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Abstract. A (holomorphic) involution σ of an Enriques surface S is
said to be numerically reflective if it acts on the cohomology group H2(S,Q)
as a reflection. We show that the invariant sublattice H(S, σ;Z) of the anti-
Enriques lattice H−(S,Z) under the action of σ is isomorphic to either 〈−4〉 ⊥
U(2) ⊥ U(2) or 〈−4〉 ⊥ U(2) ⊥ U . Moreover, when H(S, σ;Z) is isomorphic
to 〈−4〉 ⊥ U(2) ⊥ U(2), we describe (S, σ) geometrically in terms of a curve
of genus two and a Göpel subgroup of its Jacobian.

An automorphism of an Enriques surface S is said to be numerically trivial
if it acts on the cohomology group H2(S, Q) ' Q10 trivially. By [11] and [10],
numerically trivial involutions are classified into three types. An involution of S

is called numerically reflective if it acts on H2(S, Q) as a reflection, that is, the
eigenvalue −1 is of multiplicity one. In this article, we shall study numerically
reflective involutions as the next case of the classification of involutions of an
Enriques surface.

We first explain a construction, with which we started our investigation. Let
C be a (smooth projective) curve of genus two and J = J(C) be its Jacobian
variety. As is well known the quotient variety J(C)/{±1J} is realized as a quartic
surface with 16 nodes in P 3, called Kummer’s quartic. The minimal resolution of
J(C)/{±1J} is called the Jacobian Kummer surface of C and denoted by KmC.

Let G ⊂ J(C)(2) be a Göpel subgroup which is not bi-elliptic (Definitions 1.4
and 1.6). Then the four associated nodes Ḡ ⊂ J(C)/{±1J} are linearly indepen-
dent in P 3 (Proposition 5.2). Let (x : y : z : t) be a coordinate of P 3 such that the
four nodes are the four vertices of the tetrahedron xyzt = 0. Then the equation
of Kummer’s quartic J(C)/{±1J} ⊂ P 3 is of the form
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q(xt + yz, yt + zx, zt + xy) + 4xyzt = 0 (1)

for a ternary quadratic form q(x, y, z) = ax2 + by2 + cz2 + dyz + exz + fxy by
Hutchinson[7]. The standard Cremona transformation (x : y : z : t) 7→ (1/x :
1/y : 1/z : 1/t) of P 3 leaves the quartic invariant and induces a (holomophic)
involution of KmC, which we denote by εG. As is observed in [8, Section 3],
the involution εG has no fixed points and the quotient (KmC)/εG is an Enriques
surface (Proposition 5.1 and Remark 5.3).

The projection (x : y : z : t) 7→ (x : y : z) from the node (0 : 0 : 0 : 1) gives
a rational map of degree two from the quartic KmC to P 2. The Galois group of
this double cover is generated by the involution

β : (x : y : z : t) 7→
(

x : y : z :
q(yz, xz, xy)
tq(x, y, z)

)
, (2)

which commutes with εG and descends to an involution σG of the Enriques surface
(Km C)/εG. Our main purpose of this article is to characterize ((KmC)/εG, σG)
as an Enriques surface with an involution, making use of the following:

Proposition 1. σG is numerically reflective.

Let S be an Enriques surface and S̃ the covering K3 surface of S. We denote
by ε the covering involution of S̃ → S and by H−(S, Z), the anti-Enriques lattice,
that is, the anti-invariant part of H2(S̃, Z) with respect to the action of ε∗. An
involution σ of an Enriques surface S uniquely lifts to a symplectic involution
σK of S̃, of which the associated map σ∗K of H−(S, Z) acts trivially on H2,0 ⊂
H−(S, Z) ⊗ C (Proposition 2.1). We denote by H(S, σ;Z) the invariant part of
H−(S, Z) under the action of σ∗K . Both H−(S, Z) and H(S, σ;Z) carry polarized
Hodge structures of weight two.

When the involution σ is numerically reflective, H(S, σ;Z) is isomorphic to
either a) 〈−4〉 ⊥ U(2) ⊥ U(2) or b) 〈−4〉 ⊥ U(2) ⊥ U as a lattice (Proposition 3.2).
If σ is σG, the involution constructed above, then the case a) occurs, and the
converse is also true:

Theorem 2. Let σ be a numerically reflective involution of an Enriques
surface S such that H(S, σ;Z) is isomorphic to 〈−4〉 ⊥ U(2) ⊥ U(2). Then

1) there exists a unique curve C of genus two such that H(S, σ;Z) and H2

(J(C),Θ;Z) are isomorphic polarized Hodge structures (Lemmas 4.2, 4.3), and
2) (S, σ) is isomorphic to ((KmC)/εG, σG), the pair constructed above.

See Remark 5.3 for explicit equations of (KmC)/εG and an example appear-
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ing as a Hilbert modular surface attached to a certain congruence subgroup of
SL2(OQ(

√
2)). The case b) will be discussed elsewhere.

A Jacobiam Kummer surface Km C is expressed as the intersection of three
diagonal quadrics

∑6
i=1 x2

i =
∑6

i=1 λix
2
i =

∑6
i=1 λ2

i x
2
i = 0 in P 5 for mutually

distinct six constants λ1, . . . , λ6. Hence we have 10 fixed-point-free involutions,
e.g., (x1 : x2 : x3 : x4 : x5 : x6) 7→ (x1 : x2 : x3 : −x4 : −x5 : −x6), corresponding
to the 10 odd theta characteristics of C. A Jacobian Kummer surface KmC

has exactly 15 Göpel subgroups. A general KmC is expressed as the quartic
Hessian surfaces in six different ways ([6], [3]) and accordingly has six involutions
of Hutchinson-Weber type which are also free from fixed points.

Conjecture 3. If the Picard group of J(C) is infinitely cyclic, then a fixed-
point-free involution ε of Km C is conjugate to one of the above 31(= 10 + 15 + 6)
involutions1.

In the situation of the conjecture, the quotient group of H−(Km C,Z) by the
sum of the transcendental lattice and the anti-invariant Picard lattice is of order
four. Our proof of Theorem 2 shows that the conjecture holds true when this
abelian group is of type (2, 2).

After a preparation on Kummer and Enriques surfaces in Sections 1 and 2,
we compute the period of a numerically reflective involution in Sections 3 and
4. In Section 5, we construct a Hutchinson-Göpel involution εG of a Jacobian
Kummer surface from its planar description. In Section 6, we compute the period
of the Enriques surface (KmC)/εG more explicitly, and prove Theorem 2 using an
equivariant Torelli theorem for Enriques surfaces (Theorem 2.3).

Notations. Given an abelian group A, we denote by A(2) the two-torsion
subgroup. A free Z-module with an integral symmetric bilinear form is simply
called a lattice. U denotes the lattice of rank two given by the symmetric matrix(

0 1
1 0

)
. Al, Dl and El are the negative definite root lattices of rank l of type A,D

and E, respectively. For a lattice L and a rational number r, we denote by L(r)
the lattice obtained by replacing the bilinear form ( . ) on L by r( . ).

1. Preliminary.

We recall some basic facts on the cohomology of Kummer surfaces. Let T be a
two-dimensional complex torus. The minimal resolution of the quotient T/{±1T }
is called the Kummer surface of T and denoted by Km(T ). Km(T ) contains
16 mutually disjoint (−2) curves Na, a ∈ T(2), parametrized by the two-torsion

1This conjecture has been solved by H. Ohashi [13].
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subgroup T(2) ' (Z/2Z)4 of T . We denote by ΓKm the primitive hull of the
lattice generated by the 16 Na’s. Let Λ be the orthogonal complement of ΓKm in
H2(Km(T ),Z). Then Λ is the image of H2(T, Z) by the quotient morphism from
the blow-up of T at T(2) onto Km(T ). The following is well known ([1, Chapter
VIII, Section 5]):

Lemma 1.1. Λ ⊂ H2(Km(T )) is isomorphic to H2(T, Z) as a Hodge struc-
ture and to H2(T, Z)(2) ' U(2) ⊥ U(2) ⊥ U(2) as a lattice.

The discriminant group AΛ of Λ is ((1/2)Λ)/Λ ' H2(T, Z/2Z) and the dis-
criminant form qΛ is essentially the cup product, that is, qΛ(ȳ) = (y ∪ y)/2mod 2
for y ∈ H2(T, Z).

Let P ⊂ T(2) be a subgroup of order four, or equivalently, a two-dimensional
subspace of T(2) over the finite field F2. We put NP ′ =

∑
a∈P ′ Na ∈ ΓKm for

a coset P ′ of P ⊂ T(2). Noting that a one-dimensional vector space over F2 is
identified with its (unique) basis, we denote the Plücker coordinate of P⊥ ⊂ T∨(2)
by πP ∈ ∧2

T∨(2) ' H2(T, Z/2Z) and regard it as an element of Λ/2Λ. The
following is known ([1, Chaper VIII, Section 5]):

Lemma 1.2. (NP ′ mod 2) + πP = 0 holds in H2(Km(T ),Z/2Z) for every
coset P ′ of P ⊂ T(2).

Let (A,Θ) be a principally polarized abelian surface, that is, Θ is an ample
divisor with (Θ2) = 2. The orthogonal complement of [Θ] in H2(A,Z) is equipped
with a polarized Hodge structure. We denote it by H2(A,Θ;Z). As a lattice it is
isomorphic to 〈−2〉 ⊥ U ⊥ U .

Proposition 1.3. A polarized Hodge structure of weight two on the lattice
〈−2〉 ⊥ U ⊥ U is isomorphic to H2(A,Θ;Z) for a principally polarized abelian
surface (A,Θ). Moreover, such (A,Θ) is unique up to isomorphisms.

Proof. A Hodge structure of weight 2 on the lattice U ⊥ U ⊥ U is iso-
morphic to H2(T, Z) for a 2-dimensional complex torus T . Moreover, such T is
unique up to an isomorphism and taking the dual (Shioda [14]). Our proposition
is a direct consequence of these results. ¤

Let e2Θ : K(2Θ)×K(2Θ) → C∗ be the Weil pairing with respect to 2Θ ([2,
Chaper 6]). The group K(2Θ) coincides with the two-torsion group A(2) and is
naturally identified with H1(A,Z/2Z). Via this identification, e2Θ(α, β) = 1 is
equivalent to ([Θ], α∧β) = 0, where ( , ) is the natural pairing between cohomology
and homology.
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Definition 1.4. A subgroup G of the two-torsion group A(2) is Göpel if it
is of order four and totally isotropic with respect to the Weil pairing e2Θ.

Let P ⊂ A(2) ' H1(A,Z/2Z) be a subgroup of order four and πP ∈
H2(A,Z/2Z) be the Plücker coordinate of P⊥ ⊂ H1(A,Z/2Z). πP belongs
to H2(A,Θ;Z/2Z) if and only if it is perpendicular to Θ mod 2. Hence we have

Lemma 1.5. The Plücker coordinate πP belongs to H2(A,Θ;Z/2Z) if and
only if P is Göpel.

The Jacobian J(C) of a curve C of genus two is a principally polarized abelian
surface. An involution γ of C is called bi-elliptic if the quotient C/γ is an elliptic
curve E. In this case, E is embedded into J(C) as the fixed locus of the action
of γ on J(C). The two-torsion subgroup E(2) is a Göpel subgroup of J(C), and
denoted by Gγ .

Definition 1.6. A Göpel subgroup G, or more precisely, a pair (C, G) is
bi-elliptic if C has a bi-elliptic involution γ with G = Gγ .

The composite γ′ of a bi-elliptic involution γ and the hyper-elliptic involution
is again a bi-elliptic involution of C. The Jacobian J(C) contains E′ := C/γ′ as
the fixed locus of the action of γ′. The intersection E ∩E′ in J(C) coincides with
the common two-torsion subgroups E(2) = E′

(2). Hence J(C) is the quotient of
E ×E′ by a subgroup of order four contained in E(2) ×E′

(2). The involution γ, or
equivalently γ′, induces an involution of the Kummer surface KmC without fixed
points outside two P 1’s:

Lemma 1.7. Let γ be a bi-elliptic involution of C and Km γ (resp. J(γ)) be
the involution of Km C (resp. J(C)) induced by γ. Then the fixed locus of Km γ

is the union of two P 1’s which are the images of two elliptic curves E = FixJ(γ)
and E′ = Fix J(γ′).

2. Involutions of Enriques surfaces.

Let S be a (minimal) Enriques surface, that is, a compact complex surface
with H1(OS) = H2(OS) = 0 and 2KS ∼ 0. Let S̃ be the universal cover, which is
a K3 surface, and let ε be the covering involution of S̃. Consider the action ε∗ on
H2(S̃, Z) ' Z22. The invariant part coincides with the pull-back of H2(S, Z) by
S̃ → S, and the anti-invariant part H−(S, Z) is isomorphic to E8(2) ⊥ U(2) ⊥ U

as a lattice ([1, Chapter VIII]).
Let σ be a (holomorphic) involution of S. σ is lifted to an automorphism σ̃

of the covering K3 surface S̃. Its square σ̃2 is either the identiy or the covering
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involution ε. The latter is impossible since, in this case, σ̃ is free from fixed points
and its order necessarily divides χ(OS̃) = 2. Hence σ is lifted to two involutions σ̃

and σ̃ε of S̃.
An involution of a K3 surface is called symplectic (resp. anti-symplectic) if

it acts trivially (resp. as −1) on the space H0(S̃, Ω2) of holomorphic 2-forms.
Distinguishing the two lifts by their actions on 2-forms, we have

Proposition 2.1. There exist exactly two lifts σK , σR ∈ Aut S̃ of σ ∈
AutS, where σK is a symplectic involution and σR an anti-symplectic one.

Let H(S, σ;Z) (resp. H−(S, σ;Z)) be the invariant (resp. the anti-invariant)
part of the action of σ∗K on H−(S, Z). H(S, σ;Z) is endowed with a non-trivial
polarized Hodge structure of weight 2, which we regard as the period of (S, σ). The
lattice H−(S, Z) contains the orthogonal direct sum H(S, σ;Z) ⊥ H−(S, σ;Z) as
a sublattice of finite index. More precisely, the quotient group

Dσ :=
H−(S, Z)

[H−(S, σ;Z)⊕H(S, σ;Z)]
(3)

is 2-elementary. We call this quotient Dσ the patching group of σ.
The global Torelli theorem for K3 surfaces (resp. Enriques surfaces) is gener-

alized to that for pairs of K3 surfaces (resp. Enriques surfaces) and involutions.

Theorem 2.2. Let X and X ′ be two K3 surfaces and let τ and τ ′ be invo-
lutions of X and X ′, respectively. If there exists an orientation preserving Hodge
isometry α : H2(X ′,Z) → H2(X, Z) such that the diagram

H2(X ′,Z)

τ ′∗

²²

α // H2(X, Z)

τ∗

²²
H2(X ′,Z) α // H2(X, Z)

commutes, then there exists an isomorphism ϕ : X → X ′ such that ϕ ◦ τ = τ ′ ◦ ϕ.

Proof. If neither τ nor τ ′ has a fixed point, this is the global Torelli the-
orem for Enriques surfaces. The proof in [1, Chapter VIII, Section 21], especially
its key Proposition (21.1), works also in our general case as follows.

Let h′ be a τ ′-invariant ample divisor class of X ′ and put h = α(h′). By our
assumption, h is τ -invariant and belongs to the positive cone of H1,1(X, Z). If h

is ample, we are done by the global Torelli theorem for K3 surfaces. If not, there
exists a (−2) curve D ' P 1 with (h.D) ≤ 0. Since (h.D + τ(D)) = 2(h.D) ≤ 0,
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D + τ(D) is not nef. Hence we have (D.τ(D)) = 1, 0 or −2. Replace α with
rD+τ(D) ◦α if (D, τ(D)) = 1, with rD ◦ rτ(D) ◦α if (D, τ(D)) = 0 and with rD ◦α

if (D, τ(D)) = −2, where rD is the reflection with respect to a (−2) divisor class
D. Then we have (α(h′).D) > 0. Repeating this process, α(h′) becomes ample
after a finitely many steps. ¤

Theorem 2.3. Let S and S′ be two Enriques surfaces and let σ and σ′

be involutions of S and S′, respectively. If there exists an orientation preserving
Hodge isometry α : H−(S′,Z) → H−(S, Z) such that the diagram

H−(S′,Z)

σ′∗

²²

α // H−(S, Z)

σ∗

²²
H−(S′,Z) α // H−(S, Z)

commutes, then there exists an isomorphism ϕ : S → S′ such that ϕ ◦ σ = σ′ ◦ ϕ.

Proof. Let S̃ and S̃′ be the covering K3 surfaces. Each has an action of
G := Z/2Z × Z/2Z. It suffices to show a G-equivariant Torelli theorem for K3
surfaces S̃ and S̃′. (The remaining part is the same as the usual global Torelli
theorem for Enriques surfaces.) The proof goes as the preceding theorem if the
G-orbit of D consists of one or two irreducible components. Assume that the G-
orbit of D has four irreducible components and let L be the sublattice spanned
by them. If L is negative definite, then L is of type 4A1 or 2A2. Hence the same
argument as the preceding theorem works. Otherwise (h.D) is positive by the
Hodge index theorem. ¤

3. Period of a numerically reflective involution.

In this section and the next we assume that σ is numerically reflective and
study the patching group Dσ (defined by the formula (3)) in detail.

Let H2(S, Z)f be the torsion free part of H2(S, Z). σ acts on H2(S, Z)f as
a reflection with respect to a class e = eσ. Since H2(S, Z)f is an even unimodular
lattice with respect to the intersection form, we have (e2) = −2. Let NR and NK

be the anti-invariant part of the action of σR and σK , respectively. Both NR and
NK contains the pull-back ẽ ∈ H2(S̃, Z) of e. The orthogonal complement of ẽ

in NR is H(S, σ;Z), and that in NK is H−(S, σ;Z). Since NK is isomorphic to
E8(2) ([9, Section 5], [11, Lemma 2.1]), we have

Lemma 3.1. H−(S, σ;Z) ' E7(2).



238 S. Mukai

In particular, the discriminant group A− of H−(S, σ;Z) is u(2)⊥3 ⊥ (4),
whose underlying group is (Z/2Z)⊕6⊕ (Z/4Z), in the notation of [12, Section 1].

There are two lattice-types of numerically reflective involutions:

Proposition 3.2. The patching group Dσ is of order 2a and H(S, σ;Z) is
isomorphic to 〈−4〉 ⊥ U(2) ⊥ U(a) for a = 1 or 2.

Proof. The lattice H−(S, σ;Z) is not 2-elementary by the above lemma.
Since H−(S, Z) is 2-elementary, Dσ is not trivial. Let a ≥ 1 be the length of the
patching group Dσ. Then we have

[disc H−(S, Z)] · 22a = [disc H−(S, σ;Z)] · [disc H(S, σ;Z)].

The discriminant group of H−(S, Z) is an abelian groups of type (210). By the
above lemma, the discriminant of H(S, σ;Z) equals −2(2+2a). More precisely, the
discriminant group A+ of H(S, σ;Z) is an abelian group of type (22a, 4). Since
H(S, σ;Z) is of rank 5, we have a ≤ 2.

If a = 2, then H(S, σ;Z)(1/2) is an even (integral) lattice with discrimi-
nant −2. Hence H(S, σ;Z))(1/2) is isomorphic to 〈−2〉 ⊥ U ⊥ U by Kneser’s
uniqueness theorem for indefinite lattices ([12, Section 1]). If a = 1, then we have
H(S, σ;Z) ' 〈−4〉 ⊥ U(2) ⊥ U by the uniqueness theorem again. ¤

The lattice H−(S, Z) is a Z-submodule of the direct sum H−(S, σ;Q) ⊕
H(S, σ;Q). Hence the patching group Dσ is a subgroup of the discriminant group
A− ⊥ A+ of the lattice H−(S, σ;Z) ⊥ H(S, σ;Z). The discriminant group A+ is
either u(2)⊥2 ⊥ (4) or u(2) ⊥ (4).

Both A− and A+ contains exactly one copy of Z/4Z as their direct summand.
Let ζ± ∈ A± be the unique element which is twice an element η± of order four.
We call (ζ−, ζ+) ∈ A− ⊥ A+ the canonical element.

Lemma 3.3. Dσ contains the canonical element (ζ−, ζ+).

Proof. Both H−(S, σ;Q) and H(S, σ;Q) are primitive in H−(S, Q).
Hence Dσ does not contain (0, ζ+) or (ζ−, 0). Hence the intersection Dσ ∩ (2A−⊕
2A+) is either 0 or generated by (ζ−, ζ+). We consider the intersection number
of an element of Dσ and (η−, η+). Since the intersection number of (ζ−, ζ+) and
(η−, η+) is zero (in Q/Z), the intersection number with (η−, η+) is a linear form
on D̄σ, the image of Dσ in A := (A−)(2)/{0, ζ−} ⊕ (A+)(2)/{0, ζ+}. Since the
induced bilinear form on the group A is non-degenerate, there exists an element
(β−, β+) ∈ A− ⊕A+ whose intersection number with Dσ is the same as (η−, η+).
It follows that (η− + β−, η+ + β+) is perpendicular to Dσ. Since D⊥

σ /Dσ is 2-
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elementary, 2× (η− + β−, η+ + β+) = (ζ−, ζ+) is contained in Dσ. ¤

The patching group Dσ is generated by the canonical element (ζ−, ζ+) when
it is of order two.

Lemma 3.4. If Dσ is of order four, then Dσ is generated by the canonical
element and an element (π−, π+) ∈ A− ⊕ A+ of order two such that q−(π−) =
q+(π+) = 0 ∈ Q/2Z, where q± are the quadratic forms on A±.

Proof. Dσ ' Z/2Z ⊕ Z/2Z is generated by (ζ−, ζ+) and an element
(π−, π+). Since Dσ is totally isotropic, we have q−(π−) = q+(π+). This common
value belongs to Z/2Z. If it is non-zero, replace π± with ζ± + π±. Then we have
q−(π−) = q+(π+) = 0. ¤

4. Numerically reflective involution with ordDσ = 4.

Let σ be a numerically reflective involution of an Enriques surface S and
assume that the patching group Dσ is of order four. By Propositions 1.3 and 3.2,
we have

Proposition 4.1. There exists a principally polarized abelian surface (A,Θ)
such that H(S, σ;Z) is isomorphic to H2(A,Θ;Z)(2) as a polarized Hodge struc-
ture.

Let π+ ∈ (A+)(2) be as in Lemma 3.4. Since q+(π+) = 0, π+ is the Plücker
coordinate of a subgroup Gσ ⊂ A(2) of order four. Since (A+)(2) is the orthogo-
nal complement of [Θ/2] in H2(A, ((1/2)Z)/Z), Gσ is Göpel (Definition 1.4 and
Lemma 1.5).

Lemma 4.2. (A,Θ) in Proposition 4.1 is not a product of two elliptic curves.
In particular, (A,Θ) is the Jacobian of a curve Cσ of genus two.

Proof. Assume that (A,Θ) is the product E1×E2 (as a polarized abelian
surface). Then E1 × 0 − 0 × E2, the difference of two fibers, is a (−2)-class in
H2(A,Θ;Z). Let D+ be its image in H(S, σ;Z). Then (D2

+) = −4 and D+/4
represents an element η+ ∈ A+ of order four. Hence D+/2 represents the class ζ+

in the discriminant group A+. Let ẽ be the pull-back of e = eσ ∈ H2(S, Z)f as
in Section 3. Then ẽ + D+ is divisible by two in H2(S̃, Z) and (ẽ + D+)/2 is an
algebraic (−2)-class in NR. This is a contradiction since NR is the anti-invariant
part of the involution or σR. ¤

Lemma 4.3. The pair (Cσ, Gσ) is not bi-elliptic (see Definition 1.6).
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Proof. The proof is similar to the preceding lemma. Assume that (Cσ, Gσ)
is bi-elliptic. Since (Θ.E) = 2, Θ−E is a (−2)-class in H2(A,Θ;Z). Let D+ be its
image in H(S, σ;Z). Then (D2

+) = −4 and D+/2 represents the class ζ+ + π+ in
A+. (D− + D+)/2 belongs to H−(S, Z) if D− belongs to H−(S, σ;Z) and D−/2
represents ζ− + π−. Since q−(ζ− + π−) = 1 and since H−(S, σ;Z) is isomorphic
to E7(2), there is such a D− with (D2

−) = −4. For this choice, (D−+D+)/2 is an
algebraic (−2)-class. This is a contradiction since H−(S, Z) is the anti-invariant
part of the involution ε. ¤

Summarizing this section, we have

Proposition 4.4. There exists a unique non-bi-elliptic pair (Cσ, Gσ) of a
curve Cσ and a Göpel subgroup Gσ of J(Cσ) with the following properties:

(1) H(S, σ;Z) ' H2(J(Cσ),Θ;Z)(2) as a polarized Hodge structure, and
(2) the patching subgroup Dσ is generated by the canonical element and an element

(π−, π+) such that π+ is the Plücker coordinate of Gσ.

In the subsequent sections, we conversely construct a numerically reflective
involutions σG of an Enriques surface from such a pair (C, G) as above (Proposition
6.4).

5. Hutchinson-Göpel involution.

Hutchinson [7] discovered an equation which implies (1) by means of theta
functions. In this section we describe the automorphism εG in a more elementary
manner without using the equation (cf. Remark 6.3).

Let C be a curve of genus two and J(C) its Jacobian. By the natural morphism
Sym2 C → J(C) and Abel’s theorem, the second symmetric product Sym2 C of
C is the blow-up of J(C) at the origin. Let Sym2 C be the quotient of Sym2 C

by the involution induced by the hyper-elliptic involution.
Since C is a double cover of the projective line P 1 with six branch points,

Sym2 C is the double cover of Sym2 P 1 ' P 2 with branch six lines l1, . . . , l6.
Moreover, these six lines are tangent lines of the conic Q corresponding to the
diagonal P 1 ↪→ Sym2 P 1. Note that the double cover has 15 nodes over 15
intersections pi,j = li ∩ lj , 1 ≤ i < j ≤ 6. These correspond to the 15 non-zero
two-torsions of J(C). The minimal resolution of this double cover Sym2 C is the
Jacobian Kummer surface KmC.

Three nodes on Sym2 C are called Göpel if they correspond to the three
non-zero elements of a Göpel subgroup of J(C)(2). More explicitly, a triple
(pij , pi′j′ , pi′′j′′) of nodes is Göpel if and only if all suffixes i, j, . . . , j′′ are dis-
tinct. Hence the Göpel subgroups correspond to the decompositions of the six
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Weierstrass points of C into three pairs. Therefore, there are exactly 15 Göpel
subgroups.

We now construct an involution of KmC for each Göpel subgroup G. The
construction differs a lot according as the Göpel triple is collinear or not. First we
consider the non-collinear case, which we are most interested in.

Assume that three points p, q, r on P 2 are not collinear. A birational auto-
morphism ϕ : P 2 · · · → P 2 is called a Cremona involution with center p, q, r if
there is a linear coordinate (x : y : z) of P 2 such that p, q, r is the three ver-
tices of the triangle xyz = 0 and that ϕ is the quadratic Cremona transformation
(x : y : z) 7→ (x−1 : y−1 : z−1). Given a triple p, q, r ∈ P 2, there is a two-parameter
family of Cremona involutions with center p, q, r.

Proposition 5.1. Assume that a Göpel triple (p14, p25, p36) of G is not
collinear. Then there exists a unique quadratic Cremona transformation ϕ with
center p14, p25 and p36 which maps the line li onto li+3 for i = 1, 2, 3.

Proof. We choose a linear coordinate (x : y : z) of P 2 such that p14, p25

and p36 are the vertices of the triangle xyz = 0. Then the six lines are given by

li : y = αix (i = 1, 4), lj : z = αjy (j = 2, 5) and lk : x = αkz (k = 3, 6)

for α1, . . . , α6 ∈ C∗. Let

Q̌ : a′x2 + b′y2 + c′z2 + d′yz + e′xz + f ′xy = 0

be the dual of the conic Q to which the six lines are tangent. Then we have

α1α4 =
a′

b′
, α2α5 =

b′

c′
, α3α6 =

c′

a′

and hence
∏6

i=1 αi = 1. The Cemona involution (x : y : z) 7→ (A/x : B/y : 1/z)
satisfies our requirement if and only if A = α3α6 and B = α−1

2 α−1
5 . ¤

The Cremona involution ϕ in the proposition is lifted to two involutions of
Km C. One is symplectic and has eight fixed points over the four fixed points of
ϕ. The other has no fixed points (cf. (1) of Remark 5.3). We call the latter the
Hutchinson involution associated with the Göpel subgroup G and denote by εG.
Since the covering involution β commutes with εG, it induces an involution of the
Enriques surface (KmC)/εG, which we denote by σG.

Now we assume that a Göpel triple, say (p14, p25, p36), lies on a line l. Let p

be the point whose polar with respect to the conic Q is l and γ̃ be the involution
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of P 2 whose fixed locus is the union of l and p. Then γ̃ maps Q onto itself and
interchanges pi and pi+3 for i = 1, 2 and 3. γ̃ induces involutions of KmC and C.
The following is easily verified:

Proposition 5.2. A Göpel triple of nodes is collinear if and only if (C, G)
is bi-elliptic. Furthermore, the involution of Km C constructed above is the same
as Km γ in Lemma 1.7.

Hence we have constructed an Enriques surface (KmC)/εG with an involution
σG for every non-bi-elliptic pair (C,G).

Remark 5.3. Let α1, . . . , α6 be as in the proof of Proposition 5.1.
(1) The Kummer surface Km C is the minimal resolution of the double cover

S̄ : τ2 = (y − α1x)(y − α4x)(α2y − 1)(α5y − 1)(x− α3)(x− α6)

of P 1 × P 1, where (x, y) is an inhomogeneous coordinate of P 1 × P 1.

The involution

ε̄G : (τ, x, y) 7→
(
− ABτ

x2y2
,
A

x
,
B

y

)
, A = α3α6, B = α−1

2 α−1
5

of S̄ has no fixed points. The K3 surface S̄ has fourteen nodes and (KmC)/εG is
the minimal resolution of the Enriques surface S̄/ε̄G with seven nodes.

(2) The Enriques surface (KmC)/εG is the minimal model of the double plane
with branch the plane curve

x1x2x3x4(x1x4 − c1x2x3)(x2x4 − c2x1x3)(x3x4 − c3x1x2) = 0

of degree 10 and σG is induced by the covering involution, where (x1 : x2 : x3) is
a coordinate of P 2, x4 = −x1 − x2 − x3 and we put ci = (

√
αi −√αi+3)2/(

√
αi +√

αi+3)2 for i = 1, 2, 3. In the case α1 + α4 = α2 + α5 = α3 + α6 = 0, Km C is
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the minimal model of the Hilbert modular surface H2/Γ(2) associated with the
principal congruence subgroup Γ(2) of SL2(OQ(

√
2)) for the ideal (2), and εG is

induced by the matrix
(

1+
√

2 0

0 −1+
√

2

)
(Hirzebruch [5, Section 4], [4, Chapter 8]).

6. Period of (KmC)/εG.

Returning to the case where (C,G) is not bi-elliptic, we compute the periods
of the Enriques surface (KmC)/εG and the involution σG. The Jacobian Kummer
surface Km C is a double cover of the blow-up R of P 2 at the 15 points pij ,
1 ≤ i < j ≤ 6. The pull-back of H2(R, Q) has {h,Nij , 1 ≤ i < j ≤ 6} as a
Q-basis, where h is the pull-back of a line and Nij is the (−2) curves over pij .

We assume for simplicity that the Göpel triple is (p14, p25, p36). Let R̄ be the
blow-up of P 2 at p14, p25 and p36. The Cremona involution ϕ in Proposition 5.1
acts on the Picard group of R̄ as the reflection with respect to the (−2)-class l −
E14−E25−E36, where E14, E25 and E36 are the exceptional curves. ϕ interchanges
pi,j with pi+3,j+3, and pi,j+3 with pj,i+3 for 1 ≤ i < j ≤ 3. Hence we have

Proposition 6.1. The action of εG on the pull-back of H2(R, Q) is the
composite of the permutation

Ni,j ↔ Ni+3,j+3, Ni,j+3 ↔ Nj,i+3 (1 ≤ i < j ≤ 3)

of type (2)6 and the reflection with respect to the (−4)-class h−N14 −N25 −N36.

By the proposition,

{
h−N14 −N25 −N36, Nij −Ni+3,j+3, Ni,j+3 −Nj,i+3

}
, (4)

with 1 ≤ i < j ≤ 3, is a Q-basis of H−(Km C/εG, σG;Q). N0, the (−2)P 1 over
the origin, maps onto the conic Q.

Proposition 6.2. h−N0 is invariant by εG and anti-invariant by β.

Proof. There exists a cubic curve D : r(x, y, z) = 0 such that D ∩ C

consists of the 6 tangent points li∩Q, 1 ≤ i ≤ 6. The union of 6 lines is defined by
r(x, y, z)2−q(x, y, z)s(x, y, z) for a suitable quartic form s(x, y, z). Choose a cubic
curve D such that it passes the Göpel triple. Then the quartic curve s(x, y, z) = 0
is singular at the Göpel triple. By the Cremona symmetry, s(x, y, z) is a constant
multiple of q(yz, xz, xy). Hence the double cover Sym2 C is defined by

τ2 = r(x, y, z)2 − cq(x, y, z)q(yz, xz, xy) (5)



244 S. Mukai

for a constant c ∈ C∗. The rational function {r(x, y, z) + τ}/{r(x, y, z) − τ}
on Km C gives a rational equivalence between two divisors N0 + βεG(N0) and
εG(N0) + β(N0). Hence β(N0)−N0 is εG-invariant. Since β(N0) + N0 is linearly
equivalent to 2h, we have our proposition. ¤

Remark 6.3. By (5) the linear system |h + N0| gives a birational mor-
phism from the double cover Sym2 C to the quartic cq(x, y, z)t2 + 2r(x, y, z)t +
q(yz, xz, xy) = 0 in P 3, which is essentially the equation (1).

By Propositions 6.1 and 6.2,

{
h−N0, h−N14, h−N25, h−N36, Nij + Ni+3,j+3, Ni,j+3 + Nj,i+3

}
, (6)

with 1 ≤ i < j ≤ 3, is an orthogonal Q-basis of π∗H2(Km C/εG,Q). In particular,
σG acts on π∗H2(Km C/εG,Q) as the reflection with respect to h−N0. Hence we
have

Proposition 6.4. The involution σG of the Enriques surface (Km C)/εG

is numerically reflective.

Moreover, the inverse of the correspondence (S, σ) 7→ (Cσ, Gσ) of Proposi-
tion 4.4 is given by this construction (C, G) 7→ (Km C/εG, σG):

Proposition 6.5.

(1) The polarized Hodge structure H(Km C/εG, σG;Z) is isomorphic to
H2(J(C),Θ;Z)(2).

(2) The patching group of σG is of order four, and generated by the canonical
element and (π−, πG), where πG is the Plücker coordinate of G.

Proof. By (4) and (6), H(Km C/εG, σG;Z) is the orthogonal complement
of the lattice generated by the 17 classes h,N0 and Nij , 1 ≤ i < j ≤ 6, in
H2(Km C, Z). Let H ∈ H2(Km C, Z) be the (4)-class in Λ corresponding to
Θ ∈ H2(J(C),Z) in the way of Lemma 1.1. It is easily checked that H = h + N0.
Hence we have (1).

The patching group is order four by (1) and Proposition 3.2 since
H2(J(C),Θ;Z)(2) ' 〈−4〉 ⊥ U(2) ⊥ U(2). By Proposition 6.1, both N12 − N45

and N15 − N24 belong to H−(Km C/εG, σG;Z). Since the two-torsion points
p12, p45, p15 and p24 form a coset of G ⊂ J(C)(2), ([(N12−N45+N15−N24)/2], πG)
belongs to the patching group of σG by Lemma 1.2. ¤

Proof of Theorem 2. Let σ be a numerically reflective involution of an
Enriques surface S and assume that the patching group Dσ is of order four. Let
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(Cσ, Gσ) be as in Proposition 4.4 and σ′ be the numerically reflective involution
σG of the Enriques surface S′ := Km C/εG for C = Cσ and G = Gσ. By Proposi-
tion 6.5, H(S, σ;Z) is isomorphic to H(S′, σ′;Z) as a polarized Hodge structure.
Moreover, the A+-components of their patching groups are the same. Both are
generated by ζ+ and the Plücker coordinate πG of G.

Now we look at the A−-components. Two lattices H−(S, σ;Z) and
H−(S′, σ′;Z) are E7(2) by Lemma 3.1. The A−-components of patching groups
are generated by ζ+ and π− with q−(π−) = 0. The Weyl group W of E7 acts on
A− ' u(2)⊥3 ⊥ (4) preserving ζ−. There are 63 α’s with q−(α) = 0 in (A−)(2) and
W acts transitively on them. Hence a Hodge isometry between H(S, σ;Z) and
H(S′, σ′;Z) extends to a Z/2Z-equivariant Hodge isometry between H−(S, Z)
and H−(S′,Z). Now the theorem follows from Theorem 2.3. ¤
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