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Abstract. Given a strictly pseudoconvex hypersurface M ⊂ Cn+1, we
discuss the problem of classifying all local CR diffeomorphisms between open
subsets N, N ′ ⊂ M . Our method exploits the Tanaka–Webster pseudoher-
mitian invariants of a contact form ϑ on M , their transformation formulae,
and the Chern–Moser invariants. Our main application concerns a class of
generalized ellipsoids where we classify all local CR mappings.

Introduction.

In this paper, we give a contribution to the problem of classifying local CR
mappings between real hypersurfaces in Cn+1. Namely, given a surface M := bΩ,
where Ω ⊂ Cn+1 is a smooth open set, we consider the problem of classifying all
CR mappings f : N → N ′, where N and N ′ are open subsets of M . The question
is rather natural, because biholomorphic mappings of Ω that extend smoothly to
the boundary define CR mappings on M .

Our approach is mainly based on CR differential geometry of strictly pseudo-
convex manifolds. We fix a contact form ϑ on M , we calculate the Tanaka–Webster
invariants (see [Tan62], [Web78]) and we exploit Lee’s transformation formulae,
see [Lee88]. The idea is reminiscent of known techniques in the study of conformal
mappings in Riemannian manifolds, see [LF76], [KR95], [IM01]. Our point of
view is described in Section 1, in the setting of CR surfaces in Cn+1, n ≥ 2.

We also exploit the connection between pseudohermitian invariants and the
classical Cartan–Chern–Moser CR invariants, see [CM74]. In particular, we intro-
duce a new Chern-invariant cone bundle. Namely, starting from the Chern tensor,
we define a subset H :=

⋃
P∈M HP of the holomorphic tangent bundle which is

preserved by CR mappings. The definition of H is given in Section 1. We believe
that the study of this cone bundle may be of some interest in similar or related
situations.

These ideas are applied to the model given by a generalized ellipsoid
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M := bE, E =
{
z ∈ Cn+1 : |z1|2m1 + · · ·+ |zs−1|2ms−1 + |zs|2 = 1

}
, (0.1)

where z1, z2, . . . , zs are groups of variables and the numbers mj satisfy suitable
hypotheses. The automorphism group of E is studied in [Sun78] and the model
is considered also in [KKM92]. In [DP97] the authors prove that all local CR
mappings of bE extend to global biholomorphic mappings of E, under suitable
hypotheses on the dimension of the groups of variables zj .

In the present paper, we study local CR mappings on bE. We recover both the
results in [Sun78] and [DP97] on the model (0.1). Our arguments are completely
different and new. The statement of our classification result for CR mappings on
generalized ellipsoids is contained in Section 2, Theorem 2.2. Subsections 3.1 and
3.2 contain the computation of the pseudohermitian and Chern–Moser invariants
in our model. Section 4 is devoted to the computation of the CR factor of a
mapping and to the classification of CR mappings which are “Levi-isometric”.

We mainly use differential geometric arguments, which require a certain com-
putational effort. On the other hand, they provide a good understanding of the
geometry of the manifold M . Several other strategies are available in the study
of CR mappings. For a complete account, we refer the reader to the monograph
[BER99], where Segre varieties, infinitesimal CR mappings and other tools are
widely discussed.

1. Chern-invariant cones.

Let M ⊂ Cn+1 be a strictly pseudoconvex real hypersurface. Fix on M a
contact form ϑ and let L := −idϑ denote the Levi form. For a fixed frame of
holomorphic vector fields Zα, α = 1, . . . , n, let hαβ = L(Zα, Zβ).

A diffeomorphism f : N → N ′ between open subsets N and N ′ of M is by
definition a CR mapping if f∗ϑ = λϑ for some function λ > 0 on N and the
tangent mapping f∗ preserves the complex structure. We call λ the CR factor
of f . Observe that CR mappings preserve orthogonality with respect to the Levi
form:

L(f∗Z, f∗W ) = λL(Z, W ) for all Z,W ∈ T 1,0N , (1.1)

where T 1,0N ⊂ CTN denotes the holomorphic tangent bundle. Observe also that
L(f∗Z, f∗W ) = L(Z, W ) = 0 for all Z, W ∈ T 1,0N . Therefore CR mappings are
somewhat similar to conformal mappings in Riemannian manifolds and (1.1) is an
overdetermined system analogous to the system satisfied by conformal mappings
in the Riemannian setting.

Let us denote by u = λ−1 the inverse of the CR factor. Given a contact form
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ϑ̃ = u−1ϑ, the pseudohermitian Ricci curvature Rαβ and the pseudohermitian
torsion Aαβ transform according to Lee’s formulae [Lee88]:

R̃αβ = Rαβ +
n + 2
2u

{
u,αβ + u,βα −

2
u

u,αu,β

}
+

1
2u

{
∆u− 2(n + 2)

u
|∇u|2

}
hαβ ,

(1.2)

and

Ãαβ = Aαβ − i

u
u,αβ . (1.3)

We refer the reader to [Tan75], [Web78], [DT06] for definition and basic prop-
erties of these tensors. Here, u,αβ = ∇β∇αu denote second order covariant deriva-
tives with respect to the Webster connection ∇, while ∆u = u,γ

γ + u,γ
γ and

|∇u|2 = uγuγ . As usual, we raise an lower indices by hαβ , the matrix defined by
hαβhγβ = δα

γ , so that u,
γ = hγβu,β and u,γ

γ = hγβu,γβ . Here and henceforth, we
omit summation on repeated indices. For future reference, recall the contracted
version of (1.2)

1
u

R̃ = R +
n + 1

u

{
∆u− n + 2

u
|∇u|2

}
, (1.4)

where R := hαβRαβ = Rα
α is the pseudohermitian scalar curvature.

Formulae (1.2) and (1.3) are relevant in the study of the CR Yamabe problem,
see [JL88]. The Riemannian version of (1.2) is also important in some regularity
questions for conformal mappings, see [LF76].

Equations (1.2) and (1.3) form a system of nonlinear PDEs for the inverse of
the CR factor u. This system also involves f , in a way that becomes clear in the
coordinate-free notation:

Ric(f∗Z, f∗W ) = Ric(Z, W ) +
n + 2
2u

{
∇2u(Z,W ) +∇2u(W, Z)− 2

u
ZuWu

}

+
1
2u

{
∆u− 2(n + 2)

u
|∇u|2

}
L(Z, W ), (1.5)

and

A(f∗Z, f∗W ) = A(Z, W )− i

u
∇2u(Z, W ), (1.6)
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for any Z, W ∈ T 1,0N . The function f appears through the geometric terms with
Ric and A in the left-hand side of (1.5) and (1.6).

When M has dimension 2n + 1 ≥ 5, i.e. n ≥ 2, the Chern tensor Sαβλµ

introduced in [CM74] is a nontrivial relative CR invariant which satisfies

S̃αβλµ =
1
u

Sαβλµ, (1.7)

see [Web00]. The tensor Sαβλµ can be expressed in terms of the pseudohermitian
curvatures by means of the Webster’s formula, see [Web78], [DT06],

Sαβλµ = Rαβλµ −
1

n + 2
{
hαβRλµ + hλβRαµ + hαµRλβ + hλµRαβ

}

+
R

(n + 1)(n + 2)
{
hαβhλµ + hλβhαµ

}
. (1.8)

Let us introduce a Chern-invariant cone bundle H ⊂ T 1,0M which is pre-
served by CR mappings. Namely, let H :=

⋃
P∈M HP , where

HP :=
{
U ∈ T 1,0

P M : R(U, V , Z, W ) = 0 for all V, Z,W ∈ T 1,0
P M

such that L(U, V ) = L(U,W ) = L(Z, V ) = L(Z, W ) = 0
}
. (1.9)

The set HP is a cone in the vector space T 1,0
P M . If U, V, Z, W ∈ T 1,0

P M satisfy
the orthogonality relations in (1.9), then we have R(U, V , Z, W ) = S(U, V , Z, W ),
by (1.8). In particular, H does not depend on ϑ and, moreover, any CR mapping
f : N → N ′ satisfies

f∗(HP ) = Hf(P ) for any P ∈ N. (1.10)

In general, the set HP is not closed under addition. If ϑ is any contact form on
the standard sphere or on the Siegel domain, then H = T 1,0M and (1.10) carries
no information. On the other hand, if the Chern tensor has a nontrivial structure,
then H can provide some useful information on how a CR mapping f transforms
the holomorphic tangent space.

In the case of the generalized ellipsoids (0.1), H can be decomposed as H =
G ⊕ G⊥, where G and G⊥ are orthogonal with respect to the Levi form. This is
discussed in Section 3.2. A cone similar to H was used in the Riemannian setting
in [Mor09]. In that case, the cone bundle is related to umbilical surfaces in the
underlying structure. It could be of interest to understand whether also in the CR
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setting the cone H is related to significant geometric objects.

2. The generalized ellipsoid model: main result and skeleton of
the proof.

In this section, we state the classification theorem for CR mappings on gen-
eralized ellipsoids and we indicate the scheme of the proof. Let

p(z, z) := |z1|2m1 + · · ·+ |zs−1|2ms−1 + |zs|2,

where z = (z1, . . . , zs) ∈ Cn1 × · · · × Cns = Cn. We assume that the integers
mj , nj , j = 1, . . . , s, satisfy

{
mj > 1 and nj ≥ 2, if 1 ≤ j ≤ s− 1,

ns ≥ 0.
(2.1)

We denote by zα the αth variable in Cn and we partition the indexes {1, . . . , n}
into the following sets

I1 = {1, . . . , n1}, I2 = {n1+1, . . . , n1+n2}, . . . , Is = {n1+· · ·+ns−1+1, . . . , n},

so that |zj |2 =
∑

α∈Ij
|zα|2. It may be Is = ∅, if ns = 0. Two indexes α, β ∈

{1, . . . , n} are said to be equivalent, and we write α ∼ β, if they belong to the
same set Ij . Two indexes α, β are said to be orthogonal, and we write α ⊥ β, if
α ∈ Ij and β ∈ Ik with k 6= j.

Let

Ω :=
{
(z, zn+1) ∈ Cn+1 : Im(zn+1) > p(z, z)

}
,

M0 := bΩ :=
{
(z, zn+1) ∈ Cn+1 : Im(zn+1) = p(z, z)

}
, and

M :=
{

(z, zn+1) ∈ M0 :
s−1∏

j=1

|zj | 6= 0
}

.

(2.2)

We will see that M is the strictly pseudoconvex part of the surface M0. The
unbounded open set Ω is biholomorphically equivalent to the bounded generalized
ellipsoid

E :=
{

(w, wn+1) ∈ Cn+1 :
s∑

j=1

|wj |2mj + |wn+1|2 < 1
}
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via the map

Ω 3 (z, zn+1)

7−→
(

21/m1z1

(i + zn+1)1/m1
, . . . ,

21/ms−1zs−1

(i + zn+1)1/ms−1
,

2zs

i + zn+1
,
i− zn+1

i + zn+1

)
∈ E.

In the rest of the paper, we will work on the unbounded model, where the com-
putations are easier.

Remark 2.1. In (2.1) we require mj ≥ 2 and nj ≥ 2 for j = 1, . . . , s − 1.
The case nj = 1 for all j is discussed in the recent paper [LS09]. Assumption (2.1)
ensures that all local CR mappings extend to global biholomorphic mappings, see
[DP97]. If (2.1) is violated, this is in general not true.

Let us consider the following biholomorphic mappings. The mapping I : Ω →
Ω

I(z1, . . . , zs−1, zs, z
n+1) =

(
z1

(zn+1)1/m1
, . . . ,

zs−1

(zn+1)1/ms−1
,

zs

zn+1
,− 1

zn+1

)
(2.3)

is the inversion. For any r > 0, the mappings δr : Ω → Ω,

δr(z1, . . . , zs−1, zs, z
n+1) =

(
r1/m1z1, . . . , r

1/ms−1zs−1, rzs, r
2zn+1

)
(2.4)

form a one-parameter group of dilatations. Finally, consider the mappings ψ of
the form

ψ(z, zn+1) =
(
B1zσ(1), . . . , Bs−1zσ(s−1),

Bszs + bs, b
n+1 + zn+1 + 2i(Bszs · bs)

)
, (2.5)

where σ is a permutation of {1, . . . , s − 1} such that mσ(j) = mj and nσ(j) = nj

for any j = 1, . . . , s − 1, Bj ∈ U(nj) are unitary matrices, bs ∈ Cns , and bn+1 =
t0 + i|bs|2 ∈ C for some t0 ∈ R.

For a = (as, a
n+1) ∈ Cns ×C with an+1 = t0 + i|as|2 for some t0 ∈ R, let φa

be the mapping

φa(z1, . . . , zs−1, zs, z
n+1) = (z1, . . . , zs−1, zs + as, z

n+1 + an+1 + 2izs · as). (2.6)

The mapping φa is a particular case of (2.5).
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A composition of the mappings (2.3)–(2.5) extends to a CR mapping of M0,
possibly off one point. Our main theorem states that any local CR mapping of M

is such a composition.

Theorem 2.2. Let f : N → N ′ be a CR mapping between connected open
subsets of M . Then, for a suitable choice of ψ as in (2.5), r > 0, and a =
(as, t0 + i|as|2) ∈ Cns ×C we have

f = ψ ◦ δr ◦ J ◦ φa, (2.7)

where either J = I as in (2.3) or J is the identity map.

Scheme of the proof of Theorem 2.2.

Step 1: For a suitable contact form ϑ on M , we show that the CR factor λf

of a CR function f between open, either connected subsets of M is a constant or
it has the form

λf = k−2|zn+1 + an+1 + 2izs · as|−2, (2.8)

for some k > 0, as ∈ Cns and an+1 = t0 + i|as|2 ∈ C, where as = 0 if ns = 0. This
is proved in Theorem 4.2. The proof requires the study of the overdetermined
system in (1.5) and (1.6). To solve the system, we exploit the structure of the
Chern-invariant cone bundle H . This is carried out in Subsection 3.2.

Step 2: Once the form of the CR factor λf is known, we consider the map-
pings φa in (2.6) and δr in (2.4) with r = 1/k. Elementary computations on the
CR factors give:

λφa
(z) = 1, λI(z) = |zn+1|−2, and λδr

= r2. (2.9)

Let G := δ1/k ◦ I ◦ φa and define the mapping ψ via the identity f = ψ ◦ G. By
(2.9), ψ satisfies ψ∗ϑ = ϑ. Indeed, the CR factor λG of G is

λG(z) = λδ1/k
(I(φa(z))λI(φa(z))λφa(z) = k−2

∣∣zn+1 + an+1 + 2izs · as

∣∣−2
,

and therefore

λf (z) = λψ(G(z))λG(z) = λψ(G(z))k−2
∣∣zn+1 + an+1 + 2izs · as

∣∣−2
.

Thus, by the form of λf in (2.8) we deduce that the CR factor of ψ is λψ = 1. In
Subsection 4.2 we show that all such mappings, that we call Levi-isometric, have
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the form (2.5).
This concludes the proof of the classification result. ¤

3. Pseudohermitian and Chern–Moser invariants in generalized el-
lipsoids.

3.1. Computation of the pseudohermitian invariants.
Fix on M0 the pseudohermitian structure ϑ = i(∂F − ∂F ), where

F (z, z, zn+1, zn+1) = Im(zn+1)− p(z, z) is a defining function for M :

ϑ :=
dzn+1 + dzn+1

2
− i

(
pαdzα − pαdzα

)
= dt− i

(
pαdzα − pαdzα

)
. (3.1)

We use the notation pα = ∂p/∂zα and we let t = Re(zn+1). On M0 we fix the
coordinates (z, t) ∈ Cn×R, i.e., we identify (z, t) ∈ C ×R with (z, t + ip(z, z)) ∈
M0. Fix the holomorphic frame

Zα = ∂α + ipα∂t for α = 1, . . . , n, (3.2)

and let Zα = Zα. We clearly have ϑ(Zα) = ϑ(Zα) = 0 for any α = 1, . . . , n.
The Levi form on M is the 2-form L = −idϑ. From the identities

hαβ := L
(
Zα, Zβ

)
= −idϑ

(
Zα, Zβ

)
= iϑ

(
[Zα, Zβ ]

)
and (3.3)

[
Zα, Zβ

]
= −2ipαβ∂t for α, β = 1, . . . , n, (3.4)

we obtain

hαβ =





2mj |zj |2(mj−1)

(
δαβ + (mj − 1)

zαzβ

|zj |2
)

if α ∼ β ∈ Ij ,

0 if α ⊥ β.

(3.5)

The inverse matrix hλβ has the form

hλβ =





1
2mj |zj |2(mj−1)

(
δλβ − mj − 1

mj

zλzβ

|zj |2
)

if λ ∼ β ∈ Ij ,

0 if λ ⊥ β.

(3.6)

The surface M defined in (2.2) is strictly pseudoconvex, because dethαβ > 0
on M . The characteristic vector field of ϑ is T = ∂n+1 + ∂n+1 = ∂/∂t.
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For j = 1, . . . , s, let us introduce the holomorphic vector fields

Ej =
1

mj

∑

α∈Ij

zαZα. (3.7)

We say that Ej is a vector field “of radial type”. A short computation based on
(3.5) shows that, for any α ∈ {1, . . . , n}, j, k ∈ {1, . . . , s},

L
(
Zα, Ej

)
= 2mj |zj |2(mj−1)zα if α ∈ Ij , and

L
(
Ej , Ek

)
= 2|zj |2mj δjk for all j, k = 1, . . . , s.

(3.8)

Here, δjk is the Kronecker’s symbol. The vector fields E1, . . . , Es span an s-
dimensional subbundle E ⊂ T 1,0M . If ns = 0, we have no vector field Es and E
has dimension s− 1. We denote by E⊥ the orthogonal complement of E in T 1,0M

with respect to the Levi form.
Let Q : T 1,0M → E⊥ be the projection

Q(Z) = Z −
s∑

j=1

L(Z, Ej)
L(Ej , Ej)

Ej . (3.9)

If ns = 0, in the sum the index j ranges from 0 to s − 1. In particular, for any
j ∈ {1, . . . , s} and α ∈ Ij , let Wα be the holomorphic vector field

Wα := Q(Zα) =
∑

β∈Ij

Qβ
αZβ .

By (3.8), (3.9), and (3.7), we deduce that the coefficients Qβ
α are

Qβ
α = δβ

α −
zαzβ

|zj |2 . (3.10)

Let us introduce the hermitian form Q[ on T 1,0M associated with Q:

Q[(U, V ) := L(Q(U), V ) = L(Q(U), Q(V )) for any U, V ∈ T 1,0M. (3.11)

Letting Qαβ := Q[(Zα, Zβ), we have for α ∼ β ∈ Ij ,
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Qαβ = Qγ
αhγβ = 2mj |zj |2(mj−1)

(
δαβ − zαzβ

|zj |2
)

= 2mj |zj |2(mj−1)Qβ
α, (3.12)

whereas Qαβ = 0 if α ⊥ β.
Finally observe that (3.2) and (3.10) give

Wα = ∂α −
∑

β∈Ij

zαzβ

|zj |2 ∂β if α ∈ Ij . (3.13)

Thus Wαp = 0 for α = 1, . . . , n, i.e., Wα is a holomorphic vector field in Cn which
is tangent to the hypersurfaces of Cn given by p(z, z) = constant.

The bundle E⊥ is n−s dimensional (in fact, (n−s+1)-dimensional if ns = 0)
and it is generated by the vector fields Wα with α = 1, . . . , n. Let Wj ⊂ T 1,0M

be the subbundle spanned by the vector fields Wα with α ∈ Ij , where Ws = (0),
if ns = 0 or ns = 1. Then we have E⊥ = W1 ⊕ · · · ⊕Ws−1 ⊕Ws. Finally, we have
Wj ⊥ Wk if j, k ∈ {1, . . . , s} are different. Indeed, for any α ∈ Ij and β ∈ Ik,
we have L(Wα,Wβ) = Qγ

αQσ
β
hγσ = 0, because hγσ = 0 if γ ⊥ σ. Therefore the

decomposition

T 1,0M = W1 ⊕ · · · ⊕Ws−1 ⊕Ws ⊕ E (3.14)

is orthogonal. Observe also that Ws ⊕ E = span{E1, . . . , Es−1, Zα : α ∈ Is}.

Proposition 3.1. The hermitian form Q[ introduced in (3.11) satisfies:

Q[(E, Z) = 0 for all E ∈ E and Z ∈ T 1,0M ; (3.15a)

Q[(V, W ) = L(V, W ) for all j ∈ {1, . . . , s} and V, W ∈ Wj ; (3.15b)

Q[(Z, Z) ≥ 0 for all Z ∈ T 1,0M

and E =
{
Z ∈ T 1,0M : Q[(Z,Z) = 0

}
. (3.15c)

Proof. Let E ∈ E and Z ∈ T 1,0M . Then Q[(E, Z) = L(Q(E), Z) = 0,
because Q(E) = 0. This proves the first line. To prove the second line, just
observe that Q[(V, W ) = L(Q(V ),W ) = L(V, W ), because Q(V ) = V . The third
line (3.15c) follows from (3.11), letting U = V and from strict pseudoconvexity. ¤

Let ∇ be the Tanaka-Webster connection of (M, ϑ). We refer to [Tan75],
[Web78] and [DT06] for the relevant facts concerning ∇. The curvature operator
of ∇ is R(Zλ, Zµ)Zα = ∇Zλ

∇Zµ
Zα − ∇Zµ

∇Zλ
Zα − ∇[Zλ,Zµ]Zα. The curvature

tensor have components Rαβλµ = L(R(Zλ, Zµ)Zα, Zβ). It enjoys the symmetries
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Rαβγµ = Rγβαµ and Rαβγµ = Rβαµγ , (3.16)

see [DT06, Section 1.4]. The pseudohermitian Ricci tensor is defined by Rαµ =
R λ

α λµ, and the scalar curvature is R = hαµRαµ. Finally, the pseudohermitian
torsion of ∇ is defined by τ(Zβ) = ∇T Zβ − ∇Zβ

T − [T, Zβ ] =: Aα
βZα, where

Aαβ := L(τ(Zα), Zβ) satisfies Aαβ = Aβα, as proved in [Web78].
Now we study the curvature tensors on the hypersurface M . Associated with

the decomposition CTM = T 1,0M ⊕ T 0,1M ⊕CT , we have the projections π+ :
CTM → T 1,0M and π− : CTM → T 0,1M . By definition, for U, V holomorphic
vector fields, we have ∇UV := π−([U, V ]). In our case, from (3.4) we find

∇Zα
Zβ = 0 for all α, β = 1, . . . , n. (3.17)

If U, V are holomorphic vector fields, then ∇UV is defined by L(∇UV, W ) =
UL(V, W )− L(V,∇UW ) for all W ∈ T 1,0M . Thus, we obtain

∇Zλ
Zα =

(
hσβ∂λhαβ

)
Zσ for all α, λ = 1, . . . , n. (3.18)

Since hαβ = 2pαβ , we deduce from (3.18) that

∇Zλ
Zα = 0 for all α, λ ∈ 1, . . . , n with α ⊥ λ. (3.19)

The Tanaka–Webster connection satisfies ∇T = 0. Moreover, in our case we have
∇T Zα = π+([T,Zα]) = 0. By (3.4), we deduce that

∇[Zλ,Zµ]Zα = 0 for all α, λ, µ ∈ {1, . . . , n}. (3.20)

By (3.17) and (3.20), the curvature operator reduces to R(Zλ, Zµ)Zα =
−∇Zµ

∇Zλ
Zα, and taking into account (3.18), we get the Riemann and Ricci ten-

sors

Rαβλµ = −∂µ

(
hσγ∂λhαγ

)
hσβ , (3.21)

Rαµ = R λ
α λµ = −∂µ

(
hλγ∂λhαγ

)
. (3.22)

Finally, since ∇ZαT = ∇T Zα = [Zα, T ] = 0, the torsion vanishes identically,

Aαβ = 0. (3.23)
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Proposition 3.2. The curvature tensor of ∇ of (M, ϑ) has the form

Rαβλµ = −mj − 1
2mj

|zj |−2mj
{
QλµQαβ + QαµQλβ

}
if α, β, λ, µ ∈ Ij , (3.24)

for some j ∈ {1, . . . , s}, and Rαβλµ = 0 if two of the indices α, β, λ, µ are
orthogonal. Moreover, R(U, V , Z, W ) = 0 as soon as one of the vector fields
U, V, Z, W ∈ T 1,0M belongs to E ⊕ Ws. The pseudohermitian Ricci tensor has
the form

Rλµ = −nj(mj − 1)
2mj

|zj |−2mj Qλµ if λ, µ ∈ Ij , (3.25)

and Rλµ = 0 if λ ⊥ µ. Moreover, Ric(U, V ) = 0 as soon as one of the vector fields
U, V ∈ T 1,0M belongs to E ⊕Ws. Finally, the scalar curvature is

R = −
s−1∑

j=1

nj(nj − 1)(mj − 1)
2mj

|zj |−2mj . (3.26)

Proof. We start from the formula (3.21). The components of the Levi
form are given in (3.5) (and (3.6)). Note that

α ⊥ λ⇒ ∂λhαγ = 0,

α ⊥ µ⇒ ∂µ

(
hσγ∂λhαγ

)
= 0,

α ⊥ β⇒ ∂µ

(
hσγ∂λhαγ

)
hσβ = 0.

Using the symmetries (3.16), we conclude that Rαβλµ = 0 as soon as there are two
orthogonal indexes.

Assume that α, β, λ, µ are in Ij . From (3.5) we get

∂λhαγ = 2mj(mj − 1)|zj |2(mj−2)

{
zλδαγ + zαδλγ + (mj − 2)

zαzγzλ

|zj |2
}

,

and thus

hσγ∂λhαγ =
mj − 1
|zj |2

{
zλδασ + zαδλσ − zαzσzλ

|zj |2
}

.
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After a short computation based on (3.10) and (3.12), we find

−Rα
σ

λµ = ∂µ

(
hσγ∂λhαγ

)
=

mj − 1
|zj |2

{
Qσ

αQµ
λ + Qσ

λQµ
α

}

=
mj − 1
2mj

|zj |−2mj
{
Qσ

αQλµ + Qσ
λQαµ

}
, (3.27)

and contracting with hσβ , we get (3.24).
Next we show that R(Z,W, U, V ) = 0 if Z ∈ Ws ⊕ E . If Z ∈ E , this follows

trivially from the first line of (3.15a). If Z ∈ Ws, then R(Z, Zβ , Zλ, Zµ) = 0 if at
least one of the indexes β, λ, µ does not belong to Is. If all β, λ, µ ∈ Is, then, by
(3.24), R(Z, Zβ , Zλ, Zµ) = 0, because mj − 1 = 0 if j = s.

Identities (3.25) and (3.26) follow upon contracting indexes in (3.24), Rλµ =
Rα

α
λµ. Recall that by (3.10) and (3.12) we have

∑
α∈Ij

Qα
α = nj − 1 and∑

σ∈Ij
Qσ

αQσµ = Qαµ, if α, µ ∈ Ij . ¤

Remark 3.3. Let V ∈ E⊥ be a vector such that V = V1 + · · ·+ Vs−1 with
Vj ∈ Wj . The pseudohermitian sectional curvature of (M, ϑ) along V 6= 0 is

k(V ) :=
R(V, V , V, V )

|V |4 = − 1
|V |4

s−1∑

j=1

mj − 1
mj

|zj |−2mj |Vj |4, (3.28)

where |V | := L(V, V )1/2 denotes the Levi-length of V . This formula follows from
(3.24) and (3.15b). Notice, in particular, that, since mj > 1 for all j ≤ s− 1, then
k(V ) 6= 0 for any V ∈ W1 ⊕ · · · ⊕Ws−1 with V 6= 0.

3.2. Chern invariant cones in generalized ellipsoids.
We describe the structure of the cones HP introduced in (1.9). Here and

hereafter, let |U | := L(U,U)1/2 denote the Levi-length of U ∈ T 1,0M .

Proposition 3.4. Let M ⊂ Cn+1 be the surface defined in (2.2). Then

H = W1 ∪ · · · ∪Ws−1 ∪
(
Ws ⊕ E

)
. (3.29)

Proof. We prove that E ⊕ Ws ⊂ H . In fact, if U ∈ E ⊕ Ws, then
R(U, V , Z, W ) = 0 for all V, Z,W ∈ T 1,0M , by Proposition 3.2.

In order to show that Wj ⊂ H for all j = 1, . . . , s − 1, let U ∈ Wj and
take V, Z,W ∈ T 1,0M such that L(U, V ) = L(U,W ) = L(Z, V ) = L(Z, W ) = 0.
Observe that, writing V = Vj +V ⊥

j , where Vj ∈ Wj is the projection of V onto Wj

and V ⊥
j = V − Vj = E +

∑
k 6=j Vk, for some E ∈ E , by (3.14), we have
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L(U, V ) = L(U, V j) and L(U,W ) = L(U,W j). (3.30)

Here, we made for W the same decomposition as for V . Observe also that
Q[(U, V ) = Q[(U, V j), and Q[(U,W ) = Q[(U,W j), by (3.11). Then we have
by (3.24)

R(U, V , Z, W ) = −mj − 1
2mj

|zj |−2mj
{
Q[(U, V j)Q[(Z, W ) + Q[(U,W j)Q[(Z, V )

}

= −mj − 1
2mj

|zj |−2mj
{
L(U, V j)Q[(Z, W ) + L(U,W j)Q[(Z, V )

}
= 0,

by (3.30) and by the definition of H .
Now we show that any vector field U = X + Y with X ∈ E ⊕ Ws and Y ∈

W1⊕· · ·⊕Ws−1 such that |X| 6= 0 and |Y | 6= 0 does not belong to H . We assume
without loss of generality that |Y | = 1. We choose Z = X + Y and V = W =
X − kY with k = |X|2 6= 0, in such a way that L(U, V ) = L(X + Y,X − kY ) = 0.
By Proposition 3.2, R(U, V , Z, W ) = k2R(Y, Y , Y, Y ) = k2|Y |4k(Y ) 6= 0, thanks
to (3.28).

Finally, we prove that if V ∈ (E ⊕ Ws)⊥ \ (W1 ∪ · · · ∪ Ws−1) then V /∈ H .
Let V = V1 + · · · + Vs with Vj ∈ Wj and assume without loss of generality that
|V1| 6= 0 and |V2| = 1. Let W = V1 − κV2 where κ = |V1|2 in such a way that
L(V, W ) = 0. By Proposition 3.2 and Remark 3.3, we have R(V, W, V, W ) =
R(V1, V 1, V1, V 1) + κ2R(V2, V 2, V2, V 2) 6= 0, as claimed. ¤

Let N, N ′ ⊂ M be connected open sets and let f : N → N ′ be a Cauchy–
Riemann diffeomorphism. By (1.10) it must be f∗(HP ) = Hf(P ). Then there are
two cases:

(A) f∗(E ⊕Ws) = E ⊕Ws;
(B) there exists j = 1, . . . , s− 1 such that f∗(E ⊕Ws) = Wj .

Here and hereafter, with slight abuse of notation let f∗(E ⊕Ws) = E ⊕Ws stand
for f∗(E ⊕Ws)P = (E ⊕Ws)f(P ), for all P ∈ N .

Case (B) may occur only if dim(E ⊕Ws) = dim(Wj). Actually, the Case B cannot
occur at all, as the following theorem states.

Theorem 3.5. Let N, N ′ ⊂ M be open sets. A CR diffeomorphism f : N →
N ′ ⊂ M satisfies f∗(E ⊕Ws) = E ⊕Ws. In particular, there exists a permutation
σ of {1, . . . , s− 1} such that f∗(Wj) ⊂ Wσ(j) for all j = 1, . . . , s− 1.

We prove Theorem 3.5 in Section 5. In the following proposition, we prove
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that, in case (A), CR diffeomorphisms preserve the Ricci Tanaka–Webster curva-
ture of ϑ. Diffeomorphisms that preserve the Ricci curvature of a Riemmanian
metric are rather studied in Riemannian geometry, see [KR95], [OS92]. It could
be interesting to see whether such mappings enjoy any significant geometric prop-
erty in the CR setting.

Proposition 3.6. Let N, N ′ ⊂ M be open sets. A CR diffeomorphism
f : N → N ′ such that f∗(E ⊕ Ws) = E ⊕ Ws preserves the Ricci curvature of ϑ,
i.e. Ric(f∗Z, f∗W ) = Ric(Z, W ) for all Z, W ∈ T 1,0N .

Proof. We divide the proof into two steps.
Step 1: We claim that R = λR ◦ f , where R is the scalar curvature of ϑ and

λ > 0 is the CR factor of f , i.e., f∗ϑ = λϑ.

Let Z ∈ E ⊕ Ws with |Z| = 1. Proposition 3.2 and Webster formula (1.8)
yield

S(Z, Z, Z, Z) =
2R

(n + 1)(n + 2)
. (3.31)

Since f∗Z ∈ E ⊕Ws, we analogously have

S(f∗Z, f∗Z, f∗Z, f∗Z) =
2R ◦ f

(n + 1)(n + 2)
|f∗Z|4 =

2λ2R ◦ f

(n + 1)(n + 2)
, (3.32)

where we also used |f∗Z|2 = λ|Z|2 = λ. Thus, by the relative CR invariance (1.7)
we have

Sϑ(f∗Z, f∗Z, f∗Z, f∗Z) = Sf∗ϑ(Z,Z, Z, Z) = Sλϑ(Z,Z, Z, Z) = λSϑ(Z, Z, Z, Z),

Here, Sϑ, Sf∗ϑ and Sλϑ denote the Chern tensors relative to ϑ, f∗ϑ, and λϑ, re-
spectively. Comparing (3.31) and (3.32) we conclude Step 1.

Step 2: We claim that Ric(f∗V, f∗W ) = Ric(V, W ) for all V, W ∈ (E ⊕Ws)⊥.

Take vector fields V, W ∈ (E ⊕ Ws)⊥. Let also Z ∈ E ⊕ Ws be such that
|Z| = 1. All terms in the Chern tensor containing curvature tensors along Z or
terms of the form L(V, Z) and L(Z, W ) vanish. Thus

S(V, W, Z, Z) = − 1
n + 2

{
Ric(V, W )− R

(n + 1)
L(V, W )

}
. (3.33)
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Since f∗Z ∈ E ⊕Ws and f∗W,f∗V ∈ (E ⊕Ws)⊥, we analogously have

S(f∗V, f∗W, f∗Z, f∗Z) = − λ

n + 2

{
Ric(f∗V, f∗W )− λR ◦ f

n + 1
L(V, W )

}
. (3.34)

Recall that S(f∗V, f∗W, f∗Z, f∗Z) = Sλϑ(V, W, Z, Z) = λS(V, W, Z, Z), by the
CR invariance (1.7). Thus the Step 2 can be accomplished on comparing (3.33),
(3.34) and using the Step 1.

The proof is finished, because Ric(Z, W ) = 0 for all Z ∈ E ⊕ Ws and W ∈
T 1,0M . ¤

Proposition 3.7. Let N, N ′ ⊂ M be open sets and let f : N → N ′ be a
CR diffeomorphism such that f∗(E ⊕Ws) = E ⊕Ws. Then the CR factor λ of f

satisfies Wαλ = 0 for any α ∈ I1 ∪ · · · ∪ Is−1.

Proof. Let α ∈ I1 ∪ · · · ∪ Is−1 and fix W = Wα. We first observe that

dϑ(f∗T, f∗W ) = f∗(dϑ)(T, W ) = d(f∗ϑ)(T, W )

=
(
(dλ) ∧ ϑ + λdϑ

)
(T, W ) = −Wλ.

Therefore, it suffices to show that dϑ(f∗T, f∗W ) = 0.
Using (3.4), we find for any j, k = 1, . . . , s− 1

[Ej , Ek] = − 1
m2

j

∑

α,β∈Ij

2ipαβzαzβδjkT = −2i|zj |2mj δjkT, (3.35)

because
∑

α∈Ij
pαzα = mj |zj |2mj . Thus we have

f∗T =
i

2|zj |2mj
f∗[Ej , Ej ] =

i

2|zj |2mj
[f∗Ej , f∗Ej ] for all j = 1, . . . , s− 1.

Notice the commutation relations

[
Ej , Zα

]
= 0 if α ∈ Is and j ≤ s− 1; and

[
Zα, Zβ

]
= −2iδαβT if α, β ∈ Is.

(3.36)

In view of (3.36) and (3.35), we claim that for any vector field Z ∈ E ⊕Ws there
exist a real function σ and a vector field U ∈ E ⊕Ws such that
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[Z, Z] = iσT + U − U. (3.37)

Formula (3.37) can be checked by a routine computation. Here and hereafter, with
slight abuse of notation we denote sections of a bundle with the same notation of
the bundle. The claim applies to Z = f∗(Ej) ∈ E ⊕Ws, for j = 1, . . . , s− 1. The
vector fields f∗W ∈ W1 ⊕ · · · ⊕Ws−1 and f∗T are then orthogonal with respect to
the Levi form and the proof is concluded. ¤

4. CR mappings in generalized ellipsoids.

4.1. Computation of the CR factor.
Lemma 4.1. Let N ⊂ M be an open set and let v be a CR function in N

such that v,αβ = 0 for all α, β = 1, . . . , n. Then for any α ∈ Ij, j = 1, . . . , s, we
have

ZαTv =
nj(mj − 1)

2imj(n + 1)|zj |2mj
Wαv, (4.1)

where Wα = Q(Zα) is the vector field (3.13).

Proof. We use the third order commutation formulae in [JL88, eq. (2.1)].
Because v,γα = 0, we have

v,γβα = v,γαβ − ihαβv,γ0 −Rγ
%
αβv,% = −ihαβv,γ0 −Rγ

%
αβv,%.

On the other hand, by the commutation formula v,γβ − v,βγ = ihγβv,0 and since

v,β = 0, we get ihγβv,0α = −ihαβv,γ0 −Rγ
%
αβv,%. Contracting with hγβ yields

i(n + 1)v,0α = −Rγ
%
α

γv,% = −Rγ
γ

α
%v,% = −Rα

%v,% =
nj(mj − 1)
2mj |zj |2mj

Q%
αv,%

and the proof is concluded. ¤

Theorem 4.2. Let N ⊂ M be a connected open set and let f : N → f(N) ⊂
M be a CR diffeomorphism with CR factor λ = u−1. Then, either u is a constant
or there exist k ∈ R \ {0} and (as, a

n+1) = (as, t0 + i|as|2) ∈ Cns+1 such that
u = k2|zn+1 + an+1 + 2izs · as|2.

Proof. The argument here is similar to [JL88]. The torsion Aϑ of ϑ van-
ishes, as noted in (3.23), Aαβ = 0. On the other hand, denoting by Ã = Af∗ϑ

the torsion of ϑ̃ = f∗ϑ, we have Af∗ϑ(Z, W ) = Aϑ(f∗Z, f∗W ) = 0, for all
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Z, W ∈ T 1,0N . Thus we also have Ãαβ = 0. From (1.3), we deduce that u

satisfies the system of equations u,αβ = 0.
By Theorem 3.5, the assumptions of Proposition 3.6 hold and therefore f

preserves the Ricci curvature of ϑ. By (1.2), we have the system of equations

(n + 2)
{

u,αβ + u,βα −
2
u

u,αu,β

}
+

{
∆u− 2(n + 2)

u
|∇u|2

}
hαβ = 0. (4.2)

Then, the function w = log u satisfies the system of equations w,αβ + w,βα =
(∆w/n)hαβ . By [Lee88, Proposition 3.3], w is locally the real part of a CR
function F , i.e., we have locally

u = e(F+F )/2 = vv = |v|2,

where v := eF/2 is a CR function. Since u,αβ = 0, we also have v,αβ = 0.
The function g := Tv satisfies g,α = ZαTv = TZαv = 0. (Recall that T and

Zα commute.) By Proposition 3.7, we have Wαu = 0 for all α ∈ I1 ∪ · · · ∪ Is−1.
This implies Wαv = 0 for the same indexes. By Lemma 4.1, we deduce that for
any α = 1, . . . , n we also have g,α = ZαTv = 0. The equations g,α = g,α = 0
imply that g is locally constant. Therefore there exist a constant k ∈ C and a
function ψ = ψ(z, z) such that v(z, z, t) = kt + ψ(z, z). Since v is CR, it must be
∂αψ − ik∂αp = 0, which means

v = k
(
t + ip(z, z)

)
+ φ(z),

for some holomorphic function φ. Possibly multiplying v by a unitary complex
number, we can assume that k is real.

Moreover, for any α ∈ I1 ∪ · · · ∪ Is−1 we have Wαφ = 0, because Wαv = 0.
This fact implies that v depends locally only on |z1|, . . . , |zs−1| and, if Is 6= ∅, on
zs. From v,αβ = 0 and since ∇αZβ = 0 for all α, β ∈ Is, see (3.18), we deduce
that for all α, β ∈ Is we have ∂2φ/∂zα∂zβ = 0, which finally yields

v(z, z, t) = k(t + ip(z, z)) + zs · d + c (4.3)

for some d ∈ Cns and c ∈ C. In order to find the imaginary part of c, we
observe that if u solves the system (4.2), it also solves the contracted equation
∆u − ((n + 2)/u)|∇u|2 = 0. After a computation, this implies that v solves the
equation



Classification of CR mappings 171

i
(
vv,0 − vv,0

)
= hγµv,γv,µ. (4.4)

Plugging (4.3) into (4.4), we get kIm(c) = |d|2/4. If k = 0 then d = 0, φ(z) = c

and v is constant. If k 6= 0 then, letting t0 = Re(c)/k, we obtain v = k
{
t + t0 +

zs · d/k + i
(
p + |d|2/(4k2)

)}
. Letting d/k = 2ias, we get

v = k
{
t + t0 + ip + 2izs · as + i|as|2

}
= k

{
zn+1 + an+1 + 2izs · as

}
, (4.5)

where zn+1 = t + ip(z, z) and an+1 = t0 + i|as|2. This concludes the proof. ¤

4.2. Levi-isometric mappings.
Let M be the surface (2.2) endowed with the pseudohermitian structure ϑ

introduced in (3.1). We say that a CR diffeomorphism ψ : N → N ′ is Levi-
isometric with respect to ϑ if ψ∗ϑ = ϑ. A Levi isometric mapping ψ satisfies
L(ψ∗Z, ψ∗W ) = L(Z, W ) for all Z, W ∈ T 1,0N . Moreover, since we trivially have
ψ∗(Tψ∗ϑ) = (Tϑ)ψ, it turns out that a Levi isometric mapping satisfies

ψ∗T = Tψ. (4.6)

Theorem 4.3. Let N, N ′ ⊂ M be connected open sets and let ψ : N → N ′

be a Levi-isometric mapping with respect to ϑ. Then, there exists a permutation
σ of {1, . . . , s− 1} such that mσ(j) = mj and nσ(j) = nj for any j = 1, . . . , s− 1,
there are unitary matrices Bj ∈ U(nj), and, if ns ≥ 1, there are Bs ∈ U(ns) and
a vector (bs, b

n+1) = (bs, t0 + i|bs|2) ∈ Cns ×C such that for all (z, t) ∈ N we have

ψ(z, zn+1) =
(
B1zσ(1), . . . , Bs−1zσ(s−1),

Bszs + bs, b
n+1 + zn+1 + 2i(Bszs · bs)

)
. (4.7)

We start with an easy lemma.

Lemma 4.4. Let D ⊂ Cd, d ≥ 2, be an open connected set and let ζ : D →
Cd be a nonconstant holomorphic mapping such that |ζ(z)| is constant if |z| is
constant, for z ∈ D. Then there exists B ∈ GL(d, C) such that ζ(z) = Bz and
B∗B = %2I for some % > 0.

Proof. Assume without loss of generality that there exists z ∈ D such that
|ζ(z)| = |z| = 1. This can be achieved multiplying ζ by a positive constant. Then,
by the Poincaré–Alexander theorem, see [Ale74], [Tan62], [Rud81], ζ is the
restriction of an automorphism of the unit ball B1 := {z ∈ Cd : |z| < 1}. Thus, see
[Kra01], [Rud81], there exist a unitary matrix B ∈ U(d) and a ∈ Cd with |a| < 1
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such that ζ(z) = Bφa(z) for all z ∈ D, where φa(z) = (a − Pz−
√

1− |a|2Qz)/
(1 − z · a), with Pz = (z · a/|a|2)a and Qz = z − Pz. When a = 0 we have
φa(z) = −z. If a 6= 0, φa takes bB1 to bB1 but it does not take any other (open
piece of) sphere bBr with r 6= 1 to a sphere centered at the origin. Then we have
a = 0 and the Lemma follows. ¤

Proof of Theorem 4.3. All our claims along the proof are of a local na-
ture. In the coordinates (z, t) ∈ Cn ×R on M , we have ψ = (ζ1, . . . , ζn, τ) with
ζβ : N → C, β = 1, . . . , n, and τ : N → R. We first notice that Zαζβ = 0
for all α, β = 1, . . . , n, because ψ is a CR mapping. Moreover, we have Tτ = 1
and Tζβ = 0 because ψ∗T = T , by (4.6). Then, for j = 1, . . . , s the functions
ζj = ζj(z) are holomorphic and τ = t + v(z, z) for some real function v.

By Theorem 3.5, there exists a permutation σ of {1, . . . , s − 1} such that
ψ∗Wj = Wσ(j). In the following we let j′ = σ(j). In particular, we have nj′ = nj

for all j = 1, . . . , s− 1.
Fix j ∈ {1, . . . , s− 1}. Let V ∈ Wj with |V | = 1. Since ψ is Levi isometric, ψ

preserves the sectional curvature of ϑ, k(ψ∗V ) = k(V ). By (3.28), we deduce that

mj − 1
mj

|zj |−2mj =
mj′ − 1

mj′
|ζj′(z)|−2mj′ . (4.8)

With the notation z∗j = (z1, . . . , zj−1, zj+1, . . . , zs), consider for fixed z∗j the map-
ping zj 7→ ζj′(z∗j ; zj). This mapping is nonconstant and holomorphic from an
open subset of Cnj to Cnj . Moreover, by (4.8) it takes (pieces of) spheres of Cnj

centered at the origin into spheres centered at the origin. By Lemma 4.4, there
exist Bj ∈ GL(nj ,C) and %j > 0 such that ζj′(z) = Bj(z∗j )zj with B∗

j Bj = %2
jI.

Here Bj = B(z∗j ) is holomorphic, while %j = %j(z∗j , z∗j ). Therefore, (4.8) becomes

|zj |2(mj−mj′ ) =
mj − 1

mj

mj′

mj′ − 1
%j

(
z∗j , z∗j

)2mj′ .

Both the left-hand side and the right-hand side must be constant. Therefore
mj = mj′ and %(z∗j , z∗j ) = 1. Ultimately we have for any j ≤ s− 1, ζj′(z) = Bjzj ,
for some constant matrix Bj ∈ U(nj).

Next we claim that, if ns ≥ 1 then ζs depends only on zs. To prove the claim
it suffices to show that for all j ≤ s− 1 we have

Wλζγ = 0 for all λ ∈ Ij , γ ∈ Is; and (4.9a)

Ejζ
γ = 0 for all γ ∈ Is. (4.9b)
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To prove (4.9a), fix j ≤ s− 1 and λ ∈ Ij . Then

ψ∗Wλ =
s−1∑

k=1

∑

γ∈Ik

(Wλζγ)(∂γ)ψ +
∑

γ∈Is

(Wλζγ)(∂γ)ψ + (Wλτ)(∂t)ψ (since ψ is CR)

=
s−1∑

k=1

∑

γ∈Ik

(Wλζγ)(Zγ)ψ +
∑

γ∈Is

(Wλζγ)(Zγ)ψ.

But ψ∗Wλ ∈ Wj′ . Then all the terms in the last sum vanish and (4.9a) is proved.
To prove (4.9b) start by computing ψ∗Ej for j ≤ s− 1:

ψ∗Ej =
s−1∑

k′=1

∑

γ∈Ik′
µ∈Ik

BγµEjz
µ(Zγ)ψ +

∑

γ∈Is

Ejζ
γ(Zγ)ψ

=
∑

γ∈Ij′
µ∈Ij

Bγµ
1

mj
zµ(Zγ)ψ +

∑

γ∈Is

Ejζ
γ(Zγ)ψ = (Ej′)ψ +

∑

γ∈Is

Ejζ
γ(Zγ)ψ.

Taking the Levi-length, we find |ψ∗Ej |2 = |(Ej′)ψ|2+
∑

γ,%∈Is
(Ejζ

γ)(Ejζ
%
)(hγ%)ψ.

But we have |ψ∗Ej |2 = |Ej |2 = 2|zj |2mj and |(Ej′)ψ|2 = 2|ζj′ |2mj = 2|zj |2mj .
Moreover it is (hγ%)ψ = 2δγ%, because γ, % ∈ Is. Then we conclude that Ejζ

γ = 0,
as required.

Next, we compute v and ζs. Let α ∈ Ij , where j ≤ s − 1. Recall that
τ = t + v(z, z). Since ∂αζs = 0, we have

ψ∗Zα =
∑

β∈Ij′

Bβα(∂β)ψ +
(
∂αv + imj |zj |2(mj−1)zα

)
(∂t)ψ (since ψ is CR)

=
∑

β∈Ij′

Bβα(Zβ)ψ =
∑

β∈Ij′

Bβα

{
(∂β)ψ + imj′ |ζj′ |2(mj′−1)ζ

β
(∂t)ψ

}

=
∑

β∈Ij′

Bβα(∂β)ψ + imj |zj |2(mj−1)zα(∂t)ψ,

where we used |ζj′ | = |zj |, mj′ = mj and
∑

β∈Ij′
BβαBβγ = δαγ , if α, γ ∈ Ij .

Comparing the first and third lines we get vα = 0. Thus v depends only on zs, t.
Finally, we find ζs and v when ns ≥ 1. For α ∈ Is we have
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ψ∗Zα =
∑

β∈Is

(∂αζβ)(∂β)ψ +
{
izα + ∂αv

}
Tψ, (4.10)

as well as

ψ∗Zα =
∑

β∈Is

(∂αζβ)(Zβ)ψ =
∑

β∈Is

(∂αζβ)
(
(∂β)ψ + iζ

β
Tψ

)
. (4.11)

Since ψ is Levi isometric, we have 2δαγ = L(ψ∗Zα, ψ∗Zγ) for α, γ ∈ Is. Using
formula (4.11), we obtain

∑
β∈Is

(∂αζβ)(∂γζ
β
) = δαγ , for all α, γ ∈ Is. Therefore it

must be ζs(z) = bs+Bzs, for some B ∈ U(ns) and bs ∈ Cns . Moreover, comparing
the coefficients of T in (4.10) and (4.11), we obtain the equation izα + ∂αv =
i
∑

β∈Is
ζ

β
∂αζβ , which implies ∂αv = i

∑
β∈Is

Bβαb
β
. Since v is a real function,

we finally find v = t0 − 2Im(Bzs · bs) for some t0 ∈ R.
The structure (4.7) of the isometry ψ is now determined locally. The proof is

concluded because N is connected. ¤

5. Proof of Theorem 3.5.

This section is devoted to the proof of Theorem 3.5. The proof is rather
involved, but we were not able to find a more direct one. In many situations, the
study of this case can be avoided for trivial dimensional reasons, see the discussion
before the statement of Theorem 3.5.

Proposition 5.1. Let N ⊂ M be an open set and let f : N → f(N) ⊂ M

be a CR diffeomorphism such that f∗(E ⊕ Ws) = Wj for some j = 1, . . . , s − 1.
Then there exists ν ∈ N ∪ {0} such that

M =
{
(z1, z2, z

n+1) ∈ Cν+2 ×Cν ×C :

Imzn+1 = |z1|2m1 + |z2|2, and z1 6= 0
}
. (5.1)

Moreover, we have λR ◦ f = R where λ is the CR factor of f .

Proof. For some k = 1, . . . , s− 1 we have f∗(Wk) = E ⊕Ws. Since f is a
CR diffeomorphism, it must be dimWj = dim(E ⊕Ws) = dimWk. In other words,

nj = ns + s = nk (5.2)

For any V ∈ Wk with |V | = 1 we evaluate S(V ) := S(V, V , V, V ). By (1.8), (3.24),
(3.25), and (3.15b) we get
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S(V ) =
1

n + 2

{
(2nk − n− 2)

mk − 1
mk

|zk|−2mk +
2R

n + 1

}
. (5.3)

Since f∗V ∈ E ⊕ Ws, all the terms involving curvature in S(f∗V ) vanish and we
get

S(f∗V ) =
2R ◦ f

(n + 1)(n + 2)
|f∗V |4 = λ2 2R ◦ f

(n + 1)(n + 2)
. (5.4)

By the CR invariance (1.7), we deduce from (5.3) and (5.4)

2λR ◦ f

n + 1
= (2nk − n− 2)

mk − 1
mk

|zk|−2mk +
2R

n + 1
. (5.5)

Let Z ∈ E ⊕Ws with |Z| = 1. We have

S(Z) =
2R

(n + 1)(n + 2)
. (5.6)

Since f∗Z ∈ Wj for some j ≤ s− 1, arguing as in (5.3) we find

S(f∗Z) =
λ2

n + 2

{
(2nj − n− 2)

mj − 1
mj

|ζj |−2mj +
2R ◦ f

n + 1

}
, (5.7)

where we let (ζ, ζn+1) = f(z, zn+1) ∈ M . By the CR invariance (1.7), we obtain

λ

{
(2nj − n− 2)

mj − 1
mj

|ζj |−2mj +
2R ◦ f

n + 1

}
=

2R

n + 1
. (5.8)

Comparing (5.5) and (5.8) we get

(2nk − n− 2)
mk − 1

mk
|zk|−2mk + λ(2nj − n− 2)

mj − 1
mj

|ζj |−2mj = 0. (5.9)

Recall that by (5.2), it must be nj = nk. Therefore, (5.9) becomes

(2nj − n− 2)
{

mk − 1
mk

|zk|−2mk + λ
mj − 1

mj
|ζj |−2mj

}
= 0.

But the curly bracket is positive. Then, we have nj = nk = (n + 2)/2. Moreover,
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it must be j = k, because if j 6= k the condition nj + nk ≤ n is not satisfied.
Finally, using ni ≥ 2 for all i ≤ s− 1 and ns = nj − s, we get

n = n1 + · · ·+ ns = nj + ns +
∑

i 6=j

ni ≥ nj + ns + 2(s− 2)

= 2nj + s− 4 = n + s− 2.

This gives s ≤ 2. If s = 1, then M is the surface Im(z3) = (|z1|2 + |z2|2)m1 . If
s = 2, we have n = n1 + n2 = n/2 + 1 + n2, which implies n1 = n2 + 2 and the
domain has the form (5.1). ¤

Proposition 5.2. Let M be as in (5.1) and let f : N → N ′ be a CR
diffeomorpshism such that f∗(E ⊕W2) = W1. Then the CR factor λ of f satisfies
E1λ = −λ.

Proof. Fix σ, µ ∈ I1 and let W = zσZµ−zµZσ = zσ∂µ−zµ∂σ. Notice that
L(W,E1) = 0 and thus W ∈ W1. We also have [W,W ] = zσ∂σ+zµ∂µ−zσ∂σ−zµ∂µ

and

[
[W,W ], E1

]

=
[
zσ∂σ + zµ∂µ − zσ∂σ − zµ∂µ,

1
m1

∑

β∈I1

zβ∂β − i|z1|2m1∂t

]
= 0. (5.10)

Finally, we have iϑ([W,W ]) = −idϑ(W,W ) = 2m1|z1|2(m1−1)
(|zσ|2 + |zµ|2).

Since f∗W ∈ E ⊕W2, as in the proof of Proposition 3.7, see (3.37), we have

f∗[W,W ] = [f∗W,f∗W ] = F − F + ikT, (5.11)

for some F ∈ E⊕W2 and some real function k on f(N). Since f∗E1 ∈ W1, f∗[W,W ]
and f∗E1 are orthogonal by (5.11). Then, also using (5.10), we get

0 = dϑ
(
f∗[W,W ], f∗E1

)
= −(

f∗E1

)(
ϑ(f∗[W,W ])

)
, (5.12)

that is equivalent with E1(λ|z1|2(m1−1)(|zσ|2+|zµ|2)) = 0. Since σ, µ are arbitrary,
this implies E1(λ|z1|2m1) = 0 and eventually E1λ + λ = 0, because E1|z1|2m1 =
|z1|2m1 . ¤

Proof of Theorem 3.5. Assume by contradiction that f∗(E ⊕Ws) = Wj

for some j = 1, . . . , s − 1. Then, by Proposition 5.1, M is of the form (5.1), and
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by Proposition 5.2 we have E1λ = −λ, where λ = u−1 is the CR factor of f . We
have f∗W1 = W2 ⊕ E and f∗(W2 ⊕ E ) = W1.

In terms of u we have E1u = u. Note that (3.17) implies that ∇E1
E1 = 0.

Thus

∇2u(E1, E1) +∇2u(E1, E1)− 2
u
|E1u|2 = 0.

Since Ric(E1, E1) = 0, (1.5) becomes

Ric
(
f∗E1, f∗E1

)
=

1
2u

{
∆u− 2(n + 2)

u
|∇u|2

}
|E1|2

=
1
2

{
∆u− 2(n + 2)

u
|∇u|2

}
|f∗E1|2. (5.13)

On the other hand, since f∗E1 ∈ W1, comparing (3.25) and (3.26), we get

Ric
(
f∗E1, f∗E1

)
=

1
n1 − 1

(R ◦ f)|f∗E1|2, (5.14)

and therefore (5.13) becomes

2
R ◦ f

n1 − 1
= ∆u− 2(n + 2)

u
|∇u|2. (5.15)

By Proposition 5.1 we have R ◦ f = uR, and from (1.4) we obtain

uR = R ◦ f = R̃ = uR + (n + 1)
{

∆u− n + 2
u

|∇u|2
}

,

that gives ∆u = ((n + 2)/u)|∇u|2. Inserting this identity into (5.15) and using
formula (3.26), we obtain

|∇u|2
u2

=
m1 − 1

m1(n + 2)|z1|2m1
n1 =

m1 − 1
2m1|z1|2m1

, (5.16)

because, n1 = ν + 2 and n2 = ν, so that n1/(n + 2) = 1/2. On the other hand, by
E1u = u and |E1|2 = 2|z1|2m1 we have |∇u|2 ≥ |E1u|2/|E1|2 = u2/2|z1|2m1 , which
contradicts (5.16). The proof is concluded. ¤
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