Vol. 64, No. 1 (2012) pp. 181–184 doi: 10.2969/jmsj/06410181

The necessary and sufficient condition for the group of leaf preserving diffeomorphisms to be simple

By Kazuhiko Fukui

(Received July 2, 2010)

Abstract. Let \mathscr{F} be a C^{∞} -foliation on a compact C^{∞} -manifold M. We consider the group of all leaf preserving C^{∞} -diffeomorphisms of (M,\mathscr{F}) which are isotopic to the identity through leaf preserving C^{∞} -diffeomorphisms. Then we show that the group is simple if and only if all leaves of \mathscr{F} are dense.

1. Introduction and statement of result.

Let M be a connected C^{∞} -manifold without boundary and let $D_c^{\infty}(M)$ denote the group of all C^{∞} -diffeomorphisms of M which are isotopic to the identity through C^{∞} -diffeomorphisms with compact support. M. Herman [3] and W. Thurston [5] showed that $D_c^{\infty}(M)$ is perfect, that is, every element of $D_c^{\infty}(M)$ is represented by a product of commutators. By combining this with the result of D. Epstein [1], we know that $D_c^{\infty}(M)$ is a simple group. Here a group G is said to be simple if G contains no non-trivial proper normal subgroups.

Let \mathscr{F} be a C^{∞} -foliation on M. A diffeomorphism $f: M \to M$ is called a leaf preserving diffeomorphism if f maps each leaf of \mathscr{F} to itself. We denote by $D_{L,c}^{\infty}(M,\mathscr{F})$ the group of all leaf preserving C^{∞} -diffeomorphisms of (M,\mathscr{F}) which are isotopic to the identity through leaf preserving C^{∞} -diffeomorphisms with compact support. T. Rybicki [4] and T. Tsuboi [6] showed that the group is perfect. We don't have the criterion whether the group is simple since it does not satisfy the conditions requested in Epstein [1]. In this paper we consider the simplicity of the groups of leaf preserving diffeomorphisms for foliations.

We have the following theorem.

Theorem. Let \mathscr{F} be a C^{∞} -foliation on a compact m-dimensional C^{∞} -manifold M. Then $D_L^{\infty}(M,\mathscr{F})$ is a simple group if and only if all leaves of \mathscr{F} are dense.

²⁰⁰⁰ Mathematics Subject Classification. Primary 58D05; Secondary 57R30.

Key Words and Phrases. leaf preserving diffeomorphism, simple group, commutator, dense leaf.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 20540098), Japan Society for the Promotion of Science.

182 K. Fukui

2. Proof of Theorem.

For a given group G and $g \in G$, let C_g denote the union of conjugate classes of g and g^{-1} and $(C_g)^k$ be the set of elements represented as a product of k conjugates of g or g^{-1} . Then note that G is simple if $G = \bigcup_{k=1}^{\infty} (C_g)^k$ for any element $g \in G - \{e\}$.

First we review the following lemma due to T. Tsuboi [8] which plays a key role to prove Theorem.

LEMMA (Lemma 3.1 of [8]). Let M be a C^{∞} -manifold and U an open ball in M. Suppose that $g \in D_c^{\infty}(M)$ satisfies $g(U) \cap U = \emptyset$. Then any commutator [a,b] for $a,b \in D_c^{\infty}(U)$ can be written as a product of 4 conjugates of g or g^{-1} , that is, $[a,b] \in (C_g)^4$.

PROOF. Put $c = g^{-1}ag$. Then since cb = bc, we have

$$\begin{split} aba^{-1}b^{-1} &= gcg^{-1}bgc^{-1}g^{-1}b^{-1} \\ &= gcg^{-1}c^{-1}cbgc^{-1}b^{-1}bg^{-1}b^{-1} \\ &= g(cg^{-1}c^{-1})(bcgc^{-1}b^{-1})(bg^{-1}b^{-1}). \end{split}$$

This completes the proof.

Remark. The above lemma holds for leaf preserving diffeomorphism groups.

PROOF OF "IF" PART. Take any non-trivial element g of $D_L^\infty(M,\mathscr{F})$. Then there is an open foliated ball $U\subset \overline{U}\neq M$ satisfying $g(U)\cap U=\emptyset$. Here a foliated ball U means a neighborhood homeomorphic to int $D^q\times\operatorname{int} D^{m-q}$ such that int $D^q\times\{pt\}$ is a plaque of the q-dimensional foliation \mathscr{F} in U. Then, since M is compact, we can take a finite cover of open foliated balls $\mathscr{U}=\{U_j\}\ (j=1,2,\ldots,k)$ of M containing U such that each U_j is diffeomorphic to U via a leaf preserving diffeomorphism in $D_L^\infty(M,\mathscr{F})$. In fact, given any two points on the same leaf, there is a leaf preserving diffeomorphism which maps one to the other. Therefore the union of all the images of U by leaf preserving diffeomorphisms is saturated. Being open, the union coincides with M since the foliation \mathscr{F} is minimal. Take any $f\in D_L^\infty(M,\mathscr{F})$. Since f is isotopic to the identity in $D_L^\infty(M,\mathscr{F})$, we have the following decomposition:

- (1) $f = f_1 \circ f_2 \circ \cdots \circ f_\ell$, $(f_i \in D_L^{\infty}(M, \mathscr{F}))$ and
- (2) each f_i ($i = 1, 2, ..., \ell$) is C^1 -close to the identity.

Then by using the partition of unity subordinate to the cover \mathcal{U} , we have the

following decomposition for each f_i :

- (1) $f_i = f_{i,1} \circ f_{i,2} \circ \cdots \circ f_{i,k}$ and
- (2) $f_{i,j} \in D_{L,c}^{\infty}(U_j, \mathscr{F}|_{U_j}).$

On the one hand, $f_{i,j}$ is written as a product of at most 2 commutators of elements in $D_{L,c}^{\infty}(U_j,\mathscr{F}|_{U_j})$ (see Proposition 3.3 of [2] and also Theorem 2.1 of [7]). That is, $f_{i,j} = [a_{i,j},b_{i,j}][c_{i,j},d_{i,j}]$, where $a_{i,j},b_{i,j},c_{i,j},d_{i,j} \in D_{L,c}^{\infty}(U_j,\mathscr{F}|_{U_j})$. As U_j is diffeomorphic to U by a leaf preserving diffeomorphism, say $h_j \in D_L^{\infty}(M,\mathscr{F})$, $h_j[a_{i,j},b_{i,j}]h_j^{-1}$ and $h_j[c_{i,j},d_{i,j}]h_j^{-1}$ are supported in U. From Lemma and Remark, $h_j[a_{i,j},b_{i,j}]h_j^{-1}$ and $h_j[c_{i,j},d_{i,j}]h_j^{-1}$ are written as a product of 4 conjugates of g or g^{-1} , hence $[a_{i,j},b_{i,j}]$ and $[c_{i,j},d_{i,j}]$ are so. Thus $f_{i,j}$ is written as a product of 8 conjugates of g or g^{-1} , hence $f \in (C_g)^{8k\ell}$. This completes the proof.

PROOF OF "ONLY IF" PART. If there is a non-dense leaf L in \mathscr{F} , the closure \overline{L} of L in M is a proper saturated subset of M. Then the subgroup G of $D_L^\infty(M,\mathscr{F})$ consisting of leaf preserving diffeomorphisms fixing \overline{L} pointwise is a non-trivial proper normal subgroup of $D_L^\infty(M,\mathscr{F})$. For, there are an open subset $U(\subset M-\overline{L})$ and a non-trivial element $f\in G$ satisfying $\mathrm{supp}(f)\subset U$. Therefore G is a non-trivial normal subgroup. Thus $D_L^\infty(M,\mathscr{F})$ is not simple. This completes the proof.

References

- [1] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math., **22** (1970), 165–173.
- [2] K. Fukui, Commutator length of leaf preserving diffeomorphisms, preprint.
- [3] M. Herman, Simplicité du groupe des difféomorphismes de classe C^{∞} , isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris Sér. A–B, **273** (1971), 232–234.
- [4] T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect, Monatsh. Math., 120 (1995), 289–305.
- [5] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc., 80 (1974), 304–307.
- [6] T. Tsuboi, On the group of foliation preserving diffeomorphisms, Foliations 2005, (eds. P. Walczak et al.), World Sci. Publ., Hackensack, NJ, 2006, pp. 411–430.
- [7] T. Tsuboi, On the uniform perfectness of diffeomorphism groups, Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52 (2008), 505–524.
- [8] T. Tsuboi, On the uniform simplicity of diffeomorphism groups, Differential Geometry, Proceedings of The VIII International Colloquium, Santiago de Compostela, 7–11 (2008), World Sci. Publ., Hackensack, NJ, 2009, pp. 43–55.

184 K. Fukui

Kazuhiko Fukui

Department of Mathematics Kyoto Sangyo University Kyoto 603-8555, Japan E-mail: fukui@cc.kyoto-su.ac.jp