, x is almost A-ineffable, « is M-ineffable), then P, (1) ¢ NSJ,. ,,
(respectively,  is u-Shelah, x is almost p-ineffable, x is p-ineffable).
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LEMMA 1.13 (Carr [8], Magidor [14]). Let A C P.()\) be such that A - (NS:,A)Q.
Then A € NIn;)\.

DEFINITION. NAIHL):];K (respectively, NInL):];K) is the set of all A C P,(\) with
the property that one can find f, : Pgny(a) — 2 for a € A so that there does not
exist g : Py(A\) — 2 and B in I:y)\ N P(A) (respectively, (1\TSL/\7]/\<K)+ N P(A)) such that

9| Pank|(a) = fo whenever a € B.

DEFINITION.  NIn, » 2 is the set of all A C P,(\) with the property that one can
find foga, : a0 — 2 for (ag,a1) € [A]2 so that there does not exist g : A — 2 and B in
NS:)\ N P(A) such that glag = faya, for every (ag,a1) € [B]%.

LEMMA 1.14 (Kamo [13], Matet [16]). Each of NAInB’];K, NIHE:];K, NIn, r2 is a
(possibly improper) normal ideal on P(X).

DEFINITION.  We define p, x : Pc(A<") — Py (A) by pea(z) =z N A

DEFINITION. For a regular uncountable cardinal u, a p-Aronszajn tree is a tree of
height p with every level of size less than p and no cofinal branch.

Specker [26] established that for every infinite cardinal v such that v<¥ = v, there
exists a v-Aronszajn tree.

2. Ineffability 1.

We first show that if A<} = X, then NIn:))\ — ((NSE:]AG)"’,NSS:’/\)? We need to
recall a few facts.

LEMMA 2.1 (Matet-Usuba [23]). Suppose A<* = X, and let A € NSh:’/\ and
F:[A2 — 1, where 2 < n < k. Then there is Q C A such that either Q € NS}, and
F takes the constant value 0 on [Q]%, or Q € I;,\ and F takes the constant value i on
Q]2 for some i with 0 < i < 1.

LEMMA 2.2 (Folklore). Suppose k is Mahlo. Then {a € P.,()\) : aN K is an
inaccessible cardinal} € (NSL/\};N)*.

LEMMA 2.3 (Usuba [27]).  Suppose & is A-Shelah. Then NShy, x is a strongly normal
ideal.

LEMMA 2.4. Suppose k is A-Shelah. Then the following hold:

(i) (Johnson [12]) {a € P()) : o.t.(a) is a cardinal} € NShy, ;.

(ii) (Abe [3]) If A is regular, then {a € Pg()) : |a| is regular} € NShy .

(iii) (Abe [3]) If A is a strong limit cardinal, then {a € P,(X\) : |a| is a strong limit
cardinal } € NShy, ;.

(iv) (Abe [3]) Let pu be a cardinal such that X = 2*. Then {a € P,(\) : |a| = 21"} €
NSh .
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LEMMA 2.5. Suppose k is A-Shelah, \<* = X and X\ is not inaccessible. Then
{a € P.(\) : 2<l9l = |a|} € NSh}, ;.

PROOF. Suppose otherwise. Then by Lemmas 2.3 and 2.4(i), we may find A €
NSh;f , and o € A such that 2lanel > |g| for every a € A. Put C = {a € P,(\) : l[anal =
laN|all}. Note that C' € NS; . Pick a cardinal 4 > |a| with 2# = A. Then for any
ac ANC, 21e0nl > 2lenlell 5 |q|, which contradicts Lemma 2.4(iv). O

DEFINITION.  Let A, » be the set of all a € P.()) such that

(a) ank is an uncountable inaccessible cardinal, and
(b) o.t.(a) is a cardinal greater than a N k.

LEMMA 2.6.  Suppose r is A\-Shelah. Then A, x € NShy, .
PrROOF. By Lemmas 2.2, 2.3 and 2.4(i). O

LEMMA 2.7.  Suppose k is A\-Shelah and X<* = X\. Then {a € A, : o.t.(a) <@
=o.t.(a)} € NShy ,.

PrROOF. By Lemmas 2.4 ((ii) and (iii)), 2.5 and 2.6.

O

LEMMA 2.8 (Abe [4]). Suppose cf(\) > k, A € NAIn:)\ N P(Ax ), and s,
P.ni(a) for a € A. Then the set of all a € A such that {b € AN Pynu(a) : sp
Sa N Py (b)} € NShony,o lies in NAIn, ».

N

PROOF. This is immediate from Proposition 3.6, Fact 3.7 and Lemma 3.8 of [4].
t

[ ]<N

LEMMA 2.9 (Kamo [13]). NIn,j:)\ = P A (NIng y<x).

LEMMA 2.10 (Abe-Usuba [5]). Suppose A € NIn:’/\. Then there is H € NIn:))\ N
P(A) and t, : a — a for a € H such that a < b for every (a,b) € [H)? with t, = ty|a.

PROPOSITION 2.11.  Suppose A< = X, and let A € NIn;A and F : [A]? — n,

where 2 < n < k. Then there is Q C A such that either @ € (NS’[;\’])\QC)Jr and F takes the

constant value 0 on [Q]3, or Q € NSS:)\ and F takes the constant value i on [Q]® for
some 1 with 0 <14 <.

Proor. By Lemmas 1.4 and 1.7, we may find C' € NS},  such that NSS, \|C =
[ ]<I~:

I, \|C, and E € (NS,:A )* such that NSLA,];N = NS, \|E. By Lemma 2.10, there is
He NIn;)\ NP(A) and t, : @ — a for a € H such that a < b for every (a,b) € [H]? with
ta = tpla. Select a bijection j : Pg(A\) x Po(A) x (14+n) — P.(\). Let B be the set of all
de CNENHNA, ) such that

(a) dNk>14n,
(b) o.t.(d)<o%@ = o.t.(d), and
(c) j(a,b,i) < d for any (a,b) € [Pins(d)]% and any i < 1+ 1.
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Then B € NIn:)A by Lemmas 2.3 and 2.7. For d € B, define fy : [BN Pin,(d)]2 — n by
fd(aa b) = F(av b7 d)7 and put

vg = {jla,b,1+1i): (a,b) € [Pirnn(d)]2 and fy(a,b) =i},

wg = {j({7},{6},0) : (7,0) € d x d and t4(y) = 0},
s$q = vq Uwg, and

za = {c € BN Pynx(d) : sc = sq N Penp(c)}.

Set W={deB:z € NShjm’d}. Then W € NIn:}A by Lemma 2.8. For d € W, we
may find by Lemma 2.1 Q4 C 24 and i4 < 1 such that

(o) fa takes the constant value iq on [Q4]2, and
(8) Qg lies in NS:;mmd if ig = 0, and in I;rm,d otherwise.

There must be i < n such that {d € W : iy =i} € NIn;)\. By Lemma 2.9, NInL):];K =

NIn, ». Hence we may find @ C P.(\) and R € NS;/\ with R C {d € W : i4q = i} such
that @ N Pynx(d) = Qq for every d € R. If i > 0, then clearly Q € I:y/\, and in fact
Q€ NSS:)A since Q C C.

CrLAIM 1.  Suppose i = 0. Then Q € (NSL):];N)*‘.

PROOF OF CLAIM 1. Since Q C E, it suffices to show that Q@ € NS7,. Fix D €
NSy . Select G : A x A — P.(A) so that {a € P.(\) : V((,€) € a x a(G(¢,€) Ca)} CD.
Since R € NS;A, we may find e € R such that G(¢,€) < e for every ((,€) € e x e. Now
Q. € NS1,.. ., so we may find a € Q. such that G((, &) C a for every (¢,€) € ax a. Then
clearly a € Q N D, which completes the proof of the claim. d

Finally, let us show that F takes the constant value i on [Q]®. Thus let (ag, a1, az) €
[Q]®. Pick d € R with ay < d. Then {ag,a1,a2} C Qg C 24.

CLAM 2. Letl < 3. Then tq, = tq|a;.

PRrROOF OF CLAIM 2. Fix v € a;. Then j({v}, {ta,(7)},0) € sq since s, = sq N
P,,ni(ar), and therefore t,, (y) = tq(y), which completes the proof of Claim 2. O

It follows from Claim 2 that ag < a1 < ag. Then f4(ag, a1) = i, so j(ag, a1, 1+i) € s4.
Now 84, = Sq¢ N Paynik(az2), and therefore j(ag,a1,1 +14) € Sq,. Hence i = f,,(ag,a1) =
F(ag,a1,as2). O

Our next result asserts that {4 C P.()\): A — (NS, [Pe(N)]4)?} € NIn, .

LEMMA 2.12.  Let J be an ideal on P.(\), and A C P,()\) such that for any
g : [A2 — 2, there is either B € JT N P(A) such that g takes the constant value 0
on [BI%, or (ap,a1,a2,a3) € [A]L such that g(ag,a1,a2) = g(ai,as,a3) = 1. Then

()2
A— ()2

PrOOF. Fix f: [A]2 — 2. Define g : [A]2 — 2 by: g(bo,b1,b2) = 1 just in case
f(bo,b1) = 0 and f(b1,b2) = 1. Then clearly there must be B € J* N P(A) such that g
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takes the constant value 0 on [B]2. Now suppose there is (c,d) € [B]2 with f(c,d) = 0.
Put C ={a € B:d < a}. We claim that f takes the constant value 0 on [C]%. Suppose
otherwise, and pick (v, w) € [C]% with f(v,w) = 1. Then f(d,v) = 1 since g(c,d,v) = 0,
and hence g(c,d,v) = 1. Contradiction. O

PROPOSITION 2.13.  Let A C Py(\) be such that A — (NS, [Pe(N]L)?. Then
Ae NInz)\.

Proor. By Lemmas 1.13 and 2.12. O

If A<* = )\, then by a result of [23], for any A C P,()\), A € NSh:}A if and only
if A — ((NSE\,];H)Jr’NSS:’/\)? if and only if 4 — (NS} ,I7,)?. Replacing pairs by

triples, we obtain the following:

THEOREM 2.14.  Suppose A< = X. Then for any A C P.(\), the following are
equivalent:

(i) Ae NIn:,A.
(i) A — (NS ")+, Nss? )3,
(iii) A — (NS L LE)2

Proor. By Propositions 2.11 and 2.13. O

To conclude this section, let us observe that NIn:’ AT (NSI’ ,)% does not hold in

case cf(\) > k.

LEMMA 2.15.  Let p be a cardinal with k < p < A, and let J be an ideal on
P.(X\) that is E&-normal for every & < p. Further let A € J* be such that A - (JH)3,

and let foga, : ao N — 2 for (ag,a1) € [A]%2. Then we may find B € J* N P(A),
h:p—2, and Q¢ € J for & < p such that for any & < p and any (ag,a1) € [B\ Q¢]2,
h\(ao ﬂg) = faoa1|(a0 N f)

PROOF. Define F : [A]2 — 2 by: F(ag,a1,az) = 1 just in case there is o € aq
such that fo e, |(a0 N @) = fayas](a0 N @), faga, (@) = 0, and fa,4,(a) = 1. We may
find B € J* N P(A) and i < 2 such that F takes the constant value i on [B]2. We
inductively construct he : { — 2 and Q¢ € J for £ < p so that for any £ < p and any
(ag,a1) € [B\ Qel2, hel(ao N &) = fagar|(ao NE). For & = 0, put he = 0 = Q¢. Now
suppose £ > 0, and h, and @, have already been defined for all n < £. In case  is a
limit ordinal, put he = U, ¢ hy and Q¢ = SUT, where S = {a € Pc(\) : In € ané(a €
Q) and T ={a € P;(A\) : In € ané(n+1 ¢ a)}. Next suppose { is a successor
ordinal, say £ = ( + 1. Put R = {a € P,(\) : ¢ ¢ a}. If feoe,(() = 1 — i for every
(co,c1) € [B\(QcUR))Z, set he = h¢ U{(¢,1—14)} and Q¢ = Q¢ UR. Now assume there
is (co,c1) € [B\ (Q¢ UR)J2 such that fe,, (¢) =i. Let Z be the set of all a € Py(\)
such that ¢; < a does not hold. Then clearly for any (ag,a1) € [B\ (Q¢c URU 2)]2,
ferao(€) =1 (since F(cg,c1,a0) = 1), and therefore fo,q,(¢) =i (since F(c1,a9,a1) = 7).
Put he = he U{((,9)} and Q¢ = Q¢ URU Z. Finally, set h = {J,_, he. O
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LEMMA 216 Let A C Py() be such that A — (NS} ,)%. Then A€ NIn/ , ,.

ProoF. This easily follows from Lemma 2.15. 0

LEMMA 2.17 (Abe [4]). Let A € NIn:’)\. Then {d € Axx : AN Pyrp(d) €
NIHde’d} S NIH:’)\,

LeMMA 2.18. {d € A, :dNk is not d-ineffable} € NIn, » 2.

PROOF. Suppose otherwise. Pick a bijection j : A X A X A x A — A. Let A be
the set of all d € A, x such that j“(d x d x d x d) = d and d N k is not d-ineffable.
Then by Lemmas 2.3 and 2.6, A € NIn;A,Q. For d € A, select s¢ C b for b € Pyn,(d)
so that for any s C d, {b € Pynx(d) : sf = sNb} € NSyn,q. For (d,e) € [A]%, put
Tge = {b € AN Pyri(d) : s¢ = s Nb}. Note that x4 € NSyny.a. Pick fae :d xd — d
so that z4e N {b € Pirp(d) : fae“(bx b) C b} = 0. Set tge = vge U wye, where vge =
{7(0,0,0,¢) : € € s} and wae = {j(1, 0, 8,7) : o, B,y € d and fae(cv, ) = 7}

We may find B € NS:’)\ NP(A) and t C X such that 4 = tNd, for all (d,e) € [B]%.
Set S ={£ < X:5(0,0,0,¢) € t}, and define f : A x A — A by f(a,3) = the unique =
such that j(1,a, 3,7) € t. Let C be the set of all a € P, (\) such that f“(axa) C a. Now
let (b,d,e) € [BNCJ2. Then b € 4, since s¢ = SNb = s¢Nb. Moreover fz. = f|(d x d),
80 fae “(b x b) C b. Contradiction. O

PROPOSITION 2.19.  Assume cf(X) > k. Then NIn:’)\ 7? (NS;)\):;,

ProoF. By Lemmas 2.16, 2.17 and 2.18. U

Note that by Lemmas 1.5 and 2.3 and Proposition 2.19, NInz’A 7? (NS:,A, NSS;)\)?’
in case k < cf(X) < A.

QUESTION 1. Does NIn;A - (NS:A,I:)\)3 hold in case k < cf(\) < A =2<A¢

3. Ineffability 2.

In this section we are concerned with the case cf(\) < k. We show that if 2% = A\<#,

then (pi A (NIn, y<x))™ — ((NSQ]/\Q)*,NS:’A)?’. Furthermore, we establish that {A C
<K

PN : A — ((NSPL)F, [Pc(]L)3) € (pea(NIn y<e )T i case cf(V) < .

The reason we work with p,, x(NIn, x<~) is that the ideal NIn,  is not large enough.
In fact, if 22 = A<%, then by results of [23] and [27], for any A € Nlni"/\, there is
B e NIn:)\ N P(A) with B 7? (I;)\)2 (we can take B={a € ANA A ANE:ANA N
EN Pynw(a) € NIngny,q}, where E € (NSL):];N)* is such that NS, z|E = I, A|E). On the
other hand it can be shown that if cf(A) < &, then p, A(NIn, y<~x) = {A C Pc(X) : A /—

Al<F Al<F
(NSPR)9)2) = {A S P(d) s A A (NSPY )02,

DEFINITION.  Suppose & is inaccessible and cf(\) < k. Let (yo : A < a < A<F) be
a one-to-one enumeration of the elements of P, (). Define g, \ : Po(A\) — P.(A<F) by
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gea(a) =aU{a € A"\ Ay, <a}, and set Xy p = {x € P.(A<") :z = qua(zNA)}.

LEMMA 3.1 (Abe [1]). Suppose k is Mahlo and cf(N\) < k. Then the following
hold:

<N
) K, A e (NSK )\<R )*
(i1) ge,x s an isomorphism from (P (X\), Q) onto (X, Q).
(111) dxk, /\( K, )\) =1, ,\<~|X,§ A-
(IV) Ak, )\(NSK )\) NSK )\<N|XK’)\.
(v)

)\<h <K

v) gea (NS = NSO = NS

Xea-

LEMMA 3.2.  Suppose k is inaccessible and cf(\) < x, and let Q@ C X, x. Then
q;}\(Q) ={zNX:zeqQ}.

PROOF. C: Let a € P,()) be such that ¢, x(a) € Q. Then a = AN g r(a).
DO: Let € Q. Then = = g x(x) N A, Sozﬂ/\Ez]K_j\(Q) O

LEMMA 3.3 (Usuba [27]).  Suppose k is A-Shelah and cf(\) < k. Then A<" = \T.
The above lemmas and Proposition 2.11 give:

PROPOSITION 3.4.  Suppose cf(\) < &k and 2° = X% and let A €
(P (NIng x<x))T. Purther let F : [A]> — n, where 2 < n < k. Then there is B C A

such that either B € (NS,[:];N)*‘ and F takes the constant value 0 on [B]3, or B € NS:’/\
and F takes the constant value i on [B]3 for some i with 0 < i < 7.

Proor. Let X = {x € P,(A<"):xN X € A}. Then by Lemmas 2.3 and 3.1, X N
X € NIn:)\q. Define G : [X N X, 2|2 — n by G(zo, 21, 22) = F(zo N A, 21 N A, 22N A).
Since (A<F)<(A™") = \<# by Lemma 3.3, we may find by Proposition 2.11 Q € X N X
and ¢ < n such that
(a) G takes the constant value i on [Q]3, and
(b) @ € (NSPZ" ) if i = 0, and @ € NSS]' .. otherwise.

Put B={zNA: 2z € Q}. Note that B C A. By Lemma 3.2, B = q;;\(Q), so by Lemma

3.1Q¢ (NSL):];K)"’ ifi=0,and Q € NS;)\ otherwise.

Let us show that F' takes the constant value i on [B]?. Thus let (ag, a1, a2) € [B]3.
For j < 3, set z; = gy, (a;). Note that z; € @ and z; N A = a;. By Lemma 3.1
(LCO7£E1,CE2) S [Q]gv SO 1 = G(*r()vxlva) - F(a(]7a17a2)’ D

PROPOSITION 3.5.  Suppose cf(A) < k, and let A C P.(\) be such that A -
(NS [P(N]L)3. Then A € (pea(NIng a<))

PROOF. Set Z = {z € P,(A<") : 2N X € A}. By Lemma 1.13 it suffices to show
that Z - ((NSex<x)T)2. Fix F : Z x Z — 2. Define G : [A]2 — 2 by G(ag,a1) =

F(qi.2(a0),qx.2(a1)). By Lemma 2.12 we may find B € (NSE::];N)Jr NP(A) and i < 2
such that G takes the constant value i on [B]2< Set X = g, A“B. Then clearly X C Z.
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Moreover by Lemma 3.1, X € (NSL’\;ZL<N)+. We claim that F' takes the constant value
i on [X]%2. Fix ag,a; € B with gg(a0) < gur(a1). Then ag C ay since g, a(ag) C
g2 (a1). Furthermore, |ag| < |gur(ao)| < |gea(a1) N&| = |az Nk|. Thus ap < a1, and
consequently F(qgx x(ao),qxx(a1)) = G(ag,a1) = i. O

4. Almost ineffability 1.

We start this section by showing that if A<* = ), then NAIn;/\ — (NSS:’)\)?’.
The following easily follows from Lemma 3.1:

LemMA 4.1, NAIPL = p y(NAIn, y<x).

LEMMA 4.2.  Suppose \<* = \. Then NAIn:,A - (Izk)f’] for every n with 2 <
n<k.

Proor. Fix A € NAIn:,A and F : [A]2 — 5, where 2 < < k. Select a bijection
J: Pe(X) x Py(A) xn — P.(\). Let B be the set of all d € AN A, » such that

(a) dNk >,
(b) o.t.(d)<%@ = o.t.(d), and
(c) j(a,b,i) < d for any (a,b) € [Pynx(d)]% and any i € n.

Then B € NAIn:,A by Lemmas 2.3 and 2.7. For d € B, define fy : [B N Pyny(d)]2 — 1
by fd(a7 b) = F(CL, bv d)7 and put

e sq={j(a,b,i): (a,b) € [Pins(d)]% and fy(a,b) =i} and

e zg={c€ BNPyu(d): sc=54N Perr(c)}.

Set W={deB:z¢€ NShZ{mmd}. Then W € NAIn:’)\ by Lemma 2.8. For d € W,
we may find by Lemma 2.1 Q4 € I(';m,dﬂP(zd) and ig < n such that f; takes the constant

value iq on [Qq]%2. There must be ¢ < 7 such that {d € W : iy = i} € NAIn:,)\. By
Lemma 4.1, NAInB’];N = NAIn, . Hence we may find @ C P,(\) and R € I:)\ with
R C {d e W :ig =1} such that Q@ N P, (d) = Qq for every d € R. It is simple to see
that Q € I .

We claim that F' takes the constant value i on [Q]2. Thus let (a,b,c) € [Q]2. Pick
d € R with ¢ < d. Then (a,b,c) € [Qq4]2 since Q@ N Pyny(d) = Qq. Hence f4(a,b) =1, so
jla,b,i) € sq. Now s. = sq4 N Pery(c) since ¢ € zg4, and consequently j(a,b,i) € s.. Thus
it = fe(a,b) = F(a,b,c). O

LEMMA 4.3.  Suppose u(k,\) = A and there is C € NS}  such that NSS, »|C =
L. A|C. Then for any A € I}, N P(C), there is B € I}, N P(A) with [B]% = [BJ*.

PROOF. Select e, € Py(A) for @ < A so that {eq : @ < A} € I;x Now given
Ae I:,/\ N P(C), define inductively a, € A for o < A so that

(a) a € an and e, C aq,
(b) ag < aq for every 8 € aq N, and
(c) aq \ ag # 0 for every 3 < a.
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Then B = {a, : @ < A} is as desired. O

PROPOSITION 4.4.  Suppose A<* = X\. Then NAIn, — (NSS:A)?7 for every n
with 2 < n < K.

Proor. By Lemmas 1.4, 2.3, 4.2 and 4.3. (]

In the remainder of this section we establish that if A<* = X but A is not weakly
compact, then there is C' € NS[  such that

a) {ACC:A— (I",)3} CNAIn",, and
< Ky KyA
(b) for any A C C such that A - (7 4)?, there is B C A such that B — (I, ,)? but
B 7%’ (I:,A)S-

LEMMA 4.5 (Johnson [12]). Suppose cf(A\) > k. Then for any A C P.()\), the
following are equivalent:

(i) AeNAn/,.
(ii) Given g : [A]2 — X such that g(ag,a1) € ag for every (ap,a1) € [A%, there is
B e 1:7/\ N P(A) such that g is constant on [B]%.

LEMMA 4.6. Assume A\ is reqular and there is a \-Aronszajn tree, and let J be
a seminormal ideal on P.(\). Then there is C € NS \ with the following property:
Suppose A € Jt N P(C) is such that given foga, : ao — 2 for (ag,a1) € [A]2, there is
Be J"NP(A), h:X— 2, and Q¢ € J for & < X\ such that for any & < X and any
(ag,a1) € [B\ Q¢)%, hl(ao NE) = fagar|(ao NE). Suppose further that g : [A]2 — X is
such that g(ag,a1) € ag for every (ag,a1) € [Aj2. Then there is D € J* N P(A) such
that g is constant on [D]2.

PROOF.  Select a A-Aronszajn tree T = (A, <p). For a < A, let T,, denote the a-th
level of T'. Let C be the set of all a € P()\) such that

(a) B+ 1 € a for every 3 € a,
(b) anT, # 0 for every a € a, and
(€) {v <1 &:7€Uscana Ts} € afor any a € X and any § € aNT,.

Let us check that C is as desired. It is immediate that C' € NSj \. Now fix A €
J* N P(C) with the property that given fu.a, : ao — 2 for (ag,a1) € [A]2, we may
find B€ JTNP(A), h: X = 2, and Q¢ € J for £ < A such that for any & < X and
any (ap,a1) € [B\ Q¢l, hl(ao NE) = fagar|(ao NE). Let g : [A]2 — X be such that
g(ao,a1) € ag for every (ag,a1) € [A]2. For (ag,a1) € [A]%, pick &agay € a0 N Ty(ag,a1)s
and define fo,0, @ a0 — 2 by: faga, (7) = 1 just in case 7 <p apa,- There must be
B e JtNP(A), h: X — 2and Q¢ € J for { < A such that for any £ < X\ and any
(ag,a1) € [B\ Q¢l2, hl|(ao N &) = faga,|(ao NE). It is simple to see that

(i) if v and +' are any two distinct members of h=1({1}), then either v <7 7/, or
v <r 7, and
(ii) {y' € A9/ <7 v} € h7L({1}) for every v € h~1({1}).
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Set 6 = the least a < A such that T, N h=1({1}) = 0. Define k : § — X\ by k(a) = the
unique element of T, N h~1({1}). Pick a limit ordinal o < A with T; Uran(k) C o. Let
D be the set of all a € B such that

(o) 6 €a,
(B) for any ( €ano, a ¢ Qc, and
(7) for any o € anNd, k(a) € a.

Then clearly D € J*.

We claim that g(ag,a;) = & for each (ap,a1) € [D]2. Suppose otherwise, and
select (ap,a1) € [D]2 with g(ag,a1) # . If g(ag,a1) < &, then h(k(g(ag,a1))) = 1
and faoa, (k(g(ao,a1))) = 0, which yields a contradiction. Thus g(ag,a1) > 6. Put v =
the unique element 1 of Ts such that <7 &4,4,- Then h(y) = 0 and fg,q4,(7) = 1.
Contradiction. O

PROPOSITION 4.7.  Suppose that X\ is reqular, there is a A-Aronszajn tree, and
cof (NS, +) < X for every cardinal T with k <7 < X. Then there is D € NS}, \ such that
{ACD:A — (1:7)\)3} C NAIH:,A.

Proor. By Lemmas 1.4, 4.5, 4.6, and Theorem 2.14. O

LEMMA 4.8 (Matet-Usuba [23]). Let A C P.(\) be such that A -
((Ueer NS5, ) F)2. Then A € NSJ! .

LEMMA 4.9 (Matet-Usuba [23]).  Suppose X is regular, there is a A\-Aronszajn tree,
and Pg(A\) ¢ NSJ. ». Then NShy, x C NSJ, A|C for some C € NSJ:’/\ NNS; y-

LEMMA 4.10 (Usuba [27]).  Let A € NSh! ;NP(A,\). Then{a € A: ANPyn,(a) €
NSharr.a} € NSh; )

LEMMA 4.11.  Suppose cf(\) > k, and let A € NSh:))\. Then there is B C A with
B € NSh;f , N NAIn, ».

ProoF. We can assume that A € NAIH; , since otherwise the result is trivial. Set
T=ANA;xand B={a €T :TNP,(a) € NShyrk,e}. Then by Lemmas 2.6, 2.8
and 4.10, B is as desired. O

PRrROPOSITION 4.12.  Suppose that X is reqular, there is a A-Aronszajn tree, and
cof (NS, ») < A for every cardinal T with & < 7 < X. Then there is C € NS}, \ with the
following property: for any A C C such that A — (I;)\)Q, there is B € NSh;)\ N P(A)

such that B 7? (I:,A)?’.

PROOF. Use Lemma 1.4 to get Cy € NS ) such that NSS, y[Cy = I, »|Co, and
Proposition 4.7 to get Cy € NSJ , such that {B C Cy : B — (7)) € NAInS,. We
define Cy as follows. If P,(A) € NSJ, x, we set Cy = P,,(A). Otherwise we appeal to
Lemma 4.9 and choose Cs so that Cy € NSJ:,A N NS:,A and NSh,, x» € NSJ,; »|Cs. Put
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C=CynCyNCs. Now fix A C C with the property that A - (I:,A)Q_ By Lemmas

1.3 and 4.8, A € NSh;X Hence by Lemma 4.11, there is B € NSh;)\ N P(A) such that
B € NAln, 5. Then clearly B 7? (I:«\)B' g

The following lemma shows that the existence of a A-Aronszajn tree in Lemma 4.6
can be replaced by a certain cardinal arithmetic assumption.

LEMMA 4.13. Assume p < A is a cardinal with 2 = X\, and let J be a p-normal
ideal on Pg(\). Then there is C € NSZ,,\ with the following property: Suppose A €
JTNP(C) is such that given faya, : aoNp — 2 for (ap, a1) € [A)%, thereis B € JTNP(A),
h:p—2, and Q¢ € J for & < p such that for any & < p and any (ag,a1) € [B\ Q¢]2,
h|(ao N &) = fagar|(ao NE). Suppose further that g : [A]%2 — X is such that g(ag,a1) € ag
for every (ag,a1) € [A]2. Then there is D € JT N P(A) such that g is constant on [D]2 .

PROOF. Let (e, : n < ) be a one-to-one enumeration of the subsets of p. Let C
be the set of all a € P, () such that aNe; # aNe,, for any two distinct members ¢, 7 of a.
Let us verify that C' is as desired. Clearly, C' € NS}, \. Now fix A € J* N P(C) with the
property that given fu q, : ao N p — 2 for (ag,a1) € [A]%, we may find B € J* N P(A),
h:p— 2and Q¢ € J for &€ < p such that for any £ < p and any (ag,a1) € [B\ Q¢]%,
hl(ap N &) = gagar|(ao N E). Let g : [A]2 — X be such that g(ag,a1) € ag for every
(ag,a1) € [A]2. For (ag,a1) € [A]2, define fopa, 1 ag Nt — 2 by: foga, (@) = 1 if and
only if & € eg(aq,0,)- There must be B € J* NP(A), h:p— 2and Q¢ € J for { < p
such that for any £ < p and any (ag,a1) € [B\ Q¢J2, hl(ao N &) = fagar|(ao NE). Let

~“1({1}) = es. Now let D be the set of all a € B such that

(a) d €a,
(b) a+1 € a for every a € aN pu, and
(c) a ¢ Q¢ for every £ € an p.

Then clearly, D € J*. We claim that g takes the constant value § on [D]%. Suppose
otherwise, and pick (ag,a1) € [D]2 with g(ag,a1) # 8. There must be o € ag N p such
that a € esAeg(aq,a,)- Then h(a) # faa, (o). Contradiction. O

ProprosITION 4.14.  Suppose A = 2 for some cardinal p < X. Then there is
D € NS;,  such that {AC D: A — (I7 )%} € NAIn;

PrROOF. We can assume that P, () — (It ,)? since otherwise the result is trivial.

Pick a cardinal @ < A such that 2# = A. Then by Lemma 1.9, u > x, and consequently
cf(A) > k. Set J = NS . Let C € NS[ | be as in the statement of Lemma 4.13. By
Lemma 1.2, there is Z 6 NS, , such that J|Z = 1,xZ. Then by Theorem 2.14 and
Lemma 4.5, D =CNZ is as desired. O

LEMMA 4.15 (Matet-Usuba [23]).  Suppose X is regular, and let 2 < n < k. Then

NSJ:,,\ - (Iix)%

LEMMA 4.16 (Matet-Usuba [23]).  Suppose 2<* = X\. Then NSJ, » C NSh, .
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LEMMA 4.17 (Matet-Usuba [23]). Suppose A = 2# for some cardinal u. Then
NShy x N P(C) € NSJ,. » for some C € NSZ,»

PROPOSITION 4.18.  Suppose that A<* = X, but X\ is not a strong limit cardinal.
Then there is C € NSy, with the following property: For any A C C such that A -

(I:)\)2, there is B C A such that B - (I;A)2 but B 7? (I;)\)?’.

PROOF. We proceed as in the proof of Proposition 4.12. There must be a cardinal
i < A such that A\ = 2#. By Proposition 4.14, and Lemmas 1.4 and 4.17, we may
find C' € NSJ \ such that {B C C': B — (I74)?} € NAIn} ,, NSS,»|C = LealC,

and NSh, » N P(C) € NSJ,;». Now fix A C C with A — (127)\)2. By Lemma 4.8

A € NSh/ ,, so by Lemma 4.11 there is B € NSh , N P(A) with B € NAIn, . Then
clearly B 74<—> (I:)\)?’. On the other hand B — (I:,/\)2 by Lemmas 4.15 and 4.16. O

Let us observe that by a result of Neeman [24], it is consistent relative to infinitely
many supercompact cardinals that there is a cardinal v such that

(a) there is no vT-Aronszajn tree, and
(b) v is a strong limit cardinal of cofinality w, and 2 = v+ (and therefore 2# # v* for
every cardinal u < v™t).

If A<* = X but ) is not weakly compact, then by a result of [23] and Lemma 4.3,
for any A € NSZ}\7 Ae NSh;;)\ if and only if (NS, |A)* — (NSS:’)\)2 if and only if
(NS, | A)* — (IZA)Z. For triples, the following holds.

THEOREM 4.19.  Suppose that \<* = X and X is not weakly compact. Then for any
Ae NS:’A, the following are equivalent:
(i) AeNAInS,.
(i) (NSxa|A)* — (NSS] )%
(if) (NSl )" — (1)

Proor. By Propositions 4.4, 4.7 and 4.14. O

5. Almost ineffability 2.

This section is concerned with the case when A is weakly compact. We show that if
(A<* = X and) X is weakly compact, then there is C' € NS}, , such that

(a) for every A C C with A — (I7,)3, there is B C A with B — (I,)? and
< < ®
B e 1\IAIH,..€7)\7 and
(b) forany ACC, A - (I:’)\)2 if and only if A - (I:’)\)?n

These results contrast with those in Section 4 concerning the case when A\<* = \
and A is not weakly compact.
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LEMMA 5.1 (Shelah [25]). Suppose k is weakly compact. Then NSh,; is a normal
ideal on k. Moreover, { € K : u is a Mahlo cardinal} € NShy,.

LEMMA 5.2 (Johnson [11]). Let A € NSh and h, : a — a for a € A. Then there
is h: k — K such that for any n < k, {a € A : ho|n = h|n} € NSh;.

LEMMA 5.3 (Carr [7]). Ifk is 2(\") _Shelah, then k is A\-supercompact.

PROPOSITION 5.4.  Suppose A is weakly compact and k is A\-Shelah. Then k is
almost A-ineffable.

PROOF. We use Lemma 4.5. Let g : [P;(\)]2 — X be such that g(ag,a1) € ag
for every (ag,a1) € [P,(\)]%. Let W be the set of Mahlo cardinals p with £ < g < A.
By Lemma 5.3, k is almost p-ineffable for every pu € W. For each p € W, we may find
B, € Ii’u and &, € p such that g takes the constant value £, on [Bu]2<' By Lemma 5.1,
there must be A € NShi N P(W) and ¢ € A such that &, = ¢ for every u € A. Let
P.(X) ={es: B < A}. Let D be the set of all 4 € A such that

(a) eg C p for every B € p, and
(b) for every cardinal v with k < v < u, P.(v) C{es: 0 < pu}.

It is simple to see that D € NSh}. Note that for any u € D, {eg : 3 < u} = Py (u). For
p € D, define hy, : pn — p by h,(3) = the least v such that eg C e, and e, € B,. By
Lemma 5.2, there is h : A — A such that for any n < A, {sz € D : h,|n = h|n} € NShy.
Set H = {es : 6 € ran(h)}. Then clearly eg C ey (g) for every g < X, so H € I;A. Let us
show that g is constant on [H]2. Thus let 7,0 < A with en(y) < en(e)- Pick n < X with
{v,0} € 1. We may find p € D such that hy|n = h|n. Then (ep(y), €no)) € [Bul%, and
therefore g(en(y), eno)) =& O

LEMMA 5.5 (Matet-Usuba [23]). Suppose X is weakly compact, and 2 < n < K.
Then NSJ; , — (NSJ; )2

LEMMA 5.6 (Matet-Usuba [23]). Suppose X is weakly compact. Then for any
A eNSJ/,, there is B € NSJ, N P(A) such that NSJ . x| B = NSS, 5| B.

PROPOSITION 5.7.  Suppose X\ is weakly compact, and let 2 < n < k. Then
NSJ:, — (NSJ} )3,

Proor. By Lemmas 1.1 and 1.3 we may find Q¢ € NSS, ) for ( < X such that
NSSex = Ug<>\ P(Qc).

Let A € NSJ', and F : [P,(\)]2 — n, where 2 < < . By Lemma 5.6 there is
B € NSJ}, 1 P(A) such that NSJ, 5| B = NSS,. | B.

Select bijections 7 : [P;(A\)]> — A and o : Axn — A. For ¢ € B, define f. : ¢ — 2 by:
fe(B) = 1if and only if one can find a, b such that a C b C cand 8 = o(n(a,b), F(a,b,c)).
Pick g : A — 2 so that for any a < A\, {c € B:Vy € cna(f.(v) =g(v))} € NSS;A.

Put h = {((a,b),j) € [B]*xn : g(o(n(a,b),j)) = 1}. Let us show that h is a function
with domain [B]?. Thus let (a,b) € [B]?>. Set z = {o(n(a,b),j) : j < n}. Pick a € A
with z C «. There must be d € B such that
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e b Cd.
e 2Cd.
e fal(dNa)=g|(dNa).

Then for each J<mn, fd(a(ﬂ(a7 b)7])) = g(a(ﬂ(cy b)a]))
By induction on §{ < A, we define a¢ € B so that

e 1 C ag.

RIS ag.

o ag\as # 0 for all 6 <&.

 ag ¢ Q.

e F(ay,as,a¢) = h(ay,as) whenever v < 6 < ¢ and ay € as C ae.

Suppose a¢ has been constructed for each { < §. Pick e € P, () so that n C e and
e\ ac # 0 for every ¢ < . Now select § < X so that § = oc“(6 x 1), and 7(a,as) € 0
whenever v < 0 < £ and a, C as. Select ¢ € B so that

o {£}UeCH.
e o(m(ay,as),j) € t whenever j <n, {7,0} CtN¢& and ay, C as.

ot ¢ Qe
o fi|(tNO) =g|(tN¥).

Note that if v, 0 are such that v < § < { and a, C a5 € t, then F(ay,a5,t) =
h(a'yva5)> since ft(o—(ﬂ(a'y,aé)aF(a’yvaéat))) =1= g(o’ W(a’y,at;)aF(a’wat;at)))' We set
ag = t.

Now put D = {a¢ : ¢ < A}. Then clearly D € NSS;A. Hence by Lemma 5.5, we
may find E € NSJ, N P(D) and i < 5 such that h takes the constant value i on [E]?.
It is simple to see that F takes the constant value i on [E]3. O

By (the proof of) Theorem 6.2 in [12], it follows that if A is weakly compact, then
NSJ:’)\ — (NSJ;/\)%I whenever 2 <n < w and 2 <7 < k.

COROLLARY 5.8.  Suppose \ is weakly compact. Then there is C' € NS, y with the
property that for any A C C such that A — (I:’)\)?’, we may find B C A such that
B - (I74)? and B € NAIn, .

PrROOF. Let A € NAIn, be such that A — (I7,)3. By Lemma 4.11, there

, < ;
is B C A with B € NSh;)\ N NAlIn, ». Then by Lemma 4.16 and Proposition 5.7,
B — (NSJ:)\)ZS. O

LEMMA 5.9 (Matet-Usuba [23]).  Suppose A is weakly compact. Then k is X\-Shelah
Just in case P, (\) ¢ NSJ,; x.

PROPOSITION 5.10.  Suppose A is weakly compact. Then the following are equiva-
lent:

(i) k is almost A-ineffable.
(i) NS; , — (NSS} )%
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(if) NS;, — (I} )
PROOF. (i) — (ii): By Proposition 5.7 and Lemmas 2.3 and 4.16.

(i) — (iii): Trivial.
(iii) — (i): By Proposition 5.4 and Lemmas 1.4, 4.8 and 5.9. O

It was shown in [23] that if A<} = A, then  is A-Shelah if and only if (NS} )" —
(NSS:’A)2 if and only if NSF - (I:,A)? Here is the corresponding result for triples:
COROLLARY 5.11.  Suppose A<* = \. Then the following are equivalent:

(i) K is almost A-ineffable.
(ii) (NSZY")" — (Nss,)%
(i) NS{, — (11,

PrROOF. (i) — (ii): By Lemmas 1.12 and 2.3, we have NSLM;N C NSh,x C
NAIn, ». Now apply Proposition 4.4. ,

(ii) — (iii): Trivial.

(iii) — (i): By Theorem 4.19 and Proposition 5.10. O

PROPOSITION 5.12.  Suppose \ is weakly compact. Then there is C € NS[  such
that for any A C C, the following are equivalent:

(i) A—(I7,)%

PROOF. By Lemma 1.4, we may find C' € NS, y such that NSS, ,|C = I, ,|C.
Then by Lemma 4.8 and Proposition 5.7, C' is as desired. O

6. Almost ineffability 3.

This section is concerned with the case 2* = A<~.

LEMMA 6.1.  Suppose 2% = A<F and P,()\) - (I;A)?’. Then cf(A) < &, and

moreover A< = \T.
Proor. By Lemmas 1.10 and 1.11. (]
Let us show that if 2* = A<*, then (p, A(NAIn, x<))" — (NST )3

PROPOSITION 6.2.  Suppose 2* = A<%. Then (p, x»(NAIn, r<<))* — (NS:)\)?7 for
every n with 2 <n < k.

PrROOF. The proof is a straightforward modification of that of Proposition 3.4. [
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Next we prove that if x is Mahlo and 2* = A<*, then there is C' € (NSL’\’];N)* such
that

(a) {ACC: A - (I:y)\)3} C (ps A (NAIn, x<~))T, and
(b) for any A C C with A - (I:,A)Z’ there is B C A with B - (I;A)2 and B 7?
(T2

LEMMA 6.3.  Suppose that k is inaccessible and cf(\) < k, and let 2 < n < w and
2 <n < k. Then the following hold:

(i) Let X C {z € Xy : |xNk| is an inaccessible cardinal} be such that X -
(I::)\<R)Z. Then q;j\(X) - (I:’)\)".

n
(ii) Let A C P,()\) be such that A - (I:)\)Z Then, gy x“A — <Ii>\<)z
PROOF. Proceed as in the proofs of Propositions 3.4 and 3.5. 0

PROPOSITION 6.4.  Suppose that k is Mahlo and 2 = X<%. Then there is C €
<K
(NSPL ") such that {AC C: A — (I50)%) € (Pra(NAIn, z<e))

PROOF. We can assume that (NSL):};N)* — (I;A)?’ since otherwise the result is
trivial. Then by Lemma 6.1, ¢f()\) < x and )\<“<: AT. Now Proposition 4.14 tells us
that there is & € NS} \<. such that {X C E: X - (Ii)\q)ii} C NAIn:,KN. Set
C= qgi\(E) Note that C' € (NSL’\’])\@)* by Lemma 3.1.

Given A C C with A - (I:’/\)3, put X = g,»“A. Then clearly X C E. Moreover
by Lemma 6.3, X - (I’j’)\q)i*7 and therefore X € NAIn:ﬂ\“. It follows that A ¢
Pra(NAIn, y<x), since by Lemma 3.2 A= {zNA:z € X} O

PROPOSITION 6.5.  Suppose that r is Mahlo and 2 = X<¥. Then there is C €
<r
(NSL):})\ )* with the following property: For any A C C' such that A - (I:,)\){ there is
B C A such that B - (I:,/\)2 but B 7? (I:VA):)’.

PRrROOF. Exactly as in the proof of the preceding proposition, we can assume that
<K
(NSQ])\ )>* - (7 4)?, which entails that cf(\) < & and A<" = A*. By Proposition 4.18

and Lemmas 2.2 and 3.1 we may find Z € (NSL/\;:]:N)* such that

(a) Z C{z € X, : 2Nk is an inaccessible cardinal }, and
(b) for any X C Z with X - (I:,,\<~)27 there is Y C X with YV - (I:’)\<N)2 and

Y 7@ (I:,A<~)3~

Put C = q;i(Z) Note that C' € (NS,[;\,])\M)* by Lemma 3.1. Now let A C C be such that
A - (I:)\)? Since by Lemma 6.3, g, x“A - (I:’A<N)2, we may find Y C g, »“A with

Y - (I:}A“)2 and Y 7% (I:))\q)?’. Set B = q;i(Y) Then clearly, B C A. Moreover
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+ )2 + \3
by Lemma 6.3, B - (I 4)* but B 7? (L) O

LEMMA 6.6.  Suppose that & is Mahlo, cf(\) < &, and there is Z € NS}, <. such
that NSS, s<~|Z = I x<x|Z. Then there is C € (NSL’\’];N)* with the property that for any
Ae I;)\ N P(C), there is B € I;A N P(A) with [B]2 = [B]?.

PROOF. Put C' = g §(Z N X,»). Then by Lemma 3.1, C € (NS 7). Let
A€ I:,)\ N P(C). Set X = gu1“A. Then by Lemma 3.1, X € I+A<~ NP(ZN X n).
Hence by Lemma 4.3, we may find Y € I+)\<KHP( ) with [Y]2 = [Y]?. Put B = qn’/\(Y).
It is simple to see that B € I}, N P(A), and [B]Z = [BJ*. O

By a result of [23] and Lemma 6.6, if cof (NS, ») < A<%, then for any A C P, ()\),
A - (NS;)\,I:M\)2 just in case A — (NS;)\)Z. We now show that the result remains

valid when 3 is substituted for 2.

LEMMA 6.7. {AC P,(\): A 7? (NS:’NI;A)?’} is a (possibly improper) strongly

normal ideal on Py (\) extending NIn, ».

PROOF. Set J={AC P.,(\): A 7? (NS:A7 R)\) }. Clearly, P(A) C J for all
A € J. It is also simple to see that if A;, Ay are any two disjoint members of J, then
AjUA, € J. Tt follows that J is a (possibly improper) ideal on PK,()\) IfA e P(P,(M\)\J,
then by Lemma 2.12 A - (NS:)\)Q, so by Lemma 1.13 A € NIn&)\. Thus NIn, » C J.

By Lemma 2.3, it follows that NSE;\’];R CJ.

Now let A€ JT and f: A — P,()\) with the property that f(a) < a for every a € A.
Let B be the set of all a € A such that a N k is an inaccessible cardinal. Note that by
Lemma 2.2, B € J. Further note that for any a € B, o.t.(f(a)) € an k. For a € B,
let h, : 0.t.(f(a)) — f(a) be the increasing enumeration of f(a). For e € P.(\), put
B. ={a € B: f(a) = e}. Suppose toward a contradiction that {B. : e € P,(\)} C J.
For e € P,;()\), pick F, : [B]2 — 2 with the property that

(a) thereisno H € NS+>\ N P(B.) such that F, takes the constant value 0 on [H]2, and
(b) there is no Q € Iﬁ’)\ N P(Be) such that F, takes the constant value 1 on [Q]2.

Now define F : [B]* — 2 by: F(ag,a1,a2) = 0 if and only if either f(ao) = f(a1)
and Fy(qq)(ao, a1,az) = 0, or o.t.(f(ao)) < o.t.(f(a1)), or f(ao) # f(a1), o.t.(f(ao)) =
o.t.(f(a1)) and he,(0) < hg, (o), where o = the least ¢ such that hy,(¢) # hal( ).

We may find C C B and i < 2 such that

(o) F takes the constant value i on [C]2, and
(B) Ce NSiA, ifi=0,and C € I+)\ otherwise.

Case I: 4 = 0. There must be D € NS+)\ NP(C) and « € k such that 0.t.(f(a)) = «
for every a € D. We inductively define 6, € A and W, € NS y for ¢ < a so that
he(o) = d, for each a € D NW,. Suppose J¢ and W, have already been constructed for
each § <o. Set S =, We and y = {ha(0) :a € DN S}. For B €y, pick dg € DN S
with hq, (o) = 3.
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CLAM 1. y has a largest element.

Proor or CLAIM 1. Suppose otherwise. Let T be the set of all a € D NS such
that

(1) for every B € anNy, dg < a, and
(2) o.t.(aNy) is an infinite limit ordinal.

Then clearly T € NS:’)\. Pick w € T. There must be 8 € w Ny with h,(c) < f. Now
select € D with w < z. Then F(dg,w,x) = 1. This contradiction completes the proof
of Claim 1. 0

CLAIM 2. hy(o) = max(y) for every a € DN S with dyax(y) < a.

PrOOF OF CLAIM 2. Suppose otherwise, and pick s € D NS with dpax) < s
and hg(o) # max(y). Select s’ € D with s < s’. Then F(dpax(y),$,s") = 1. This
contradiction completes the proof of Claim 2. O

Now set 0, = max(y) and W, = {a € S : dax(y) < a}.
Finally, put e = {6¢ : { < a} and W =, We. Then DNW € NS;)\ N P(Be.),
and moreover F, takes the constant value 0 on [D N W]2. Contradiction.

Case II: 7 = 1.

CLAIM 3.  There is z € C such that o.t.(f(a)) = 0.t.(f(2)) for every a € C with
z < a.

PRrROOF OF CLAIM 3. Suppose otherwise. Inductively pick b, € C for n < w so
that b, < bn,y1 and o0.t.(f(by)) # 0.t.(f(bpt1)). For each n < w, F(by,bny1,bni2) =1,

50 0.t.(f(by)) > 0.t.(f(bpt1)). Thus o.t.(f(bo)) > 0.t.(f(b1)) > 0.t.(f(b2)) > ---. This
contradiction completes the proof of Claim 3. g

Put 8 = o0.t.(f(2)) and C" = {a € C : z < a}. We define inductively 7, € A and
ty € C' for o < [ so that he(0) = 1, for each a € C’ with t, < a. Suppose 1¢ and t¢ have
already been constructed for each §{ < 0. Set u =, t¢ and R={a € C' : u < a}.

CLAM 4.  There is v € R such that he(0o) = hy (o) for every a € R with v < a.

PrOOF OF CLAIM 4. Suppose otherwise. Inductively select ¢, € R for n < w
so that ¢, < cpq1 and he, (o) # he, ., (o). For each n < w, F(cn,cni1,ny2) = 1, s0
he, (o) > he, ., (0). Thus he (o) > he, () > he, (o) > ---. This contradiction completes
the proof of Claim 4. O

Now put 7, = hy(0) and t, = v.

Finally, set e = {n¢ : £ < B} and t = J;_gte. Then clearly {a € C" : ¢t < a} €
I:,/\ N P(B.). Moreover F, takes the constant value 1 on [{a € C" : t < a}]2. Contradic-
tion. O

PROPOSITION 6.8.  Suppose cof (NS, \) < A<*, and let A C P.()\) with A -
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(NS}, LEL)3. Then A — (NST )%
Proor. By Lemmas 1.8, 6.6 and 6.7. O
If x is Mahlo and 2% = A<%  then by a result of [23] and Lemma 6.6, for any
A e (NSP)F A € (poa(NShya<x))T if and only if A — (NS7,)? if and only if
A — (NS"'/\7 I:A) if and only if (NS[A] |A)* — (I+ )2. The corresponding result for
trlples reads as follows:
PROPOSITION 6.9.  Suppose r is Mahlo and 2% = X<%. Then for any A €
<k
(NSL/\]A )*, the following are equivalent:

) S (p,{ )\(NAIH,..i )\<»~c))+
) A— (NS} )%

) (Nsn A0 H}\)S'
iv) (N sW A — (177

A
i) A

111

(i
(il
(ii
(

Proor. By Lemma 6.7 and Propositions 6.2 and 6.4. (]

If A<* = \, then by Lemma 1.13 and Propositions 2.11 and 2.13, P.()) - (NS;;)\)2
just in case P, () - (NS:’)\7 I;)\)?’. In contrast to this, if 2* = A<* and & is A<"-Shelah

but not almost A<*-ineffable, then (by a result of [23]) P, (\) — ((NSI[Q])\“)Jr’NSZA)z
but (by Lemma 6.7 and Propositions 6.4 and 6.8), P.(A) 7> (NS, LEL)% (Note
that it can be shown that if 2* = A<* and & is almost A<*-ineffable, then the set of

all a € A, such that 2°%(®) = 0.t.(a)<(®%) and a N & is o.t.(a)<(®"%)-Shelah but
not almost o.t.(a)<(®*)_ineffable lies in (p,»(NAIn, y<~)*). On the other hand, if

A = X<F, then by Proposition 3.4 and Lemma 2.12, P,(\) — ((NSE%]}\<")+)2 just in

case Pr(A) — (NS *, 17 )3,

Finally, we combme Propositions 2.11 and 3.4 on the one hand, and Propositions
4.4 and 6.2 on the other hand, thus showing that the two cases A<* = X and 2* = A<
can be (at least to some extent) handled simultaneously.

PROPOSITION 6.10.  Suppose ()\<")<()‘<N) = A< Then (pu(NIn, y<x))t —
((NSPL)F,NSS; )8 and (pea(NAIn, y<n )™ — (NSS, )2,

PrOOF. We prove the first assertion and leave the proof of the second to the
reader. Thus let A € (psA(NIng a<<))t. If ¢f(\) > &, then by Lemma 1.11 A<* = A

and py A(NIng z<«) = NIn, x, so by Proposition 2.11, A — ((NSE:];K)ﬂNSS:’)\)?’.
If ¢f(\) < &, then by Lemma 3.3 2* = A<® = A" and therefore by Proposition 3.4,
A — (NS NSST )3, 0
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