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Abstract. Let G be a finite Oliver group. In this paper, we discuss
the relation between tangential G-representations of smooth one-fixed-point
actions on spheres and the Smith equivalence of real G-representations.

1. Introduction.

Throughout this paper, let G be a finite group. Let V and W be real G-modules. If
there exists a homotopy sphere (resp. standard sphere) Σ with smooth G-action such that
the G-fixed-point set ΣG consists of exactly two points, a and b say, and the tangential
G-representations Ta(Σ) and Tb(Σ) are isomorphic to V and W , respectively, then we
say that V and W are Smith equivalent (resp. Smith∗ equivalent). If there exists a real
G-module U such that V ⊕U and W ⊕U are Smith equivalent (resp. Smith∗ equivalent),
then we say that V and W are stably Smith equivalent (resp. stably Smith∗ equivalent).
The Smith set Sm(G) is the subset of the real-representation ring RO(G) consisting of all
elements [V ]− [W ] such that V and W are Smith equivalent. If there exists a homotopy
sphere Σ with smooth G-action such that the G-fixed-point set ΣG consists of exactly one
point, a say, and Ta(Σ) is isomorphic to V , then we say that V is of one-fixed-point type,
or OFP type. The Smith-equivalence problem has been studied by Atiyah-Bott [1], Milnor
[15], Bredon [4], Sanchez [39], Petrie [31], Cappell-Shaneson [5], and in joint works by
Cho, Dovermann, Petrie, Randall, Suh [35], [6], [7], [36], [41] in various contexts, and
recently by Laitinen, PawaÃlowski, Solomon, Sumi and etc. [13], [28], [19], [29], [20],
[21], while the problem of smooth one-fixed-point actions on spheres was studied by
Petrie [31], [32], Laitinen-Traczyk [14], Morimoto [16], [17], [18], Laitinen-Morimoto
[11], and Bak-Morimoto [2].

Theorem 1.1. If V is a real G-module of OFP type then there exists a standard
sphere S with smooth G-action such that SG = {a} and Ta(S) ∼= V .

In Section 2, we introduce two conjectures, i.e. Conjectures 2.1 and 2.2. These
conjectures suggest an approach to investigate the Smith sets for Oliver groups. The
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next theorem answers to Conjecture 2.1 for gap groups G (cf. Section 2).

Theorem 1.2. Let V and W be real G-modules of OFP type such that resG
P V ∼=

resG
P W for all Sylow subgroups P of G. If G is a gap group then V and W are stably

Smith∗ equivalent.

This will be proved in a slightly generalized form, namely as Theorem 2.1.

Acknowledgements. The author would like to thank the referee for his carefully
reading the first manuscript and giving valuable comments.

2. Preliminary.

In this section, we prepare terms and notation which are necessary in the present
paper.

Let X be a G-space. For a point x in X, Gx denotes the isotropy subgroup of G at
x. For a subgroup H of G, we set

XH = {x ∈ X | gx = x for all g ∈ H},
X=H = {x ∈ X | Gx = H},
X>H = XH rX=H .

For a prime p, let Pp(G) denote the set of all subgroups P of p-power order (possibly
|P | = 1). Let P(G) (resp. Podd(G)) be the union of Pp(G), where p runs over the set of
all primes (resp. all odd primes).

For an integer m ≥ 0, let S(m) (resp. S
(m)
h ) denote the family of all standard

spheres (resp. homotopy spheres) X with smooth G-action such that |XG| = m. Define
the subsets RO(G, S(1)), RO(G, S

(1)
h ), RO(G, S(2)), and RO(G, S

(2)
h ) of RO(G) by

RO(G, X) = {[Ta(X)] | X ∈ X, XG = {a}}

for X = S(1), S
(1)
h , and

RO(G, X) = {[Ta(X)]− [Tb(X)] | X ∈ X, XG = {a, b}}

for X = S(2), S
(2)
h . By definition, Sm(G) coincides with RO(G, S

(2)
h ). It is clear that

RO(G, S(1)) ⊂ RO(G, S
(1)
h ) and RO(G, S(2)) ⊂ RO(G, S

(2)
h ).

By Theorem 1.1, we have

RO(G, S(1)) = RO(G, S
(1)
h ). (2.1)

A finite group G is called an Oliver group if G does not have a normal series P E H E G
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such that P and G/H are of prime-power order and H/P is cyclic. By [11, Theorem A],
RO(G, S

(1)
h ) is non-empty if and only if G is an Oliver group.

For a subset A of RO(G) and sets F and G of subgroups of G, we set

AF = {[V ]− [W ] ∈ A | V H = 0 = WH for all H ∈ F},
AG = {[V ]− [W ] ∈ A | resG

H V ∼= resG
H W for all H ∈ G},

AFG = (AF )G .

The set Sm(G)P(G) is called the primary Smith set. We know that Sm(G) r
Sm(G)P(G) is a finite set (cf. [24, Theorem 1]).

Define the set DRO(G, S(1)) by

DRO(G, S(1)) = {[V ]− [W ] ∈ RO(G) | [V ], [W ] ∈ RO(G, S(1))}.

We have the following two conjectures.

Conjecture 2.1. If G is an Oliver group then the inclusion

DRO(G, S(1))P(G) ⊂ RO(G, S(2))P(G)

holds.

Let Gnil denote the smallest normal subgroup N of G such that G/N is nilpotent.

Conjecture 2.2. If G is an Oliver group such that a Sylow 2-subgroup of Gnil is
not normal in Gnil then the coincidence

DRO(G, S(1))P(G) = RO(G, S(2))P(G)

holds.

Let X be a smooth G-manifold and F a set of subgroups of G. We say that X

satisfies the F-gap condition (resp. F-weak gap condition) if

dimXH
α > 2 dim XK

β (G)
(
resp. dimXH

α ≥ 2 dim XK
β

)
(WG)

for all subgroups H ∈ F and K > H of G and all connected components XH
α and XK

β

of XH and XK , respectively, such that XH
α ⊃ XK

β .
For a prime p, G{p} denote the intersection of all normal subgroups H of G such

that |G : H| is a power of p (possibly p0). Let L(G) denote the set of all subgroups H

of G such that H ⊃ G{p} for some p. For a set F of subgroups of G, a real G-module
V is called F-free if V H = 0 for all H ∈ F . A real G-module V is called a gap real
G-module if V is L(G)-free and V satisfies the P(G)-gap condition. If a finite group G
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not of prime-power order possesses a gap real G-module then we call G a gap group. A
finite group G not of prime-power order is a gap group if G satisfies one of the following
conditions (cf. [11, Theorem 2.3], [25, Proposition 4.3]).

(1) G = G{2}.
(2) G 6= G{p} holds for at least two odd primes p.
(3) A Sylow 2-subgroup of G is normal in G.
(4) G has a normal subgroup N such that G/N is a gap group.

If G is a gap group then for homotopy spheres Σ and Ξ with smooth G-action such
that ΣG = {a}, Ta(Σ) ∼= V , ΞG = {b}, Tb(Ξ) ∼= W , there exists an L(G)-free real
G-module U such that Σ× U and Ξ× U both satisfy the P(G)-gap condition.

Theorem 2.1. Let V and W be real G-modules such that resG
P V ∼= resG

P W for
all Sylow subgroups P of G. Suppose there exist homotopy spheres Σ and Ξ with smooth
G-action such that ΣG = {a}, Ta(Σ) ∼= V , ΞG = {b}, Tb(Ξ) ∼= W , and there exists an
L(G)-free real G-module U0 such that Σ × U0 and Ξ × U0 both satisfy the P(G)-weak
gap condition. Then there exists a standard sphere S with smooth G-action such that
SG = {a, b}, Ta(S) = V ⊕ U1, Tb(S) = W ⊕ U1 for some L(G)-free real G-module U1

and S satisfies the P(G)-weak gap condition.

For a natural number n, let Cn be a cyclic group of order n. For a prime p, let G∩p

denote the intersection of all normal subgroups H of G such that |G : H| = 1 or p. For
various Oliver groups G, e.g.

(I) an Oliver group G such that a Sylow 2-subgroup of Gnil is not normal in Gnil and
G/Gnil ∼= C3,

(II) a gap Oliver group G such that a Sylow 2-subgroup of Gnil is not normal in Gnil

and G/Gnil ∼= C6,
(III) G = H ×K such that H is a nontrivial perfect group with a dihedral subquotient

D2pq for distinct primes p and q and K is a finite group with K/K{2} = C2×· · ·×C2

(possibly the trivial group),

we got Sm(G)P(G) = RO(G){G
∩2}

P(G) , by essentially proving the validity of Conjecture 2.2
for those G.

3. Basic observation.

For a prime p, let G{p} denote the intersection of all normal subgroups H of G such
that |G : H| is a power of p.

Lemma 3.1. Let G be an Oliver group and let Σ ∈ S
(1)
h with ΣG = {a} and

V = Ta(Σ). Then the following properties hold.

(1) In general, the equality V G∩2
= 0 holds.

(2) If a Sylow 2-subgroup of G is normal in G then V G∩p

= 0 for all primes p.
(3) For each prime p and P ∈ Pp(G), ΣP is a mod-p homology sphere.
(4) For each prime p and a Sylow p-subgroup P , ΣP ∩ ΣG{p}

= {a}.
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(5) Let p be a prime with P ∈ Pp(G) such that dimV P = 0. Then ΣG{q}
= {a} for all

primes q 6= p.
(6) Let p be a prime with P ∈ Pp(G) such that dimV P > 0. Then dimV P > dimΣG{q}

for all primes q 6= p.
(7) For any P ∈ P(G), ΣP r

⋃
q ΣG{q} 6= ∅, where q runs over the set of all primes.

We remark that there exist Oliver groups G with [V ] ∈ RO(G, S
(1)
h ) and odd primes

p such that V G∩p 6= 0, e.g. G = PΣL(2, 27), An × Cp with n ≥ 6 (cf. [20]).

Proof of Lemma 3.1. (1): Let N be a normal subgroup of G with |G : N | = 2.
By Lemma 2.1 of [19], there never exists a connected closed manifold M of dimension
≥ 1 with smooth C2-action such that |MC2 | = 1. Thus we get V N = 0.

Since G/G∩2 ∼= C2 × · · · × C2, the result above implies V G∩2
= 0.

(2): Let p be an odd prime. Let N be a normal subgroup of G with |G : N | = p.
Since a Sylow 2-subgroup of N is normal, ΣN is orientable (cf. [8]). By the same
argument as the proof of Lemma 2.1 of [19] for its G (= C2) replaced by G = Cp (and
in the category of orientation-preserving actions), there never exists a connected closed
orientable manifold M of dimension ≥ 1 with smooth Cp-action such that |MCp | = 1.
Thus we get V N = 0.

Since G/G∩p ∼= Cp × · · · × Cp, the result above implies V G∩p

= 0.
(3): This follows from the Smith theory.
(4): Since PG{p} = G, ΣP ∩ ΣG{p}

= ΣG = {a}.
(5): We have

{a} ⊂ ΣG{q} ⊂ ΣP = S0.

Since

∣∣ΣG{q} ∣∣ = χ
(
ΣG{q}) ≡ 1 mod q,

we get ΣG{q}
= {a}.

(6): Note that ΣP is a mod-p homology sphere of dimension ≥ 1 and χ(ΣP ) = 0 or
2. For any prime q, we have

χ
(
ΣG{q}) ≡ 1 mod q.

Thus ΣG{q} ( ΣP , which implies dimΣG{q}
< dimΣP = dim V P .

(7): This follows from (4)–(6). ¤

Lemma 3.2. Let G be an Oliver group and let Σ ∈ S
(2)
h with ΣG = {a, b}, V =

Ta(Σ), and W = Tb(Σ). Then the following properties hold.

(1) If N is a subgroup of G with |G : N | = 2 then V N = 0 = WN or resG
N V ∼= resG

N W ,
and hence dimV N = dim WN . Thus V G∩2 ∼= WG∩2

as G/G∩2-modules.
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(2) Suppose a Sylow 2-subgroup of G is normal in G. Let p be an odd prime. If N is a
normal subgroup of G with |G : N | = p then V N = 0 = WN or resG

N V ∼= resG
N W ,

and hence dimV N = dim WN . Thus V G∩3 ∼= WG∩3
as G/G∩3-modules.

(3) Let H be a subgroup of G such that V H 6= 0 or WH 6= 0. If there exists P ∈ P(H)
satisfying V P = V H or WP = WH , then resG

H V ∼= resG
H W .

Proof. (1): Suppose V N 6= 0 or WN 6= 0. Let Xa and Xb be the connected com-
ponents of ΣN containing a and b, respectively. Then Xa or Xb has positive dimension.
The group C2 = G/N smoothly acts on Xa and Xb. Suppose dimXa > 0. Since there
never exists a connected closed smooth C2-manifold Y with dim Y > 0 and |Y C2 | = 1,
Xa contains b, i.e. Xa = Xb. If dimXb > 0 then by the same argument we get Xb = Xa.
Thus Xa = Xb holds in the both cases. This implies resG

N V ∼= resG
N W .

The equality dimV N = dim WN holds in any case where dim V N = 0 or not. This
implies V G∩2 ∼= WG∩2

as real G/G∩2-modules.
(2): Suppose V N 6= 0 or WN 6= 0. Since a Sylow 2-subgroup G2 of G is normal and

G2 ⊂ N , ΣN is orientable. Note that there never exists a connected closed orientable
smooth Cp-manifold Y such that dimY > 0 and |Y Cp | = 1. By the argument same as
the proof of (1), we get resG

N V ∼= resG
N W .

The equality dimV N = dim WN holds in any case where dim V N = 0 or not. This
implies V G∩3 ∼= WG∩3

as real G/G∩3-modules.
(3): By the Smith theory, ΣP is a mod-p homology sphere, where |P | = pk. By

the assumption that V P = V H 6= 0 or WP = WH 6= 0 holds, ΣH = ΣP is a connected
manifold containing a and b. Thus resG

H V ∼= resG
H W as real H-modules. ¤

Real G-modules V and W are P(G)-matched Smith-equivalent if V and W are
Smith-equivalent and resG

P V ∼= resG
P W for a Sylow 2-subgroup P of G. If G does not

contain an element of order 8 then Smith-equivalent V and W are P(G)-matched Smith-
equivalent. The next proposition immediately follows from Lemma 3.2.

Proposition 3.3. P(G)-matched Smith-equivalent real G-modules V and W are
isomorphic as real G-modules if for each cyclic subgroup C of G there exists P ∈ P(C)
such that V P = V C 6= 0 or WP = WC 6= 0.

This is available to show that G = SL(2, 5) does not have a pair (V, W ) of Smith-
equivalent non-isomorphic real G-modules V and W of dimension ≤ 17. For the conve-
nience of readers, we give an outline of the proof. Let G = SL(2, 5). A. Borowiecka [3]
tabulated the character of U and the dimension of UH for irreducible real G-modules
U and subgroups H of G. We can also obtain the data by using the computer software
GAP. The order of an element of G is 1, 2, 3, 4, 5, 6 or 10. Let (V, W ) be a pair of
Smith-equivalent real G-modules of dimension ≤ 17. Since G does not contain elements
of order 8, V and W are P(G)-matched. By using this with dimV , dim W ≤ 17, we can
see that each irreducible component of V and W is of dimension 3, 4 or 5, and moreover
that V Cp = V C2p and WCp = WC2p for p = 3 and 5, and that dimV Cn = dim WCn > 0
for n = 1, 2, 3, 4, 5. Thus, by Proposition 3.3 we get V ∼= W .
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4. Proofs of Theorems 1.1 and 2.1.

Let X and Y be connected closed oriented smooth manifolds with smooth G-action
such that for each g ∈ G, g preserves the orientation of X if and only if g preserves the
orientation of Y . Let x0 and y0 be points of X and Y , respectively, such that Gx0 ⊂
Gy0 and there exists an orientation-reversing linear Gx0-isomorphism ϕ : Tx0(X) →
Ty0(Y ). Clearly, an element g ∈ Gx0 preserves the orientation of Tx0(X) if and only if
it preserves the orientation of Ty0(Y ). Consider the G-manifold G ×Gx0

Y . Forgetting
the G-actions, the connected component Y ′ = {[e, y] ∈ G×Gx0

Y | y ∈ Y } of G×Gx0
Y

is canonically identified with Y and hence oriented, where e is the unit of G. We can
choose an orientation of G ×Gx0

Y such that gϕg−1 : Tgx0(X) → gT[e,y0]({e} × Y ) is
orientation-reversing for arbitrary g ∈ G. Thus we can obtain the G-connected sum
X#G,(Gx0 )(G×Gx0

Y ) at points gx0 and [g, y0], g ∈ G. If we choose the other orientation
of X then the resulting G-manifold is denoted by −X. The canonical identification map
from X to −X is orientation-reversing. Hence for arbitrary x0 ∈ X, we obtain the
G-connected sum

X(#, x0) = X#G,(Gx0 )

(
G×Gx0

−X
)

at points gx0 and [g, x0], g ∈ G.
Let Σ ∈ S

(1)
h , ΣG = {a} and V = Ta(Σ). For a point b ∈ Σ with b 6= a, the

resulting space Σ(#, b) belongs to S
(1)
h and possesses a specific point a′ = [e, a]. There is

a canonical orientation-reversing linear Gb-isomorphism Ta(Σ) → Ta′(Σ(#, b)). We set

AΣ =
⋃
p

ΣG{p}

where p ranges over the set of all primes dividing |G|. By Lemma 3.1, ΣP rAΣ 6= ∅ for
all P ∈ P(G). Let MΣ = M(AΣ,Σ) be the G-regular (manifold) neighborhood of AΣ in
Σ such that ΣP rMΣ 6= ∅ for all P ∈ P(G). Let p be a prime and P a Sylow p-subgroup
of G. Take a point xp in ΣP rMΣ. Then the isotropy subgroup Gxp

satisfies

P ⊂ Gxp
/∈ L(G).

Thus |G : Gxp
| divides |G : P | and |G : Gxp

| 6= 1.

Proof of Theorem 1.1. There exist points y1, . . . , ym in Σ with the following
properties.

(1) The conjugacy classes (Gy1), . . . , (Gym
) of isotropy subgroups Gy1 , . . . , Gym

are all
distinct.

(2) Gyi /∈ L(G) for every i = 1, . . . , m.
(3) Gyi

contains a Sylow subgroup of G for every i = 1, . . . , m.
(4) There exist positive integers k(1), . . . , k(m) such that
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m∑

i=1

k(i)|G : Gyi | ≡ −1 mod |Θn|,

where Θn is the group of homotopy spheres of dimension n = dim Σ.

By iterated replacements of Σ by Σ(#, yi), where i ranges from 1 to m, we may assume
that there exist orientation-reversing linear Gyi

-isomorphisms Tyi
(Σ) → Ta(Σ). Then

the resulting space Y of iterated G-connected sums of copies of Σ,

Y = Σ#G,(Gy1 )(G×Gy1
Σ)#G,(Gy1 ) · · ·#G,(Gy1 )(G×Gy1

Σ)
︸ ︷︷ ︸

k(1) fold

#G,(Gy2 )(G×Gy2
Σ)#G,(Gy2 ) · · ·#G,(Gy2 )(G×Gy2

Σ)
︸ ︷︷ ︸

k(2) fold

· · · · · · · · ·
#G,(Gym )(G×Gym

Σ)#G,(Gym ) · · ·#G,(Gym )(G×Gym
Σ)︸ ︷︷ ︸

k(m) fold

, (4.1)

is a standard sphere with smooth G-action such that Y G = {a} and Ta(Y ) = V (cf. [12,
Proposition 1.3 and Example 1.2]). ¤

For a real G-module V , we define V L(G) to be the smallest G-submodule of V

containing V G{q}
for all primes q. With respect to some G-invariant inner product on

V , we have the orthogonal decomposition

V = V L(G) ⊕ VL(G).

Proof of Theorem 2.1. First fix a prime p and a Sylow p-subgroup P of G.
Then take a point xp ∈ ΣP as above. Let D(xp, εp) be a small closed disk P -neighborhood
of xp in Σ such that D(xp, εp) ∩ MΣ = ∅. Consider the contractible P -manifold Yp =
Σ r Int(D(xp, εp)). Then T (Yp) is a (non-equivariantly) trivial real vector bundle over
Yp and [T (Yp)] = 0 in K̃OP (Yp)(p). Thus we get the following properties.

(1) T (MΣ) is a (non-equivariantly) trivial real vector bundle.
(2) [T (MΣ)] = 0 in K̃OQ(resG

Q MΣ)(q) for all primes q and Q ∈ Pq(G).

We obtain the G-space AΞ and the G-manifold MΞ similarly to AΣ and MΣ, respec-
tively. We set M = (MΣ qMΞ)×D(U0). Then the following properties are obtained.

(1) T (M) is (non-equivariantly) a product bundle.
(2) [T (M)] = 0 in K̃OQ(resG

Q M)(q) for all primes q and Q ∈ Pq(G).
(3) MG = {a, b}.
(4) ML = AL

Σ qAL
Ξ for all L ∈ L(G).

(5) M satisfies the P(G)-weak gap condition.

There may be words for (5) above. By the hypothesis on U0 in Theorem 2.1, the G-space
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N = (Σ q Ξ) × U0 satisfies the P(G)-weak gap condition. Note dimΣ = dimΞ. By
the definition of M , the dimension of an arbitrary connected component of M is equal
to dim N . For a subgroup H of G and a point x in MH , the equality dimTx(M)H =
dimTx(N)H obviously holds. Thus M satisfies the P(G)-weak gap condition as well as
N .

Now regarding x0 = a, ξM = T (M), νM = εM (0) and U = Ta(M), we use Lemmas
4.2 and 4.3 of [20]. There exists a disk D ⊃ M with smooth G-action satisfying the
following conditions.

(1) DG = {a, b}.
(2) For L ∈ L(G), the connected components DL

a and DL
b of DL containing a and b

coincide with those of ML
Σ = AL

Σ and ML
Ξ = AL

Ξ, respectively.
(3) Ta(D) = V ⊕ U0 ⊕ R[G]L(G)

⊕k and Tb(D) = W ⊕ U0 ⊕ R[G]L(G)
⊕k for some k ≥ 3.

(4) For any prime q and Q ∈ Pq(G), π1(DQ) is a finite abelian group of order prime to
q.

(5) For each x ∈ D, there exists y ∈ M such that Gy ⊃ Gx and Tx(D) ∼= resGy

Gx
Ty(M)⊕

resG
Gx

(R[G]L(G)
⊕k). Hence D satisfies the P(G)-weak gap condition.

Since the integer k appearing in (3) above is greater than or equal to 3, the following
properties are obtained.

(6) For Q ∈ P(G), dimDQ ≥ 6.
(7) For H with Q ∈ P(G) such that Q / H and H/Q is cyclic, dim D=H ≥ 3.

If necessary, we replace D by D ×D(R[G]L(G)
⊕2) so that

(8) If dimDQ = 2 dimDH holds for Q ∈ P(G) and H > Q then
(a) |H : Q| = 2, |HG{2} : QG{2}| = 2,
(b) QG{r} = G for all odd primes r, and
(c) dim D>H ≤ dimDH − 2.

By the proof of [21, Theorem 5.1], there exists a G-framed map fff = (f, bX), where f :
(X, ∂X) → (D, ∂D) is a degree-one G-map and bX : T (X)⊕εX(Ru) → f∗T (D)⊕εX(Ru)
is a G-vector bundle isomorphism for some non-negative integer u, such that XG = ∅,
∂f = f |∂X : ∂X → ∂D is the identity map, and f : X → D is a homotopy equivalence.
Hence, X is a contractible smooth G-manifold with ∂X = ∂D. By virtue of the bundle
datum bX , it holds that dimXH ≤ dimDH for all subgroups H of G. Since D and X

are contractible, DP and XP are non-empty and connected for all P ∈ P(G), and hence
the equality dimXH = dimDH holds for H ∈ P(G). As D satisfies the P(G)-weak gap
condition, X also satisfies the P(G)-weak gap condition. The glued space Y = D

⋃
∂D X

along the boundary is a homotopy sphere and satisfies the P(G)-weak gap condition. For
each prime p and a Sylow p-subgroup P of G, since dim Y P ≥ 6 and dimY P > dimY H

if P < H ≤ G, there exists a point yp ∈ Y with Gyp
= P . By taking G-equivariant

connected sum of copies of Y (similarly to (4.1)), we obtain a standard sphere S with
smooth G-action such that SG = {a, b}, Ta(S) = V ⊕ U1, Tb(S) = W ⊕ U1 for some
L(G)-free real G-module U1, and S satisfies the P(G)-weak gap condition. Hence V and
W are stably Smith∗ equivalent. ¤
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