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Surfaces carrying sufficiently many Dirichlet finite harmonic

functions that are automatically bounded

By Mitsuru Nakai
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Abstract. It is shown that there exists a Riemann surface on which
every Dirichlet finite harmonic function is automatically bounded and yet the
linear dimension of the linear space of Dirichlet finite harmonic functions on
it is infinite.

1. Introduction.

There are two important norms in the study of harmonic functions on open
(i.e. noncompact) Riemann surfaces: one is the supremum norm

‖u;R‖∞ := sup
z∈R

|u(z)| (1.1)

of a harmonic function u on a Riemann surface R which plays a core role in
the harmonic version of the normal family argument; the other is the Dirichlet
seminorm

√
D(u;R) given by the Dirichlet integral

D(u;R) :=
∫

R

du ∧ ∗du =
∫

R

|∇u(z)|2dxdy (z = x + iy) (1.2)

of a harmonic function u taken over a Riemann surface R, which is repeatedly
used in connection with the Dirichlet principle. The notation H(R) indicates the
linear space of harmonic functions u on a Riemann surface R. Two important
main linear subspaces of H(R) are, firstly,

HB(R) := {u ∈ H(R) : ‖u;R‖∞ < ∞}, (1.3)

which forms a Banach space equipped with the supremum norm ‖· ;R‖∞, and,
secondly,
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HD(R) := {u ∈ H(R) : D(u;R) < ∞}, (1.4)

which is a semi-Hilbert space equipped with the semi-inner product D(· , · ;R)
given by the mutual Dirichlet integral

D(u, v;R) :=
∫

R

du ∧ ∗dv =
∫

R

∇u(z) · ∇v(z)dxdy (1.5)

of u and v in HD(R). The symbol B in (1.3) suggests the boundedness and D in
(1.4) the Dirichlet finiteness. It is often necessary to consider harmonic functions
which are both bounded and Dirichlet finite, and for this reason we use the notation

HBD(R) := HB(R) ∩HD(R), (1.6)

which also forms a Banach space equipped with the combined norm

‖· ;R‖∞ +
√

D(· ;R).

This is traditional notation in the classification theory of Riemann surfaces
(cf. e.g. [1], [11], etc.). Usually the boundedness of a harmonic function u on
R does not imply the Dirichlet finiteness of u and vice versa but we know a lot
of instances in which the boundedness (Dirichlet finiteness, resp.) of harmonic
functions u on a Riemann surface R implies the Dirichlet finiteness (bounded-
ness, resp.) of u on R., i.e. HB(R) ⊂ HD(R) (HD(R) ⊂ HB(R), resp.), and
dimHB(R) < ∞ (dimHD(R) < ∞, resp.) (cf. [11]), where e.g. dimHB(R) is
the linear dimension of the linear space HB(R), which is either a finite number in
N , the set of positive integers, or infinite ∞.

In the present paper we discuss Riemann surfaces R for which the inclusion
relation HD(R) ⊂ HB(R) is valid. The relation HD(R) ⊂ HB(R) is equivalent
to the relation

HD(R) = HBD(R). (1.7)

Riemann surfaces R satisfying (1.7) are quite interesting and also important in view
of the fact that the relation (1.7) serves to give significant recognition to e.g. the
theory of fullsuperharmonic functions and also that of (Dirichlet finite harmonic)
Bergmann kernels, which will be discussed elsewhere. We discuss in this paper the
problem of whether the condition (1.7) always implies dimHD(R) < ∞ or not. If
we denote by DD the set of dim HD(R) for R with (1.7), then it is well known as
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stated above (cf. [11]) that DD ⊃ N so that the problem is restated as to clarify
whether DD = N or DD = N ∪ {∞}.

We state a few background materials concerning (1.7). The Royden harmonic
boundary δR = δRR of R is the set of regular points in the sense of potential
theory in the Royden boundary γR = γRR = R∗R \ R of R with R∗R the Royden
compactification of R (cf. e.g. [2], [11], [4]). The Royden harmonic boundary δR

is compact and

dimHD(R) = #δR (the number of points in δR),

which is either finite or infinite. We denote by cap(K) the capacity, or more
precisely, the variational 2-capacity (cf. e.g. [3]), of a compact subset K of δR (see
[7]). Then we have the following characterization of (1.7) (see [6]).

Theorem A. A Riemann surface R satisfies (1.7) if and only if

inf
ζ∈δR

cap({ζ}) > 0. (1.8)

Looking at this result one might feel that each point in δR is distributed quite
sporadically and yet δR is compact and thus #δR < ∞ might be the case so
that dimHD(R) = #δR < ∞. This is a motivation for that we are tempted
to maintain that dimHD(R) < ∞. On the other hand, however, we have the
following result originally due to Virtanen and then Royden (cf. e.g. [11]).

Theorem B. For any Riemann surface R

HD(R) = HBD(R) (1.9)

in the sense that for any u ∈ HD(R) and for any positive number ε > 0 there is
a uε ∈ HBD(R) such that D(u− uε;R) < ε.

The relation (1.9) says that the subspace HBD(R) may not be identical with
HD(R) but very close to this situation in the sense that HBD(R) almost exhausts
HD(R). Therefore the state (1.7) is certainly a pathological phenomenon but
might not be so virulent as to destroy the normal situation ∞ ∈ DD. This is
thus a reverse motivation for that we suspect the existence of R with (1.7) and
yet dim HD(R) = ∞. Our problem, whether a Riemann surface R satisfying
(1.7) always has a finite dimensional linear space HD(R) or not, is thus not only
quite challenging one but also very far from being trivial in view of the above two
seemingly conflicting observations. Nevertheless, although we needed some period
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of struggles, we come to the following conclusion, to give a proof to which is the
central purpose of this paper.

The main theorem. There exists a Riemann surface R such that the
Dirichlet finiteness always guarantees the boundedness for harmonic functions on
R, i.e. HD(R) ⊂ HB(R) or equivalently (1.7), and yet there exist sufficiently
many Dirichlet finite harmonic functions on R in the sense that dimHD(R) = ∞.
In short, DD = N ∪ {∞}.

We have already studied Riemann surfaces R on which the boundedness al-
ways implies the Dirichlet finiteness for harmonic functions on R, i.e. HB(R) ⊂
HD(R) which is equivalent to

HB(R) = HBD(R). (1.10)

A characterization of (1.10) in terms of the class of harmonic measures on R was
given in [8] and as a counterpart to the present main theorem we have also shown
the following result (see [8]).

Theorem C. There exists a Riemann surface R such that (1.10) is satisfied
and yet dimHB(R) = ∞.

If we denote by DB the set of dim HB(R) for R with (1.10), then it is also well
known (cf. e.g. [11]) that DB ⊃ N and thus the above theorem assures that
DB = N ∪ {∞}. Superficially Theorem C entirely resembles to the main theorem
above but to derive it is in reality an easy and simple task compared with the case
of the main theorem above. Actually (1.7) is quasiconformally invariant while
(1.10) is not and a fortiori (1.7) and (1.10) should be understood to be essentially
different in nature. Anyhow, observe that the simultaneous validity of both of (1.7)
and (1.10) is equivalent to HB(R) = HD(R). Related to this it is interesting to
compare the present main theorem and Theorem C with the following beautiful
result due to Masaoka [5] (for a simple elementary proof of it, see also [6]).

Theorem D. The relation HB(R) = HD(R) (i.e. the synchronous va-
lidity of both of (1.7) and (1.10)) is equivalent to the relation dimHB(R) =
dimHD(R) < ∞.

2. Fundamental surfaces.

Our purpose is to exhibit a Riemann surface W satisfying the following two
properties: firstly, HD(W ) = HBD(W ); secondly, dimHD(W ) = ∞. Recall
that a harmonic function u on a Riemann surface R is essentially positive if |u|
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admits a harmonic majorant on R and we denote by HP (R) the linear space of
essentially positive harmonic functions on R. We denote by u∨v (u∧v, resp.) the
least harmonic majorant (the greatest harmonic minorant, resp.) of u and v in
HP (R). Using u∨ v (u∧ v, resp.) as join (meet, resp.) of u and v in HP (R), the
class HP (R) forms a Riesz space (or a vector lattice in the older terms). Setting
u+ =: u∨0 and u− := −(u∧0) for u ∈ HP (R) we have the Jordan decomposition
of u ∈ HP (R): u = u+− u− with u± ∈ H(R)+ := {u ∈ H(R) : u = 0 on R}. The
symbol P in HP (R) thus suggests the term positive. Then HB(R), HD(R), and
HBD(R) are Riesz subspaces of the Riesz space HP (R). We denote by

OHX := {R : HX(R) = R}

the class of Riemann surfaces R such that the space HX(R) reduces to the class
R of constant functions for X = P, B, D, and BD. We say that R is hyperbolic
(parabolic, resp.) if R carries (does not carry, resp.) the Green function on R and
we use also the traditional notation

OG := {R : R is parabolic}

for the class of parabolic (i.e. nonhyperbolic) Riemann surfaces R. Then we have
the following table of inclusion relations:

OG < OHP < OHB < OHD = OHBD

(cf. e.g. [11]), where A < B for two sets A and B indicates the strict inclusion
relation among A and B so that A ⊂ B and A 6= B.

To construct the above W we will make an essential use of the so called Sario-
Tôki disc D̂, which was presented independently by Sario and Tôki (cf. e.g. [1],
[11], [12]) for the purpose of showing the strict inclusion OG < OHP :

D̂ ∈ OHP \ OG. (2.1)

Of course the above (2.1) is the most important property of D̂ but we still need to
know the structure of D̂ to a certain extent. First of all D̂ is a quotient space of
the unit disc D in the complex plane C by a certain equivalence relation Q, which
we will not specify here except for a few point we really need to know: D̂ = D/Q.
For each ẑ ∈ D̂ we have |z1| = |z2| for any two z1 and z2 in ẑ and thus we can
define

|ẑ| := |z| (z ∈ ẑ), (2.2)
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which is called the absolute value of ẑ. We often identify the one point set {z}
consisting of a single point z with the point z itself. The set

D := {ẑ ∈ D̂ : ẑ = {z} = z} (2.3)

is an open subset of D̂ and ẑ 7→ z is an immersion of D into D which is a
conformal mapping and therefore we can view D ⊂ D ∩ D̂. We can choose a
strictly increasing sequence (tn)n∈N∪{0} ⊂ (0, 1) converging to 1 and

D0 := {|z| 5 t0} ∪
( ⋃

n∈N

{t2n−1 < |z| < t2n}
)
⊂ D, (2.4)

where, as before N is the set of positive integers n = 1, 2, . . . . In particular, the
origin 0 ∈ D ⊂ D̂ will be referred to as the origin of D̂.

The mapping ẑ 7→ log |ẑ| defines a negative harmonic function on D̂\{0} with
the negative pole at ẑ = 0 and with the ideal boundary values lim|ẑ|↑1 log |ẑ| = 0.
In view of this we see that D̂ carries the Green function (kernel) g(· , · ; D̂) and
in particular

g(ẑ) := g(ẑ, 0; D̂) = log
(

1
|ẑ|

)
(2.5)

on D̂ \ {0}. Especially,

g(z) = log
(

1
|z|

)
= log

(
1
r

)
(z = reiθ)

on D will be repeatedly used. Thus, D̂ is hyperbolic, i.e. D̂ 6∈ OG which proves a
trivial part of (2.1). The really important part of (2.1) is the relation D̂ ∈ OHP or
HP (D̂) = R and for this part we refer the reader to an excellent explanation in [1],
among others cited above. We denote by D̂∗ = (D̂)∗ the Wiener compactification
of D̂, γD̂ := D̂∗ \ D̂ the Wiener boundary of D̂, and δD̂ the Wiener harmonic
boundary of D̂, which is the set of regular points in γD̂ in the sense of potential
theory and is a compact subset of γD̂. By virtue of the relation D̂ ∈ OHP or
HP (D̂) = R, we see that δD̂ consists of a single point d, say:

δD̂ = {d}. (2.6)

Related to the set D0 in (2.4) we consider the following disjoint union T ⊂ R
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of open intervals in the open interval 0 < t1 < t < 1 given by

T :=
⋃

n∈N

(t2n−1, t2n). (2.7)

For each r ∈ T and θ ∈ (0, π) the concentric circular arc

Γ(r, θ) := {reis : −θ < s < θ}

in D0 ⊂ D ∩ D̂ will be referred to as an admissible arc in D̂ with radius r ∈ T

and opening angle 2θ ∈ (0, 2π). We will construct a sequence (γn)n∈N of mutually
disjoint admissible arcs γn := Γ(ρn, θn) not accumulating in D̂ with a specified
condition, and then we paste D̂ \ γ1 to D̂ \ γ1 ∪ γ2 anticonformally along γ1, the
resulting surface to D̂ \ γ2 ∪ γ3 anticonformally along γ2, the resulting surface to
D̂ \ γ3 ∪ γ4 along γ3, . . . . Repeating this process until all n ∈ N are exhausted we
can complete the construction of Riemann surface W . We then show HD(W ) =
HBD(W ) and dimHD(W ) = ∞. This is our program in the sequel to complete
the proof of our main theorem.

3. The first step to the construction.

Before constructing a specified sequence of admissible arcs γn := Γ(ρn, θn)
(n ∈ N) in D0 ⊂ D ∪ D̂, we choose and then fix three kinds of sequences in R.
Firstly, we take a divergent sequence (Kn)n∈N ⊂ R+ := {λ ∈ R : λ > 0} such
that

∑

n∈N

1
Kn

< ∞. (3.1)

Secondly, we fix an arbitrary zero sequence (kn)n∈N ⊂ (0, 1) satisfying

0 < kn+1 <
kn

1000
(n ∈ N), (3.2)

which is entirely independent of (Kn)n∈N . Thirdly and finally, we choose a zero
sequence (εn)n∈N such that

0 < εn+1 <
εn

1000
(n ∈ N) (3.3)

and, moreover depending upon (kn)n∈N this time,
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0 < εn <
kn

1000
(n ∈ N). (3.4)

The sequence of admissible arcs γn := Γ(ρn, θn) (n ∈ N) will be determined
inductively. The procedure of the induction is to define γn when two precedent
admissible arcs γn−1 and γn−2 are already given for every n ∈ N . For this reason
we arbitrarily choose and then fix two admissible arcs γ−1 and γ0 in advance before
defining the required sequence (γn)n∈N . Namely, assume the main terms ρ−1, ρ0

and the subsidiary terms σ−2, σ−1, σ0 are arbitrarily given all in T such that

0 < σ−2 < ρ−1 < σ−1 < ρ0 < σ0 (3.5)

and two angles θ−1, θ0 in (0, π) are also arbitrarily given with

θ0 5 πk0 :=
πk1

1000
.

Then γ−1 and γ0 are given by

γj := Γ(ρj , θj) (j = −1, 0).

We start from this situation and we will construct γ1 := Γ(ρ1, θ1) by choosing
ρ1 ∈ (σ0, 1) and θ1 ∈ (0, π) in T suitably and then choose σ1 ∈ (ρ1, 1) ∩ T . We
now state how this task is accomplished as the first step. We take an arbitrary
admissible arc γ =: Γ(r, θ) (r ∈ (σ0, 1) ∩ T, θ ∈ (0, π)) and consider three kinds of
functions u, v, w associated with γ and then determine ρ1 ∈ (σ0, 1) ∩ T and after
ρ1 is fixed we determine σ1 ∈ (ρ, 1) ∩ T such that

σ0 < ρ1 < σ1

all in T . This is hence the first step operation.

4. Fundamental functions in the first step.

We start by considering the solution u ∈ H(D̂ \ γ) ∩ C(D̂∗) of the Dirichlet
problem on the region D̂ \ γ with the boundary condition

{
u | γ = 1

u | δD̂ = 0,
(4.1)

where γ = Γ(r, θ) (r ∈ (σ0, 1) ∩ T, θ ∈ (0, π)). For the unique solvability of the
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above problem, see e.g. [11]. Observe that, for any r ∈ (σ0, 1) ∩ T , there exists a
unique θ = θ(r) ∈ (0, π) such that the above u satisfies

u(0) = k1. (4.2)

In fact, since the above solution u for (4.1) is determined by γ = Γ(r, θ), we denote
it by u = u(· ; r, θ). The function of θ ∈ (0, π) given by θ 7→ ϕ(θ) := u(0; r, θ) is
strictly increasing continuous function on (0, π) in view of the fact that the family
{u; γ} forms a normal family, and ϕ(θ) ↓ 0 as θ ↓ 0 and ϕ(θ) ↑ 1 as θ ↑ π. Hence
by the intermediate value theorem for continuous functions we see the unique
existence of θ(r) ∈ (0, π) with ϕ(θ(r)) = k1. Since u(0; r, θ(r)) = ϕ(θ(r)), (4.2) is
established. Hereafter we denote by u = u(· ; r) the function determined by (4.1)
and (4.2) with γ = γ(r) = Γ(r, θ(r)).

We denote by γ+
0 and γ−0 both sides of the cut γ0 in D̂ and by giving suitable

orientations to γ±0 we can view that γ+
0 + γ−0 is an analytic Jordan curve which is

the boundary of the partly bordered Riemann surface D̂\γ0. We often consider γ0

for D̂ \ γ0 as an analytic Jordan curve γ+
0 + γ−0 besides understanding γ0 just the

simple cut in D̂. We next consider the solution v ∈ H(D̂ \γ0∪γ(r))∩C(D̂∗ \ γ0)
of the mixed boundary value problem on D̂ \ γ0 ∪ γ(r) with the boundary data





v | γ(r) = 1

∗dv | γ0 = 0

v | δD̂ = 0,

(4.3)

where we understand that D̂∗ \ γ0 in the Carathéodory compactification of D̂∗\γ0

so that D̂∗ \ γ0 is obtained by attaching the ideal boundary γD̂ and the relative
boundary γ+

0 + γ−0 to D̂ \ γ0. For the unique solvability, again see [11]. Since the
above function v is determined by r ∈ (σ0, 1) ∩ T , we denote it by v = v(· ; r).
We need to consider one more function w = w(· ; r) which is the solution w ∈
H(D \ γ(r) ∪ γ0 ∪ γ−1) ∩C(D̂∗ \ γ0 ∪ γ−1) of the mixed boundary value problem
on D̂ \ γ(r) ∪ γ0 ∪ γ−1 with boundary data





w | γ(r) = 1

∗dw | γ−1 ∪ γ0 = 0

w | δD̂ = 0.

(4.4)

For the unique existence of w like u and v, see [11].
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Observe that the family {u(· ; r) : r ↑ 1} forms a normal family on D̂. Let
f be an arbitrary limit function of directed subnet of the above family. Clearly
0 5 f 5 1 on D̂ and therefore f ∈ HP (D̂)+ = R+. In view of (4.2), f ≡ k1

on D̂. Thus we have seen that u(· ; r) → k1 as r ↑ 1 locally uniformly on D̂. In
particular, we see that





lim
r↑1

(
sup
|ẑ|5σ0

∣∣u(ẑ; r)− k1

∣∣
)

= 0

lim
r↑1

(
sup

t∈T,|teiθ|5σ0

∣∣∣∣
∗du(teiθ; r)

dθ

∣∣∣∣
)

= 0.

(4.5)

Next we consider the family {v(· ; r) : r ↑ 1} from the same view point as we
took for {u(· ; r) : r ↑ 1}, i.e. we wish to derive the relation for v(· ; r) which is a
counterpart to (4.5). We cannot conclude instantly the existence of the relation
corresponding to (4.2), we need to make a detour as shown below. Note that
we can understand that D(u; D̂ \ γ) = D(u; D̂) for u = u(· ; r) with γ = γ(r).
Similarly D(v; D̂ \γ0∪γ) = D(v; D̂) for v = v(· ; r) with γ = γ(r). For simplicity,
we write D(·) for D(· ; D̂) and similarly D(·, ·) for the mutual Dirichlet integral
D(·, · ; D̂). Then

D(u− v) = D(u) + D(v)− 2D(u, v).

By virtue of the Stokes formula

D(u, v) =
∫

δD̂+γ+γ0

u ∗ dv =
∫

γ

∗dv

=
∫

γ

v ∗ dv =
∫

δD̂+γ+γ0

v ∗ dv = D(v).

Here we remark that δD̂ can be identified with the Royden harmonic boundary
δRD̂ since both are just singleton. Then ∗dv can be defined on δD̂ and the Stokes
formula in the above form can be justified (cf. e.g. [4], [7]). Of course we can
easily replace the above argument by the standard exhaustion method but it is
only time-consuming. Anyway we see that

D(u− v) = D(u)−D(v) = 0.

On the other hand, again by the Stokes formula, we see that
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D(v) = D(u, v) = D(v, u) =
∫

δD̂+γ+γ0

v ∗ du =
∫

γ

∗du +
∫

γ0

v ∗ du

=
∫

δD̂+γ

u ∗ du +
∫

γ0

v ∗ du = D(u) +
∫

γ0

v ∗ du

and therefore

D(u− v) = −
∫

γ0

v ∗ du.

Combining the estimate

∣∣∣∣
∫

γ0

v ∗ du

∣∣∣∣ 5
∫ θ0

−θ0

∣∣∣∣
∗du(r0e

iθ; r)
dθ

∣∣∣∣dθ

with (4.5) we can now conclude that

lim
r↑1

D(u(· ; r)− v(· ; r)) = 0. (4.6)

Recall that the Green function g := G(· , 0; D̂) on D̂ with pole 0 is given by
g(ẑ) = log(1/|ẑ|). Let c := {|z| = ε} be a small circle with 0 < ε < t0. By the
Stokes formula we have

∫

δD̂+γ0+γ+c

(g ∗ d(u− v)− (u− v) ∗ dg) = 0.

Since ∗dg = (1/ε)εdθ on c, we deduce

∫

c

(g ∗ d(u− v)− (u− v) ∗ dg) = O(ε log ε)− 2π(u(0)− v(0)),

where O(·) is the Landau O. Again by (4.2): u(0) = k1, on letting ε ↓ 0 in the
above, we see that

∫

δD̂+γ0+γ

(g ∗ d(u− v)− (u− v) ∗ dg) = 2π(k1 − v(0)),

or equivalently
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(D(v)−D(u)) log
(

1
r

)
+

∫

γ0

v ∗ dg = 2π(k1 − v(0)).

We denote by v+ and v− the continuous extension of v to γ+
0 and γ−0 . Then

∣∣∣∣
∫

γ0

v ∗ dg

∣∣∣∣ =
∣∣∣∣
∫

γ+
0 +γ−0

v ∗ dg

∣∣∣∣ =
∣∣∣∣
∫ θ0

−θ0

(
v+(ρ0e

iθ)− v−(ρ0e
iθ)

)
dθ

∣∣∣∣

5 2θ0 sup
|θ|5θ0

∣∣v+(ρ0e
iθ; r)− v−(ρ0e

iθ; r)
∣∣.

By (4.6) we deduce

lim sup
r↑1

|v(0; r)− k1| 5 θ0

π
lim sup

r↑1

(
sup
|θ|5θ0

∣∣v+(ρ0e
iθ; r)− v−(ρ0e

iθ; r)
∣∣
)
. (4.7)

Since |v(· ; r)| 5 1 on D̂ \ γ0 ∪ γ, {v(· ; r) : r ↑ 1} is a normal family on
D̂ \γ0. Choose any directed subnet v(· ; rι) (rι ↑ 1) converging to a limit f locally
uniormly on D̂ \ γ0. By virtue of the condition ∗dv(· ; rι) | γ0 = 0, we see that
v(· ; rι) (rι ↑ 1) is locally uniformly convergent on (D̂ \ γ0) ∪ (γ+

0 + γ−0 ) and we
can conclude the existence of ∗df |γ0 and in fact ∗df | γ0 = 0. The boundedness
|f | 5 1 then determines f |δD̂ =: a ∈ [0, 1]. Since ∗df |γ0 = 0, we can conclude
that f ≡ a on D̂ by the maximum principle. This shows that v(· ; rι) converges
to a uniformly on |z| 5 σ0 and a fortiori v±(ρ0e

iθ; rι) → a as rι ↑ 1 uniformly on
|θ| 5 θ0. The relation (4.7) now assures that

lim
r↑1

|v(0; r)− k1| = 0

so that, first of all, a = k1 and then, finally, the family {v(· ; r) : r ↑ 1} converges
to k1 locally uniformly on (D̂\γ0)∪(γ+

0 +γ−0 ). Hence, as the counterpart to (4.5),
we deduce





lim
r↑1

(
sup
|ẑ|5σ0

|v(ẑ; r)− k1|
)

= 0

lim
r↑1

(
sup

t∈T,|teiθ|5σ0

∣∣∣∣
∗dv(teiθ; r)

dθ

∣∣∣∣
)

= 0.

(4.8)

Finally we consider the family {w(· ; r) : r ↑ 1}. As we examined v(· ; r) (r ↑ 1)
with the aid of u(· ; r) (r ↑ 1), we can repeat exactly the same procedure to examine
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w(· ; r) (r ↑ 1) with the aid of v(· ; r) (r ↑ 1). Then we come to the conclusion
that {w(· ; r) : r ↑ 1} converges to k1 locally uniformly on (D̂ \ γ0 ∪ γ−1) ∪ (γ+

0 +
γ−0 + γ+

−1 + γ−−1) and obtain the following relation as the counterpart to (4.5) and
also (4.8):





lim
r↑1

(
sup
|ẑ|5σ0

|w(ẑ; r)− k1|
)

= 0

lim
r↑1

(
sup

t∈T,|teiθ|5σ0

∣∣∣∣
∗dw(teiθ; r)

dθ

∣∣∣∣
)

= 0.

(4.9)

Based upon the three conclusions (4.5), (4.8), and (4.9), we will determine
ρ1 ∈ T as follows. First ρ1 is required, at least, to satisfy

max
(

σ0, exp
(
− k1

4K1

))
< ρ1 < 1. (4.10)

Moreover ρ1 is supposed to satisfy (4.14), (4.15), and (4.16) below as follows. Once
ρ1 is tentatively so determined as to satisfy (4.10), we set

θ1 := θ(ρ1) ∈ (0, π) (4.11)

(cf. (4.2)) and then the most decisively

γ1 := Γ(ρ1, θ1) = Γ(ρ1, θ(ρ1)) (4.12)

and finally we set

u1 := u(· ; ρ1), v1 := v(· ; ρ1), w1 := w(· ; ρ1). (4.13)

As a consequence of (4.5), we can moreover choose ρ1 so close enough to 1 as to
yield





u1(0) = k1

k1 − ε1 5 u1(ẑ) 5 k1 + ε1 (|ẑ| 5 σ0)

sup
t∈T,|teiθ|5σ0

∣∣∣∣
∗du1(teiθ)

dθ

∣∣∣∣ 5 ε1

(4.14)

and similarly also by (4.8) we can and may make the relation
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



k1 − ε1 5 v1(ẑ) 5 k1 + ε1 (|ẑ| 5 σ0)

sup
t∈T,|teiθ|5σ0

∣∣∣∣
∗dv1(teiθ)

dθ

∣∣∣∣ 5 ε1

(4.15)

valid and finally, based upon (4.9), we can assume, by taking ρ1 enough close to
1, that the following relation holds:





k1 − ε1 5 w1(ẑ) 5 k1 + ε1 (|ẑ| 5 σ0)

sup
t∈T,|teiθ|5σ0

∣∣∣∣
∗dw1(teiθ)

dθ

∣∣∣∣ 5 ε1.
(4.16)

We have thus seen that we can find and then fix a ρ1 satisfying the conditions
(4.10), (4.14), (4.15), and (4.16).

In addition to three functions u1, v1, and w1, we also consider one more func-
tion p1 := u1/2, only notationally new but essentially u1 up to the multiplicative
constant, i.e. p1 is the solution in HD(D̂ \ γ1) ∩ C(D̂∗) of the Dirichlet problem
on D̂ \ γ1 with the boundary data





p1 | γ1 =
1
2

=
2
4

p1 | δD̂ = 0.

(4.17)

Note that D̂ is hyperbolically regular, i.e. every level line of the Green function
G(· , ζ; D̂) of D̂ is compact as is easily seen by looking at G(ẑ, 0; D̂) = g(ẑ) =
log(1/|ẑ|). Hence every level line {p1 = a} (0 < a < 1) of p1 is compact and
therefore

P1 :=
{

ẑ ∈ D̂ : p1(ẑ) >
1
4

}
⊃ γ1 (4.18)

is relatively compact subregion of D̂ containing γ1. We now determine arbitrarily
and then fix a σ1 ∈ (ρ1, 1) ∩ T such that

{|ẑ| < σ1} ⊃ P 1. (4.19)

Hence we have established a particular procedure to construct ρ1 and σ1 (and four
functions u1, v1, w1, p1 and a region P1) as follows when σ−2 < ρ−1 < σ−1 < ρ0 <

σ0 (but only dummy ones) are given:
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0 < σ−2 < ρ−1 < σ−1 < ρ0 < σ0 < ρ1 < σ1 < 1. (4.20)

5. Completion of the inductive construction.

In the first step, starting from given admissible arcs γ−1 and γ0, we deter-
mined the admissible arc γ1 := Γ(ρ1, θ1 = θ(ρ1)) and the associated fundamental
functions u1, v1, w1, p1 and the region P1 and the number σ1. By exactly the
same procedure as above, as the second step, starting from the admissible arcs
γ0 and γ1, we can determine the admissible arc γ2 := Γ(ρ2, θ2 = θ(ρ2)) and the
associated fundamental functions u2, v2, w2, p2 and the region P2 and the number
σ2. Repeating this process until the construction in the (n− 1)th step is over with
σn−1 and γn−1 determined, as the nth step construction, we can determine ρn as
ρ1 was determined in the case of the first step in Section 4. Namely, we can so
choose ρn ∈ T as to satisfy

max
(

σn−1, exp
(
− kn

4Kn

))
< ρn < 1 (5.1)

and on taking the admissible arc

γn := Γ(ρn, θn) = Γ(ρn, θ(ρn)),

we consider the solution un ∈ H(D̂ \ γn) ∪ C(D̂∗) of the Dirichlet problem on
D̂ \ γn with the boundary data

{
un | γn = 1

un | δD̂ = 0
(5.2)

and the solution vn ∈ H(D̂ \ γn−1 ∪ γn) ∩ C(D̂∗ \ γn−1) of the mixed boundary
value problem on D̂ \ γn−1 ∪ γn with the boundary data





vn | γn = 1

∗dvn | γn−1 = 0

vn | δD̂ = 0

(5.3)

and one more solution wn ∈ H(D̂ \ γn−2 ∪ γn−1 ∪ γn) ∪ C(D̂∗ \ γn−2 ∪ γn−1) of
the mixed boundary value problem on D̂ \ γn−2 ∪ γn−1 ∪ γn with boundary data
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



wn | γn = 1

∗dwn | γn−2 ∪ γn−1 = 0

wn | δD̂ = 0

(5.4)

and in addition to (5.1) we choose ρn so close to 1 as to satisfy the following three
relations (5.5)–(5.7) corresponding to the relations (4.14)–(4.16): for un = u(· ; ρn)





un(0) = kn

kn − εn 5 un(ẑ) 5 kn + εn (|ẑ| 5 σn−1)

sup
t∈T,|teiθ|5σn−1

∣∣∣∣
∗dun(teiθ)

dθ

∣∣∣∣ 5 εn

(5.5)

and for vn = v(· ; ρn)





kn − εn 5 vn(ẑ) 5 kn + εn (|ẑ| 5 σn−1)

sup
t∈T,|teiθ|5σn−1

∣∣∣∣
∗dvn(teiθ)

dθ

∣∣∣∣ 5 εn

(5.6)

and finally for wn = w(· ; ρn)





kn − εn 5 wn(ẑ) 5 kn + εn (|ẑ| 5 σn−1)

sup
t∈T,|teiθ|5σn−1

∣∣∣∣
∗dwn(teiθ)

dθ

∣∣∣∣ 5 εn.
(5.7)

After functions un, vn, and wn are thus defined, we define one more function
pn and a region Pn ⊂ D̂ and then a number σn ∈ (ρn, 1) ∪ T as will be described
below. Let pn := un/2 so that pn ∈ H(D̂ \ γn) ∩ C(D̂∗) is the solution of the
Dirichlet problem on D̂ \ γn with boundary data





pn | γn =
1
2

=
2
4

pn | δD̂ = 0.

(5.8)

Since D̂ is hyperbolically regular, level lines of pn are all compact in D̂. Hence
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Pn :=
{

pn >
1
4

}
⊃ γn (5.9)

is a relatively compact subregion of D̂ containing γn. Finally we can choose
arbitrarily and then fix a σn ∈ (ρn, 1) ∩ T such that

{|ẑ| < σn} ⊃ Pn. (5.10)

Hence we see that

0 < σn−1 < ρn < σn < 1 (n ∈ N). (5.11)

Lastly, we evaluate θn = θ(ρn) in γn = Γ(ρn, θn) in terms of kn. Let ω

be the harmonic measure function on the region {|ẑ| < ρn} of the boundary arc
γn = Γ(ρn, θn) ⊂ {|ẑ| = ρn}, i.e. ω ∈ HB({|ẑ| < ρn}) with boundary values 1 on
the interior of the arc γn and 0 on {|ẑ| = ρn} \ γn. Since ω 5 un on {|ẑ| < ρn},
we see in particular

ω(0) 5 un(0) = kn.

On the other hand the Green function G(ẑ, 0) on {|ẑ| < ρn} with its pole 0 is

G(ẑ, 0) = log
(

ρn

|ẑ|
)

= log ρn + g(ẑ) = log ρn − log |ẑ|.

By using the Poisson formula we see that

ω(0) =
1
2π

∫ π

−π

ω
(
ρneiθ

)[ ∂

∂r
G

(
reiθ, 0

)]

r=ρn

ρndθ =
1
2π

∫ θn

−θn

dθ =
θn

π
.

Hence we have

0 < θn 5 πkn (n ∈ N) (5.12)

and this is also true for n = 0 by our convention (cf. Section 3). This is a quite
rough estimate but sufficient for our later purpose.
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6. An essential function.

We have constructed four function sequences (un)n∈N , (vn)n∈N , (wn)n∈N ,
and (pn)n∈N . We now construct a sequence (hn)n∈N of important functions
hn which play essential roles below. Except (pn)n∈N , three function sequences
(un)n∈N , (vn)n∈N , and (wn)n∈N will play only supporting roles to (hn)n∈N . Any-
way we define the solution hn ∈ H(D̂ \ γn−1 ∪ γn ∪ γn+1) ∩ C(D̂∗ \ γn−1 ∪ γn+1)
of the mixed boundary value problem on D̂ \γn−1∪γn∪γn+1 with boundary data





hn | γn = 1

∗dhn | γn−1 ∪ γn+1 = 0

hn | δD̂ = 0.

(6.1)

For the unique existence of hn, as appeared repeatedly before, see e.g. [11]. By
the comparison principle we see that

−wn+1 + vn 5 hn 5 wn+1 + vn

on D̂ \ γn−1 ∪ γn ∪ γn+1 because the same is true on its essential boundary γn−1 ∪
γn ∪ γn+1 ∪ δD̂. By (5.6) and (5.7) we deduce

kn − (kn+1 + εn + εn+1) 5 hn(ẑ) 5 kn + (kn+1 + εn + εn+1)

on |ẑ| 5 σn−1. By the manner kn and εn are given in (3.2)–(3.4), we have

kn

2
5 hn(ẑ) 5 3kn

2
(|ẑ| 5 σn−1). (6.2)

In particular, we have hn(0) = kn/2. We apply the Stokes formula to the differ-
ential form g ∗ dhn − hn ∗ dg on (D̂ \ (c)) \ γn−1 ∪ γn ∪ γn+1, where c is a small
circle with radius 0 < ε < t0 and (c) the closed disc bounded by c. Then we have

∫

δD̂+c+γn−1+γn+γn+1

(g ∗ dhn − hn ∗ dg) = 0.

Since
∫

c
(g ∗ dhn − hn ∗ dg) = O(ε log ε) − 2πhn(0) → −2πhn(0) as ε ↓ 0, we see

that
∫

δD̂+γn−1+γn+γn+1

(g ∗ dhn − hn ∗ dg) = 2πhn(0).
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But we also have

∫

δD̂+γn−1+γn+γn+1

g ∗ dhn

= log
(

1
ρn

) ∫

γn

∗dhn = log
(

1
ρn

) ∫

γn

hn ∗ dhn

= log
(

1
ρn

) ∫

δD̂+γn−1+γn+γn+1

hn ∗ dhn = log
(

1
ρn

)
D(hn; D̂)

and

∫

δD̂+γn−1+γn+γn+1

hn ∗ dg =
∫

γn−1+γn+1

hn ∗ dg.

Therefore we obtain

D(hn; D̂) log
(

1
ρn

)
= 2πhn(0) +

∫

γn−1+γn+1

hn ∗ dg. (6.3)

Observe that ∗dg(ρje
iθ) = dθ on γj = γ+

j + γ−j (j = n ± 1). On denoting by h±n
the continuous boundary values of hn on γn−1 = γ+

n−1 + γ−n−1 we have

∫

γn−1

hn ∗ dg =
∫

γ+
n−1+γ−n−1

hn ∗ dg =
∫ θn−1

−θn−1

(
h+

n (ρn−1e
iθ)− h−n (ρn−1e

iθ)
)
dθ.

By (6.2) and (5.12), we deduce

∣∣∣∣
∫

γn−1

hn ∗ dg

∣∣∣∣ 5
∫ θn−1

−θn−1

3
2
kndθ = 3knθn−1 5 3πkn−1 · kn.

Though very rough but certainly |h+
n −h−n | 5 2 on γn+1 = γ+

n+1 +γ−n+1 and hence,
by (5.12)

∣∣∣∣
∫

γn+1

hn ∗ dg

∣∣∣∣ 5
∫ θn+1

−θn+1

2dθ = 4θn+1 5 4πkn+1.

Using (3.2)–(3.4) we see that



220 M. Nakai

∣∣∣∣
∫

γn−1+γn+1

hn ∗ dg

∣∣∣∣ 5 π(3kn−1kn + 4kn+1) 5 kn

4
. (6.4)

Since hn(0) = kn/2, we conclude with (6.3) that

D(hn; D̂) log
(

1
ρn

)
= πkn − kn

4
=

kn

4

or equivalently we have

D(hn; D̂) = kn

4
log

(
1
ρn

)
.

By the manner ρn is chosen to satisfy (5.1) we finally conclude that

D(hn; D̂) = Kn (n ∈ N). (6.5)

7. Construction of a surface.

We use the doubling process of two Riemann surfaces along a common slit.
Concerning the welding (pasting) of two surfaces along a cut, we refer the reader
to the splendid description in the monograph [10] of Oikawa (see also [9]).

Let X and Y be two Riemann surfaces and suppose there is a simply connected
analytic Jordan region U contained both in X and also in Y . Let γ ⊂ U be an
analytic Jordan arc and γ+ and γ− be both sides of the cut γ. We view that U \γ

is surrounded by two analytic Jordan curves ∂U and γ+ + γ−. We can also view
that a concentric circular ring A := {a < |z| < b} (0 < a < b < 1) is a conformal
representation of U \γ in which α := {|z| = a} (β := {|z| = b}, resp.) corresponds
to γ+ +γ− (∂U , resp.). We denote by Φ the restriction of the conformal structure
of X to U \ γ and Φ∗ the restriction of the conformal structure of Y to U \ γ

and assume that Φ∗ is the conjugate (i.e. reversed) conformal structure of Φ so
that the identity mapping of (U \ γ, Φ) to (U \ γ, Φ∗) is anticonformal. We weld
the bordered Riemann surface (A,Φ) which is the conformal representation of
(U \γ, Φ) to (A,Φ∗) which is the conformal representation of (U \γ, Φ∗) by means
of the identity mapping of the component α of the border ∂A, which gives rise
to the welding of X \ γ to Y \ γ by the identity mapping of γ+ + γ−. In other
words, we are considering the welding of X \ γ to Y \ γ induced by the double of
U \ γ = A about α. We say this process that we paste X \ γ to Y \ γ along γ

anticonformally and the resulting surface is denoted by
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(X \ γ) ]γ (Y \ γ). (7.1)

We now start the operations of constructing a Riemann surface W such that
HD(W ) = HBD(W ) and dimHD(W ) = ∞. We denote by Φ the original con-
formal structure of the Sario-Tôki disc D̂ and by Φ∗ the conjugate conformal
structure of Φ on D̂. We define a sequence of Riemann surfaces Sn by

{
S2ν−1 := (D̂,Φ) (ν ∈ N)

S2ν := (D̂,Φ∗) (ν ∈ N).
(7.2)

We take the sequence (γn)n∈N of admissible arcs γn = Γ(ρn, θn) (n ∈ N) on D̂

constructed in Sections 3–6. Then the required surface W is given by

W := · · ·{{{(S1\γ1)]γ1 (S2\γ1∪γ2)}]γ2 (S3\γ2∪γ3)}]γ3 (S4\γ3∪γ4)
} · · · . (7.3)

It may be impressive to call surfaces as above as grafted surfaces.
We denote by W ∗ the Wiener compactification of W and by γW = W ∗ \W

the Wiener boundary of W and the Wiener harmonic boundary δW is the set of
regular points in γW with respect to the Dirichlet problem, and δW is a compact
subset of γW . The Wiener harmonic boundary δSj of each Sj is a singleton so
that δSj = {dj} (j ∈ N). Then let

δ̂W := ∪j∈NδSj = {d1, d2, . . . , dj , . . . }, (7.4)

which is seen to be a subset of δW :

δ̂W ⊂ δW. (7.5)

Since δ̂W is in general not compact but actually noncompact in the present W

since #δ̂W = ∞ while δW is compact, δ̂W is always a proper subset of δW (see
(7.4) above). But δ̂W almost exhausts δW in a sense, which is crystallized by the
following important result. At this point we need to recall the quasiboundedness
for harmonic functions on a Riemann surface R. A harmonic function u on a
Riemann surface R is quasibounded if

u = lim
m,n∈N ,m,n→∞

(u ∧m) ∨ (−n)

on R. The totality of quasibounded harmonic functions on R is denoted by
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HB′(R). It is entirely trivial that HB(R) ⊂ HB′(R) ⊂ HP (R) but it is slightly
less trivial that HD(R) ⊂ HB′(R) (cf. e.g. [11]). Then we can state an important
role played by the set δ̂W .

The Unicity Principle. If u ∈ HB′(W ) satisfies u|δ̂W = 0, then u ≡ 0
on W .

Proof. Since HB′(W ) is a Riesz subspace (i.e. vector sublattice) of
HP (W ), the positive part u+ and the negative part u− of the Jordan decom-
position u = u+ − u− of u ∈ HB′(W ) also belong to HB′(W ). Let

max(u, 0) = u+ − s

be the Riesz decomposition of the subharmonic function max(u, 0) dominated
by u+ + u− into the harmonic part u+ and the potential part s on W . Since
s | δW = 0 (cf. e.g. [2], [11]) and δ̂W ⊂ δW , we see that s | δ̂W = 0. Clearly
max(u, 0) | δ̂W = 0 along with u | δ̂W = 0 and therefore u+ | δ̂W = 0. Similarly
u− | δ̂W = 0. Hence we only have to show that if u ∈ HB′(W )+ satisfies
u | δ̂W = 0 then u ≡ 0 on W . Clearly 0 5 u∧n 5 u on W and hence u∧n | δ̂W = 0
and u = limn∈N ,n→∞ u∧ n locally uniformly on W . Thus we really have to prove
is that if u ∈ H(W ) with 0 5 u 5 1 on W satisfies u|δ̂W = 0, then u ≡ 0 on W .

Let Wn (n = 2) be the subsurface of W given by

Wn :=
{ · · · {{{(S1\γ1)]γ1(S2\γ1∪γ2)}]γ2(S3\γ2∪γ3)} · · · }]γn−1(Sn\γn−1∪γn)

}

so that ∂Wn = γn = γ+
n +γ−n . We take the solution sn ∈ H(Sn\γn−1∪γn)∩C(S∗n)

of the Dirichlet problem on Sn \ γn−1 ∪ γn with the boundary data





sn | γn = 1

sn | γn−1 = kn

sn | δSn = 0,

(7.6)

where topologically S∗n = D̂∗ and thus δSn = δD̂ = {dn}. For the unique existence
of sn, cf. [11]. Comparing the boundary values of sn with those of un, we see that
−εn 5 sn − un 5 εn, and hence by (5.5) we have kn − 2εn 5 sn 5 kn + 2εn on
Pn−1 ⊂ {|ẑ| < σn−1}. Considering sn +pn−1 on Pn−1 \γn−1, we see by (3.2)–(3.4)
that
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



(sn + pn−1) | γn−1 = kn +
1
2

(sn + pn−1) | ∂Pn−1 5 kn + 2εn +
1
4

< kn + 2 · 10−6 +
1
4

< kn +
1
2
.

(7.7)

We also consider the solution qn−1 ∈ H(Wn−1)∩C((Wn−1∪γn−1)∗) of the Dirichlet
problem on Wn−1 with the boundary data





qn−1 | γn−1 = kn +
1
2

qn−1 | δS1 ∪ δS2 ∪ · · · ∪ δSn−1 = 0.

(7.8)

For the unique existence of qn−1, cf. [11]. We then set

s :=

{
sn + pn−1 (on Sn \ γn)

qn−1 (on Wn−1).
(7.9)

In view of (7.7) and (5.8) we see that s is superharmonic on Wn. By the manner
kn is chosen in (3.2), we infer that

s | γn−1 = kn +
1
2

5 2
3

(n = 2). (7.10)

A fortiori, since 0 5 u 5 sn on ∂Wn = γn, we have 0 5 u 5 2/3 on ∂Wn−1 = γn−1.
We repeat the same discussion for Wn−1 and (3/2)u as was done for Wn and u

and derive 0 5 u 5 (2/3)2 on ∂Wn−2 = γn−2. After (n − 1) repetitions of these
procedures we arrive at 0 5 u 5 (2/3)n−1 on ∂W1 = γ1. By the maximum
principle, we obtain

0 5 u | W1 5
(

2
3

)n−1

. (7.11)

Since n = 2 was arbitrarily chosen, we conclude u ≡ 0 on W1 by n ↑ ∞ in (7.11).
Hence we can finally maintain u ≡ 0 on W . ¤

The meaning of the above result is that only a part δ̂W of δW is already
playing important roles originally played by δW . We state here some of these
roles including inevitable ones for the later use. First we ask how large δ̂W is
quantitatively. As a reference point o ∈ W of W we take the origin 0 in the first
component S1 \ γ1, i.e. 0 ∈ S1 \ γ1 and o = 0 ∈ S1 \ γ1. Let hm be the harmonic
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measure on δW with the reference point o. Then we can prove quite easily that
the unicity principle above for δ̂W is equivalent to

hm(δW \ δ̂W ) = 0, (7.12)

which is also equivalent to the existence of an e ∈ HB′(W )+ such that

e|δW \ δ̂W = +∞. (7.13)

The last function e above is a very powerful and useful tool to show a certain
property valid for δW is already valid for δ̂W . As an example we prove the
following fact: if u|δ̂W = 0 for a u ∈ HB′(W ), then u = 0 on W . In fact, for
an arbitrary ε > 0 we see that (u + εe)|δW = 0. It is a standard knowledge that
(u + εe)|δW = 0 implies u + εe = 0 on W . On making ε ↓ 0, we conclude that
u = 0 on W , which was to be shown.

For each i ∈ N there is a unique solution ei ∈ HBD(W ) ⊂ HB′(W ) of the
Dirichlet problem on W with the boundary data

{
ei | δSi = ei(di) = 1

ei | δW \ δSi = 0.
(7.14)

For the unique existence of ei, again see [11]. The unicity principle for δ̂W assures
that the condition (7.14) is equivalent to the weaker condition

ei(dj) = δij (the Kronecker delta) (i, j ∈ N). (7.15)

Therefore we see that

hm(δSi) = hm({di}) = ei(o) (i ∈ N) (7.16)

and, by (7.12), we have hm(δ̂W ) = hm(δW ) = 1 and a fortiori

∑

i∈N

ei(o) = 1. (7.17)

Properties for δ̂W stated below are all derived off hand from the corresponding
ones for δW by using the function e in (7.13). First of all, we state the maximum
principle for δ̂W : for u ∈ HB′(W ) we have



Dirichlet finite harmonic functions 225





sup
W

u = sup
δ̂W

u

inf
W

u = inf
δ̂W

u.
(7.18)

Next, the representation theorem: for any u ∈ HB′(W ), we have

u =
∑

j∈N

u(dj)ej (7.19)

on W , and the convergence in (7.19) is of local uniform one on W . As the converse
to this, we have the following solvability of the Dirichlet problem: a sequence
(aj)j∈N ⊂ R satisfies

∑

j∈N

|aj |ej(o) < ∞ (7.20)

or, equivalently, (aj)j∈N ∈ L1(N ,hm), if and only if

u :=
∑

j∈N

ajej ∈ HB′(W ), (7.21)

We are now in the stage that we can give a proof to

dimHD(W ) = ∞, (7.22)

In fact, choose arbitrarily m mutually distinct functions eji (1 5 i 5 m) from the
family {ej : j ∈ N} and suppose their linear combination vanishes on W :

∑

15i5m

λieji = 0

on W . By considering this at the point dji , we obtain λi = 0 (i = 1, 2, . . . , m).
We have thus seen that any finite subset of {ej : j ∈ N} is linearly independent
so that (7.22) is deduced.

8. Completion of the proof.

In this last section we show that the essential property HD(W ) ⊂ HB(W ),
or equivalently HD(W ) = HBD(W ), is valid for the Riemann surface W given by
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(7.3). At the final part of the preceding section 7 we have shown very easily the
fact (7.22): dimHD(W ) = ∞. Thus the proof of our main theorem is complete if
HD(W ) = HBD(W ) is established, which is in reality very far from being trivial
compared with that of (7.22). Let

Rn := (Sn \ γn−1 ∪ γn ∪ γn+1) ]γn
(Sn+1 \ γn−1 ∪ γn ∪ γn+1) (n ∈ N). (8.1)

We consider the symmetric selfmapping jn of Rn induced by the identity mapping
of D̂. Take the solution fn ∈ H(Rn)∩C(Rn) of the mixed boundary value problem
on Rn with the boundary data





fn | δSn = 0

fn | δSn+1 = 1

∗dfn | ∂Rn = 0,

where Rn is the closure of Rn in the Wiener compactification W ∗ of W . For the
unique existence of fn, see again [11]. The function fn + fn ◦ jn ∈ H(Rn) takes
the value 1 on the harmonic boundary δRn of Rn and therefore, by the maximum
principle, we deduce

fn + fn ◦ jn ≡ 1

on Rn. Since jn = id. (identity) on γn, we have fn = fn ◦ jn on γn and hence
fn|γn = 1/2. Thus we see that fn = (1/2)hn on (Sn\γn−1∪γn∪γn+1). Therefore,
if we define ĥn by

(
1
2

)
ĥn :=





(
1
2

)
hn (on Sn \ γn−1 ∪ γn+1)

1−
(

1
2

)
hn ◦ jn (on Sn+1 \ γn−1 ∪ γn+1),

(8.2)

then (1/2)ĥn = fn ∈ H(Rn) and a fortiori ĥn ∈ H(Rn).
Choose an arbitrary u ∈ HD(W ). We wish to show that u ∈ HB(W ) or

equivalently u ∈ HBD(W ). For the purpose we set

u(dj) =: aj (j ∈ N). (8.3)

By the maximum principle for δ̂W = {d1, d2, . . . , dj , . . . }, we see the equivalence
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of u ∈ HBD(W ) and (aj)j∈N ∈ l∞. Hence we only have to show the boundedness
of the sequence (aj)j∈N . Observe that

∑

n∈N

D(u;Rn) 5 2D(u;W ). (8.4)

Fix an arbitrary n ∈ N . If an 6= an+1, then

v :=
u− an

an+1 − an

belongs to HBD(Rn) and u = (an+1 − an)v + an on Rn. Hence

D(u;Rn) = (an+1 − an)2D(v;Rn).

By the boundary conditions v− ĥn/2 = 0 on the harmonic boundary δSn ∪ δSn+1

of Rn and in particular ∗dĥn = 0 on ∂Rn, the Stokes formula yields

D

(
v − ĥn

2
,
ĥn

2
;Rn

)
=

∫

δSn∪δSn+1+∂Rn

(
v − ĥn

2

)
∗ dĥn

2
= 0,

or D(v, ĥn/2;Rn) = D(ĥn/2;Rn), and therefore we deduce

D

(
v − ĥn

2
;Rn

)
= D(v;Rn)−D

(
ĥn

2
;Rn

)
= 0.

Hence by (6.5) we see that

D(v;Rn) = D

(
ĥn

2
;Rn

)
= 2D

(
hn

2
; D̂

)
= Kn

2
.

Therefore we obtain

D(u;Rn) = Kn(an+1 − an)2

2
. (8.5)

We have deduced the above inequality (8.5) under the assumption an 6= an+1 but
this inequality is trivially true if an = an+1. Thus (8.5) is always valid for every
n ∈ N . This with (8.4) we obtain
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∑

n∈N

Kn(an+1 − an)2 5 4D(u;W ). (8.6)

Fix an arbitrary m ∈ N . Then the Schwarz inequality implies that

|am − a1| =
∣∣∣∣

∑

15n<m

(an+1 − an)
∣∣∣∣ 5

∑

15n<m

|an+1 − an|

=
∑

15n<m

K1/2
n |an+1 − an| ·K−1/2

n

5
√ ∑

15n<m

Kn(an+1 − an)2 ·
√ ∑

15n<m

1/Kn.

We have

√ ∑

n∈N

1/Kn =: K < ∞

by (3.1). Then (8.6) assures that

|am − a1| 5 2
√

D(u;W )K

and a fortiori

|am| 5 |a1|+ 2K
√

D(u;W ) (m ∈ N),

or (am)m∈N ∈ l∞, which was to be shown. ¤
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[ 3 ] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate

Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, 1993.

[ 4 ] F.-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math., 803,

Springer-Verlag, 1980.

[ 5 ] H. Masaoka, The class of harmonic functions with finite Dirichlet integrals and the har-

monic Hardy spaces on a hyperbolic Riemann surface, RIMS Kôkyûroku, 1669 (2009),
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