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Weak Neumann implies H1 for Stokes
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Abstract. Let Ω ⊂ Rn be a domain with uniform C3 boundary and
assume that the Helmholtz decomposition exists in ILq(Ω) := Lq(Ω)n for
some q ∈ (1,∞). We show that a suitable translate of the Stokes operator
admits a bounded H∞-calculus in ILp

σ(Ω) for p ∈ (min{q, q′}, max{q, q′}). For
the proof we use a recent maximal regularity result for the Stokes operator
on such domains ([GHHS12]) and an abstract result for the H∞-calculus in
complemented subspaces ([KKW06], [KW13]).

1. Introduction and main result.

Given an open set Ω ⊂ Rn, it is well known that the Stokes operator A2 is a
selfadjoint and semibounded operator in IL2

σ(Ω). In particular, A2 admits a bounded
H∞-calculus on IL2

σ(Ω), where IL2
σ(Ω) denotes the space of solenoidal vector fields in

IL2(Ω) := L2(Ω)n.
In this paper, we address the question whether these results can be generalized

to corresponding results in ILq
σ(Ω) for q 6= 2. An affirmative answer for bounded and

exterior domains with sufficiently smooth boundary was given in [NS03] and [Abe05b].
Whereas the proof of the results given in [NS03] is based on a localization technique
and the corresponding result in the halfspace and the bent halfspace, pseudo differential
operator techniques for the reduced stokes operator were used in the latter reference. The
same aproach was also used to treat layers, layer-like domains, and aperture domains,
see [Abe05c] and [Abe05a]. Furthermore, in [FR07] the authors considered the case of
an unbounded domain with several cylindrical exits at infinity. However, corresponding
results for general unbounded domains seem to be unknown in general, unless q = 2. A
key problem in the study of the Stokes problem in such general unbounded domains is
that the Helmholtz decomposition of ILq(Ω) into ILq

σ(Ω)⊕Gq(Ω) is not possible for q 6= 2,
in general. Here, Gq(Ω) ⊂ ILq(Ω) denotes the space of gradient fields. Indeed, Bogovskĭı
gave in [Bog86] examples of unbounded domains Ω with smooth boundaries for which
the Helmholtz decomposition of ILq(Ω) exists only for a restricted range of q.

One way to overcome the difficulties for unbounded domains described above was
shown in [FKS05], [FKS09] by Farwig, Kozono and Sohr who replaced the usual ILq(Ω)-
space by
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ĨL
q
(Ω) :=

{
IL2(Ω) ∩ ILq(Ω), 2 ≤ q < ∞,

IL2(Ω) + ILq(Ω), 1 < q < 2

for domains Ω ⊂ Rn with uniform C1,1-boundaries. In particular, they showed that the
Stokes operator in ĨL

q

σ(Ω) is R-sectorial. Using this and an abstract result by Kalton,
Kunstmann and Weis ([KKW06]), the second author proved in [Kun08] that the Stokes
operator admits a bounded H∞-calculus in ĨL

q

σ(Ω), see Remark 1.2 for details.
For the usual space ILq(Ω), such a general result does not exist in the literature.

However, there are results of the type “Existence of the Helmholtz decomposition implies
H∞-calculus of the Stokes operator”. Indeed, under the additional assumption that the
homogeneous Sobolev space Ŵ 1,q(Ω) admits a certain decomposition such a result was
proved in [AT09] and [Abe10] for general domains with a sufficiently smooth bound-
ary. The proof is again based on pseudo differential operator theory and the reduced
Stokes operator. In this paper we prove a similar result without the latter additional
assumption on Ŵ 1,q(Ω). However, we need to impose higher regularity on the boundary
of Ω than [Abe10]. Similar to the results shown in [Kun08], our proof is based on an
abstract result by Kalton, Kunstmann and Weis ([KKW06], [KW13]) and R-
sectoriality of the Stokes operator proved in [GHHS12]. A similar approach was also
exploited in [KKW06], [KW13] for the Stokes operator on bounded domains.

In order to state our main result, let us recall the definition of the Helmholtz de-
composition. Given a domain Ω ⊂ Rn and q ∈ (1,∞), we set

Gq(Ω) :=
{
u ∈ ILq(Ω) : u = ∇π for some π ∈ W 1,q

loc (Ω)
}
,

ILq
σ(Ω) := {u ∈ C∞c (Ω) : div u = 0 in Ω}‖·‖q

.

We say that the Helmholtz projection exists for ILq(Ω) whenever ILq(Ω) can be decom-
posed into

ILq(Ω) = ILq
σ(Ω)⊕Gq(Ω),

where ⊕ denotes the topological direct sum. In this case, there exists a unique projection
operator Pq from ILq(Ω) onto ILq

σ(Ω) having Gq(Ω) as its null space. Let q′ denote the
Hölder conjugate exponent, i.e. q′ = q/(q − 1). It is well known (see, e.g., [Gal94,
Lemma III.1.2]) that the Helmholtz projection exists for ILq(Ω) if and only if, for every
f ∈ ILq(Ω), there exists a function u ∈ Ŵ 1,q(Ω) := {v ∈ L1

loc(Ω) : ∇v ∈ ILq(Ω)}, unique
up to constants, satisfying

〈∇u,∇ϕ〉 = 〈f,∇ϕ〉, ϕ ∈ Ŵ 1,q′(Ω). (1)

Problem (1) is called the weak Neumann problem.
Now, let us assume that Ω ⊂ Rn, n ≥ 2, is a domain with a uniform C1,1-boundary

(cf. Section 2 below for the precise definition) and that the Helmholtz projection Pq

exists on ILq(Ω) for some q ∈ (1,∞). We define the Stokes operator Aq in ILq
σ(Ω) as
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D(Aq) := W 2,q(Ω)n ∩W 1,q
0 (Ω)n ∩ ILq

σ(Ω),

Aqu := Pq∆u for u ∈ D(Aq).
(2)

In this situation, Proposition 2.1 and 2.2 below show that, for p ∈ [min{q, q′},max{q, q′}]
where q′ denotes the Hölder conjugate exponent, the Helmholtz projection exists in
ILp(Ω) and that −Ap generates an analytic semigroup in ILp

σ(Ω). These semigroups
are consistent, hence also resolvent operators R(λ,Ap) are consistent for large Re λ and
p ∈ [min{q, q′},max{q, q′}]. Finally, we are able to state the main result of this paper.

Theorem 1.1. Let n ≥ 2, q ∈ (1,∞). Assume that Ω ⊂ Rn is a domain with
uniform C3-boundary and that the Helmholtz projection Pq exists for ILq(Ω). Then,
there exists λ0 > 0 such that Stokes operator λ0 − Ap admits a bounded H∞-calculus in
ILp

σ(Ω), where p ∈ (min{q, q′},max{q, q′}) and q′ denotes the Hölder conjugate exponent.
These functional calculi are consistent.

We make a few comments on our method of proof and the regularity assumptions
for Ω.

Remark 1.2. (a) As pointed out above, we use the abstract result from [KKW06],
[KW13], and thus need information on the Stokes operator and its domain. The assump-
tion of a uniform C3-boundary is the same as in [GHHS12] and is needed here to have
the Stokes semigroup and R-sectoriality of λ0 −Ap in ILp

σ(Ω).
(b) In [Kun08, Theorem 1.1, Corollary 1.2], Ω had been assumed to have a uni-

form C1,1-boundary. The proof of [Kun08, Theorem 1.1] given there contains a gap,
since application of [KKW06, Theorem 8.2] has to be replaced by application of
[KW13, Theorem 1.3], cited as Theorem 2.3 below. This means that, compared to
[KKW06, Theorem 8.2], one has to check an additional property. Below we shall see
that this is possible under the assumption that Ω has a uniform C2+µ-boundary for some
µ ∈ (0, 1). The additional property for the application of Theorem 2.3 is checked by the
proof of (8) below. Actually, this will be the main work in the proof of Theorem 1.1.

(c) The same correction (∂Ω has to be assumed uniformly C2+µ for some µ ∈ (0, 1)
instead of uniformly C1,1) has to be applied to the assumptions of [Kun10, Theorem
1.1, Theorem 1.5, Theorem 1.6], since the proofs of these results used the assertion of
[Kun08, Corollary 1.2].

This paper is organized as follows. In the next section we discuss some basic facts
of the Helmholtz decomposition and the Stokes operator. Moreover, we recall the abstract
result from [KKW06] and [KW13]. Finally, we present in the last section the proof of
our main result.

2. Preliminaries.

We start with some comments on existence and consistency of the Helmholtz projec-
tion for domains Ω ⊂ Rn with a uniform C1-boundary. We recall that Ω is said to have
uniform F-boundary, where F ∈ {C1, C1,1, C2+µ, C3}, if there are constants α, β,K > 0
such that, for each x0 ∈ ∂Ω, there is a Cartesian coordinate system with origin at x0
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and coordinates y = (y′, yn), y′ = (y1, . . . , yn−1) and a function h ∈ F , defined on
{y′ : |y′| ≤ α} and with ‖h‖F ≤ K, such that, for the neighborhood

Uα,β,h(x0) = {y = (y′, yn) ∈ Rn : |yn − h(y′)| < β, |y′| < α}

of x0 we have Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

Uα,β,h(x0) ∩ Ω = {(y′, yn) : h(y′)− β < yn < h(y′), |y′| < α}.

In order to simplify notation, we assume that the Helmholtz decomposition in ILq(Ω)
exists for some q > 2 (the case q < 2 can be treated similarly or by dualization) and
denote its Hölder conjugate exponent by q′. Then the Helmholtz decomposition exists
for p ∈ [q′, q], and the family of Helmholtz projections (Pp)p∈[q′,q] is consistent, i.e.

Ppf = P2f, p ∈ [q′, q], f ∈ C∞c (Ω)n. (3)

This easily follows from [FKS07]. Indeed, for f ∈ C∞c (Ω)n there exists fσ ∈ IL2
σ(Ω) ∩

ILp
σ(Ω) and g ∈ Ŵ 1,2(Ω) ∩ Ŵ 1,p(Ω) such that

f = fσ +∇g.

Since the decomposition is unique by assumption, we see that P2 and Pq are consistent.
Hence, the claim follows for p ∈ [2, q] from interpolation theory. By [GHHS12, Lemma
5.1], the Helmholtz decomposition exists for the Hölder conjugate exponent q′ as well.
Since consistency of P2 and Pq′ follows from a duality argument, (3) holds. Summing
up, we proved the following proposition.

Proposition 2.1. Let n ≥ 2, q ∈ (1,∞). Assume that Ω ⊂ Rn is a domain
with uniform C1-boundary and that the Helmholtz projection Pq exists for ILq(Ω). Then,
the Helmholtz projection Pp exists for p ∈ [min{q, q′},max{q, q′}], where q′ denotes the
Hölder conjugate exponent. Moreover, the family (Pp)p∈[min{q,q′},max{q,q′}] is consistent.

Finally, combining [GHHS12, Proof of Theorem 2.1] and Proposition 2.1, we obtain
the following result.

Proposition 2.2. Let n ≥ 2, q ∈ (1,∞). Assume that Ω ⊂ Rn is a domain with
uniform C3-boundary and that the Helmholtz projection Pq exists for ILq(Ω). Then, there
exists λ0 > 0 such that λ0 −Ap is R-sectorial in ILp

σ(Ω) for p ∈ [min{q, q′},max{q, q′}],
where q′ denotes the Hölder conjugate exponent of q. Moreover, the resolvents of Ap are
consistent.

The rest of this preliminary section is devoted to the abstract result from [KKW06],
[KW13] where we change notation a little.

Let B be a sectorial operator in a Banach space X, in particular, B has dense
domain and range and is injective. For α ∈ R we define homogeneous fractional spaces
by completion:
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Ẋα,B := (D(Bα), ‖Bα · ‖)∼.

Then X ∩ Ẋα,B = D(Bα). If 0 ∈ ρ(A) then Ẋα,B coincides with Xα,B , given by

Xα,B :=

{
D(Bα), α ≥ 0,

(X, ‖(1 + B)α · ‖)∼, α < 0.

For the abstract result we assume that (X0, X1) is an interpolation couple, the spaces
Xθ := [X0, X1]θ, θ ∈ (0, 1), are obtained by complex interpolation, and there is family
(Bθ)θ∈[0,1] of sectorial operators Bθ in Xθ satisfying the consistency condition

(1 + Bθ)−1x = (1 + Bθ̃)
−1x, x ∈ Xθ ∩Xθ̃, θ, θ̃ ∈ [0, 1].

We assume that (Y0, Y1) is another interpolation couple with scale Yθ = [Y0, Y1]θ of
complex interpolation spaces and a family (Aθ)θ∈[0,1] of sectorial operators satisfying
a similar consistency condition. We shall use the following corrected version ([KW13,
Theorem 1.3]) of [KKW06, Theorem 8.2]. Recall that a R-sectorial operator A : D(A) →
X is almost R-sectorial, where the latter means that {λAR(λ,A)2 : λ ∈ Σ} is R-bounded
for a sector Σ.

Proposition 2.3 (cf. [KW13, Theorem 1.3]). Let, in the situation described
above, (X0, X1) be an interpolation couple of reflexive and B-convex spaces and assume
that, for j = 0, 1, Pj : Xj → Yj are compatible surjections with compatible right inverses
Jj : Yj → Xj. Assume, for j = 0, 1, that Bj has an H∞-calculus on Xj and that Aj is
almost R-sectorial on Yj. Assume moreover that there are α < 0 < β such that

P0((X0)·α,B0
) = (Y0)·α,A0

, P1((X1)·β,B1
) = (Y1)·β,A1

(4)

and

J0 : (Y0)·α,A0
→ (X0)·α,B0

, J1 : (Y1)·β,A1
→ (X1)·β,B1

. (5)

Then, for θ ∈ (0, 1), the operator Aθ has an H∞-calculus on the complex interpolation
space Yθ = [Y0, Y1]θ.

Here the equality P (Ẋγ,B) = Ẏγ,A is meant in the following sense: the projection
P : X → Y , restricted to X∩Ẋγ,B = D(Bγ), has a continuous extension P̃ : Ẋγ,B → Ẏγ,A

which is surjective. This also implies that P is compatible with the interpolation couples
(X, Ẋγ,B) and (Y, Ẏγ,A).

Similarly, the embedding J : Ẏγ,A ↪→ Ẋγ,B is meant to indicate that the right inverse
J : Y → X, restricted to Y ∩Ẏγ,A = D(Aγ), has a continuous extension J̃ : Ẏγ,A → Ẋγ,B .
As a consequence, J̃ is a right inverse of P̃ .

In the application below we shall use X1 = IL2(Ω), X0 = ILq(Ω) and Y1 = IL2
σ(Ω),

Y0 = ILq
σ(Ω). The operator B will be a translate of the Laplace operator with Dirichlet

boundary conditions and A will be the corresponding translate of the Stokes operator.
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We shall not use θ as an explicit parameter, but p ∈ [min{q, q′},max{q, q′}], and we shall
rather index operators, i.e. Ap, Bp, than spaces and simply write X and Y .

3. Proof of the main result.

Let Ω ⊂ Rn be a domain with uniform C3-boundary, and assume that q ∈ (1,∞)
is such that the Helmholtz projection Pq exists in ILq(Ω). By Proposition 2.1 these
assumptions hold also for the conjugate exponent q′. Hence we may assume q > 2, and
it suffices to show the assertion for p ∈ (2, q). We fix λ0 > 0 according to Proposition
2.2 and such that 0 ∈ ρ(λ0 −Ap) for p ∈ [2, q].

We denote by B := λ0−∆ the Laplace operator with Dirichlet boundary conditions
in IL2(Ω) which has domain

D(B) = W 2,2(Ω)n ∩W 1,2
0 (Ω)n.

Denote by P the Helmholtz projection in IL2(Ω) onto IL2
σ(Ω). By abuse of notation we

shall write A := λ0 − P∆ with domain

D(A) = D(B) ∩ IL2
σ(Ω) = W 2,2(Ω)n ∩W 1,2

0 (Ω)n ∩ IL2
σ(Ω).

Then B and A are self-adjoint operators in IL2(Ω) and IL2
σ(Ω) ([FKS09]), respectively,

and generate exponentially stable semigroups.
For X0 := ILq(Ω) and Y0 := ILq

σ(Ω), the Helmholtz projection Pq : X1 → Y1 has a
continuous and surjective extension P̃q : X−1,Bq → Y−1,Aq . This can be shown by the
argument given in [KKW06], which we recall here for completeness. By [GHHS12],
we have

D(Aq) = D(Bq) ∩ ILq
σ(Ω) = W 2,q(Ω)n ∩W 1,q

0 (Ω)n ∩ ILq
σ(Ω), (6)

and for the dual operators: (Aq)∗ = Aq′ , (Bq)∗ = Bq′ , and (Pq)∗ = ιq′ where ιq′ : ILq′
σ (Ω)

→ ILq′(Ω) denotes the inclusion. By [KKW06, Proposition 5.5] we thus have to show
D(Aq′) ⊂ D(Bq′), which is clear from (6), and

C−1‖Aq′g‖q′ ≤ ‖Bq′g‖q′ ≤ C‖Aq′g‖q′ , g ∈ D(Aq′), (7)

for some constant C. Since Aq′ = Pq′Bq′ , the first estimate in (7) is clear. For the second
estimate in (7), we use 0 ∈ ρ(Aq′) ∩ ρ(Bq′) and (6) again:

‖Bq′g‖p′ ≤ C ′‖g‖W 2,q′ ≤ C ′′‖Aq′g‖q′ .

Hence the assumption (4) holds for Pq in place of P0.
A right inverse of Pq is given by Jq := BqιqA

−1
q . Here, (6) is used again. Since

Bq : X → X−1,Bq
and Aq : Y → Y−1,Aq

act as isomorphisms, Jq : Y → X has a
continuous extension Y−1,Aq

→ X−1,Bq
. This means that the assumption (5) of Theorem

2.3 is satisfied in X0 = ILq(Ω), Y0 = ILq
σ(Ω) for α = −1.
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Now we turn to the other endpoint for the interpolation procedure, namely to the
situation in X1 := IL2(Ω), Y1 := IL2

σ(Ω). For reasons explained in Remark 1.2 (b), we
only assume that Ω has a uniform C1,1-boundary for the moment. For s ∈ (0, 1/4) the
proof of [Kun08, Lemma 4.3] shows that

D(As) = D(Bs) ∩ IL2
σ(Ω) = W 2s,2(Ω)n ∩ IL2

σ(Ω) = PW 2s,2(Ω)n.

This means that the assumption (4) on P1 := P in Theorem 2.3 is satisfied for any
β ∈ (0, 1/4). It rests to verify the assumption (5) on J1, i.e.

BιA−1 : D(Aβ) → D(Bβ) for some β ∈ (0, 1/4). (8)

This means we have to show

D(As+1) ⊂ D(Bs+1) for some small s > 0. (9)

We shall proceed in several steps.

Claim 1. For s ∈ (0, 1/4) one has D(Bs+1) ∩ IL2
σ(Ω) ⊂ D(As+1).

Proof of Claim 1. For the proof we use that D(As+1) = {u ∈ D(A) : Au ∈
D(As)}. Let u ∈ D(Bs+1)∩ IL2

σ(Ω). Then Bu ∈ D(Bs) and u ∈ D(B)∩ IL2
σ(Ω) = D(A).

This implies Au = PBu ∈ PD(Bs) = D(As), and we have shown u ∈ D(As+1). Claim
1 is proved. ¤

Now we note that the additional assumption “Ω has a uniform C2+µ-boundary”
implies that

D(Bs+1) = W 2(1+s),2(Ω)n ∩W 1,2
0 (Ω)n, 0 < s < min{1/4, µ/2}.

Hence it suffices to show, for small s > 0:

For any f ∈ D(As) = W 2s,2(Ω)n ∩ IL2
σ(Ω)

there exists u ∈ D(Bs+1) ∩ IL2
σ(Ω) = W 2(1+s),2(Ω)n ∩W 1,2

0 (Ω)n ∩ IL2
σ(Ω)

such that Au = f .
(10)

Of course, it is clear that the solution of Au = f is unique, namely u = A−1f . If f runs
through D(As) then u runs through D(As+1), and the desired inclusion (9) would be
proved.

We rewrite (10): Au = f means λ0u− P∆u = f or

λ0u−∆u +∇p = f

where ∇p = (I − P )∆u. Hence we have to study the problem

λ0u−∆u +∇p = f, div u = 0, u|∂Ω = 0,
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and should prove the following regularity property:

f ∈ W 2s,2(Ω)n =⇒ ∇p ∈ W 2s,2(Ω), u ∈ W 2(1+s),2(Ω)n. (11)

Observe that, under the assumption f ∈ W 2s,2(Ω)n, one has equivalence of the two
properties on the right hand side of (11). Formulated in this way, we face an elliptic
regularity problem similar to those studied in [Soh01, III.1.5].

So let u ∈ W 2,2(Ω)n ∩W 1,2
0 (Ω)n and ∇p ∈ IL2(Ω) be a solution to the equation

λ0u−∆u +∇p = f in Ω,

div u = 0 in Ω,

u|∂Ω = 0.

Assume now that f ∈ W 2s,2(Ω)n and that Ω has a uniform C2+µ-boundary.

Claim 2. u ∈ W 2(1+s),2(Ω)n and ∇p ∈ W 2s,2(Ω)n, if s ∈ (0,min{1/4, µ/2}) is
small.

Proof of Claim 2. Fix a partition of unity (ϕj)j subordinated to a family of
balls (Bj) of fixed radius r and with the properties of [FKS07, pp. 242/243]. As in
[FKS07, Section 2.2] we let Uj = Bj ∩ Ω. We have

∑
j ϕj = 1 on Ω.

Let uj := ϕju and fj := ϕjf . Then

λ0uj − ϕj∆u + ϕj∇p = fj , div uj = ∇ϕj · u, uj |∂Uj
= 0.

Moreover,

∆uj = ∆(ϕju) = (∆ϕj)u + 2∇ϕj · ∇u + ϕj∆u,

∇(ϕj(p−Mj)) = (∇ϕj)(p−Mj) + ϕj∇p,

where Mj :=
∫

Uj
p dx. Hence

λ0uj −∆uj +∇(ϕj(p−Mj)) = fj − (∆ϕj)u− 2∇ϕj · ∇u + (∇ϕj)(p−Mj).

Here, fj ∈ W 2s,2(Uj)n, (∆ϕj)u ∈ W 2,2(Uj)n, 2∇ϕj · ∇u ∈ W 1,2(Uj)n, and (∇ϕj)(p −
Mj) ∈ W 1,2(Uj)n. For the boundary conditions, we have uj |∂Uj

= 0 and

∫

Uj

div uj dx =
∫

∂Uj

νUj
· (ϕju)dσ = 0,

since u|∂Ω∩∂Uj
= 0 and ϕj = 0 on a neighborhood of ∂Uj \ ∂Ω.

Claim 2 will follow from

Claim 3. For g ∈ W 2s,2(U)n and h ∈ W 1+2s,2(U) with
∫

U
h dx = 0 there is a
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unique solution (v,∇q) ∈ W 2+2s,2(U)n ×W 2s,2(U)n of the problem

λ0v −∆v +∇q = g in U,

div v = h in U,

v|∂U = 0

and, for some C > 0, we have the estimate

‖v‖W 2+2s,2(U)n + ‖∇q‖W 2s,2(U)n ≤ C
(‖g‖W 2s,2(U)n + ‖h‖W 1+2s,2(U)

)
.

Of course, we need this for U = Uj with a constant C which is uniform in j.

Claim 3 will be proved below. We apply Claim 3 to U = Uj , v = uj , q = ϕj(p−Mj),
and

g = fj − (∆ϕj)u− 2∇ϕj · ∇u− (∇ϕj)(p−Mj), h = ∇ϕj · u,

and obtain

‖uj‖W 2+2s,2(Uj)n ≤ C
(‖fj‖W 2s,2(Uj)n + ‖(∆ϕj)u‖W 2s,2(Uj)n + ‖∇ϕj · ∇u‖W 2s,2(Uj)n

+ ‖(∇ϕj)(p−Mj)‖W 2s,2(Uj)n + ‖∇ϕj · u‖W 1+2s,2(Uj)

)
.

We study the terms involving u and p on the right hand side:

‖(∆ϕj)u‖W 2s,2(Uj)n ≤ C‖u‖W 2s,2(Uj)n ≤ C‖u‖W 2,2(Uj)n ,

‖∇ϕj · ∇u‖W 2s,2(Uj)n ≤ C‖∇u‖W 2s,2(Uj)n×n ≤ C‖∇u‖W 1,2(Uj)n×n ≤ C‖u‖W 2,2(Uj)n ,

‖∇ϕj · u‖W 1+2s,2(Uj) ≤ C‖u‖W 1+2s,2(Uj)n ≤ C‖u‖W 2,2(Uj)n ,

‖(∇ϕj)(p−Mj)‖W 2s,2(Uj)n ≤ C‖p−Mj‖W 1,2(Uj) ≤ C‖∇p‖IL2(Ω),

where we used Poincaré’s inequality in Uj in the last step. Here, constants C do not
depend on j.

By finite intersection of the Uj and the properties of the ϕj we thus obtain

‖u‖W 2+2s,2(Ω)n ≤
∑

j

‖uj‖W 2+2s,2(Uj)n ≤ C
(‖f‖W 2s,2(Ω)n + ‖u‖W 2,2(Ω)n + ‖∇p‖IL2(Ω)

)
.

By [FKS09] we have

‖u‖W 2,2(Ω)n + ‖∇p‖IL2(Ω) ≤ C ′‖f‖IL2(Ω),

and Claim 2 is proved. ¤

Proof of Claim 3. Claim 3 can certainly be proved directly. One can, however,
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also use the extrapolation argument below. Then one only needs

Claim 4. For g ∈ IL2(U) and h ∈ W 1,2(U) with
∫

U
h dx = 0 there is a unique

solution (v,∇q) ∈ W 2,2(U)n × IL2(U) of the problem

λ0v −∆v +∇q = g in U,

div v = h in U,

v|∂U = 0

and, for some C > 0, we have the estimate

‖v‖W 2,2(U)n + ‖∇q‖IL2(U) ≤ C
(‖g‖IL2(U) + ‖h‖W 1,2(U)

)
.

Again, we need this for U = Uj with a constant C which is uniform in j.

The assertion of Claim 4 holds as a close inspection of the proof of [FS94, Theorem
3.1(i), p. 624] shows.

For the extrapolation argument (which uses the same idea as in [KW13]) we consider
the map

((vj), (qj)) 7→ (λ0vj −∆vj +∇qj ,div vj)

which is bounded as a map

l2 −
⊕

j

(
W 2+2s,2(Uj)n ∩W 1,2

0 (Uj)n
)× Ŵ 1+2s,2(Uj)

→ l2 −
⊕

j

W 2s,2(Uj)n × Ŵ 1+2s,2(Uj) (12)

for small |s|. Here, for a sequence of Banach spaces (Xj) the Banach space l2 −⊕
j Xj

is defined by

l2 −
⊕

j

Xj =:
{

(xj)j∈N : xj ∈ Xj and
( ∑

j∈N
‖xj‖2Xj

)1/2

< ∞
}

.

Moreover, we note that, under our assumptions,

Ŵ 1+2s,2(Uj) =
{

h ∈ W 1+2s,2(Uj) :
∫

Uj

h dx = 0
}

for small |s|. The spaces on the left and on the right of (12) form complex interpolation
scales, respectively. By Claim 4 the map is an isomorphism for s = 0. By [KM98,
Theorem 2.7] this also holds for small s > 0, and Claim 3 is proved for small s > 0. ¤



Weak Neumann implies H∞ for Stokes 193

References

[Abe05a] H. Abels, Bounded imaginary powers and H∞-calculus of the Stokes operator in unbounded

domains, In: Nonlinear Elliptic and Parabolic Problems, Zurich, 2004, (eds. M. Chipot and

J. Escher), Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser Verlag, Basel,
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