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Abstract. We study harmonic functions with polynomial growth on
asymptotic cones of a nonnegatively Ricci curved manifold with Euclidean
volume growth. Especially, we will give the classification of such harmonic
functions.

1. Introduction.

Let M be a complete n-dimensional nonnegatively Ricci curved manifold and Vy; 1=
limp_, 00 vol BR(m)/R"™, where m € M. Note that by Bishop-Gromov volume comparison
theorem, the limit exists and does not depend on the choice of m. Assume that the
following Euclidean volume growth condition holds:

Vi > 0.

Let (Ms, mso) be an asymptotic cone of M, to which the rescaled Riemannian manifolds
(M, R; Ydpr, m) for a divergent sequence of positive numbers R;, converges to (Mae, Mog)
with respect to the Gromov-Hausdorff topology, where d;; is the distance function of M.
In this paper, we will study harmonic functions with polynomial growth on M.,. See
Section 2 for the definition of harmonic functions on M.,. For d > 0, let H%(M)
be the space of harmonic functions f on M, satisfying that there exists C' > 1 such
that |f(x)] < O(1 + Mg, @?) for every € My, where oo, @ = dar_ (Moo, ). By
Cheeger-Colding’s cerebrated work [5], we see that there exists a compact geodesic space
X with diam X < 7 such that (My, ms) is isometric to the metric cone (C(X),p) of
X, where C(X) := R>¢ x X/({0} x X), the distance is defined by (t1,z1), (t2,22) =
V13 + 13 — 21ty cos Ty, T2, and p = [{0} x X]. Note that X is H" l-rectifiable and
that (X, H""!) satisfies a weak Poincaré inequality of type (1,2), where H"~! is the
(n — 1)-dimensional Hausdorff measure. See [20, Lemma 4.3] and [38, Corollary 3.2].
Thus, by [8, Theorem 6.25], we see that there exists the canonical self-adjoint operator
(called Laplacian) Ax on L?(X). Let Ey(X) be the space of functions on X spanned by
eigenfunctions of Ax on X associated with the eigenvalues < \.
A main result in this paper is the following:
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THEOREM 1.1 (Harmonic functions with polynomial growth on asymptotic cones).
Let d > 0. Then we have

dim H4(C(X)) = dim Eg(gyn_2)(X).

Especially, we have dim HY(C(X)) < oco.

Note that we can regard the last statement dim H(C(X)) < oo as a solution of an
asymptotic cone’s version of Yau’s conjecture (see [14, Conjecture 0.1], [74] and [75]).

We will also show the following asymptotic estimates. This is an asymptotic cone’s
version of Weyl type asymptotic bounds on manifolds given by Colding-Minicozzi in [18]:

THEOREM 1.2 (Weyl type asymptotic bounds). For every V' > 0, there ewists
d(n,V) > 1 such that

C(n) " *Vad" 1 < dim HY(M,) < C(n)Vard™ ™t

holds for every n-dimensional complete nonnegatively Ricci curved manifold M with
Vi >V, every d > d(n,V) and every asymptotic cone (Moo, moo) of M, where C(n) is
a positive constant depending only on n.

It is important that we can get two sided bounds on asymptotic cones as above.
Compare with [18, Theorem 0.26] and [18, Proposition 6.1].

We will also give a relationship between harmonic functions with polynomial growth
on M and that of asymptotic cones:

THEOREM 1.3 (Liouville type theorem).  There exists a unique di > 1 such that
the following hold:

1. HYM) = {constant functions} for every 0 < d < d;.

2. HY(M..) = {constant functions} for every 0 < d < dy and every asymptotic cone
(Mo, moo) of M.

3. HM (M) # {constant functions} for some asymptotic cone (Mo, o) of M.

As a corollary of Theorem 1.3, we have the following: Assume that there exists
0 < r < 1 such that every asymptotic cone of M is isometric to the cone C(S"~1(r))
of S"~1(r) = {x € R™;|x| = r} (note that in general, the asymptotic cones of M are
not unique, however if M has nonnegative sectional curvature, then the asymptotic cone
of M is unique. See for instance [6], [59]. Moreover, recently Colding-Minicozzi showed
that if Ricy; = 0, Vi > 0 and an asymptotic cone has a smooth cross section, then the
asymptotic cone is unique. See [19].) Let

—(n—1)++/(n—2)2 +4n/r?
5 :

dl =

Then we have HY(M) = {constant functions} for every d < d;. Note that d; — oo as
7 — 0.
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Essential tools to show Theorems 1.1, 1.2 and 1.3 are important results about asymp-
totic behavior of harmonic functions on manifolds given by Colding-Minicozzi in [15],
[18] and a new notion about a convergence of Lipschitz functions with respect to the
Gromov-Hausdorff topology given by the author in [38].

Organization of this paper is as follows:

In Section 2, we will introduce several fundamental notions for metric measure
spaces, the structure theory of limit spaces of Riemannian manifolds developed by
Cheeger-Colding, several results given in [38] which will be used in this paper and two
important (gradient) estimates by Cheng-Yau and Li-Schoen.

In Section 3, we will discuss about frequency functions for harmonic functions intro-
duced by Colding-Minicozzi in [15]. Roughly speaking, we will show that C°-convergence
of harmonic functions with respect to the Gromov-Hausdorff topology yields convergence
of frequency functions of them. See Proposition 3.4 for the precise statement. By using
Proposition 3.4, several important results about asymptotic behavior of harmonic func-
tions given in [15], and several properties for convergence of harmonic functions with
respect to the Gromov-Hausdorff topology given in [38], we will give a proof of Theorem
1.1.

In Section 4, we will give a proof of Theorem 1.2 by using results given in Section 3
and [18].

In Section 5, we will study the topology of the moduli space of asymptotic cones of
M. Roughly speaking, we will show that the Gromov-Hausdorff topology on the moduli
space and the spectral topology given by Kasue-Kumura in [42], [43] coincide. This is
a solution of an asymptotic cone’s version of Fukaya’s conjecture [26, (0.5) Conjecture].
The main result in Section 5 is Theorem 5.4. X

In Section 6, we will show a comparison theorem between H?(M) and H%(M..).
See Theorem 6.1. As corollaries, we will give an alternative proof of Weyl type asymp-
totic bounds for harmonic functions on manifolds by Colding-Minicozzi, and a proof of
Theorem 1.3 via Theorem 5.4.

Section 7 is an appendix. We will show a co-area formula on a non-collapsing metric
cone. This performs a crucial role in this paper.
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2. Preliminaries.

For a positive number ¢ > 0 and real numbers a, b, we use the following notation:
a=bte<=l|a—b|l<e.

We denote by U(eq,€a,...,€ex;c1,C2,...,¢) (or by U for short) some positive function on
R x R satisfying

lim \11(61,62,...,Gk;cl,CQ,...,Cl):0
€1,€2,...,6—0
for fixed real numbers cj,ca,...,c;. We often denote by C(cy,ca,...,¢) some positive
constant depending only on fixed real numbers ¢y, co, ..., .

2.1. Metric measure spaces.

For a metric space Z, a point z € Z and positive numbers r, R with r < R, let
B.(2) ={z € Z;z;x <1}, B.(2) :={x € Z;z,;2 <1}, 0B.(2) := {w € Z;Z,7 = r} and
A,(r,R) :== Br(2) \ B,(z), where 7,7 is the distance between x and y, we often denote
the distance by dz(y,z). For z € Z, we denote the distance function from z by r,, i.e.,
r.(w) := Z;w. For a Lipschitz function f on Z and a point z € Z which is not isolated

in Z, we put

Lip f(2) := limsup ( sup WH‘“)

r—0 z€B(2)\{z} T,z

If z is isolated in Z, then we put Lip f(z) := 0. We also denote the Lipschitz constant of
f by Lip f :=sup,,(|f(x) — f(y)|/Z;y). For an open subset U C Z, we denote the set
of Lipschtiz functions on U with compact support by IC(U). We say that Z is proper if
every bounded subset of Z is relatively compact. We also say that Z is a geodesic space
if for every x1,x9 € Z, there exists an isometric embedding v from [0, 7, Z3] to Z such
that v(0) = z1, v(ZT1,T2) = x2 (v is called a minimal geodesic from x1 to x2). In this
paper, for a proper metric space Z and a Radon measure v of Z, we say that a pair (Z,v)
is a metric measure space if the following hold:

1. (Positivity). v(Bi(z)) > 0 for every z € Z.
2. (Doubling condition). For every R > 0, there exists k = x(R) > 0 such that
v(Ba,(z)) < 280(B,(z)) for every 0 < r < R.

We now recall the notion of rectifiability for metric measure spaces given by Cheeger-
Colding in [8]:

DEFINITION 2.1. Let (Z,v) be a metric measure space. We say that Z is v-
rectifiable if there exist a positive integer m, a collection of Borel subsets {C, i F1<k<m,ieN
of Z, and a collection of bi-Lipschitz embedding maps {¢x; : Ck; — Rk}k,i such that
the following hold:

L. v(Z\ Uy Crai) = 0.
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2. vis Ahlfors k-regular at each x € Cj, ;, i.e., there exists Ay ; > 1 such that (Ak’i)—lrk <
v(B, (7)) < Agir* for every 0 < r < (Ag,;)~ L

3. For every k, every x € | J,c n Ck,i and every 0 < 0 < 1, there exists i such that = € Cj;
and that the map ¢ ; is (1 & 0)-bi-Lipschitz to the image ¢y ;(Ck ;).

It is important that the cotangent bundle on a rectifiable metric measure space
exists in some sense. We do not explain the construction, however we now give several
fundamental properties of the cotangent bundle only:

THEOREM 2.2 (Cheeger, Cheeger-Colding, [3], [8]). Let (Z,v) be a rectifiable met-
ric measure space. Then, there exist a topological space T*Z and a Borel map w: T*Z
— Z such that the following hold:

1. v(Z\7(T*Z)) = 0.

2. 7Y w) is a finite dimensional real Hilbert space with the inner product (-,-)(w) for
every w € m(T*Z).

3. For every open subset U of Z and every Lipschitz function f on U, there exist a
Borel subset V' of U, and a Borel map df (called the differential section of f or the
differential of f) from V to T*Z such that v(U \ V) = 0 and that 7o df (w) = w,
|df|(w) = Lip f(w) = lipf(w) for every w € V, where |[v|(w) := 1/ {v,v)(w).

4. Assume that (Z,v) satisfies a weak Poincaré inequality of type (1,2) and that Z is
compact. Then a bilinear form

/ <df1 s df2>dU
Z

is closable. Especially, the canonical self-adjoint operotor Ay (called the Laplacian on
Z) on L*(Z) is well-defined. Moreover, (1 + Az)~t is a compact operator.

See Section 4 in [3] and Section 7 in [8] for the definition of a weak Poincaré inequality
on metric measure spaces and the details of Theorem 2.2.

Let 1 < p < oo and let (Z,v) be a metric measure space satisfying a weak Poincaré
inequality of type (1,p). Then for every open subset U of Z, it is known that the Sobolev
space Hy,(U) on U is well-defined and that the differential df as above of f € H; ,(U)
is also well-defined. See also Section 4 in [3] for the detail.

Finally we end this subsection by giving the definition of harmonic functions on
metric measure spaces by Cheeger. We say that f € Hy 2(U) is harmonic on U if

/ d(f + k) 2dv > / df 2dv
U U

holds for every k € K(U). See Section 7 in [3] for several fundamental properties of
harmonic functions.

2.2. Gromov-Hausdorff convergence and the structure theory of limit
spaces of Riemannian manifolds.
Let {(Z;,2:) }1<i<oo be a sequence of pointed proper geodesic spaces. We say that
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(Zi,z;) converges to (Zuo,2s0) with respect to the pointed Gromouv-Hausdorff topology
if there exist sequences {¢;};, {R;}; of positive numbers, and {¢;}; of Borel maps
¢; from (Bg,(2:),2) to (BRr;(#c0);%c0) such that ¢, — 0, Ry — o0 as i — o0,
Bpr,(20) C Be,(Image ¢;) and |a, 8 — ¢ (), 9:(B)| < €; for every a, 8 € Bp,(z;). We

denote it by (Z;,z;) (oRees), (Zooy 200) O by (Ziy2;) — (Zoo,200) for short. As-
sume (Z;,2;) — (Zso,200). Let {x;}1<i<co be a sequence of points z; € Z;. We say

that x; converges to xo if x; € Bg,(z;) and ¢;(x;), 2 — 0. Then, we denote it by
T; — Too- Let {v;}i1<i<oo be a sequence of Radon measures v; on Z;. We say that
(Zi, zi,v;) converges t0 (Zoo, Zoo, Voo ) With respect to the measured Gromov-Hausdorff
topology if lim;_ o v; (B, (x;)) = Veo(Br(2o)) for every r > 0 and every z; — Teo.
Then we denote it by (Z;,zi,0;) — (Zso,200sUso). See also Section 1 in [6] or [26,
(0.2) Definition]. Let (X,x), (W, w) be proper geodesic spaces. We say that (X,x) is
a tangent cone of W at w if there exists a sequence {e}; of positive numbers such that
e — 0and (X,z,¢ *dx) — (W,w). For a metric space Y and a positive integer n, let
Rn(Y) :={y €Y; every tangent cone of ¥ at y is isometric to (R",0,).}.

We end this subsection by introducing several important properties of the non-
collapsing limit space of a sequence of Riemannian manifolds with a lower Ricci curvature
bound by Cheeger-Colding [5], [6], [7], [8], Colding [12]. See [5], [6], [7], [8] for collapsing
case. Let {(M;,m;)}icoo be a sequence of pointed n-dimensional complete Riemannian
manifolds and (My,moo) the Gromov-Hausdorff limit space. Assume that there exist
v >0 and K < 0 such that Ricpy, > K(n — 1) and vol By(m;) > v for every i < co. Let
Ry = Rn(Ms). Then, we have the following:

1. (GH-convergence implies measured GH-convergence [6, Theorem 5.9]). (M;, m;, vol)
— (Moo, Mmoo, H™) where H™ is the n-dimensional spherical Hausdorff measure.

2. (Regular sets have full measure [6, Theorem 2.1]). H" (M \ R,) = 0.

3. (Limit spaces are rectifiable [8, Theorems 5.5 and 5.7]). Mo, is H"-recitifiable.

2.3. Convergence of the differentials of Lipschitz functions.

In this subsection, we recall the definition of a convergence of the differential of
Lipschitz functions with respect to the measured Gromov-Hausdorff topology given in
[38]. We consider the same setting as in the previous subsection: Let (M;,m;) —
(Moo, moo) with Ricps, > K(n — 1) and vol Bi(m;) > v. Fix R > 0, L > 1 and an
L-Lipschitz function f; on Br(m;) for every i < co. We say that f; converges to fs at
ZToo if fi(x;) = foo(Teo) for every x; — xo,. Then we denote it by f; — foo at Zoo. The
following notion performs a crucial role in this paper:

DEFINITION 2.3 ([38, Definition 1.1, Definition 4.4]). We say that df; converges to
dfs at T if for every € > 0 and every z; — 2z, there exists r > 0 such that

-
H™(Bt(2o0))

lim sup (drs,,df;)dvol —

1—00

1
_ dr._, df.o)dH| < €
vol By (z;) /Bt(xi) /Bt(zoo)< e dfoo)

and
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1 1
li S df;]Pdvol < ——— df o |2PdH™
I?LSolip vol By(x;) /Bt(afi) | f | Vo= H™(Bi(2o0)) /;t(woo) | d | e

for every 0 < t < r and every x; — Zo,. Then we denote it by df; — dfs at Too.

We use the following notation: (f;, df;) — (foo, dfoo) at oo if fi — foo and df; — df o
at ro,. We end this subsection by giving two fundamental properties of this convergence:

1. [38, Corollary 4.7]. Assume that f; is harmonic for every i < oo and that f; — feo
on Br(meo) (ie., fi = foo at every xoo € Br(my)). Then we see that df; — dfs on
Bpr(mys) and that fo is harmonic on Br(my).

2. [38, Corollary 4.4]. Let k be a positive integer, » > 0 with » < R, {w;}; a sequence
of points w; € M; with w; — wao, {f], 9 }1<i<co1<i<k a collection of Lipschitz func-
tions f}, g on Br(m;) with sup, ;(Lip f! + Lip g!) < 0o, and {F;}1<i<oc C C°(RF).
Assume that the following hold:

(a) F; converges to Fu, with respect to the compact uniformly topology.
(b) dff — dfl, and dg! — dg', at a.e. o € Br(meo) \ Br(ws) for every 1 <1 < k.
Then we have

lim E;((df!,dg}), ..., (dfF,dgt))dvol
70 JBr(mi)\Br(w;)

BRr(moo)\Br(woeo)

See [38] for more fundamental properties of this convergence: df; — dfoo.

2.4. Gradient estimates.
In this subsection, we recall the following two very important estimates. These
estimates will be used many times in this paper:

1. (Cheng-Yau’s gradient estimate [11]). Let K > 0, R > 0 and let (M, m) be a pointed
complete n-dimensional Riemannian manifold with Ricps > K(n —1). Then for every
positive valued harmonic function f on Bg(m), we have

V£I?
f2

<C(n,K,r,R)

on B.(m) for every r < R.

2. (Li-Schoen’s mean value inequality [51]). Let (M,m) be a pointed complete n-
dimensional nonnegatively Ricci curved manifold, R > 0 and f a nonnegative valued
subharmonic function Bsg/o(m). Then we have

sup f < __C / fdvol.
Br(m)" ~ VOl Bsgrya(m) Jp,, ., (m)

Note that if Ricy; > 0, then \Vh\z is a subharmonic function for every harmonic function
h. This is a direct consequence of Bochner’s formula.
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3. Convergence of frequency functions.

Our goal in this section is to give a proof of Theorem 1.1. Throughout this section, we
will always assume that the dimensions of all manifolds under consideration are greater
than 2. See [22], [39], [53] for important works about two dimensional case.

Throughout this section, we fix an n-dimensional complete nonnegatively Ricci
curved Riemannian manifold M with V" := Vj; > 0, where gps is the Riemannian
metric of M. It is easy to check that VJC[_QQM = V" holds for every r > 0. Fix m € M.
Note that the entire Green’s function G9 (z,y) on M exists. See for instance [63].

First we recall an important result about asymptotic behavior of G9" by Colding-
Minicozzi:

THEOREM 3.1 (Colding-Minicozzi [16]). We have

gm 1B
lim G (7;1,1‘) _vo 1(071).
mr—oo M, Lo Vi

Note that for every r > 0, we have

2 GIM(m,x
G 9 (i, z) = TQ(—n )

It is known that there exists C; > 1 such that m,z2~" < G9% (m,z) < Cym, x> " for
every m # z. Define a smooth function b9 on M \ {m} by

Vs 1/(2—n)
gm e " (Y9M
bIM () (vol B (On)G (mmc)) .

Note b:,:zf]M = b9 /r. We use the notation b9 = bIM for short. Thus we have

VM 2_771 72!]M —2 C]_VM 2_n —2
- ma < pr 9Mm < | —" T g™
<volB1(0n)> Y = () < vol B, (0,,) Y

for every r > 0. Let b9 (m) := 0. It is easy to check

Vi

VIMpIM —
(2 —n)vol B1(0,)

(bgM )nflng GIM (m’ )

On the other hand, for every € > 0, there exists R(e) > 0 such that

1

2 2 2
m ot <o ||ngM| — 1| + |HeSS(bgM)2 *2gM| dvol S €

for every R > R(e) and that
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b9 ()

m, T TIM

— 1’ <e€
for every ¥ € M \ Br(c)(m). See (2.23), (2.24) and (2.25) in [15] or Section 4 in [16] for
the proofs of these results.

LemMA 3.2, We have

vol{b9™ < R}

1.
R vol B (m)

PrROOF. Fix 0 <e < 1. Let R(e) > 0 as above and

R(e) == (%) ) R(e) + R(e).

Fix R > R(e).
First we will show Br(m) C {b9% < (1 +€)R}. Let y € Br(m). If m,7 < R(e),
then

ClvM 2—n R
< | — < .
m,y < (VO] Bl(On)) R(e) < R(e) < R

ClvM 2—n
gM <
b (y) < <v01B1(0n))

If m,y > R(e), then [b9 (y) — T, y| < em, y. Especially, we have b9 (y) < (14 €)m,y <
(14 €)R. Thus, we have Br(m) C {b%™ < (1+ €)R}.

On the other hand, for every x € {b9 < (1 + €)R} with M, > R(e), we have
(1—em,z < b9 (z) < (1+€)R. Thus, we have {9 < (1 +€)R} C Biyer/(1—e)(m).

Since

for every a,b > 0, we have the assertion. O

. vol Byr(m)
lim ———= =
R—oo vol BbR(m)

SallEs}

We now recall the definition of the frequency function for a harmonic function on M
by Colding-Minicozzi. For R > 0, 0 < r < R and a harmonic function u on {b9% < R},
let

IgM (7") .= Tl_n/ u2|VgMbgM|dVOIZIZ1, DZM (7“) — 7“2_"/ ‘V!]}Wu|2dvolglu
bIM =7y bIm <r

and

2

U

F9M R
=t [

IM =7

where n is the outer unit normal vector of {b9" = r}, vol?™, is the (n — 1)-dimensional
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Hausdorff measure with respect to the Riemannian metric gp;. Moreover, let

g _ Dy (r)
£1(0) =

if 19 (r)#£0, UM(r):=0if I94(r)=0.

We call the function U9 on (0, R) the frequency function for u. Note that the critical
set of b9 has codimension two at least. See [10], [34]. By the maximum principle,
U9™M (r) =0 for some 0 < r < R if and only if u is a constant function. Note that

T drgm 2D5M (r)

2—n
Dy < (L) pom
r< (D) o,

r

and
S [J9IMm
I9M(s) = exp (2/ U"t(t)dt> I8 (r)

for r < s. See (2.10), (2.12), (2.13) and (2.14) in [15] for the proofs. For 7,7 > 0, R > rr
and a harmonic function w on {d9 < R}, we put u, := u/7. Then for a rescaled metric
7729y, it is easy to check that DZ:QQM (r) = 772D9M (r7), I;:29M (r) = 772194 (r7),
F7 9m(r) = 729 (p7) and U7 9% (r) = U™ (r7).

Fix an asymptotic cone (M, M) of M for a divergent sequence of positive num-
bers R;: (M,m,Ri_ldM) — (Mso,moo). Note that by the assumption Vyy > 0, we
have (M,m,R;ldM,volR;29M) — (My, Moo, H™). On the other hand, by [5, Theorem
7.6], we see that there exists a compact geodesic space X with diam X < 7 such that
(Moo, moo) is isometric to (C'(X),p).

Let R > 0,0 < r < R and let u be a Lipschitz function on Bg(p). Assume that u
is harmonic on Bg(p). Put, for r € (0, R),

I,(r) = 7"1_"/ uldH" L, D,(r):= 7“2_"/ |du|2dH"
9By (p) Br(p)

and

Ua(r) = l;:((:)) i 1,(r) £ 0, Un(r) = 0if Io(r) =

By Proposition 7.6, we see that the function
F,(r) = 7“3_”/ (drp, du)?>dH"™*
BBT(p)

is well defined for a.e. r € (0, R).

REMARK 3.3. Let R > 0 and let {u;};<oo be a sequence of harmonic functions u;

on B (m). Assume that sup; |(ui)Ri|Lw(BR;ng ) < oo for every 0 < r < R. Then
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-2
il R7Z%g
By i M (m

“(m)
Fix # with » < # < R. Since B,(p) is convex, it is not difficult to see that there exists
2

—R- —R7?
ip such that Image(y;) C Bf" IM(m) for every i > io, every x (i), z2(i) € Bfl M (m)
and every minimal geodesic 7; from x1 (i) to 22(). Therefore, by Cheng-Yau’s gradient

estimate, we have limsup,_, . Lip ((w) g, | R=2g,, ) < oo for every 0 <r < R.
By* " (m)

we have sup; Lip ((ui)R. ) < oo for every 0 < r < R. The proof is as follows.

PROPOSITION 34. Let R > 0 and let {u;}icco be a sequence of harmonic
functions w; on BR% (m) and ue a Lipschitz function on Br(p). Assume that
sup; |(ui) g, | : < o0 and (u;))r, — Uoo 0N Bi(p) for every 0 < t < R.

L

—2
R, “g
Oo(Btl M

Then, we have

(m

—2 —2
lim sup |DI () =D, ()| =0 and lim sup |I'% % (t) —I,_(t)| =0

10 e (r,s] ()R, 1O te(r, 8] (ui)r;

for every 0 <r < s < R.

PROOF. Let r, s be positive numbers with r < s < R. Fix positive numbers 7, §
with # <r <s <5 < R. Let L > 1 with [|uc| (B (2.)) + LiP oo < L. Fix € > 0 with
e < min{#, R — §}. Then, by the proof of Lemma 3.2, there exists Ri(e) > 1 such that
B'(qfiezm(m) c {b9 <R} C Béjl“iEQ)R(m) and

1

VOl{bgM S R} bIM <R =€

||v9Mb91\/1|2 _ 1|2

for every R > Rj(€). The Cauchy-Schwartz inequality yields

1

VIMpIM |2 _ 1| < 4
VOl{bgM < R} bﬂMgRH ‘ |_ ¢

and

1

VIMpIM| _ 1| < 2.
VOl{bgM < R} bIM <R H | | =

For every 0 < t < R, let
— — —2
Fi(t) = / L (), |V pR g 2 g yol BT
bR IM <t ’

Then, we have

dF;
dt

— _ —2 _2
(t) = /b pa, ()R [VI OB d ol Y = 1 2 (1),
i =t ‘

Thus, we have
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R7%gm
(ui)R; (t

t

= 2/ -2 ’VRIQgM (ui) R, ‘QdVOIR;QQM
bl oM <yt

dQFi R %gm n—2
oE +(n—-1DI (t)t

(wi)Rr;

(t) =2t" !

n—1
t

-2 —2 2 72
(us) R, ’VRi g pR; gM‘ dvolRl_lgM )
pR7 Zan —y ‘ n
Recall that for every a,s,t € R, and every C?-function f on R, we have

() = F(a) + (t — a) f'(a) - / (s — )" (s)ds.

Therefore, for every 0 < t < R, we have

(ul)% ’VRI?QM bR;29M |dVOlRi’_29M
R;29M =t ‘

’Fi<t+e> N0 _/
b

€
t+e B _
< / 2/ -2 |V 2gM(ui)Ri‘deolRi fanr g
t pfi TIM <q
t+e » » B
+(n— 1)/ o / -2 ()%, | VR 93 bR 031 | g vol B fon g
t bRi M =q

< 26/ , ‘vang (uz)RL ’2dVOIR;29M
bt TIM <ty

n—1

A

—2 —2 2 ‘—2
/ (ul)%” ‘VRi gm R gm ’ dvolfi 9m
t<bIM <t+te

By [38, Proposition 2.4], there exists ic € N such that R;# > 10R;(e),
1(ue) g, 2 < 10L and

L (B (m)

o —2
sup | volf "9 BEO () — HM (B, (p))| < €
a€0,R)]

for every ¢ > ig. Then, since H"(Bgr(p)) = R"H"(B1(p)) < R"C(n), Cheng-Yau’s
gradient estimate yields

/szq |VR;29M (u’l)Rl |2dVO1R:29M < / 2, |VR;291W ('W)Rl |2dVO1Ri_2gM
bl TIM <tte B." (m)
(e (tte)

<C(n,L,R)

for every i > iy and every r < t < s. Moreover, we have
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—2 —2 2 -2
/ B (i) %, |V 92 bl an | gyol i "om
t<bfi "IM <ty

-2
S/ Y (u;) %, dvol™ "9m
t<bfi "IM <tye

N2 R,_’ng RT29M 9 _ R;ZgM
" /tgbRing SH_E(UZ)Ri | [V b | 1’dv01

< / B (ui)QRidvolRﬁgM +100L? volRi_ng {t < bl “om <t+ e}
t<bfi "TIM <ty

< 200L% vol % "9 {1 < pRom <ty e}
2. qR;? R %gum 2 2
< 200L% vol™ IM Ay M ((1—€*)t, (14 €%)(t +¢))
< 200L7H"(A,((1 — €)t, (L + €)(t +¢€))) + 300L%>.
On the other hand, we have

F;(t — F;(t 1 -
( + 6) ( ) _ = / B (Ui)QRidVOIRi 29m
€ € t<bRi quét_;'_e

+

a |

(Uz)?zb |VR;2gMbe2gM|2 _ 1’dVOIRi_29M7

-2
t<bfi "TIM <tye
and

1

2
- ,2 (ui)Ri
€ Ji<pPi TIM <tte

100L2

€

—2 —2 —2
VAR o B 0ar |2 | gyl om

<

Lo D82 ot
bt IM <tie

100L2

—2 2
€2 volfti "9m {bRi IM <L t+e}
€

IN

vol9M B(gfie?)(ure)l-‘ii (m)

R?

7

100L2%¢

IN

<eC(n,L,R).

Note that

5 —2
’/ = (us) %, dvol ™ gM—/R,g (us) R, dvol™ oM
t<pfi IM <pie At M (4 te)

— _ -2
< 100L% vol "0 ({1 < R0 <t 4 e} AA M (1t +¢),

where AAB = (A\ B)U(B\ A).

81
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CrAM 3.5.  We have
— -2
{t <R <t dAAT TV (1t +€)
R %gum 2 2 R ?gum 2 2
CAn M((1=€e)(t+e),A+)(t+e) UAy M((1—et, (14 €))
for every i > iy and every r <t < s.

The proof is as follows. Put A5(t) := {t < bR om < t+ e}AAR IM(t,t +€). Let

y e {t <bRam < ¢4 ¢/2} N AS(t). Then we have y € B(1+62)(t+6/2)( m). In particular,
we have

m,y*ngM < (1+62)<t+§> <t+e

Since y € M\ AR gM(tt—l—e) WehaveyEB : gM( ). Thus, we have {t<bRi_2gM

t+¢€/2} NAL(L) C B : qM( )\B(l eggdt( m). Similarly, we have {t + ¢/2 < b&i 9m

t+e}NAL(t) C Bﬁ;éiﬁtﬂ (m) \Bﬁ_e 9 (m). Therefore, we have

INIA

— -2 —2
[t <R < el nAS() C AR (1=t UAR Mt +e (1+€)(t +6)).
Let z € AS(t) N Any Yo (t,t + €/2). Then we have
BRI (z) < (14 )male 9 < (14 2)(t+¢/2) <t—+e.

Since z € M\ {t < pRam < ¢ 4 €}, we have bez-"M(a:) < t. Therefore, we have

—2 —2 2
v € B[, 4(m). Thus, we have Ani “(t,t + /2) N Ai() © ART 0 (14 2)p).

—2
Similarly, we have Ani 9 (t+¢/2,t+€)NAS(t) C Ant "o (t+e, (1+€2)(t+¢€)). Therefore
we have Claim 3.5.

By Claim 3.5 and Bishop-Gromov volume comparison theorem, we have

— _ -2
e~ Lyolfi “om ({t <RI <ty e}AAZi IM(t,t+ e))
1. R72 R 2gn 2 2

< e tvolt M (Aml (A=)(t+e),(1+e )(t—i—e)))

+ e Lvolfti Tom (Aﬁ; D1 — et (14 62)15))

_ R;?

< 3e e vol ‘ gM <8B(1L GZ%H)( )\Cm) + 3¢ te?vol 7 M (3B(f j;M( )\ Cr )
< 6evol 0BR(0y,).

Therefore we have
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’ / B (ui)QRidVOIRi_%M _ / e (Ui)2RidV01Ri_2gM
t<pfi IM <pie At M (4 t4e)
< 600L%€* vol 0BR(0,,)
for every i > ip and every r < t < s.
Define an 1-Lipschitz map m; from C(X) to By(p) by m(s,z) := (7(s),z), where
#i(s) = s if s < t, and 74(s) =t if s > t. Put ul_ := (us)? o m. Then Proposition 7.6

yields
t+e t+e
‘ / / (too)?dH" ' da — / / ul dH" 'da
t OB (p) t OB (p)

g/ |(uoo)2futoo|dH”
Ap(t,t4e)

< Lip(ueo)2eH™(Ay(t, t +¢€))

for every r < t < s. On the other hand, we have

t+e t+e a n—1
/ / utoodH”*Ida:/ (> / (too)?dH™ Yda
t OB, (p) t t 9B (p)
t+e a n—1
:/ (uoo)de”*/ <> da
8B, (p) ¢ t

=I,.(t)(et" ' + U(e;m, R)e).

Therefore we have

—2
lim sup I(ii)]fjl (t) — L., (t)‘ =0.

10 te(r, 3]

Finally, we will show

lim sup
100 te(r, 3]

D (1) = Du (1)] = 0.

(ui)R,

We use the same notations as above. It is clear that

2 / R=2, |VR’:29M (ui) R, ’2dvolRi_29M
i M

(1—e2)t (m)

R %gm 2 R %gum
= T (ui)R; = R 290, |v ‘ (ui)fh’ dvol
(14€2)t (m)
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holds for every i > i1 and every r < t < s. On the other hand, we have

/ 2 VR;ZQM (uz)Rl ’2dV01R;2gM (m)
At M ((1-€2)t,(1+€2)t)

< O(n, L, R) volR o AR"93 (1 _ @)t (1 4 )p)
< C(n, L, R)(H™(Ap((1 — )t, (L + ) +¢).
Therefore, by [38, Corollary 4.7], we have the assertion. O
Let 0 < r < R, and let u be a harmonic function on {b9% < R}. Put

E™(r) := TQ_”/ |V9M ||V IM p9M |2 ] yolIM

bIM <r

It is easy to check that EZ:QQM (r) = 772E9M (1) for every r > 0 with R > r7. By [16,
Proposition 3.3] and the proof of Proposition 3.4, we have the following:

PROPOSITION 3.6.  With the same assumption as in Proposition 3.4, we have

—2
lim sup |E. 9 (t) = D,_(t)| =0

71— 00 tE[T,S] ( )R1

for every 0 <r < s < R.

We now introduce an important result [21, Theorem 2.1] for harmonic functions on
asymptotic cones by Ding:

THEOREM 3.7 (Ding, [21]). Let R > 0 and let us be a harmonic function on
Br(p). Then uy is Lipschitz on B.(p) for every r < R. Moreover, for every 0 < r <
s < R, there exist a subsequence {i(j)}; of N and a sequence of harmonic functions u; ;)

R 2
on By @ (m) such that w;(j) — e on By(so).
ProoF. We give an outline of the proof only. Let 7, s be positive numbers with

r < s < R. First, we will show that us, is Lipschitz on Bs(p). By [45, Proposition 5.1],
for every u € Hy o(M) and every R > 0, we have

[ oy E e g ) ol o
M

o - - 2
<2t ‘dR_2gMu|2dvolf 29M+</ u(y)HR 29M(t,y,x)dvolgz 29”’)
M M

for a.e. = € M, where HE ?9m (t,y,z) is the heat kernel of a rescaled manifold
(M,R2gp). By [3, Lemma 10.3] and [20, Theorem 5.54], for every u € K(C(X)),

we have
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/ w(y)? Hoo (1,9, 2)AH" (3)
Cc(X)

< Zt/C(X) \du?dH" (y) + (/C(X) u(y)Hoo(tzu/,w)dl’f”(y)>2

for a.e. z € C(X), where H, is as in [20, Theorem 5.54]. Since K(C(X)) is a dense
subspace of H 2(C(X)), the inequality above holds for every u € Hy o(C(X)). Fixz € X
and 0 <t < R. It is easy to check that H"(B:((1,x))) > C(n, Vas)t™. For every R > 0,
define a map ¢ from A,(R—t, R+t) to A,(1—(t/R),1+(t/R)) by ¢r((t,z)) = ({/R, z).
Since H"(¢r(A)) = R"H"(A) for every Borel subset A of A,(R —t, R +t), we have
H"(By(R,x)) = R"H"(By/g(1,2)) > C(n, Va)t™. Therefore, (C(X), H") is an Ahlfors
n-regular metric measure space. By [20, Theorem 6.1], [20, Theorem 6.20] and [45,
Theorem 1.1], we see that u is a locally Lipschitz function on Bg(p). By the convexity
of Bs(p) and the proof of [45, Theorem 1.1], we see that u., is Lipschitz on Bs(p).

Let L > 1 with Lip(ucc|B, (p)) + [tec || L (B, (p)) < L. Without loss of generality, we

. . . . =R
can assume that there exists a sequence of Lipschitz functions f; on B, “*(m) such

that Lip f; + | fi|(B.(p)) < 10L and f; — us on Bs(p). Let u; be a harmonic function

= fil _2 in the sense of Perron’s

R‘_QQZ\/I . .
on By m) satisfying that wu; _
s ( ) ymng Z|ani 2 8351’ IM (m)

method for f;.
We now give a short review of Perron’s method for subharmonic functions in this
—2
setting. See for instance Section 2.8 in [28] for the detail. For f € CO(B 9 (m)), we

M (m)

2 —2

say that f is subharmonic (superharmonic) in Bi 9 (m) if for every w € B2t ™ (m),
—R72 ~2 —R72

every r1 > 0 with Bf; IM(w) Bl oM (m), and every h € C’O(Bff I (w)) satisfy-

ing that h| - is harmonic and that h - < (> _ , we also
g |Bil 2o (w) |an1i 29m (w) = (_)f|33:i‘b 200 )

) -2
have h < (>)f on Bfii IM (w). For g € CO(Bfi 9 (m)), we say that g is a subfunc-

tion (superfunction) relative to f;| .-z if g| -2 is a subharmonic function
B, M m) B,? gM(m

—2 . Let Sy, denote the

superharmonic function) and " < (>)f;
(sup ) glani Yort = (_)leani oy

—2

set of subfunctions relative to f;j| ,-», ~ . Define a function u; on Bl tom (m) by
B* (m)

ui(w) = sup,eg, v(w). By an argument similar to that of the proof of [28, Theorem

—2
2.12], it is easy to check that w; is harmonic on plii o (m).
Fix 7 > 0, € 9B;s(p) and z € OBas(p) with 7 < 2R and p,T + T,z = P, 2. Let
o —2
{z(i)}i, {2(7)}; be sequences of points x(i) € opli o (m), 2(i) € 835;’ M (m) with
2(i) — z and 2(i) — 2. Then it is easy to check that C;(n, R)T,a> < z,a — 7,7 < T, @
for every a € By(p). Fix a € B.(p). Let {«a(i)}; be a sequence of points «; €

2 ) 2 ] 2
B9 (m) with a(i) — a. Define a function b on Be ¥ (m) by bi = (ri"'i) IMy2—n

(rf(f';) 9My2=n(2(4)). By Laplacian comparison theorems on manifolds, for every suffi-

ciently large i, we see that b’ is a superharmonic, f;(z(i)) + 100L7 + C(n, L, R)b'/7% is a

superfunction relative to f;| -2 X and that f;(x(i)) — 100LT — C(n, L, R)b*/7? is
oB.

yM(
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a subfunction relative to f;| - . By an argument similar to that of the proof of
E

B M (i)
[28, Lemma 2.13], we have

C(n, 12%» L) WRZ gm

|fi(2(0)) = us(a(@)] < Cln, R, L) + ——
for every sufficiently large . On the other hand, by Cheng-Yau’s gradient estimate and
[38, Corollary 4.7], without loss of generality we can assume that there exists a harmonic
function i, on Bs(p) such that te|p,(p) is a Lipschitz function and that u; — u on
B;(p) for every 0 < § < s. Thus we have

C(n,R,L)
2

[too (2) — tico ()] < C'(n, R, L)T +

T,
-

for every a € By(p). For every x € OB, (p) and every a € B,(p), by letting 7 = T,a'/?,

we have
[thoo () — tio ()| < C(n, R, L)ml/s.

Since fioo € Hy2(Bs(p)) for every 0 < 8 < s, and that us, is Lipschitz on B(p), by
(64, Cororally 6.6], we have supg,_ () [Uco — loo| = lims—s(Supyp, () [Uco — Uoo|) = 0.
Therefore, we have the assertion. O

From now on, we will replace the most of many important statements about har-
monic functions on manifolds given in [15] with corresponding statements on asymptotic
cones:

PROPOSITION 3.8.  For every 0 < r < s < R and every harmonic function us on
Br(p), we have

and
S Do (t
I, (s)— I, (r)= 2/ %dt.
Moreover, if I, (r) > 0, then we have

Lu_ () = exp (2 / ) U“";(t)dt> Lo ().

Proor. By Theorem 3.7, without loss of generality, we can assume that the as-
sumption of Proposition 3.4 holds. Since
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2—n
R gm r Ry *gm
D(ui)Ri (T) < (S) D(ui)Ri (S)’

by letting @ — oo, Proposition 3.4 yields the first assertion. Similarly, since

R “gm
—2 —2 s Dt (t)
Iy P (s) = I 2 (r) = 2 / —om gy,

(ui) R,

by letting ¢ — oo the second assertion follows from Proposition 3.4 and the dominated
convergence theorem. Especially, we see that I, is a continuous function and that a
monotonicity I, (r) < I, (s) holds.

Finally, we now check the third assertion. By Proposition 3.4 and the monotonicity

—2
R %gm (@) > 0. Therefore, Cheng-Yau’s gradient

of I,,_, we have liminf; (infag[rﬁs] I('Ufi)R,i

estimate and Remark 3.3 yield
—2
limsup( sup U gM(oz)) < 00.

; u;)R,
i—00 a€glr,s] (wi)r,

On the other hand, since

R
N — ° (t) —2
R; L(ul) . R
I(“;)lgfj (5) = exp <2 /r :dt> I(ui):iM (r),

by letting ¢ — 0, the dominated convergence theorem and Proposition 3.4, we have the
third assertion. O

COROLLARY 3.9. Let 0 <r < R and let us be a harmonic function on Bgr(p). If
U, (1) =0, then us is a constant function on By(p).

PROOF. First, assume I,,__ (r) = 0. Then, by Proposition 3.8, we have D,,__(t) =0
for a.e. 0 <t < r. Since D, is continuous, we have D,__(r) = 0. Thus, by the weak
Poincaré inequality of type (1,2) on C(X), we have

1
I B /w) fav

1 N
< O(n7R)T\/U(BT(p)) /Br(p)(Llpf) d 0.

Since f is Lipschitz on B,.(p), we see that f is a constant function on B,.(p). Next, assume
Uu., (r) =0and I,__(r) > 0. Then, by the definition, we have D,,__(r) = 0. Therefore,

Uoco

by the argument above, we have the assertion in this case. O

dv

1
v(B:(p)) /Br(p)

The following corollary follows directly from Proposition 3.8 and the continuity of a
function: ¢t — H"™(B:(p))-
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COROLLARY 3.10. Let R > 0 and let uo be a harmonic function on Br(p). Then
we see that I, is a C'-function on (0, R). Moreover we have

dl, 2D, (1)
o0 t — oo
dt ( ) t
Let 0 < 7 < R and let u be a harmonic function on B%" (m) with u # 0 on B% (m).
Put
EqM(r)
WIM () := 07(r) "

Note that with the same assumption as in Proposition 3.4, if u, is not a constant function
on B,.(p), then Proposition 3.4 and Proposition 3.6 yield

: Ri_QQM
Zlirgo W(ui)R,i (r) =U,_(r).

PrROPOSITION 3.11. Let 0 < r < s < R and let us be a harmonic function on
Brr(p). Then we have

Uy (1) < U, (8).

ProOOF. By Theorem 3.7, without loss of generality, we can assume that U,__ (r) >
0 and that there exists a sequence of harmonic functions u; on Bg}‘{Ri (m) such that
sup, Lip(u;)r, < oo and (u;)r, — U on Bgr(p). Fix € > 0. We now use the same
notation as in [15, Proposition 4.11]. Put Qg := s/r, v := D,__(25)/D,_ (r) + 1. Let
R:= R(m,~,€,€Q0) as in [15, Proposition 4.11]. By Proposition 3.4, there exists iy such
that R;r > R and

R 2
Dgv (200R;r) D3 (2R;is)  Diy (25)
Dgi\f (R’Lr) B D'zi\l (Rz'f') B DR;291\/1 (T)

(ui)R;,

<7

for every i > ig. Therefore [15, Proposition 4.11] yields

9
Ldt > —e,
Rir dt

/Ris dlog Wim

ie.,

log WIM (R;s) — log WIM(R;t) > —e.
—2
Since WIM (R;s) = Wit om (s), by letting i — oo, we have

(ui)R;

logU,_, (s) —logU,_ (r) > —e.
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Since € is arbitrary, we have the assertion. O

REMARK 3.12.  The most of important results given in [15] are about global har-
monic functions on M. However, by the proofs, they also hold for harmonic functions on
a big domain as in the proof of Proposition 3.11. We will often use these facts without
an attention.

We recall that H? (M) is the space of harmonic functions u., on My, satisfying
that there exists C' > 1 such that |us (7)] < C(1+ Mo, @?) for every x € M,,. The next
proposition follows directly from the proof of [16, Lemma 1.29] via Propositions 3.8 and
3.11:

PROPOSITION 3.13.  We have U, __(t) < d for everyt > 0 and every us, € H(My,).

PROPOSITION 3.14. Let0 < s <t < a < R and let us be a harmonic function on
Brr(p). Then we have

t 2U“oo (0‘)
nos(t) T ne.

S

ProOOF. First, assume that us, is not a constant function on Bs(p). By Theorem
3.7, without loss of generality, we can assume that there exists a sequence of harmonic
functions u; on Bi} (m) such that sup; Lip(u;)r, < 0o and (ui)r, — e 0on Bgr(p).
Fix € > 0. By the assumption and Corollary 3.9, there exists 0 < r < s such that
U, (r) > 0. We now apply [15, Corollary 4.37]. Put Qo := 2a/r, = «a/r and
v := Dy (28)/D,_ (r) + 1. Let R := R(m,~,€,) as in [15, Corollary 4.37]. There
exists 7o such that R;r > R and
—2
Diiay (2607
— e <7
R "gm
(u) r, (r)

for every i > ig. Thus [15, Corollary 4.37] yields

Rit 2(14+e) WM (QR;r)

IV (Rit) < (
iS
Thus by letting ¢ — co and € — 0, we have the assertion.

Next assume that us, is a constant function on Bs(p). Put § := sup{8 € [0, R]; uso
is a constant function on Bg(p)}. If § > ¢, then, since I, (t) = I, (s), we have the
assertion. Thus assume § < t. Let 5§ > 0 with § < 5 < t. Then, by the argument above,
we have

Io_(t) < <f>2Uu°° (Q)Ium(é).

Since s < § and I, _(s) = I, (8), by letting § — §, we have the assertion. O



90 S. HoNDA

COROLLARY 3.15.  Let 0 < s < R and let us be a harmonic function on Brg(p).
Assume U,__(s) = 0. Then us s a constant function on Br(p).

PrOOF. First, assume that I, _(s) = 0. Then, by Proposition 3.14, we have
(t) = 0 for every s < t < R. Therefore, the assertion follows from Proposition 3.9.

Next, assume I, (s) > 0 and U,_(s) = 0. If we put @iee := Uoo — Uso(p), then
fioo = 0 on Bg(p). Since I;__(s) = 0, by the argument above, we have the assertion. O

1

Uoo

PROPOSITION 3.16. Let R > 0 and let us be a harmonic function on Brr(p) with
Uoo(p) = 0. Assume u £ 0 on Bgr(p). Then, we have

U, (s)>1

for every 0 < s < R.

PrROOF. By Theorem 3.7, without loss of generality, we can assume that there
exists a sequence of harmonic functions u; on Bfyp (m) such that sup; Lip(u;)r, < oo,
(u;)r, — U on Bgr(p), and (u;)g,(m) = 0. Note that by Corollary 3.15, we have
U, (r) > 0 for every 0 < r < R. Fix a sufficiently small ¢ > 0. We now apply [15,
Corollary 4.40]. Let Qf := Qr(n,e) > 2 as in [15, Corollary 4.40] (or [15, Corollary
3.29]). Put Qo = 5Qp, r == 5/2(2Q1)? < s and v := D,_(s)/Dy_(r) + 1. Let
R = R(m,~,¢,€Q0) as in [15, Corollary 4.40]. Then there exists ig such that R;r > R
and

R;72
D9v (22012 Ryr) Dl (2(2921)%r) .
Dgiu (er) - DR;291\/1 (’l“) =7

(ui)r;,

for every i > iyp. Then [15, Corollary 4.40] yields
—2
1 —3e <UIM(2QLR;r) = U&):iM (20.7).

By letting ¢ — oo, Proposition 3.4 and Proposition 3.11, we have 1 —3e < U, __(2Q.r) <
U... (s). Since € is arbitrary, we have the assertion. O

PROPOSITION 3.17. Let0<r <s< R, d > 0,dyg > 0 and let us, be a harmonic
function on Brr(p). Assume that U,__(s) < do,

s g5

and that us is not a constant function on Bgr(p). Then, we have

/ r;”|rp<drp, o) — Uy, (rp)uoo|2dH" < U(§;m,do)lu, (s).
Ap(r,s)
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PrROOF. By Theorem 3.7, without loss of generality, we can assume that there
exists a sequence of harmonic functions u; on By (m) such that sup; Lip(u;)r, < o0
and (u;)r, — Uoo On Bgr(p). We now apply [15, Proposition 4.50]. Put Qg := 2s/r,
Q= s/r and v := D,__(2Qr)/D,_(r) + 1 as in [15, Proposition 4.50]. Then, by
Proposition 3.4, there exists ig such that

R7%gm
Dt 2Q)
uo;#(r)f% max U(u7)gM()§2d0
Du;o QM(T) r<t<Qr )Ry
and
Ri_2gM
Ulyn (1)
log # <4
s Tgm
U(W)Ri (r)

for every i > ig. Thus, by [15, Proposition 4.50], we have

2
/ (bgM) (btJM a UQM (bQM)Vf]MbQM|> dVOlgM g \Il(é;n,do)IgM (RZS)
R;<biM <sR; on 1

for every sufficiently large i. On the other hand, Cheng-Yau’s gradient estimate yields
\ %Y ‘
(n —2)vol B1(0,,)

< Vit
~ (n—2)vol By(0,

|V o B o | = bt o | R e G e ()|

)2(7”51 91\/1) 10(71) (Tﬁf2gM)*1’GRi_29M (m’ )|

(n)( Ry QM) 1(7“712;29]\/1)”71(7’7}2; gM)Q*n

(n)

IN

c
c

IN

—2
on Al oM (r,s) for every sufficiently large 4. Thus by [38, Corollary 4.7] and Theorem
3.1, we have (beng,dbeng) — (rp,drp) on Ap(r,s). On the other hand, note that

-2 —n -2 _ o N s
/<beng< (bRT; gM) <bR,; gM(Ri ng)(VRi gM(ui)R“VR,. gmpR; gM)

2
_ U(u7L) QM (bR gNI)’vR’jngbeng |2) dVOlRZng

:/ (bgM) TL|ngM|2<bgM8
rR;<bIM <sR; 8

ou;
S C(n / pIM (bgM
() rRiSbgMgsRi( A on

2
UQM (bgM ) |VQM pImM |> d VO]gM

2
UQM (bgM ) |V9M pIm |) d VOlgM
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< (B, do) T2 (Ris) = W(3;m, do) [0 ¥ ()

(wi)Rr;

for every sufficiently large i. Therefore, by letting i — oo, [38, Corollary 4.4] and
Proposition 3.4 yield the assertion. O

The following corollary follows directly from Proposition 3.17.

COROLLARY 3.18.  Let r,s, R be positive numbers and let us, be a harmonic func-
tion on Brgr(p) with r < s < R and us(p) = 0. Assume U,__(r) = Uy, (s). Then we
have

rp(w){duo, drp)(w) = Uu, (8)uoo (w)
for a.e w € Ay(r,s).

PropPOSITION 3.19.  With the same assumption as in Corollary 3.18, we have

) tx) .
Uoo(t, ) = 7%015(0 2) ¢

for everyr <t < t<s and every x € X, where C =U,__(r).

PROOF. Define a Borel function a on A,(r,s) by

oot h7 _ oota
a(t,x):zlirl?sgpu (t+ x})z Uoo(t, )

By [38, Theorem 3.3] and Corollary 3.18, there exists a Borel subset A of Ap(r,s) such
that H™(Ap(r,s) \ A) = 0 and (drp, dus)(2) = a(z) = Cucc(2)/1p(2) for every z € A.
Fix 79,50 with 0 < s < ry < s9 < s and define a bi-Lipschitz map ¢ from A,(ro, s¢) to
[ro, so] X X by ¢(t,z) = (t,x). Then we have H"([rg, so] X X \ ¢(A4)) = 0. Therefore by
Fubini’s theorem, there exists a Borel subset X of X such that H"'(X \ X) = 0 and
H([ro,s0] x {z} \ ¢(A)) = 0 for every z € X. Thus we have H(¢~1([ro, so] x {z} \
#(A))) =0 for 2 € X. For every € X, Rademacher’s theorem yields

Uoo (80, L) — Uoo (10, ) = /SO a(t,x)dt

0
= / a(t, z)dt
rp (6= ([ro.s0] x{z}NS(A)))
/ Cuso(t, )
7o (61 ([r0,50] x {w}NS(A))) t

_ / 7(7“0‘;@’ ) .

dt

0

Note that for every x € X, there exists a sequence of points x; in X such that z; — .
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Therefore by the dominated convergence theorem, the equality above holds for every
r € X. Thus, for every € X, we see that a function f,(f) = ux(,z) on [r,s] is a
C'-function. Moreover we have

Therefore, we have the assertion. O

PROPOSITION 3.20. Let r,s,d, R,dy be positive numbers with 0 < r < s < R, and
Usos Voo harmonic functions on Brr(p). Assume that max,<i<s U, (t) < do,

Voo

U, (s)
Uy, (1)

‘log ‘<(5

and that ve is not a constant function on Br(p). Then, we have

So U a
8(1)771/ Uso Voo dH™ 1 — exp (2/ U°‘E(S)d§> 7’37"/ Uso Voo dH™ 1
9Bs, (p) To § 9Brq (p)

s 6do+3
< W(Sin,do) () .. (50) L. (50)
To

2

for every r <rg < sp <s.

ProOOF. By Theorem 3.7, without loss of generality, we can assume that there
exist sequences of harmonic functions u;,v; on By (m) such that sup,;(Lip(u;)r, +
Lip(vi)r;) < 00, (Ui)r; — Uco, (Vi)R;, — Voo ON Bgr(p). By the proof of Proposition
3.17, there exists ig such that

2
/ by~ (1o 0 grane (b9 ) w99 | ) d ol < (5 m, do)I9¥ (Rus)
rRi<bM <sR; on ' ’
for every i > ig. Thus, [15, Corollary 5.24] yields
‘(RzSO)ln/ uividvolfjfl
bIM =R;sq

soRi [79m (5
— exp (2/ ’“A(s)dé) (Ryro) ™™ / w;v;d voldM,
7 S bIM =R,;ro

o R

2

6do+3
< (5 n, do) (jZ) 199 (Ris0) 19 (Riso)

for every i > ig. Thus, we have
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-2
/ o (u)m () dvol™
qu', IM =30

S0
oo URC 97 (3)
. —2
— exp 2/ 7(%)1? ds 7'(1)_"/ L (ui)Ri(vi)RidvolfilgM
T0 S bRi gkj:’l’o

2

50\ o0 pag .
< ¥(d;n,do) o Ly, (800, (50)-

On the other hand, Proposition 3.4 yields

—2
/ L () e (o) RydvolR
bRi IM =SS0

1 RT2 1 R72
/R— ((ui)r, + (vi)R,)* dvol, ;" 75/ -2 (i), dvol, " "
) gM:so bRi IM =350

2

1 R72
- (v;)% dvol # M
pRi IM —g ‘

2
1—00 1 _ 1 _ _
—>—/ (Uoo + Voo ) 2dH™ 1—7/ u dH"™ 1—7/ v dH" 1
2 JoB.y(p) 2 JoB.,(p) 2 JoB.,(p)
:/ Uso Voo dH™ L.
8B5()(p)
]

Therefore we have the assertion.
The following is a direct consequence of Proposition 3.20:

COROLLARY 3.21. Let r, s, R be positive numbers with 0 < r < s < R, and Ueo, Voo
harmonic functions on Brr(p). Assume that U,_(r) = U,_(s) and that v is not a

constant function on Br(p). Then, we have
o\ 20
s(lfn/ Uoo Voo dH™ 1 = (0) réfn/ U Voo d H™ 1
9B (p) ro 8By (p)

for every r <rg < sg < s, where C =U,__(r).

We now consider a convergence of F:

PROPOSITION 3.22.  With the same assumption as in Proposition 3.4, we have

lim :
i—oo /. (ui) R,

FR9 () gp = / F,_(t)dt

for every 0 <r < s < R.
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PROOF. Since (beng,dbeng) — (rp,drp) on Ay(r,s), by [38, Corollary 4.5],

we have

S —2
/ Fo o (t)dt
r
VRi_?gM bRi_29M >2

S
= 3 R2 VR ()
/r /bRi_ng :t( gM) ( (Uz)Rm ‘VRi_29M bRi_2gM |

-2 —2 —2
x |V Tom R an | ol M

R'i2gl\4bR'7291\/I 2

-2 R;? Vv ‘

= —2 (R gM) Vi gM(U’i)Rw ) —2
r<pfi "IM < |VRz‘ gm pR; g |

x [TR a7 o 2R 0se )30 o) i o

= / (BT (VR () g, O g o) 2 (pR a3 ol Mo
r<bti IM<s

imeo, / 37 (duce, drp)dv = / F,_(t)dt. O
Ap(r,s) r
PROPOSITION 3.23. Let 0 < r < s < R and let us be a harmonic function on
Brr(p). Then we have

Dy,._(s)—D,_(r)= /S 2Fuf""@)dt.

Proor. Without loss of generality, we can assume that the assumption of Propo-
sition 3.4 holds. By (4.3) in [15], we have

—2 —2
By o (s) = Bl o (r)

R;%g R %g
) 2F(W)R~M (t) ° 2E(ui)R~M (1)
- t —

S
_/ £ / L 2| VRT e () g, [Pdvol 9 gy
r b TIM <t

2 _ _
HESSZ;»’%A:M . (VRi 2gm (ui)Ria v 29 (’LLZ)R)

_ Q(R;29M)<VR;2!]M (ui>R”vR;29M (uz)RL) dVOlRfr_QgM dt.

By [38, Corollary 4.5] and Theorem 3.1, we have
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lim ld(u;) g, | 2dvol ™ 9 = / |duco|*dH™.

. —2
P Syt TaM < Bi(p)

By the dominated convergence theorem, we have
: a1 R? 2 R;? 1 2 1772
lim t‘”/ . 2|V 9 (u) g, |“d vol 9 dt:/ t—"/ 2|duce |*dH=dt
b TIM <t r Bi(p)

S2FE, (t
[ty

On the other hand, since

1
i
R0 vol?™ ({b9n < R})

/ | Hess ponr y2 —2gar|d vol?™ =0,
b9M <R

we have

R72 —2 —2
Hess(b;fgz]fzvf )2 (vRi oM (UZ)R'L ) vRi gt (ul)Rz)

lim L
1—0o0 JyR; IM <t

- Q(Ri_29M)(VR;2gM (ui)g,, VR 9 (ui)r,) dvol®i 9 gp —

Therefore we have the assertion. O

We now give a short review of important results given by Ding in [20], [21]. We
denote the differential of a Lipschitz function f on X by dxf. For every ¢ > 0, let
¢; be an i-th eigenfunction of the Laplacian Ay associated with the i-th eigenvalue
A = N(X) =00 Axgy = N, 0 = Ag < A\ < Ag < ---. Define o;; > 0 by satisfying
Ai = ai(a; + n —2). According to [21], we see that v;(r,z) = r*¢;(x) is harmonic
on C(X) for every i. In fact, by [20, Theorem 4.15] and Proposition 7.6, for every
fe(C(X)\ {p}), we have

/ (df, dv;)dH™
C

(X)
> a;—2 n—1 a;—1 1 n—1
= —aj(a; = 1)r* " fo; — a;r® T + —(dx f,dx i) |dH"dr
0 9B,.(p) r

r

= / / ( —ai(o; — D)2 fd; — (n— Dagyr® 2 f¢; + )\ira"_gf(bi) dH" tdr
0 JoB.(p)
=0

Thus, v; is harmonic on C(X) \ {p}. Therefore [20, Corollary 4.25] yields that v; is
harmonic on C(X). By Theorem 3.7, we see that v; is locally Lipschitz. Especially, we
see that ¢; is Lipschitz and that A\; > n — 1. See [21, Corollary 2.4] and [21, Corollary
2.5] for the details. On the other hand, it is easy to check U,,(s) = «; for every s > 0.
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We say that v; is a homogeneous harmonic function with growth ;. Our goal in the
following argument is to show that we can apply [20, Theorem 4.15] for every d > 0 and
every oo € H(My). As a corollary, we will prove Theorem 1.1.

Let ordee oo := limy o0 Uy (1) and ordg teo := lim, ¢ U,,__ (1) for every harmonic
function ue, on C'(X). Then the following proposition follows directly from Proposition
3.16:

PROPOSITION 3.24.  For every non-constant harmonic function us on C(X) with
Uoo(p) = 0, we have

ordg e > 1.

By an argument similar to that of the proof of [15, Lemma 1.36], we have the
following proposition:

PROPOSITION 3.25.  Let Uy, Voo be harmonic functions on C(X). Then we have
ord oo (Uoo + Voo) < max{ordess oo, 0rd s Voo } -

DEFINITION 3.26. Let oo, Voo be harmonic functions on C(X). We say that use
and Vs are orthogonal if

/ Uoo Voo dt = 0.
9B1(p)

The proof of the next proposition is little more delicate than that of [15, Lemma
1.49]:

PROPOSITION 3.27.  Let us be a harmonic function on C(X). Assume that
orde Use = d < 00 and that v and us, are orthogonal for every homogeneous harmonic
function v with growth « satisfying o < d. Then, we have

for every 0 <r < s < o0.

Proor. Corollary 3.21 yields

/ Vs dH" 1 =0
9B:(p)

for every t > 0 and every a; < d. Let A := d(d +n — 2). Note that a; < d holds if and
only if A; < A holds. Let ig := max{i € Nl|o; < d}. Thus, we have \;; < A < A 1.
Note
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fX |dxu‘2dH"71
[y u?dH"1

)\Z-dJrl:inf{ ’LLGHLQ(X), U#O,

/ up;dH" ' = 0 for every 0 < j < id}.
X
Since the k-th eigenvalue A% of App,(p) 1s equal to t=2)\;, we have

faBt(p) |dop, (p) too| *dH"
Jo ) (ts0)?dH !

IV
Tl >

where dyp, () f is the differential of a Lipshitz function f|sp,(,). On the other hand,
by [38, Theorem 3.21] and Proposition 7.6, for a.e. t > 0, we have |du|*(w) =
({drp, duse)(w))? + |doB,. () Uso|* (w) for a.e. w € OB;(p). Therefore, we have

A

/83 (p)(|duoo|2 — (dry, ducc)?)dH" ™! > = w? dH™ !
t

9B (p)

i.e.
t3n / |duso|?dH™ 1 — F, _(t) > M,__(t)
9Bt (p)

for a.e. t > 0. We now use the notation: f’ := df/dt for a locally Lipschitz function f
on R. By Proposition 3.23, we see that D,,__ is a locally Lipschitz function on (0, c0).
Proposition 7.6 and Rademacher’s theorem yield

D, ()= @-mi [

o )(Lipuoo)de” +t2—"/ (Lip uoo )2 dH™ 1
t(P

dB¢(p)
for a.e. t > 0. Therefore, we have
tD,, (t) = (2—=n)Dy_(t) — Fu_(t) > M, (t)

for a.e. £ > 0. On the other hand, Proposition 3.23 yields D;_(t) = 2F,_(t)/t for a.e.
t > 0. Therefore, we have

for a.e. t > 0. Thus we have

D, () 22-n) _ 2. (1)
Du_ (1) t = D, (D)

for a.e. t > 0. Therefore, we have
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!

ENUREEREC)
12\ +4d - 2nd
Tt d
_ 12d(d+n —2) +4d — 2nd
Tt d
2
Tt

for a.e. ¢ > 0. Integrating the both sides of the inequality above on [r,s] yields the
assertion. O

PROPOSITION 3.28. Let g be a Lipschitz function on X and f a C?*-function on
R.y. Assume that f(1) = 1, lim,_o f(r) = 0, g #Z 0 and that a function u(r,xz) =
f(r)g(x) on C(X)\ {p} is locally Lipschitz and harmonic. Then there exists A > 0 such
that A\ > n—1, Axg = Ag and f(r) = r? for every r > 0, where ¢ > 0 satisfying
A=gqlg+n—2).

PROOF. Let g = > 7, a;¢; in Hy2(X). For every function h on X, define a
function A" on 0B, (p) by h"(r,xz) = h(x). Let ¢; be an i-th eigenfunction of Ayp, (,) on
OB, (p) associated with the eigenvalue A!. It is clear that ¢" = Y=, a;¢} in Hy 2(0B,(p)),
Ao, (p®; = M ¢; and \] = r~2);. [20, Theorem 4.15] and [38, Corollary 4.7] yield

0= / (du, dp)dH"
c(X)

- /0°° /aBmp) <¢< - %(T)g(m) - : 1 Zﬁ(?‘)g(mo

+ (doB, (p) ¢ daBr(p)gT>f(7“>> dH"'dr

e’} d2 _1 d 00 )
B /0 /aBT@) (b( - dTJ;(T)g(x) - = - ;{(T>9(w) + f(r) Zai)\fqﬁf) dH" 'dr

i=1

for every ¢ € K(C(X) \ {p}). Therefore, we have

> d*f n—1df N N T
[Too [ v (- G - R L o) ¢ 500 S i Jarr e = o

r
i=1

for every a € K(R~¢) and every Lipschitz function b on X. Since

o0

r\2 2 7\ 2 n—1 __
Z(/\z) a; /é)Br(p)(d)i) dH —/6

) |daB,,.(p)gr‘2dHn71 < 00,
=1

B (p

a function
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a2 f

R . |

r dr

(Mg(@) + f(r)Yairj ¢y
=1

on dB,(p) is in L*(0B,(p)). Since the space of Lipschitz functions on dB,(p) is dence in
L?(0B,(p)), we have

2

a2 f n—1df

O:/ ar/ — —=(r)g(x) — r)g(x) + f(r a\igt| dH™ tdr
[ [ - G = ) + 103
> d*f n—1df F(r) R
— _ — iNiDi dH" " “dr.
a0 [ G -2 G0 1S e -
On the other hand, it is easy to check that a function on R~q:
df n—1df () & S e
_&J _r-9 JA) N\ b e
P [ |7 a8 = ) + S @)

is continuous. Therefore for every r > 0, there exists a Borel subset A(r) of X such that
H" (X \ A(r)) = 0 and that

a2 f

2L (gt - 22

r dr

(r)g(z) + % ZaiAi¢i($) =0
i=1
for every x € A(r). Let

e %(1) +(n— 1)%(1).

Then, for every Lipschitz function ¢ on X, we have
/ AgopdH" ! = / gzbZai)\iqbidH"_l = / (dx¢,dxg)dH™ 1.
X X = X

Thus, ¢ is a A-eigenfunction of Ax. Therefore, we have A > n — 1. For every r > 0, we
have

d2 —-1d =
0= _di’réc(r)/Xg2dH”_l _ n l(r)/XdeHn—l + ‘fig)/xg;az)\ld)l(x)dfln_l

r dr
a2 f 9 pm—1_n—1df 2 -1, J(r) 2 yrrn—1
_—W(r)/xg dH —Ta(r)/xg dH +7T/X|dxg| dH
d*f n—1df

__%J 2 yrpn—1 2 ryn—1 f(r) 2 sprn—1
= er(r)/Xg dH . dr(r)/Xg dH —|——r2 )\/Xg dH™ .
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Thus, we have

df n—1df flr)
Therefore, we have the assertion. O

Next corollary follows from Propositions 3.19 and 3.28 directly:

COROLLARY 3.29. Let us be a nonconstant harmonic function on C(X) with
Uoo(p) = 0. Assume that ordg tuse = 0rde U = d < 00. Then, we have the following:

1. A function g(x) = us(1,2) on X is a d(d + n — 2)-eigenfunction of Ax.
2. Uso(r,z) = 19(2).

By Corollary 3.29, the following follows directly from an argument similar to that
of the proof of [15, Corollary 1.63].

COROLLARY 3.30. Let us be a nonconstant harmonic function on C(X). As-
sume that e (p) = 0, ordes Use = d < 00 and that v and us, are orthogonal for every
homogeneous harmonic function v with growth o satisfying o < d. Then, we have the
following:

1. A function g(z) = uss(1,2) on X is a d(d + n — 2)-eigenfunction of Ax.
2. Uso(r,w) = rg(7).

We now give a proof of Theorem 1.1:

A PROOF OF THEOREM 1.1. Theorem 1.1 follows directly from the results given
in this section and an argument similar to that of the proof of [15, Theorem 1.67]. O

4. Weyl type asymptotic bounds.

Our goal in this section is to give a proof of Theorem 1.2.

ProposiTiON 4.1. Let d > 0, and let M be an n-dimensional complete non-
negatively Ricci curved manifold with Vy; > 0, and (Moo,moo) an asymptotic cone of
M. Then we have dim H4(M.,) < C(n)d"~'. Moreover, for every V > 0, there exists
d(V,n) > 1 such that

dim HY (M) < C(n)Vard™™?

for every n-dimensional complete nonnegatively Ricci curved manifold M with Vyy >V,
every d > d(V,n) and every asymptotic cone (Moo, Moo) of M.

PrROOF. The assertion follows from Theorem 1.1 and arguments similar to that
of the proofs of [18, Proposition 3.1] and [18, Proposition 6.1]. We now only introduce
important ideas used in the proofs of their propositions and give an outline of a proof
of our assertion. Fix V > 0, an n-dimensional complete nonnegatively Ricci curved
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manifold M with Va; >V, and (Mo, meo) = (C(X),p) € My, Let dy = dy(n) > 1
with d(d + n — 2) < 2d? for every d > d;. Let ¢; be a \;(X)-eigenfunction of Ax with

/ GidsdH" ™" = by
X
for every 4, j. Let Ny := max{l € N;\(X) < d(d+n —2)}. Then we have
[ o par =t = 3x) < dla+n -2)
X

for every 1 < i < Ng. On the other hand, by Proposition 7.9 and the proof of [18,
Proposition 6.1], there exists da := da(n, Vi) > d; such that for every d > dy and every
{yi}1<i<i C X which is a maximal 1/d-separated subset of X, we have | < C(n)Vyd" 1.
Fix C > 1 and d > dy (we will choose C' depending only on n later). Let {z;}1<;<; be a
maximal 1/(Cd)-separated subset of X and V := span{¢;;1 < i < N4}. Define a linear
map M from V to R! by

M(v) = (/ vdH”*l,...,/ vdH”1>.
Ba/ca(r1) Bacalxi)

Let K := KerM, and let {w;}i<j<x be an L2-orthonormal basis of K, and
{wjtk+1<j<n, C V satisfying that {w;}i1<i<n, is a L?*-orthonormal basis of V. By
the weak Poincaré inequality of type (1,2) on X, we have

/ wdn— < <0 / |dw; [*dH
Bajcalzi) (Cd) Byycalxi)

for every 1 < j < k and every 1 < i < [. Therefore, we have

l l
_ C(n) _
1< / wrdH" ' < / |dw;|?dH™ !
Z Byscal(zs) ! <Cd)2 ; Baycal®s) !

i=1

C(n) 2 yrrn—1
< .
= Cay /X |dw;|“dH

for every 1 < j < k. Thus we have

< S0 zk:/ |dw; [2dH" ! < Cn) i/ \dw, [2dH" !
= 0y & J = 0y 2 J
Cn), o C(n)
< 2d*Ny < Ng.
= (cdEtt = e e
Let C := 4/2C(n), where C(n) is as above. Then we have k < Ny4/2. Since Ny =

k + dim(Image M), we have Ny < 21 < C(n)Vjrd"~ 1. On the other hand, by Theorem
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1.1, we have dim H%(M,,) < N4. Therefore, we have the assertion. g
Note that Theorem 1.2 follows directly from Proposition 4.1 and the following:

PROPOSITION 4.2.  For every V > 0, there exists d(V,n) > 1 such that the following
holds: Let M be an n-dimensional complete nonnegatively Ricci curved Riemannian man-
ifold with Vay > V. Then, for every d > d(V,n) and every asymptotic cone (Mso, Moo)
of M, we have

dim HY (M) > C(n)Vard™ .

Proor. Fix V > 0, an n-dimensional complete nonnegatively Ricci curved mani-
fold M with Vj; >V, and X € Mj;. The next claim follows directly from Proposition
7.9.

Cram 4.3. Lete >0, k€ N and {z;}1<i<i C X. Assume that {x; }1<i<k i an
e-separated subset of X. Then we have k < C(n)/e" L.

We give an upper bound of the first eigenvalue with respect to the Dirichlet problem
on B (z)(C X):

CramMm 4.4.  We have

o Jpw |dRPAET o)
keK (B, (z)),k20 fBr(w)deanl =72

for every x € X and every 0 < r < m.

The proof is as follows. Define a Lipschitz function & on X by k(w) := max{r/2 —
Z,w,0}. By the definition, we have k € K(B,(x)),

/ |dxk|2dHn_1 = Hn_l(Br/z(x))
B, (x)
and

2 2
/ K2dH"! > / K2dH"! > / %dH"‘l > %H”—I(Br/4(x)).
By.(x) By ja(z) (%) B,./4(x)

Proposition 7.9 yields

fBT(;c) |dk|*dH" ! EHH*l(Brm(I)) < C(n)
fBr(x) k2dHn—1 — 2 H”_l(BT/4(x)) =2

Thus, we have Claim 4.4.
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CramM 4.5.  We have

for every x € X.

The proof is as follows. For every sufficiently small » > 0, let A, := {(s,w) €
C(X);1—r<s<1l4r,wée B.(r)}. Proposition 7.6 yields

147

Hn(35,<1,x)):/ H" 1 (0Bu(p) N Bsy(1, 2))dt

1—r

1+r
> / H"Y(0B;(p) N A,)dt
1

-

> C(n)rH" Y (B,()).

Since

HMB(12)
i (B, (0,) = -

where 0,, € R", we have Claim 4.5.

CLAIM 4.6. We have

Aa(X) < C(n) (an(x)f/("—n

for every d > 1.

The proof is as follows. Fix 0 < C' < 1 (we will choose C depending only on n later).
Let

n—1 1/(n-1)
€:= C<H d(X)>

and let {x;}1<i<r be a maximum e-separated subset of X. By Claim 4.3, we have
k< C(n)/ent < C(n)d"1/(C* 1H"1(X)). On the other hand, we have

k
> H" N (Bae(x;)) = H™1(X).
i=1
By Claim 4.5 and Proposition 7.9, we have H"~!(Bs.(z;)) < C(n)e"~t. Thus, we have

k
H" N (X) <Y H" Y(Bae(w:)) < kC(n)e" ™.
i=1
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Therefore, we have

Cl(n)H”_l(X) - Cl(n) Hn_l(X)d > Cl(n)

k> =
- €n—1 Cn—l Hn—l(X) - Cn—l

d,

where Ci(n) is a sufficiently small positive constant depending only on n. Let C :=
C1(n)"/™=1 /2. Then we have k > 2d (> d+1). By Claim 4.4, for every 1 < i < k, there
exists ¢; € K(Be/10(xi)) such that ¢; # 0 and

fBe/m(CU ) |d(;51|2dH"_1 < C’(n)
fB (e ng QdHn 1 = g2

Since {B./19(x:)}: is a pairwise disjoint collection, we see that {¢;}; are linearly inde-
pendent in L?(X). For every (ay,...,a;) € R*\ {0,}, we have

k 2 k
/){‘d(iz_;aiqﬁi) dH”_1:Z/){|d(ai¢i)|2dH”_1

/ aids)2dH" !

k
Zai¢i
X =1

Thus, we have A\x_1(X) < C(n)/e2. Therefore, we have

C(n) 2dHn71.

n 2/(n-1)
Aa(X) < A1(X) < 06(2 ) < C'(n)<H”—Cf(X)) .

Thus, we have Claim 4.6.
The assertion follows directly from Claim 4.6 and Theorem 1.1. O

5. Gromov-Hausdorff topology on the moduli space of asymptotic cones.

In this section, we will study the moduli space of asymptotic cones of a fixed non-
negatively Ricci curved manifold M with Euclidean volume growth. In general, the
asymptotic cones of M are not unique. See [6] and [59] for such examples. Therefore we
now consider the set of compact geodesic spaces X such that (C(X),p) are asymptotic
cones of M, denoted by Mj;. Define a topology on Mj; by the Gromov-Hausdorff
distance dgg. On the other hand, let My, = {(C(X),p); X € My} and define a
topology on Moy by the pointed Gromov-Hausdorff topology. Then the canonical map
T : My — My defined by 7(X) = (C(X), p) is a homeomorphism. Note that Gromov’s
compactness theorem yields that My is compact. Thus M), is compact.
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5.1. Continuity of eigenvalues.

The main result in this subsection is the following theorem. We can regard it as
a “Mjs-version” of [26, (0.4) Theorem] by Fukaya or of [8, Theorem 7.9] by Cheeger-
Colding.

THEOREM 5.1.  Assume that X; converges to Xoo in Mys. Then (X;, H*™ 1) con-
verges to (Xoo, H"™1). Moreover, we have

lim Ap(X;) = M (Xoo)

11— 00

for every k > 1, where \i,(X) is the k-th eigenvalue of Ax.

PrROOF. Let {z;}; be a sequence of points x; € X; with x; — x, and r, € positive
numbers. Let AL(x;) := {(t,z) € C(X;);z € By(z;),1 —e <t <1+ e.}. Then, by [38,
Proposition 4.7], we have

lim H"™(A¢(2:)) = H" (AL (200))-

1— 00
On the other hand, by Proposition 7.6, we have

1+e€
H"(AL(zi)) = H""Y(0By(ps) N AL (2:))dt = C(n)eH" (B ()
1—e¢
for every 1 < i < oo, where p; is the pole of C(X;). Thus, we have (X;, H" 1) —
(Xoo, H™1).
We now give a proof of the second assertion by induction for k. Fix a subsequence
{i(4)}; of N. Let ff(]) be a A1 (Xj(j))-eigenfunction on Xj(;) with

L / i(5)2 -1
L[ gt o
H* =1 (X)) S,

Thus we have

i(4)

wo
H"Y(X50)) Jx

Define a harmonic function uil(j) on C(X;(;)) by ui(j)(T, x) = ror” fli(j) (z), where ozi(j) >

0 with A\ (X;(;)) = ai(j)(ai(j) +n—2). Note that A\;(X;(;)) > n—1and ai(j) > 1. Then,
[38, Proposition 3.21] and Proposition 7.6 yield

/ (Lipui?)?dH"
Br(pigs))

- /am (@) @A)
r(Pi(j)
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7 o .
+/ / p2ei 2| g 1D 2 gL gy
0 JOBr(picj))

7 o G
:/O (azl(ﬂ))eral( )—2T7L—1H7L—1(Xi(j))dr

7
i(5) 11— -
+/0 2RI (X)) H T (X)) dr

i(5) i(7 i(5)
72a +n—2(,i(4)\2 7 +n/\ Xi .
= Hnl(Xi(j))< 1 10) o i(3) - (J))>'
201" +n—2 201" +n—2
By Li-Schoen’s mean value inequality and Theorem 3.7, we have

C(n) / )2
< Lipu dH™.
H”(B7(pz(j))) Br(pi(5)) ( ' )

On the other hand, Claim 4.6 yields

Lip (Ui(j) |Bapis)

) 2/(n—1)
N(Xigy) < C(n)(Hnl(X.(.))>
Qv

for every [. Thus, we have

Lip (ull(]) ‘BQ(pi,(j))) < C(n, VM).
Then there exist a subsequence {j(1)}; of {i(j)}:, a Lipschitz harmonic function u$° on
Bs(poo), a Lipschitz function f{° on X, and af° > 0 such that ujl(l) — u$° on Ba(peo),

f(l) — f° on X and a{(l) — a°. Thus, we see that u$°(r, z) = r®7 £2(x) on By (peo),

and

lim (flm(i))Qdanl _ / (floo)Qdanl
X

1—00 X @

On the other hand, Proposition 3.4 and Theorem 3.7 yield

1 .
lim / B / | o, (py 0yl |*dH" 1 dt
=00 J1_¢ 9Bt (p;1y)
1 1

lim </ tDuj(L)(t)dt — Fuj(l)(t)dt>
1—e 1 1—e 1

l—o0

1 1
/ Dy (1)t — / Foe ()d
1

—€ 1—e

1
= / 3 / |dop, (p.. ut®|?dH" " dt
1—e OB¢(pso)
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for every 0 < € < 1. Since |d33t(pj(l))u{(l)|2 = t2a{m*2|dx(j(l))u{(l)|2, we have

1 .
/ t3-n / |do g, (py 0yl *dH" " dt
1—e aBt(pj(U)

1
. i) )
:/ t37nt2a;{ *Qtnfl/ |de(l)u31(l)}2dHn71dt
1 X

—€

1
j (1) _
/1 200N (X)) H N (X))t

FIO)]
1—(1—¢pn * n-1
= T g T (Xi):
1

Similarly, we have

1 2a5°+1
3—n 00 n— I-(1—e ! 00 n—
/ £ / \dop, (poyui®PdH" " dt = ( oo) / |df > PdH" "
1—e OBt (poo) 20(1 +1 Xoo

Therefore, we have

: 1 012 pn—1 1 1 2 prn—1
lim ————— / dFFOPaEm "t = lim A\ (X)) = —— / dfee|2dH™ 1.
l—oo Hn_l(Xj(l)) X | 1 | l—o0 1( J(l)) H"_l(XOO) Xoo ‘ ! |

Since {i(j)}; is arbitrary, we have

1—00

On the other hand, by [8, Theorem 7.1], we have

limsup A1 (X;) < A1 (Xoo)-

Therefore we see that

and that f° is a A; (X )-eigenfunction.

Next, fix an integer k > 2. Assume that the following hold:

1. im0 Aj(X5) = A (X o) holds for every 1 < j <k —1.

2. For every subsequence {i(j)}; of IN, there exist a subsequence {j(l)}; of {i(j)};, a
Am (X (1))-eigenfunction fﬂn(l) on Xy and a A, (Xoo)-eigenfunction f° on X, for
every 41 < m < k — 1 such that the following hold:

(a) fﬂfl) — £ on Xeo.
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(b) Lip(f%l)|32(pjm)) < C(n,m, Vi) for every 1 <m < k — 1.

() ni / AR = 5y
Hrt J(l Xim

holds for every 1 < s <t <k —1.

Fix a subsequence {i(j)}; of N. Let {j(D)},, {fj( }ieN,m<k—1 be as above, and

{1 }l<<>o a sequence of A\, (X())-eigenfunctions fk with
1 / @ 1_
Y (R)2am
Hn 1(Xj(l)) X5
Define a harmonic function uj, ) on C(X;qy) by ui(l)(r, x):=r ](l)fj(l)( ), where ai(l) >

0 with ai(l)( A 2) = (X))
By an argument similar to that of the case kK = 1, without loss of generality, we
can assume that there exist a Lipschitz harmonic function uf® on Bs(ps), a Lipschitz

function f2° on X and ag® > 0 such that Lip (Ui(l)|32(pj(,))) < C(n,k,Vy), Lip fg(l) <

C(n,k, V), u J() — u® on B (P )s flz(l) — fp? on X and af;(l) — a;°. Thus, we have
upl(r,x) = ro‘k f2(z). By an argument similar to that of the case k = 1, we have

lim a0 Pamt = / \df e 2dE™
=00 J X0 Xoo

On the other hand, we have

hm f](l f](l dH™ 1 / fsoo]c;}odHn—l
=oe Jx;a Xoo

for every 1 < s <t < k. Thus, we have f° € (span{l, f{°,..., f°,})* and f2° # 0.
Therefore, we have

Me(Xoo) < / |dfe|PdH™ !,

Since {i(j)}; is arbitrary, we have

liminf )\k(Xi) Z )\k(Xoo)

11— 00

On the other hand, [8, Theorem 7.1] yields

lim sup Ak (X;) < Ak(Xoo)-

17— 00

Therefore, we see that
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‘lim )\k(XZ-) = )\k(XOO),

11— 00
and that fg° is a A\;(Xo)-eigenfunction. Thus we have the assertion. O

REMARK 5.2. By the proof of Theorem 5.1, we also have the following: With the
same assumption as in Theorem 5.1, if a sequence of A, (X;)-eigenfunctions fi on X;
converges to a Lipschitz function fg° on X, then fg° is also an Ay (X )-eigenfunction.

5.2. Spectral convergence.

In this subsection, we now study a convergence of the heat kernel hx (¢, z,y) of X €
My with respect to the Gromov-Hausdorff topology via spectral convergence introduced
by Kasue-Kumura in [42], [43]. See for instance [68], [69], [70] for the heat kernels on
metric measure spaces. See also [65] for the case of Alexandrov spaces.

DEFINITION 5.3 (Spectral distance, [42], [43]). Let X,X € My;. A Borel map

f : X — X is called an e-spectral approzimation if it satisfies eV hx (t, 2y, 20) —

h(t, f(z1), f(z2))| < € for every t > 0 and every x1,22 € X. We define the spectral

distance SD(X, X) between X and X by the infimum of ¢ > 0 such that both e-spectral
approximations f : X — X and g: X — X exist.

See [42], [43] for fundamental properties of this spectral distance. The following
theorem is the main result in this section. Note that the following implies directly
Theorem 5.1.

THEOREM 5.4. Let X; — Xoo tn Mys. Then SD(X;, X)) — 0.

PrROOF. By Theorems 1.1, 1.2 and the compactness of M, it is not difficult to
check that

px(t,z,x) < Ci(n, Vo)t C2mVan)

for every t > 0, every X € My, and every z € X. Then, by Theorem 5.1 and an
argument similar to that in Section 2 in [43], we have the assertion. O

6. A dimension comparison theorem and a Liouville type theorem.

In this subsection, we will give a comparison theorem (Theorem 6.1) between the
dimension of a space of harmonic functions on a fixed nonnegatively Ricci curved manifold
with Euclidean volume growth, and that on an asymptotic cone of the manifold. Essential
tools to show it are [14, Lemma 3.1] (or [15, Lemma 7.1]) and Proposition 3.4. We apply
Theorem 6.1 to give a new Liouville type theorem (Theorem 1.3) and an alternative proof
of Colding-Minicozzi’s result about Weyl type asymptotic bounds for harmonic functions
on manifolds in [18]. Fix an n-dimensional complete nonnegatively Ricci curved manifold
M with Vay > 0.

THEOREM 6.1. Let d, € be positive numbers and k,l nonnegative integers with
0<1<k<dimHYM)—1. Then, there exists (Mso,ms) € Mus such that
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| < dim H(k/(k—l+1))(d—1+("/2))+1—("/2)+€(MOO) —1.

Proor. Without loss of generality, we can assume [ > 1. Let {u;}i<;<i be a
collection of linearly independent harmonic functions in H%(M) with u;(m) = 0. Put

Ir(us, uy) == / (du;, duj)dvol9™ .
bIM <r

For every r > 0 and every 4,j € {1,...,k}, define a harmonic function w; , and a real

number \j;(r) so that u; = Z;;ll Asi(r)u; 4+ w; . for every i, and that Jr(w; w5 ) =0

for every 1 # j. Let

Fulr) = / \duw; [ volo™ .
bIM <p

CLAM 6.2.  We have the following:

There exists K > 0 such that f;(r) < K(r?¢=2" 4+ 1) for every i and every r > 0.
fi(r) > 0 for every i and every r > 0.

fi(r) < fi(s) for every i and every r < s.

For every i, f; is a barrier for t”fQDﬁj;/fs (t) at every s > 0. Here, for functions g,h
on R and a real number r, we say that f is a barrier for g at v if f(r) = g(r) and
f(s) < g(s) for s < r (see [14, Definition 4.6]).

W=

Claim 6.2 follows from the trivial monotonicity of t"~2DY™(t) and an argument
similar to that of the proof of [15, Proposition 8.6] (or [14, Proposition 4.7]).

Let A := k/(k — 1+ 1). By [14, Lemma 3.1], for every N > 2, there exist a
subsequence {m(N,i)};en of N and pairwise distinct integers oy, ..., ol € {1,...,k}
such that f;(N™(N:AOFL) < o NARd=2+n) £ (NN for every j € {af,...,al} and
every i € N. Without loss of generality, we can assume that oY =i for every 1 <i <.
Claim 6.2 yields

fj(Nm(N7i)+1) (Nm(N,i)+1)n—2D{]Uy1Nm(N - (Nm(N,i)-i-l)
- > - L : -
fj (Nm(N’Z)) (Nm(N’l))niQDg)J\jA,Nm(N,z:Hl (Nm(N’Z))

Thus, we have

ngu (Nm(N,l)Jrl)
Wi, NN, +1 < 9N 2d—24n)+2-n
Dy () '

G Nm (N, i) +1

) m(N,i)y—2
Define a harmonic function w?/’z on BJ(V]\/]10 )M (1) by
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w (w) = wJ'VNm(N,iH»l

-1
) 1 2
x | NN : dw; nm(,i dvolI™ .
( vol9M {bgM < Nm(N’l)} bIM < N (N,i) JNmELO

Assume that N is sufficiently large. Then Li-Schoen’s mean value inequality yields

Ny

|w (z1) — wNZ(z2)|

< sup |ij,N7n.(7L,i)+l |331, ToIM
BNnL(N,i)%(m)

, 1 2 !
m(N,i) ) N1 gMm
% (N \/VO]QM {bgM < Nm(N,i)} bIM < NN ,i) |dwj’Nm(NJ)+ ’ dol >

1 2
<C , dw; nm(n,i dvol9
- (n)\/volgM{bgM g Nm(N’Z)QN/?)} bIM < N™(N. )N /3 | w]7N o Hd‘ Vo

—1
1 2
X , dw; xmw,i dvolIM
<\/V019M {bgM S Nm(N,l)} bgMSNm(N«'i) | 7,N (N )+1|

m(N,i)\—2
X T1, %3 xQ(N ) Cgm

< C(R)Nk(d_1+"/2)+1—n/2x1’ x2(NTﬂ(N,z‘))729M

(N VD)2 g . ] '
for every 1,2 € By (m). Without loss of generality, there exist { Xy }n>2 C
My and a collection {w}"**}1<;j<i n>2 of Lipschitz functions )™ on By,10(py) such

that (M, m, (N™ND)=1d,) — (C(Xx),pn) and that wJNZ — wJN’OO on By/19(pn). On
the other hand, we have

1
(N™ND)=2g,p BiNm(N‘i)VQgM (m)

vol
(Nm(N,i))72gA/I N,Z 2 (Nm(N,i))72gM
x/(Nm(NTi))i%M |d w; ’ dvol
1 (m)

1 )
= dw; ymv,iy i1 |2(N™ND)2 4 vol9M
Volgjw BNm(N,i) (m) /BNm(NYi) (m) | 7, N N,i)+1 | ( )

1
vol™ {bgm < N™MNAY [ons o nm(v.iy

-1
« (NQm(N,Z) ‘dwj7Nm(N,i)+1 ‘deOIgM )
=1+¥( n,N).

By [38, Corollary 4.7] and Theorem 3.1, we have



Harmonic functions 113

1 / N,00 |2
- - dw; " |"dH"™ = 1.
H"(B1(pn)) Bl(pN)‘ / ‘

Similarly, we have

/ (dw]", dw?>*)dH™ = 0
Bi(pn)

,00

for every ¢ # j. Therefore, we see that {ij }; is a collection of linearly independent

harmonic functions. Proposition 3.11 yields

I~ (N/100) Ugvoe(1) Dy (N/100)
Ivee(l) U (N/100) D no(1)
J J J
D, ~.~(N/100)
< j < 2N)\(2d—2+n)+2—n.

Therefore, by Proposition 3.8, we have

N/100 U n,o(t
exp (/ ijNt()dt> < 2N/\(2d—2+n)+2,n'
1

Thus, by Proposition 3.11, for every 1 <[ < N/100, we have

N\ 2U, N (D)
( A) i < 2N)\(2d—2+n)+2—n
100! N

ie.

A log N log N
2T~ (1) < %8 o8 (A2d—2+4n)+2—n).

~ log N —1og(100l)  log N — log(1000)
Therefore, for every [ > 1, there exists Njsuch that U, v« (a) < Md—1+n/2)+1-n/2+€
J

for every N > N; and every 1 < a < I. Let T € Bi/w(pN)' Li-Schoen’s mean value
inequality and Theorem 3.7 yield

1 2
Lipw} "> (z1) < C 7/ Lipw} ™) dH"
ipuwy ™ (m) < (n)\/H”(Bi(pN)) B[(PN)( )

< C(n,Vu) Z—n/ |dw! | dHn
B;(p~)
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< C(n,Var, A, d) Z—l—n/ w2 dHn
dB;(pN)

" 1 N,o02
<OV A e [ P,
( ) \/Hn—l(aB[(pN)) 9B;(pN) ’ ! |

On the other hand, by Proposition 3.11, we have

I, ~no(l) =exp (/ Jtdt> I, ~v(1)
J 1 J

i _ _
< oxp (/ A2d -2+ n1—|— 2—n+ 2€dt) I (1)
1 J

< ZA(Qd—Q-&-n)-&-Q—n—i—QeI Noo (1)

J

for every N > N;. By Proposition 3.16, we have

0< I v (1) < I ()0, nm (1) < Dy (1) = 1.
J J J J
Thus, we have I . (1) < [M2d=2+n)+2-n+2e  Therefore, we have

Lip (wév,oo‘Bi/lo(pN)) S C(n, VM, )\’ d)[A(d71+n/2)7n/2+€.

Since My, is compact, without loss of generality, we can assume that there ex-
ist Xoo € My and a collection of locally Lipschitz harmonic functions {w$°}; C

HANd=14n/2)+1-n/24¢(C0(X ) such that Xy — X, and wj-v’oo — w$® on Br(pe) as
N — oo for every j and every R > 0. [38, Corollary 4.7] yields

1

R dw®, dw®)dH™ = 5.
H"(Bl(poo)> /131(Poc)< ! > ’

In particular, we see that {wj°}; is a collection of linearly independent nonconstant
harmonic functions. Therefore we have the assertion. O

As a corollary of Theorem 6.1, we will give an alternative proof of the following
important result by Colding-Minicozzi:

COROLLARY 6.3 (Colding-Minicozzi, [18]). For every V > 0, there exists d(V,n) >
1 such that

dim HY(M) < C(n)Vayd"™*

for every d > d(V,n) and every n-dimensional complete nonnegatively Ricci curved man-
ifold M with Vay > V.
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PROOF. By letting k = [ = [(dim H*(M) — 1)/2], where [a] := inf{l € Z;a < I}
for every a € R, the assertion follows from Theorems 1.2 and 6.1. (]

We now give a proof of Theorem 1.3:

A PROOF OF THEOREM 1.3. Let A\; := inf{\;(X); X € M} and

d —(n—=1)++/(n—2)2+4)\ >1

o 2

By Theorems 3.27, 5.1 and the compactness of M;, we have the following:

1. HY( M) = {constant functions} for every (Mu,,meoo) € Mas and every 0 < d < d;.

2. HN(M,,) # {constant functions} for some (M, Mo0) € May.

Assume that there exists d > 0 such that d < d; and dim H¢(M,) > 1. Let € > 0 with
€ < d; —d. Applying Theorem 6.1 as k = [ = 1 yields that there exists (M, msy) € Mg
such that 2 < dim H%+¢(M,,). This is a contradiction. O

We end this subsection by giving the following. See also [16, Conjecture 0.9].
COROLLARY 6.4. Let d be a positive number and u € HY(M). Then we have
liminf { sup U™ (ts) | <d

t—o0 sEK
for every compact subset K of (0,00).

Proor. Without loss of generality, we can assume that u is not a constant func-
tion. By the proof of Theorem 6.1, for every e > 0, there exist sequences of positive
numbers {R;};, {R;}i, an asymptotic cone (M, Moo) of M and a nonconstant harmonic
function us, € H¥¢(My,) such that R; — oo, R; — 00, (M,m,Ri_ldM) — (Moo, Moo ),

—1
sup; Lip™ ™ ((u)

. ) < oo for every R > 0, and that (W)p, — Uoo ON

-1
R d
Bg* M (my)

—2 —2
M.. By the definition of Ug™ (t), we have U(Izi)ﬁ_gM(s) = Ui 9 (s) = U9 (Rys) for

—2

every s > 0 and every i. Thus, since lim;_,oc (Sup,cx ‘U(JZ) M () — U, ()]) = 0 and
R

Uu,, < d+ €, we have liminf; o (sup,cx U™ (ts)) < d + €. Therefore, we have the

assertion. O

7. Appendix: a co-area formula on metric cones.

In this section we will prove a co-area formula for the distance function from the pole
on a noncollapsed metric cone used in the previous sections. See Proposition 7.6 for the
precise statement. Throughout this subsection, we fix a pointed metric measure space
(Y, y,v) which is the Gromov-Hausdorff limit of a sequence of n-dimensional complete
Riemannian manifolds {(M;, m;,vol /vol By(m;))}icoo with Ricy, > —(n —1). Assume
that the following hold:
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1. There exists a compact geodesic space X such that diam X < 7w and (Y,y) = (C(X),p).
2. dimg X = n — 1, where dimg X is the Hausdorff dimension of X.

REMARK 7.1.  We use the renormalized measure vol := vol/vol B;(m) here in
order to apply several results given in [36] directly.

Note that by [6, Theorem 5.9], there exists C' > 0 such that v = CH™. First, we
recall the following definitions of lower dimensional Hausdorff measures associated to v,
and of standard (spherical) Hausdorff measures. See Section 2 in [7]. For convenience,
we use the notaion: r~*v(B,(z)) = 0 if r = 0. For every o > 0, every § > 0 and every
subset A of Y, let

r; “v(By(x;)); z, €Y, 0<r; <6, AC U Bri(:ci)},

1 i=1

5

(0-a)s() = nt {

K2

wary; x; €Y, 0<r; <6, AC UBTl(xl)}

1 i=1

5

(1%)5(4) = int {

K2

and

v-a(A) = lim(v-a)s(4),  HO(A) = L (H?)5(A),

where w, = 27%/2/T(1 + «/2) and T'(t) is the gamma function. On the other hand, for
every subset A of {1} x X(C C(X)), let

(v_a)x,5(A) == {Zr{o‘v(B,.i (2:)); mi e {1} x X, 0<r; <4, AC U Bn(a:i)},

i=1

(H*)x,5(A) := {Zwar?; ze{l}xX, 0<r;<d, AC U Bm(a:i)}

i=1 i=1
and

(v-a)x(4) := lim(v_a)s(4), H(A):= lim(H)s(A).

Note that it is easy to check the following:

1. We have v_4(A) < (v_a)x(A) and H*(A) < H§(A) for every subset A of {1} x X.
2. Let ¢ be a map from (X,dx) to ({1} x X,d¢(x)) defined by ¢(x) = (1,z). Then we
have H"~1(A) = Hy *(¢(A)) for every subset A of X.

LEMMA 7.2.  We have v_1(A) = (v_1)x(A) for every Borel subset A of {1} x X.

PrROOF. Fix d,e > 0. Then, there exists an open covering { By, (z;)}; of A such
that 0 < r; < 6, @ = (ti,w;) € C(X)(= Rso x X/({0} x X)) and |(v_1)s(4) —
oo i u(By, (2:))] < e. Without loss of generality, we can assume that B, (z;)NA # (

i=1"1
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for every i. Let y; = (1,w;) € C(X) and §; = (1, w;) € (Rx X, \/dR + d%). It is easy to
check that the map ®;(s, z) = (s, 2) from Bs,, (x;) to Rx X is an (14 ¥(J))-bi-Lipschitz
embedding. Therefore, we have B,, (xl)Aﬁ {1} x X) C B(1+\If( ))m(}). On the
other hand, since [t; — 1| < J, the map ®;(t,w) = (t +t; — 1,w) from By 1y(s))r, (yz) to
C(X) is an (1 & ¥(4))-bi-Lipschitz embedding. Since P, (9;) = x;, we have Image d c
Batws))r: (x;). Therefore Bishop-Gromov volume comparison theorem for H™ yields
H"(Batw(syr, (41)) < (1+W(0)H" (Butw(a)yr, (1)) < (1 4+ W(6))H"(By, (2i)). Thus,
since v = CH", we have

(v_1)x, 14w (s))s (A Z (1 + W(8))r:) " CH™(Batws)r (9:))

6)) Y r; 'CH™(By, ()
i=1
< (1 +¥(6)((v-1)x,5(A) +€).
By letting € — 0 and § — 0, we have the assertion. O
Similarly, we have the following:

LEMMA 7.3.  We have Hy ' (A) = H"(A) for every Borel subset A of {1} x X.

REMARK 7.4. Tt is easy to check that there exists C; > 1 such that C; 'v_;(4) <
H""1(A) < Cyv_1(A) for every Borel subset A of C(X). The proof is as follows. By
Bishop-Gromov volume comparison theorem for v, there exists V' > 1 such that V! <
lim, g v(By(z))/r™ <V for every x € By(p). On the other hand, since v = CH™, we
have lim,_,q v(B((t,w)))/r™ = lim,_ov(B,((s,w)))/r™ for every 0 < s < t < co and
every w € X. Then the assertion follows from these facts.

LEMMA 7.5. The product measure H* x H"™' on R x X is equal to H™.

PROOF. Fix a Borel subset A of X. It suffices to check that H™(]0,a] x A) =
aH™ 1(A) for every a > 0. Note that there exists a Borel subset X of X such that the
following hold:

1. H"1(X \ X) =0.

2. For every x € X and every € > 0, there exists rS > 0 such that for every 0 < r <,
there exist a compact subset C¥ of B,.(z) and an (1 & €)-bi-Lipschitz embedding ¢?
from C% to R"~! such that

H B @)\ CF) _
HL(Bo(x)

For every z € X and every € > 0, by Fubini’s theorem, we have
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H™([0,a] x CF) =

for every sufficiently small » > 0. On the other hand, by the proof of [37, Lemma 5.2],
we have H"([0,a] x A) < C(n)aH" 1 (A) for every Borel subset A of X. Thus, we have

L HM(0,0) x By(w)
=0 aH (B, (@)

for every 2 € X. Therefore, there exists a Borel subset A of A such that H"~1(A\ A) =0,

(0,0 x Be(e)
20 a1 (B, (2)

and

H™ (AN B, ()

lim
r—0  H"1(B.(z))

for every z € A. Note that H"([0,a] x (A\ A)) < C(n)aH" '(A\ A) = 0. Fix
a sufficiently small ¢ > 0. By a standard covering argument (c.f. [38, Proposition
2.2]), there exists a pairwise disjoint collection {B,, (z;)}; such that z; € A, r; < e,
A\ Uf\ilﬁm (z:i) € U= N 41 Bsr, () for every N € N, and that

H"([0,a] x By, () 1’ ‘Hnl(AﬂBn(ﬂfi))
aH" (B, (i)

H (B, (1) 1‘ =

for every i. Let No € N with Y>°\ ) H" (B, (;)) < €. Then, we have

No [e%s)
H"([0,a] x A) <Y H™([0,a] x By, (x:)) + Y H"((0,a] x Bsy, ()

i=1 i=No+1
No o)

<3 H(0,0] x By () +aC(n) S HY (B (1)
i=1 i=No+1
No

< ZH"([O,a] X By, (7;)) + ¥(e;n,a,Cy)

No
<a(l+¢)Y H" (B (2:)) + ¥(e;n,a,Ch)
1=1

<a(l+e)?(H" Y (A) +€) + U(en,a,C).
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Therefore, by letting € — 0, we have

H"([0,a] x A) < aH" '(A).
On the other hand, we have

aH""'(A) =a ( i H"N(By,(x:)) + ¥(6m, Cﬂ)

No
<(1+¢)> H"([0,a] x By, (2:)) + ¥(e;n,a,Ch)
i=1

and

H™([0,a] x By ()~ aH" (B, (i)

Therefore, we have
No
aH" " (A) < (146 Y H"([0,a] x B, (2:)) + ¥(€;n,a,Ch)
i=1
No

< (14 ¥(en)) Z H" ([0,a] X (B, (z;) N A)) + ¥(e;n,a,Cy)

i=1
< (14 %(e;n))H™([0,a] x A) + ¥(e;n,a,Ch).
Therefore, by letting € — 0, we have
aH" 1 (A) < H"([0,a] x A).
Thus, we have the assertion.
We now give a co-area formula on C(X):

PROPOSITION 7.6.  We have

/ fdH"™ = / / fdH™ 1dt
C(X) 0 JoBu(p)

for every f € LY(C(X)).

PRrROOF. By [36, Theorem 5.2] and Remark 7.4, it suffices to check that

3 1 oo n—1 ) _
lim m/o H" " (0B(p) N By (x))dt =1

119
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for every x € C(X) \ {p}. Fix x € C(X) \ {p} and a sufficiently small positive number
r. Let R :=p,z > 0. Then, since the map ®(¢,w) = (¢{,w) from B,(z) to R x X is an
(1 £ ¥(r))-bi-Lipschitz embedding, we have

Ba—w(m)r(®(@)) C 2(Br (7)) C Bt (®(2)).
On the other hand, Lemma 7.5 and Fubini’s Theorem yield
R4(1+%(r))r .
H" (Baw(ry)r(®(2))) 2/ H™ ({1} x X) N Byw(ry)r (®(2)))dt.
R—(1+¥(r))r
Since ®(9B;(p) N Br(x)) C ({t} x X) N Batw(r))r(®(x)), we have
RA+(1+%(r))r
H™(Baywy(®(2))) > (1 — ¥(r; n))/ H" Y(0B;(p) N B,(x))dt.
R—(1+%(r))r

Therefore, we have

1 > limsup H""Y(0B;(p) N B,(x))dt.

1
r—o H"(Br(z)) /0

Similarly, we have

1 < lim inf H" Y (0B;(p) N B,.(x))dLt.

ol
H™(Br(x)) Jo
Therefore, we have the assertion. O

PROPOSITION 7.7.  We have v_1(A) = C(n)CH" '(A) for every Borel subset A
of {1} x X.

PrROOF. By [12], we have

o A" (B (2)

r—=0  wyr"

=1

for every z € R, (Y). Since R,,(Y) N ({1} x X) = {1} x R,,—1(X), by Proposition 7.6,
we have H" (X \ R,_1(X)) = 0. Fix ¢,5,7 > 0. Let

H"(Br(a))

AS = {a e AN{1} X Rp—1(X)); - 1‘ < eforevery 0 <r < T}.

By the definition of v_1, there exists an open covering { B;, (z;)}; of AS such that z; € AS,
ri <min{d,7} and |v_y(AS) — Y57 r (B, (zi))| < e. Thus, we have

i=1"1
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By letting § — 0, 7 — 0 and € — 0, we have

Wn—1

CH" (A) < v_1(A).

Wn

Cram 7.8. Let Z=TR,(Y)N ({1} x X). Then we have H" ({1} x X)\ Z) =0

and

i T Bo2) N ({1} x X))
r—0 wnilrn—l

=1

for every z € Z.

The proof is as follows. Let 2 € X and let {r;}; be a sequence of positive num-
bers with 7; — 0. Assume that there exists a tangent cone (7,X,0,) of X at x such
that (X,z,r; 'dx) — (T.X,0,). By [6, Theorem 5.9] and [37, Claim 4.5], we have
(C(X),ri_ldc(x), (1,z),H") — (R x T, X,(0,0,), H"). Moreover, since T, X is H""!-
rectifiable (see [38, Corollary 3.53]), by an argument similar to that in the proof of
Lemma 7.5, we have H' x H"! = H" on Rx T, X. Since ([—r;, ;] ngix (), r; dex))
Gromov-Hausdorff converges to [—1,1] x B1(0,) as i — oo, [38, Proposition 4.12] yields

lim H"([—ri, 73] x BeX (x)) = H"([~1,1] x B1(0,)).

1—00

_ 1
By Proposition 7.6, we have H™([—ry, ] x Bo () = (1 + U(ry;n))2H LB} ™ (2)).
In particular, we have

— 1 —
lim H" By ™ (x)) = H" ' (B1(0,)).
71— 00
Therefore, we have Claim 7.8.

Let W := Leb(A N Z) with respect to the (n — 1)-dimensional Hausdorff mea-
sure H"~!. By a standard covering argument, there exists a pairwise disjoint collection
{B,,(a;)}; such that a; € W, r; < /100, W'\ Uf\ilﬁm (a:) € U2 y41 Bsr, (a;) for every
N, and
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H"(By, (@) _ 1‘ LT Br(@) 0 W) )
Wity Wp—1ry

for every i. Let No € N with Y%\  H" '(B,,(a;) " W) < e Then, we
have >27°y y H" '(Bs,,(a;) N W) < ¥(en,Ch). By the assumption, we have
> Nop1 Wn17l !t < W(e;n, Cy). Therefore, we have

Ny o
(0-1)s(W) <Y 7 0By (i) + Y, (5r)  o(Bsr, (a))

i=1 i=No+1
Ny - %)

<> r'CHY(By(ai)+ Y, Cn)Crp!
i=1 i=Nop+1
Ny

< ZTJIC’H"(EU(%)) + ¥(e;n, C,Ch)

No
<Y Cwar? (14 €) + U(en, C, Cy)

=1
Cuwy,
Wn—1

Cuwy,

Wn—1

No
(1+e) ZH”fl(Em (a;)) N W)+ ¥(en, C,Ch)

i=1

IN

< (1+e)H" Y (W) + U(e;n, C, Cy).

By letting 6 — 0 and € — 0, we have

v (A) < S 1)),

Wp—1
Thus, we have the assertion. O
We end this section by giving a proof of the following proposition:

PROPOSITION 7.9.  We have

H™Y(B,(x)) < C(n) "

gn—1
for every 0 < s <t <m and every x € X.

Proor. Note that there exists a universal constant Cy > 1 such that for every
metric space X, the bi-Lipschitz map from X to {1} x X ¢ C(X) defined by fx(@) =
(1, %) satisfies Lip f¢ + Lip f;(l < Cs. Therefore, by [36, Theorem 5.7] and Proposition
7.6, we have
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H""(By()) < C(n)H" " (Beyi(L,2) N ({1} x X))
= C(n)C ™ v_1(Bey(1,2) N ({1} x X))

< C(n)v(Cp(Beye(1,z) N ({1} x X)) N Ap(max{0,1 — Cat}, 1))
- Cvol Ap(max{0,1 — Cyt}, 1)
< ) (Brce(1,2))

C(n) t"
S ﬁsinv(Bcz—ls(l, 1'))

n—1 1+C5 s
< C(n) / H" " Y(8B,(p) N By-1,(1,3))dr
s" max{0,1-C; 's} 2 °

tn—l 1+C;13
< C(n) / U (0B, (p) N B (1, ) )dr
5" Jmax{0,1-C; s} 2 ®

n—1
< C(n)ts—nsH"_l((?Bl(p) N Ber,(La))
tnfl _—
< C’(n)sn_lH (8B1(p)ﬂBC;1S(1,:c))
tn—l _—
< C(n) Sy H' (B (0)) 0
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