
c©2012 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 64, No. 1 (2012) pp. 107–152
doi: 10.2969/jmsj/06410107

Pseudo-Riemannian metrics on closed surfaces

whose geodesic flows admit nontrivial integrals quadratic

in momenta, and proof of the projective Obata conjecture

for two-dimensional pseudo-Riemannian metrics

By Vladimir S. Matveev

(Received Feb. 21, 2010)
(Revised June 24, 2010)

Abstract. We describe all pseudo-Riemannian metrics on closed sur-
faces whose geodesic flows admit nontrivial integrals quadratic in momenta.
As an application, we solve the Beltrami problem on closed surfaces, prove
the nonexistence of quadratically-superintegrable metrics of nonconstant cur-
vature on closed surfaces, and prove the two-dimensional pseudo-Riemannian
version of the projective Obata conjecture.

1. Introduction.

1.1. Definitions and the statement of the problem.
Consider a pseudo-Riemannian metric g = (gij) on a surface M2. A function

F : T ∗M → R is called an integral of the geodesic flow of g, if {H, F} = 0,
where H := 1/2

∑
i,j gijpipj : T ∗M → R is the kinetic energy corresponding to

the metric. Geometrically, the condition {H, F} = 0 means that the function F is
constant on the trajectories of the Hamiltonian system with the Hamiltonian H.
We say that the integral F is quadratic in momenta, if in every local coordinate
system (x, y) on M2 it has the form

a(x, y)p2
x + b(x, y)pxpy + c(x, y)p2

y (1)

in the canonical coordinates (x, y, px, py) on T ∗M2. Geometrically, the formula (1)
means that the restriction of the integral to every cotangent space T ∗(x,y)M

2 ≡ R2
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is a homogeneous quadratic function. As trivial examples of quadratic in momenta
integrals we consider those proportional to the Hamiltonian H.

Similarly, we say that the integral is linear in momenta, if for every local co-
ordinate system (x, y) on M2 it has the form α(x, y)px +β(x, y)py in the canonical
coordinates (x, y, px, py) on T ∗M2; an integral linear in momenta is trivial, if it is
identically zero.

The importance of integrals quadratic in momenta other than the Hamiltonian
for studying the metric was recognized long ago. Indeed, it was Jacobi’s realization
that the geodesic flow of the ellipsoid admitted such an ‘extra’ quadratic integral
that allowed him to integrate the geodesics on the ellipsoid.

In the present paper we solve (see Model Examples 1, 2, 3 and Theorems 2,
3, 4 below) the following problem:

Problem. Find all metrics of signature (+,−) on closed 2-dimensional
manifolds whose geodesic flows admit nontrivial integrals quadratic in momenta.

Riemannian metrics whose geodesic flows admit integrals quadratic in mo-
menta are quite well studied. Indeed, local description of such a metric in a
neighborhood of almost every point is known since Liouville. Moreover, the Rie-
mannian version (and, therefore, if the signature of g is (−,−)) of the problem
above was solved. There exist two different approaches that lead to a solution:
one, which is based on the ideas of Kolokoltsov [25], was realized in [25], [2], [29],
see also [6], [7]. Alternative approach to the description of metrics whose geodesic
flows admit nontrivial integrals quadratic in momenta is due to Kiyohara [22], see
also [17], [23]. Our solution uses main ideas from both approaches.

Metrics whose geodesic flows admit integrals quadratic in momenta were stud-
ied in the framework of differential geometry (at least since Darboux [14]) and
mathematical physics (at least since Birkhoff [5] and Whittaker [53]). We give
two applications of our results in differential geometry and one application in math-
ematical physics. In differential geometry, we use the connection between integrals
quadratic in momenta and geodesically equivalent metrics (we give the necessary
definition in Section 2.1) to solve the natural generalization of the Beltrami prob-
lem for closed manifolds, and to prove the two-dimensional pseudo-Riemannian
version of the projective Obata conjecture. In mathematical physics, we prove
that all quadratically-superintegrable metrics on closed surfaces (the necessary
definition is in Section 2.2) have constant curvature. This generalizes the result of
[22], [29] to the pseudo-Riemannian metrics.
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1.2. Metrics on the torus whose geodesic flows admit nontrivial
integrals quadratic in momenta.

Locally, pseudo-Riemannian metrics admitting integrals quadratic in mo-
menta were described1 in [9, Theorem 1] and [10, Theorem 1]:

Theorem 1 ([9], [10]). Suppose a Riemannian or pseudo-Riemannian met-
ric g on a connected surface M2 admits an integral F quadratic in momenta such
that F 6= const ·H for all const ∈ R. Then, in a neighbourhood of almost every
point there exist coordinates x, y such that the metric and the integral are as in the
following table:

Liouville case Complex-Liouville case Jordan-block case

g (X(x)− Y (y))(dx2 + εdy2) =(h)dxdy

„
bY (y) +

x

2
Y ′(y)

«
dxdy

F X(x)p2
y + εY (y)p2

x

X(x)− Y (y)
p2

x − p2
y + 2

<(h)

=(h)
pxpy ε

„
p2

x − Y (y)

bY (y) + x
2
Y ′(y)

pxpy

«

where ε = ±1, and <(h) and =(h) are the real and imaginary parts of a holomor-
phic function h of the variable z := x + i · y.

Remark 1. Within our paper, we understand “almost every” in the topo-
logical sense: a condition is fulfilled at almost every point, if the set of the points
where it is fulfilled is everywhere dense.

We see that the metric g in the Jordan-block and Complex-Liouville cases
always has indefinite signature (+,−), and the metric g in the Liouville case has
signature (+,−) if and only if ε = −1. The Liouville case with ε = 1 was known
to classics.

In Section 3, we repeat the proof of Theorem 1, because we will need most
technical details from it in the proof of our main result, which is Theorem 2 below.

Let us now discuss the case when M2 is closed. First of all, because of Euler
characteristic, a closed surface admitting a pseudo-Riemannian metric of indefinite
signature is homeomorphic to the torus or to the Klein bottle. Since a double cover
of the Klein bottle is the torus, and the geodesic flow of the lift of a metric whose
geodesic flow admits an integral quadratic in momenta also admits an integral
quadratic in momenta, the most important case is when the surface is the torus.
In Model Example 1 below we describe a class of pseudo-Riemannian metrics on
the torus such that their geodesic flows admit nontrivial integrals quadratic in
momenta. Theorem 2 claims that every metric such that its geodesic flow admits

1As it mentioned in [9], [10], the essential part of the result appeared already in Darboux
[14, Sections 592–594, 600–608].
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a nontrivial integral quadratic in momenta is isometric to one from Model Example
1.

Model Example 1. We consider R2 with the standard coordinates (x, y),
two linearly independent vectors ξ = (ξ1, ξ2) and ν = (ν1, ν2), and two nonconstant
functions X and Y of one variable (it is convenient to think that the variable of
X is x and the variable of Y is y) such that

(a) for all (x, y) ∈ R2 we have X(x) 6= Y (y), and
(b) for every (x, y) ∈ R2, X(x + ξ1) = X(x + ν1) = X(x) and Y (y + ξ2) =

Y (y + ν2) = Y (y).

Next, consider the metrics (X(x)− Y (y))(dx2 + εdy2) on R2, where ε = ±1, and
the action of the lattice G := {k · ξ + m · ν | k, m ∈ Z} on R2. The action
is free, discrete and preserves the metric and the quadratic integral (X(x)p2

y +
εY (y)p2

x)/(X(x) − Y (y)). Then, the geodesic flow of the induced metric on the
quotient space R2/G (homeomorphic to the torus) admits an integral quadratic
in momenta. We will call such metrics globally-Liouville.

Figure 1. Vectors ξ and ν and a fundamental region (gray parallelogram) of the action
of G from Model Example 1. The torus R2/G can be identified with this parallelogram
with glued opposite sides. Since the action of G preserves X(x) and Y (y), the metric g
induces a metric on R2/G, and the integral F induces an integral quadratic in momenta.

Theorem 2. Suppose a metric g on the two-torus T 2 admits an integral
F quadratic in momenta. Assume the integral is not a linear combination of
the square of an integral linear in momenta and the Hamiltonian. Then, (T 2, g)
is globally Liouville, i.e., there exist X, Y , ξ, ν satisfying the conditions in the
Model Example 1 above and a diffeomorphism φ : T 2 → R2/G that takes g to the
globally-Liouville metric (X(x)− Y (y))(dx2 + εdy2) on R2/G and the integral F

to the integral ±((X(x)p2
y + εY (y)p2

x)/(X(x)− Y (y))).

In the Riemannian case, Theorem 2 follows from [2], [22], see also [6], [7].
We see that the answer in the pseudo-Riemannian case is essentially the same (=
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no new phenomena appear) as the answer in the Riemannian case. This similarity
with the Riemannian case was unexpected: indeed, by Theorem 1, in the pseudo-
Riemannian case (different from the Riemannian case) there are three different
types of metrics admitting quadratic integrals. Moreover, the examples from pa-
pers [13], [15], [47], [50] show that, locally, the pair (metric, integral) can change
the type, i.e., the pair (metric, integral) can be, for example, as in Liouville case
from one side of a line, and as in Complex-Liouville case from another side of the
line. But it appears that only one type, namely the Liouville, can exist on closed
manifolds.

Moreover, as we show in Example 2, if the integral is the square of an integral
linear in momenta, then the Jordan-block case is possible (even if the surface is
closed). Moreover, the pair (metric, integral) can change the type: be of Jordan-
block type in a neighborhood of one point, and of Liouville type in a neighborhood
of another point. Moreover, one can modify Example 2(c) such that the set of the
points such that the pair (metric, integral) changes the type is the direct product
of the Cantor set and a circle.

1.3. Metrics on the Klein bottle whose geodesic flows admit inte-
grals quadratic in momenta.

The scheme of the description is the same as for the torus: in Model Example
2 we describe a big family of metrics on the Klein bottle whose geodesic flows
admit integrals quadratic in momenta. Theorem 3 claims that every metric such
that its geodesic flow admits an integral quadratic in momenta and such that the
geodesic flow of the lift of the metric to the oriented cover admits no integral linear
in momenta is as in Model Example 2.

Model Example 2. We consider R2 with the standard coordinates (x, y),
constants c 6= 0, d 6= 0, two vectors ξ = (c, 0) and ν = (0, d), and two nonconstant
functions X and Y of one variable (it is convenient to think that the variable of
X is x and the variable of Y is y) such that

(a) for all (x, y) ∈ R2 we have X(x) 6= Y (y), and
(b) for every (x, y) ∈ R2, X(x + c) = X(x) and Y (y + d) = Y (−y) = Y (y).

Next, consider the metrics (X(x) − Y (y))(dx2 + εdy2) on R2 and the action of
the group G generated by the transformations (x, y) 7→ (x + c,−y) and (x, y) 7→
(x, y + d). The action is free, discrete and preserves the metric and the quadratic
integral (X(x)p2

y+εY (y)p2
x)/(X(x)−Y (y)). Then, the geodesic flow of the induced

metric on the quotient space R2/G (homeomorphic to the Klein bottle) admits an
integral quadratic in momenta. We will call such metrics globally-(Klein)-Liouville.



112 V. S. Matveev

Figure 2. Vectors ξ and ν and a fundamental region (gray rectangle) of the action of
G from Model Example 2. The Klein bottle R2/G can be identified with this rectangle
with glued opposite sides: the horizontal sides are glued with preserving the orientation,
and the vertical sides are glued with inverting the orientation. The action of G preserves
the metric g and the integral F ; hence, the geodesic flow of the induced metric on R2/G
admits an integral quadratic in momenta.

Theorem 3. Suppose a metric g on the Klein bottle K2 admits an integral
F quadratic in momenta. Assume the lift of the integral to the oriented cover
is not a linear combination of the lift of the Hamiltonian and the square of a
function linear in momenta. Then, (K2, g, F ) is globally-(Klein)-Liouville, i.e.,
there exist X, Y , c, d satisfying the conditions in the Model Example 2 above and
a diffeomorphism φ : K2 → R2/G that takes g to the globally-(Klein)-Liouville
metric (X(x) − Y (y))(dx2 + εdy2) on R2/G and F to the integral ±((X(x)p2

y +
εY (y)p2

x)/(X(x)− Y (y))).

In the Riemannian case, Theorem 3 was proved in [29, Theorem 3]. We
see that the answer in the pseudo-Riemannian case is essentially the same as the
answer in the Riemannian case (similar to the torus).

The following example explains why we require that the lift of the integral (to
the oriented cover) is not a linear combination of the lift of the Hamiltonian and
the square of a function linear in momenta:

Example 1. As in the Model Example 2, we consider R2 with the standard
coordinates (x, y), constants c 6= 0, d 6= 0, two vectors ξ = (c, 0) and ν = (0, d),
the function X of the variable x such that X(x + c) = X(x). Different from the
Model Example 2, by Y we denote a constant such that X(x) 6= Y for all x ∈ R.

Under this assumptions, the metric (X(x)− Y )(dx2 + εdy2) and the integral
(X(x)p2

y + εY p2
x)/(X(x)−Y ) induce a metric on the K2 := R2/G, where G is the

group generated by the mappings (x, y) 7→ (x+ c,−y) and (x, y) 7→ (x, y + d), and
an integral quadratic in momenta for the geodesic flow of this metric.

The lift of the integral to the oriented cover T 2 := R2/G′, where G′ :=
{2k · ξ + m · ν | k, m ∈ Z}, is a linear combination of the Hamiltonian (1/2)((p2

x +
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εp2
y)/(X(x)− Y )) and the square of the (linear in momenta) function py. Indeed,

F = p2
y + 2εY ·H.

But, on K2, the integral in not a linear combination of the Hamiltonian and of
the square of a function linear in momenta. The formal proof of this observation in
the Riemannian case can be found in [29, Sections 3, 4], the Riemannian proof can
be easily generalized (using Theorem 2 of our paper) to the pseudo-Riemannian
metrics. The main idea of the proof is that the function py does not generate a
function on the Klein bottle, since the mapping (x, y) 7→ (x + c,−y) changes the
sign of this function.

1.4. Metrics on the torus whose geodesic flows admit integrals
linear in momenta.

In order to complete the description of the metrics of signature (+,−) whose
geodesic flows admit nontrivial integrals quadratic in momenta, we need to describe
the metrics of signature (+,−) on the torus such that their geodesic flows admit
nontrivial integrals linear in momenta.

In the Riemannian case, metrics with geodesic flows admitting integrals linear
in momenta can be considered as a partial case of the metrics whose geodesic flows
admit integrals quadratic in momenta. Indeed, up to an isometry, any such metric
is essentially as in Model Examples 1, 2 (see [6], [7]), the only difference is that
the function X is constant. In particular, it implies that one can always slightly
perturb a metric whose geodesic flow admits an integral linear in momenta such
that the geodesic flow of the result admits an integral quadratic in momenta, but
admits no integral linear in momenta.

It appears that in the pseudo-Riemannian case the situation is different.
Below, we construct a family of metrics on the torus whose geodesic flows

admit integrals linear in momenta. In Examples 2, 3, we use the construction to
show that in the pseudo-Riemannian case the following new (compared with the
Riemannian case) phenomena appear:

• Example 2(a) shows that metric and the integral can be as in the Jordan-
block case.

• Example 2(c) shows that the metric and the integral can be as in the Jordan-
block case in one neighborhood and as in the Liouville case in another
neighborhood.

• Example 3 shows the existence of a metric whose geodesic flow admits an
integral linear in momenta, such that no small perturbation of this metric
admits an integral quadratic in momenta which is not a linear combination
of the square of an integral linear in momenta and the Hamiltonian.

Construction. We consider R2 with the standard coordinates x, y and
the standard orientation, the vector fields ξ := (1, 0), η := (0, 1), and a smooth
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foliation on R2 invariant with respect to the flow of the vector field ξ and with
respect to the mapping (x, y) 7→ (x, y + 1). With the help of these data, we
construct a metric of signature (+,−) on R2 such that ξ is a Killing vector field
for this metric.

At every point p, we consider two vectors U1(p) and U2(p) satisfying the
following conditions:

• U1 at every point is tangent to the leaf of the foliation containing this point,
• (U1(p), U2(p)) is an orthonormal positive basis for the flat metric ĝ = dx2 +

dy2, that is
• |U1|ĝ = |U2|ĝ = 1, ĝ(U1, U2) = 0,
• the orientation given by the basis coincides with the standard orienta-

tion, see Figure 3.

Clearly, at every point there exist precisely two possibilities for such vector
fields U1, U2 (the second possibility is (−U1,−U2)).

Figure 3. A leaf of the foliation and two possibilities for the vectors U1, U2.

Now, consider the metric g such that in the basis (U1, U2) it has the matrix(
0 1
1 0

)
. The metric clearly does not depend on the choice of vectors U1, U2 at every

point, and is smooth. Since all objects we used to construct the metric are invariant
with respect to the flow of ξ, the vector field ξ is Killing for the metric. Then,
the geodesic flow of the metric admits an integral px linear in momenta. Since all
objects are invariant with respect to the lattice G = {k · ξ + m · η | k, m ∈ Z}, the
metric induces a metric on the torus R2/G whose geodesic flow admits an integral
linear in momenta.

Remark 2. By construction, the leaves of the foliation are light-line
geodesics.

Example 2. If the foliation is as on Figure 4(a), the square of the integral is
as in the Jordan-block case. If the foliation is as on Figure 4(b), the square of the
integral is as in the Liouville case. If the foliation is as on Figure 4(c), the square of
the integral is as the Jordan-block case in an annulus {(x, y) ∈ R2 | y− [y] > 1/2}
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Figure 4. The foliations from Example 2.

and as in Liouville case in the annulus {(x, y) ∈ R2 | y − [y] < 1/2}, where [y]
denotes the integer part of y.

Example 3. Let the foliation is as on Figure 5 (the restriction of the fo-
liation to the annulus {(x, y) | x − [x] < 1/2} is the so-called Reeb component).
Then, the geodesic flow of no small perturbation of this metric admits an integral
quadratic in momenta that is not a linear combination of the Hamiltonian and the
square of an integral linear in momenta. Indeed, the Reeb component is stable
with respect to small perturbations, and the light line geodesics of the metrics
from Model Example 1 are winding on the torus and form no Reeb component.

Figure 5. The foliation from Example 3.

Let us now describe all metrics on closed manifolds whose geodesic flows admit
nontrivial integrals linear in momenta.

Model Example 3. We consider R2 with the standard coordinates (x, y),
the vectors ξ := (1, 0) and ν := (0, 1), and three functions K(y), L(y),M(y) of the
variable y periodic with period 1 such that at every point det

(
K L
L M

)
= KM−L2 <

0. Next, consider the metric g = K(y)dx2 + 2L(y)dxdy + M(y)dy2 on R2, and
the action of the lattice G := {k · ξ + m · ν | k, m ∈ Z} on R2. The action is free,
discrete and preserves the metric and the integral px linear in momenta. Then, the
geodesic flow of the induced metric on the quotient space R2/G (homeomorphic
to the torus) admits an integral linear in momenta.
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Theorem 4. Let g be a metric of signature (+,−) on the torus T 2 such that
it is not flat. If the geodesic flow of g admits an integral linear in momenta, then
the metric is as in Model Example 3, i.e., there exist functions K(y),M(y), L(y)
periodic with period 1 and a diffeomorphism φ : T 2 → R2/G that takes the metric
g to the metric K(y)dx2 + 2L(y)dxdy + M(y)dy2, and the integral to const · px.

In Theorem 4, we assume that the metric g is not flat. For flat metrics, The-
orem 4 is wrong, since the integral curves of the Killing vector field corresponding
to the linear integral are non necessary closed curves for the flat metrics, but are
closed curves in Model Example 3. We need therefore to describe separately flat
metrics of signature (+,−) on the torus.

By the standard flat torus we will consider (R2/G, dxdy), where (x, y) are
the standard coordinates on R2, and G is a lattice generated by two linearly
independent vectors.

In Section 5.1 we will recall why every torus (T 2, g) such that the metric g is
flat and has signature (+,−) is isometric to a standard one.

2. Applications.

2.1. Application I: Beltrami problem on closed pseudo-
Riemannian manifolds.

Two metrics g and ḡ on one manifold are geodesically equivalent, if every
(unparametrized) geodesic of the first metric is a geodesic of the second metrics.
Investigation of geodesically equivalent metrics is a classical topic in differential
geometry, see the surveys [1], [48] or/and the introductions to [36], [37], [27],
[43], [42].

In particular, in 1865 Beltrami [3] asked2 to describe all pairs of geodesically
equivalent Riemannian metrics on surfaces. From the context it is clear that he
considered this problem locally, in a neighbourhood of almost every point, but the
problem has sense, and is even more interesting globally.

Geodesically equivalent metrics and quadratic integrals are closely related:

Theorem 5. Two metrics g and ḡ on M2 are geodesically equivalent, if and
only if the following (quadratic in momenta) function

F : TM2 → R, F (x1, x2, p1, p2) :=
(

det(g)
det(ḡ)

)2/3

·
∑

i,j

ḡijpipj , (2)

2Italian original from [3]: La seconda . . . generalizzazione . . . del nostro problema, vale a

dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche
della prima corrispondano linee geodetiche della seconda.
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where we raised the indexes of ḡ with the help of g, i.e., ḡij = gkiḡkmgmj, is an
integral of the geodesic flow of g. Moreover, F = const ·H for a certain const ∈ R

if and only if g and ḡ are proportional with a constant coefficient of proportionality.

Theorem 5 above was essentially known to Darboux [14, Sections 600–608];
for recent proofs see [9, Corollary 1]. See also the discussion in [11, Section 2.4]
and [8], [31], [32], [33], [34], [35].

Combining Theorems 2, 3, 4 with Theorem 5, we obtain a complete description
of geodesically equivalent pseudo-Riemannian metrics on closed surfaces (up to a
double cover).

2.2. Application II: every quadratically-superintegrable metric on
a closed surface has constant curvature.

Recall that a metric on M2 is called quadratically-superintegrable, if the
geodesic flow of the metric admits three linearly independent integrals quadratic in
momenta. Quadratically-superintegrable metrics were first considered by Koenigs
[20]. Nowdays, investigation of quadratically-superintegrable metrics is a hot topic
in mathematical physics due to various applications and deep mathematical struc-
tures behind it, see e.g. [18].

For example, the standard flat metric dxdy on the 2-torus R2/G, where
G is a lattice generated by two linearly independent vectors, is quadratically-
superintegrable. Indeed, the Hamiltonian H = 2pxpy and the quadratic in mo-
menta functions F1 := p2

x, F2 := p2
y are linearly independent integrals, and are

invariant with respect to any lattice.

Corollary 1. Let a metric g on a closed surface be quadratically-
superintegrable. Then, it has constant curvature. If in addition the metric has
signature (+,−), then it is flat.

In the proof of Corollary 1 we will need the following

Lemma 1. Let the metric g of signature (+,−) on the two-torus T 2 admit
an integral quadratic in momenta that is not a linear combination of the Hamil-
tonian and of the square of an integral linear in momenta. Then, there exists a
Riemannian metric ḡ geodesically equivalent to g.

Proof. By Theorem 2, without loss of generality we can assume that the
metric g and the integral F are as in Model Example 1. Without loss of generality
we can think that X(x) > Y (y) for all (x, y) ∈ R2.

Let us cook with the help of H, F a Riemannian metric ḡ geodesically equiv-
alent to g. We put Xmin = minx∈R X(x) and Ymax = maxy∈R Y (y). Clearly,
Xmin > Ymax. We consider
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F̄ := H +
1

Xmin + Ymax
F1 =

1
2
− Y

Xmin + Ymax

X − Y
p2

x +

X

Xmin + Ymax
− 1

2
X − Y

p2
y.

Since X(x) > (Xmin + Ymax)/2 > Y (y) for every (x, y) ∈ R2, the integral F̄ is
positively defined (considered as a quadratic form on T ∗M2). Consider the metric
ḡ constructed by F̄ with the help of Theorem 5. The metric is positively defined
(i.e., is Riemannian), and is geodesically equivalent to g. Lemma 1 is proved. ¤

Proof of Corollary 1. The Riemannian version of Corollary 1 is known
(see [22, Theorem 5.1] and [29, Lemma 3], see also [40, Theorem 6]). Then,
without loss of generality we can assume that the metric has signature (+,−).

Let H, F1, F2 be the linearly independent integrals quadratic in momenta. If
both F1 and F2 are linear combinations of the square of integrals linear in momenta
and the Hamiltonian, the metric admits two Killing vector fields implying that it
has constant curvature.

Assume now that there exists an integral quadratic in momenta that is not
a linear combination of the Hamiltonian and of the square of an integral lin-
ear in momenta. By Lemma 1, there exists a Riemannian metric ḡ geodesically
equivalent to g. The metric ḡ is also quadratically-superintegrable. Indeed, as
it was proved in [32, Lemma 1] (see also [11, Section 2.8] and [26, Lemma 3]),
every metric geodesically equivalent to a quadratically-superintegrable metric is
also quadratically-superintegrable. Then, by the Riemannian version of Corollary
1 (which is known, as we recalled above), the metric ḡ has constant curvature.
Then, by the Beltrami Theorem (see [3], [41]), the metric g also has constant
curvature. The first part of Corollary 1 is proved.

If the metric has signature (+,−), then the surface if the torus or the Klein
bottle. By the Gauss-Bonnet Theorem, a metric of constant curvature on the torus
or on the Klein bottle is flat. Corollary 1 is proved. ¤

2.3. Application III: Proof of projective Obata conjecture for two-
dimensional pseudo-Riemannian metrics.

Let (Mn, g) be a pseudo-Riemannian manifold of dimension n ≥ 2. Recall
that a projective transformation of Mn is a diffeomorphism of the manifold that
takes unparameterized geodesics to geodesics.

The goal of this paper is to prove the two-dimensional pseudo-Riemannian
version of the following

Projective Obata Conjecture. Let a connected Lie group G act on a
closed connected (Mn, g) of dimension n ≥ 2 by projective transformations. Then,
it acts by isometries, or for some c ∈ R \ {0} the metric c · g is the Riemannian
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metric of constant positive sectional curvature +1.

Remark 3. The attribution of conjecture to Obata is in folklore (in the sense
we did not find a paper of Obata where he states this conjecture). Certain papers,
for example [16], [49], [54], refer to this statement as to a classical conjecture. If
we replace “closedness” by “completeness”, the obtained conjecture is attributed
in folklore to Lichnerowicz, see also the discussion in [43]. Local version of the
projective Obata conjecture (recently solved in [11], [44]) is even more classical:
it was explicitly asked by Sophus Lie [28].

For Riemannian metrics, projective Obata conjecture was proved in [38], [39],
[40], [43]. Then, in dimension two we may assume that the signature of the
metric is (+,−), and that the manifold is covered by the torus T 2. Thus, the
two-dimensional version of the projective Obata conjecture follows from

Theorem 6. Let (T 2, g) be the two-dimensional torus T 2 equipped with a
metric g of signature (+,−). Assume a connected Lie group G acts on (T 2, g) by
projective transformations. Then, G acts by isometries.

Note that in the theory of geodesically equivalent metrics and projective trans-
formations, dimension 2 is a special dimension: many methods that work in dimen-
sions n ≥ 3 do not work in dimension 2. In particular, the proof of the projective
Obata conjecture in the Riemannian case was separately done for dimension 2 in
[38], [40] and for dimensions greater than 2 in [43]. Moreover, recently an essen-
tial progress was achieved in the proof of the projective Obata conjecture in the
pseudo-Riemannian case in dimensions n ≥ 3, see [19], [45], [46]. This progress
allows us to hope that it is possible to mimic (see [19, Section 1.2]) the Rieman-
nian proof in the pseudo-Riemannian situation (assuming the dimension is n ≥ 3).
Thus, Theorem 6 closes an important partial case in the proof of projective Obata
conjecture.

Proof of Theorem 6. Let g be a pseudo-Riemannian metric of signature
(+,−) of nonconstant curvature on T 2. We denote by Proj0(T 2, g) the connected
component of the group of projective transformations of (T 2, g), and by Iso0(T 2, g)
the connected component of the group of isometries. Clearly, Proj0(T 2, g) ⊇
Iso0(T 2, g); our goal is to prove Proj0(T 2, g) = Iso0(T 2, g).

We assume that Proj0(T 2, g) 6= Iso0(T 2, g). Then, there exists a vector field
v such that it is a projective vector field, but is not Killing vector field. (Recall
that a vector field v is projective, if its local flow takes geodesics considered as
unparameterized curved to geodesics). Then, by [38, Korollar 1], [40, Corollary
1], or [52], the quadratic in velocities function
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I : TM → R, I(ξ) := (Lvg)(ξ, ξ)− 2
3
trace

(
g−1Lvg

)
g(ξ, ξ),

where trace(g−1Lvg) := gij(Lvg)ij , is a nontrivial (i.e., 6= 0) integral for the
geodesic flow of g.

Suppose first I is not a linear combination of the energy integral g(ξ, ξ) and
of the square of an integral linear in velocities. Since closed manifolds do not allow
vector fields v such that Lvg = const · g for const 6= 0, I is not proportional to
the energy integral g(ξ, ξ). Then, by Lemma 1, there exists a Riemannian metric
ḡ geodesically equivalent to g.

Every projective vector field for g is also a projective vector field for ḡ and vice
versa, so that Proj0(M, g) = Proj0(M, ḡ). By the (already proved) Riemannian
version of projective Obata conjecture we obtain that Iso0(M, ḡ) = Proj0(M, ḡ).
Thus, Proj0(M, g) = Iso0(M, ḡ).

By [41, Corollary 1], see also [24], the dimensions of the Lie group of
isometries of geodesically equivalent metrics coincide. Indeed, for every Killing
vector field K̄ for ḡ the vector field Ki := (det g/ det ḡ)1/(n+1)ḡikgkjK̄

j is a
Killing vector field for g. Then, dim(Iso0(M, g)) = dim(Iso0(M, ḡ)) implying that
Iso0(M, g) = Proj0(M, g). Hence, the assumption that I is not a linear combina-
tion of the energy integral g(ξ, ξ) and of the square of an integral linear in velocities
leads to a contradiction. Thus, there exists a nontrivial integral linear in velocities.
Finally, there exists a nontrivial Killing vector field that we denote by K.

Then, the group Proj0 is at least two-dimensional (because it algebra contains
K and v). The structures of possible Lie groups of projective transformations was
understood already by S. Lie [28]. He proved that the for a 2-dimensional metric
of nonconstant curvature the Lie algebra of Proj0 is the noncommutative two
dimensional algebra, or is sl(3,R). In both cases there exists a projective vector
field u such that the linear span span(u,K) is a two-dimensional noncommutative
Lie algebra. Then, without loss of generality we can assume that [K, u] = u or
[K,u] = K.

Now, by Theorem 4, there exists a global coordinate system (x ∈ (R,mod 1),
y ∈ (R,mod 1)) such that in this coordinate system K = α · (∂/∂x), where α 6= 0.
Assume u(x, y) = u1(x, y)(∂/∂x) + u2(x, y)(∂/∂y). Without loss of generality we
assume that (u1(0, 0), u2(0, 0)) 6= (0, 0).

Let φt be the flow of K. Since K = α · (∂/∂x), φt(x, y) = (x + αt, y). Let
us calculate the vector dφt(u(0, 0)) for t = 1/α by two methods (and obtain two
different results which gives us a contradiction).

First of all, since φ1/α is the identity diffeomorphism, dφt(u(0, 0)) = u(0, 0)
for t = 1/α.

The other method of calculating dφt(u(0, 0)) is based on the commutative
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relation [K, u] = u or [K, u] = K.
Let us first assume that K, u satisfy [K, u] = u. In the coordinates, this

condition reads α(∂/∂x)u1 = u1 and α(∂/∂x)u2 = u2 implying u1(x, 0) = u1(0, 0)·
ex/α and u2(x, 0) = u2(0, 0) · ex/α. Then,

dφ1/α(u(0, 0)) = u1(0, 0) · e1/α2 ∂

∂x
+ u2(0, 0) · e1/α2 ∂

∂y
= u(0, 0) · e1/α2

.

Since (u1(0, 0), u2(0, 0)) 6= (0, 0) we obtain that dφ1/α(u(0, 0)) 6= u(0, 0) which
gives a contradiction. Thus, the commutative relation [K, u] = u is not possible.

Let us now consider the second possible commutative relation [K, u] = K.
In coordinates this relation reads α(∂/∂x)u1 = α and α(∂/∂x)u2 = 0 implying
u1(x, 0) = u1(0, 0)+x. We again obtain that dφ1/α(u(0, 0)) 6= u(0, 0), which gives
a contradiction. Thus, the commutative relation [K, u] = K is also not possible.
Finally, in all cases the existence of a nontrivial projective vector field on the torus
T 2 equipped with a metric of nonconstant curvature leads to a contradiction.

Let us now consider the remaining case: we assume that g has constant cur-
vature. By Gauss-Bonnet Theorem, a metrics of constant curvature on T 2 is flat.
Then, as we show in Section 5.1, (T 2, g) is isometric to the standard flat torus
(R2/L, dxdy), where (x, y) are the standard coordinates on R2, and L is a lattice
generated by two linearly independent vectors. In particular, all geodesics of the
lift of the metric to R2 are the standard straight lines. Clearly, any projective
transformation of (R2/L, dxdy) generates a bijection φ : R2 → R2 that commute
with the lattice L and maps straight lines to straight lines. It is easy to see that
the connected component of the group of such bijections consists of parallel trans-
lations, i.e., acts by isometries. Finally, Proj0(R2/L, dxdy) = Iso0(R2/L, dxdy).
Theorem 6 is proved. ¤

2.4. One more possible application in mathematical physics.
An interesting possible application in mathematical physics is related to the

Schrödinger equations on closed (pseudo-Riemannian) surfaces: as it was proved
in [9, Theorem 5], the existence of an integral quadratic in momenta implies the
existence of a differential operator of the second order that commute with the
natural Schrödiger operator (i.e., essentially with the Beltrami-Laplace operator).
This observation was applied with success in the Riemannian case (see, for example
[21], [30]), and brought deep insight in the behavior of the quantum states of 2-
dimensional Riemannian metrics. Global description of Riemannian metrics whose
geodesic flows admit integrals quadratic in momenta played an important role in
this result. In view of our results, one can try now to do the same in the signature
(+,−).
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3. Local theory and the proof of Theorem 1.

3.1. Admissible coordinate systems and Birkhoff-Kolokoltsov
forms.

Let g be a pseudo-Riemannian metric of signature (+,−) on connected ori-
ented M2. Consider (and fix) two vector fields V1, V2 on M2 such that

(A) g(V1, V1) = g(V2, V2) = 0 and
(B) g(V1, V2) > 0,
(C) the basis (V1, V2) is positive (i.e., induces the positive orientation).

Such vector fields always exist locally. Since locally there is precisely two possi-
bilities in choosing the directions of such vector fields, the vector fields exist on a
finite (at most, double-) cover of M2.

We will say that a local coordinate system (x, y) is admissible, if the vector
fields (∂/∂x) and (∂/∂y) are proportional to V1, V2 with positive coefficient of
proportionality:

∂

∂x
= λ1(x, y)V1(x, y),

∂

∂y
= λ2(x, y)V2(x, y), where λi > 0.

Obviously,

• admissible coordinates exist in a sufficiently small neighbourhood of every
point,

• the metric g in admissible coordinates has the form

g = f(x, y)dxdy, where f > 0, (3)

• two admissible coordinate systems in one neighbourhood are connected by

(
xnew

ynew

)
=

(
xnew(xold)
ynew(yold)

)
, where

dxnew

dxold
> 0,

dynew

dyold
> 0. (4)

Remark 4. For further use let us note that smooth local functions x, y

form an admissible coordinate system, if and only if V1(x) > 0, V2(y) > 0, and
V1(y) = V2(x) = 0 (where V (h) denotes the derivative of the function h in the
direction of the vector V ).

Lemma 2 ([9]). Let (x, y) be an admissible coordinate system for g. Let F

given by (1) be an integral for g. Then,
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B1 :=
1√

|a(x, y)|dx,

(
respectively, B2 :=

1√
|c(x, y)|dy

)

is a 1-form, which is defined at points such that a 6= 0 (respectively, c 6= 0).
Moreover, the coefficient a (respectively, c) depends only on x (respectively, y),
which in particular implies that the forms B1, B2 are closed.

Remark 5. The forms B1, B2 are not the direct analog of the “Birkhoff”
2-form introduced by Kolokoltsov in [25]. In a certain sense, they are real analogs
of the two branches of the square root of the Birkhoff form.

Proof of Lemma 2. The first part of the statement, namely that

1√
|a(x, y)|dx,

(
respectively,

1√
|c(x, y)|dy

)

transforms as a 1-form under admissible coordinate changes is evident: indeed,
after the coordinate change (4), the momenta transform as follows: pxold

=
pxnew(dxnew/dxold), pxold

= pxnew(dxnew/dxold). Then, the integral F in the
new coordinates has the form

(
dxnew

dxold

)2

a

︸ ︷︷ ︸
anew

p2
xnew

+
dxnew

dxold

dynew

dyold
b

︸ ︷︷ ︸
bnew

pxnew
pynew

+
(

dynew

dyold

)2

c

︸ ︷︷ ︸
cnew

p2
ynew

.

Then, the formal expression (1/
√
|a|)dxold (respectively, (1/

√
|c|)dyold) transforms

into

1√
|a|

dxold

dxnew
dxnew

(
respectively,

1√
|c|

dyold

dynew
dynew

)
,

which is precisely the transformation law of 1-forms.
Let us prove that the coefficient a (respectively, c) depends only on x (respec-

tively, y), which in particular implies that the forms B1, B2 are closed. If g is
given by (3), its Hamiltonian is

H =
2pxpy

f
,

and the condition {H, F} = 0 reads
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0 =
{

2pxpy

f
, ap2

x + bpxpy + cp2
y

}

=
2
f2

(
p3

x(fay) + p2
xpy(fax + fby + 2fxa + fyb)

+ pyp2
x(fbx + fcy + fxb + 2fyc) + p3

y(cxf)
)
,

i.e., is equivalent to the following system of PDE:





ay = 0,

fax + fby + 2fxa + fyb = 0,

fbx + fcy + fxb + 2fyc = 0,

cx = 0.

(5)

Thus, a = a(x), c = c(y) implying that B1 := (1/
√
|a|)dx and B2 :=

(1/
√
|c|)dy are closed forms (assuming a 6= 0 and c 6= 0). Lemma 2 is proved. ¤

Remark 6. For further use let us formulate one more consequence of equa-
tions (5): if a ≡ c ≡ 0 in a neighbourhood of a point, then bf = const, im-
plying F − (const/2) · H = 0 in the neighborhood. If we consider (5) as a sys-
tem of PDE on the unknown functions a, b, c, we see that the system is linear
and of finite type. Then, vanishing of the solution corresponding to the integral
F̂ := (F − (const/2) ·H) in the neighborhood implies vanishing of the solution on
the whole connected manifold. Thus, if a ≡ c ≡ 0 in a neighborhood of a point,
then for a certain const ∈ R we have F ≡ const ·H on the whole manifold.

Remark 7. For further use let us note that the set of the points where the
form B1 (B2, resp.) is not defined coincides with the set of the points such that
a = 0 (c = 0, resp.) and is invariant with respect to the (local) flow of the vector
field V2 (V1, resp.)

A local coordinate system (x, y) will be called perfect, if it is admissible, and
if in this coordinates system the coefficients a, c take values in the set {−1, 0, 1}
only.

Lemma 3. Let F given by (1) be an integral for the geodesic flow of g =
f(x, y)dxdy such that F 6= const ·H for all const ∈ R. Then, almost every point p

has a neighborhood U such that precisely one of the following conditions is fulfilled:

( i ) ac > 0 at all points of U ,
( ii ) ac < 0 at all points of U ,
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(iii) (a) a = 0 and c 6= 0 at all points of U , or
(b) a 6= 0 and c = 0 at all points of U .

Moreover, there exists a perfect coordinate system x̃, ỹ in a (possibly, smaller)
neighborhood U ′(p) ⊆ U(p) of p. In the perfect coordinate system, the metric and
the integral are given by

g = f̃(x̃, ỹ)dxdy and F = sign(a(x, y))p2
x̃ + b̃(x̃, ỹ)px̃pỹ + sign(c(x, y))p2

ỹ,

where sign(τ) =





1 if τ > 0,
−1 if τ < 0,
0 if τ = 0.

Proof of Lemma 3. It is sufficient to prove the lemma assuming that M2

is a small neighborhood W . We consider and fix admissible coordinates in this
neighborhood. In this coordinates the coefficients a, b, c of the integral (1) are
smooth functions.

We consider the following subsets of W :

• Wac6=0 := {q ∈ W | a(q)c(q) 6= 0},
• Wa6=0,c=0 := {q ∈ W | a(q) 6= 0, c(q) = 0},
• Wa=0,c6=0 := {q ∈ W | a(q) = 0, c(q) 6= 0},
• Wa=0,c=0 := {q ∈ W | a(q) = 0, c(q) = 0}.
The sets are clearly disjunkt, there union coincides with the whole W . We

consider the set Wperfect := Wac6=0 ∪ int(Wa=0,c6=0) ∪ int(Wa6=0,c=0), where “int”
denotes the set of inner points. The set Wperfect is open, and is everywhere dense
in W . Indeed, it is open, since Wac6=0, int(Wa=0,c6=0), and int(Wa6=0,c=0) are open.
It is everywhere dense, since it is everywhere dense in the set Wac6=0 ∪Wa=0,c6=0 ∪
Wa6=0,c=0, and the remaining set Wa=0,c=0 does not contain any open nonempty
set by Remark 6.

Now, by definition, every point of Wperfect has a neighborhood such that in
this neighborhood one of the conditions (i)–(iii) is fulfilled. The first statement of
the proposition is proved.

Let us now prove the second statement. Let p0 ∈ int(Wa6=0,c=0). In a simply-
connected neighborhood U(p0) ⊂ Wa6=0,c=0, we consider the function

xnew(p) :=
∫ p

p0

B1. (6)

Since the form B1 is closed, and U(p0) is simply-connected, the function xnew does
not depend on the choice of the curve connecting the points p0, p, and is therefore
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well defined. The differential of the function xnew is precisely the 1-form B1, and
does not vanish at p0. We have V1(xnew) = B1(V1) > 0, V2(xnew) = B1(V2) = 0.
Since the coordinates (x, y) are admissible, V2(y) > 0 and V1(y) = 0. Then, by
Remark 4, (xnew, y) is a local admissible coordinate system in a possibly smaller
neighborhood U ′ ⊆ U containing p0.

Remark 8. Let us note that, in the admissible coordinates the formula (6)
looks

xnew(x) =
∫ x

x0

1√
|a(t)|dt (7)

implying that xnew is independent of y, i.e., xnew = xnew(x).

In this coordinate system, the integral F is equal to

(
dxnew

dx

)2

ap2
xnew

+
dxnew

dxold
bpxnew

py =
a

(
√
|a|)2 p2

xnew
+

b√
|a|pxnew

py

= sign(a)p2
xnew

+ bnewpxnewpy.

The cases p0 ∈ int(Wa=0,c6=0), p0 ∈ Wa6=0,c6=0 are similar: in the case
p0 ∈ int(Wa=0,c6=0), in the coordinate system (x, ynew) in a possibly smaller neigh-
borhood of p0, where

ynew :=
∫ p

p0

B2, (8)

the integral F is given by bnewpxpynew
+ sign(c)p2

ynew
. In the case p0 ∈ Wa6=0,c6=0,

in the coordinate system (xnew, ynew), where xnew is given by (6) and ynew is given
by (8), the integral F is given by sign(a)p2

xnew
+ bnewpxnewpynew + sign(c)p2

ynew
.

Lemma 3 is proved. ¤

Remark 9. If a = 0 (c = 0, resp.), the coordinate transformation of the
form (xnew(x), y) ((x, ynew(y)), resp.) does not change the property of coordinates
to be perfect. If ac 6= 0, the perfect coordinates are unique up to transformation
(x, y) 7→ (x + const1, y + const2). In particular, if ac 6= 0, the vector fields (∂/∂x)
and (∂/∂y), where x, y are local perfect coordinates, do not depend on the choice
of local perfect coordinates, and therefore are well-defined globally, at all points
such that ac 6= 0 (provided that V1, V2 satisfying (A,B,C) are globally defined).
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3.2. Proof of Theorem 1.
By Lemma 3, almost every point of M2 has a neighborhood such that in

perfect coordinates the metrics and the integral are as in one of the following
cases:

Case 1: ac > 0: The metric is f(x, y)dxdy, the integral is ±(p2
x+b(x, y)pxpy +p2

y).

Case 2: ac < 0: The metric is f(x, y)dxdy, the integral is ±(p2
x+b(x, y)pxpy−p2

y).

Case 3a: c ≡ 0: The metric is f(x, y)dxdy, the integral is ±(p2
x + b(x, y)pxpy).

Case 3b: a ≡ 0: The metric is f(x, y)dxdy, the integral is ±(b(x, y)pxpy + p2
y).

We will carefully consider all four cases.

3.2.1. Case 1.
Proposition 1. Let the geodesic flow of a metric g = f(x, y)dxdy admits

an integral (1). Assume ac > 0 at the point p. Then, in the coordinates (u, v) =
((x + y)/2, (x− y)/2), where (x, y) are perfect coordinates in a neighborhood of p,

g = (U(u)− V (v))(du2 − dv2) and F = ±
(

p2
vU(u)− p2

uV (v)
U(u)− V (v)

)
, (9)

where U, V are certain functions of one variable.

Proof. Without loss of generality a and c are positive in a neighborhood
of p. Then, by Lemma 3, in perfect coordinates in a neighborhood of p the metric
and the integral are g = f(x, y)dxdy, F = p2

x + b(x, y)pxpy +p2
y. Then, the system

(5) has the following simple form:

{
(fb)y + 2fx = 0,

(fb)x + 2fy = 0,
which is equivalent to

{
(fb + 2f)x + (fb + 2f)y = 0,

(fb− 2f)x − (fb− 2f)y = 0.

After the (non-admissible) change of coordinates u = (x+y)/2, v = (x−y)/2, the
system has the form

{
(fb + 2f)u = 0,

(fb− 2f)v = 0,
which is equivalent to

{
fb + 2f = −4V (v),

fb− 2f = −4U(u)

for certain functions U(u) and V (v). Thus,

f = U(u)− V (v), b = −2
U(u) + V (v)
U(u)− V (v)

.
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Let us now calculate the metric in the integral in the new coordinates:
substituting dx = du + dv, dy = du − dv in the formula g = f(x, y)dxdy =
(U(u)− V (v))dxdy, we obtain that in the new coordinates the metric is (U(u)−
V (v))(du2 − dv2). Substituting px = ((∂u/∂x)pu + (∂v/∂x)pv) = (1/2)(pu + pv)
and py = ((∂u/∂y)pu + (∂v/∂y)pv) = (1/2)(pu − pv) in the formula F =
p2

x + bpxpy + p2
y = p2

x− 2(U(u) + V (v))/(U(u)−V (v))pxpy + p2
y, we obtain that in

the new coordinates (u, v)

F =
1
2

(
p2

u + p2
v −

U(u) + V (v)
U(u)− V (v)

(p2
u − p2

v)
)

=
U(u)p2

v − V (v)p2
u

U(u)− V (v)
.

We see that, in the new coordinates, the metric and the integral are as in (9).
Proposition 1 is proved. ¤

3.2.2. Case 2.
Proposition 2. Let the geodesic flow of a metric g = f(x, y)dxdy admits

an integral (1). Assume ac < 0 at the point p. Then, in perfect coordinates in a
neighborhood of p,

g = =(h)dxdy and F = ±
(

p2
x − p2

y + 2
<(h)
=(h)

pxpy

)
, (10)

where <(h) and =(h) are the real and the imaginary parts of a holomorphic func-
tion h of the variable z = x + i · y.

Proof. Without loss of generality a(p) > 0, c(p) < 0. By Lemma 3, in
perfect coordinates the metric and the integral are g = f(x, y)dxdy, F = p2

x +
b(x, y)pxpy − p2

y. Then, the system (5) has the following simple form:

{
(fb)y + 2fx = 0,

(fb)x − 2fy = 0.
(11)

We see that these equations are the Cauchy-Riemann conditions for the complex-
valued function fb + 2if . Thus, for an appropriate holomorphic function h =
h(x + iy) we have fb = (1/2)<(h), f = =(h). Finally, the metric and the integral
have the form (10). Proposition 2 is proved. ¤

3.2.3. Case 3.
In this case we prove two propositions: the first one is more general, and

is the final step in the proof of Theorem 1. The second one requires additional
assumptions, and will be used in the proof of Theorem 2.
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Proposition 3. Let the geodesic flow of a metric g = f(x, y)dxdy admits
an integral (1). Then, the following two statements are true:

(a) If a(p) 6= 0, and c(q) = 0 at every point q of a small neighborhood of p, in
perfect coordinates in a (possibly, smaller) neighborhood of p,

g =
(

Ŷ (y)+
x

2
Y ′(y)

)
dxdy and F = ±


p2

x −
Y (y)

Ŷ (y) +
x

2
Y ′(y)

pxpy


 , (12)

where Y and Ŷ are functions of one variable.
(b) If c(p) 6= 0, and a(q) = 0 at every point q of a small neighborhood of p, in

perfect coordinates in a (possibly, smaller) neighborhood of p,

g =
(

X̂(x)+
y

2
X ′(x)

)
dxdy and F = ±


p2

y −
X(x)

X̂(x) +
y

2
X ′(x)

pxpy


 , (13)

where X and X̂ are functions of one variable.

Proof. The cases (a) and (b) are clearly analogous; without loss of gen-
erality we can assume a(p) > 0, c ≡ 0. By Lemma 3, in perfect coordinates the
metric and the integral are g = f(x, y)dxdy, F = p2

x + b(x, y)pxpy. Then, the
equation (5) has the following simple form:

{
(fb)y + 2fx = 0,

(fb)x = 0.
(14)

This system can be solved. Indeed, the second equation implies fb = −Y (y).
Substituting this in the first equation we obtain Y ′(y) = 2fx implying

f =
x

2
Y ′(y) + Ŷ (y) and b = − Y (y)

x

2
Y ′(y) + Ŷ (y)

.

Finally, the metric and the integral are as in (12). Proposition 3(a) is proved. The
proof of Proposition 3(b) is essentially the same. ¤

Proof of Theorem 1. Theorem 1 follows directly from Lemma 3 and
Propositions 1, 2, 3. Indeed, by Lemma 3, almost every point has a neighbor-
hood such that in this neighborhood the assumptions of one of Propositions 1, 2,
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3 are fulfilled. Then, by Propositions 1, 2, 3 the metric and the integral are as in
the table in Theorem 1. ¤

We will also need a slightly less general version of normal form of metrics
satisfying the assumption of Case 3.

Let us observe that the function Y from (12), or the function X from (13),
can be given in invariant terms (i.e., they does not depend on the choice of a
perfect coordinate system, and can be smoothly prolonged to the whole manifold).
Indeed, consider the symmetric (2, 0)-tensor F̃ ij such that F =

∑
i,j F̃ ijpipj (if

F is given by (1), the matrix of F̃ is
( a b/2

b/2 c

)
). Transvecting F̃ ij with gij we

obtain the globally defined smooth function L := trace(F̃ i
j ) :=

∑
i,j F̃ ijgij . Under

assumptions of Case 3a, in the perfect coordinates, the function L is given by

L =
∑

i,j

F̃ ijgij = trace







a
b

2
b

2
c







0
f

2
f

2
0







= trace






−Y

4
∗

0 −Y

4





 = −Y

2
. (15)

Proposition 4. Let the geodesic flow of a metric g = f(x, y)dxdy admits
an integral (1). Then, the following two statements are true:

(a) Suppose a(p) 6= 0, and c(q) = 0 at every point q of a small neighborhood of
p. Assume dL|p 6= 0, where L is given by (15). Then, in a (possibly, smaller)
neighborhood of p, in perfect coordinates (x, y) such that y(q) = −2L(q) for
all q, the metric and the integral are given by

g =
(

Y (y) +
x

2

)
dxdy and F = ±


p2

x −
y

Y (y) +
x

2

pxpy


 , (16)

where Y is a function of one variable.
(b) Suppose c(p) 6= 0, and a(q) = 0 at every point q of a small neighborhood of

p. Assume dL|p 6= 0, where L is given by (15). Then, in a (possibly, smaller)
neighborhood of p, in perfect coordinates (x, y) such that x(q) = −2L(q) for
all q, the metric and the integral are given by
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g =
(

X(x) +
y

2

)
dxdy and F = ±


p2

y −
x

X(x) +
y

2

pxpy


 , (17)

where X is a function of one variable.

Proof. The cases (a) and (b) are clearly analogous; without loss of gener-
ality we can assume a(p) > 0, c ≡ 0. In the perfect coordinates such that y = −2L,
we have g = f(x, y)dxdy and F = p2

x − (y/f)pxpy. Then, the system (5) is equiv-
alent to the equation 2fx = 1. Thus, f = Y (y) + x/2. Proposition 4(a) is proved.
The proof of Proposition 4(b) is similar. ¤

4. Global theory and the main step in the proof of Theorem 2.

4.1. Notation, conventions, and the plan of the proof.
Within the whole section we assume that

• the surface is the torus T 2,
• g is a pseudo-Riemannian metric of signature (+,−) on T 2.
• The vector fields V1, V2 satisfying conditions (A,B,C) from Section 3.1 are

globally defined (the case when it is not possible will be considered in Section
5.4).

• F is a nontrivial integral of the geodesic flow of g. We will reserve notation
x, y for admissible coordinates, or for perfect coordinates, and will denote
the coefficients of the integral as in (1). As in Section 3.1, we will denote
by B1, B2 the 1-forms (1/

√
|a|)dx and (1/

√
|c|)dy.

As in Section 3.2.3., we denote by F̃ ij the symmetric (2, 0)-tensor correspond-
ing to the integral F , and by F̃ i

j the (1, 1)-tensor F̃ i
j :=

∑
k F̃ ikgkj .

We will proceed according to the following plan:

1. In Section 4.2 we show that there exists no point such that ac < 0. This will
imply that F̃ i

j has real eigenvalues at every point of T 2.
2. By Remark 10, F̃ i

j has only one eigenvalue (of algebraic multiplicity 2) at the
points such that B1 or B2 is not defined. In Section 4.3, we show that this
eigenvalue is constant on each connected component of the set such that B1 or
B2 is not defined.

3. In Section 4.4 we show that the existence a point such that B1 or B2 is not
defined implies that one of the eigenvalues of F̃ i

j is constant on the whole man-
ifold.

4. In Section 4.5, we show that if one of the eigenvalues of F̃ i
j is constant, the

quadratic integral F , or the lift of the quadratic integral to the appropriate
double cover is a linear combination the square of a function linear in momenta
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and the Hamiltonian. Later, in Corollary 6, we show that if the lift of the
quadratic integral to a double cover is a linear combination of the lift of the
Hamiltonian and the square of a integral linear in momenta, then the integral
is a linear combination of the Hamiltonian and the square of an integral linear
in momenta.

5. In Section 4.6 we show that if at every point B1 and B2 are defined, then the
torus, the metric g, and the integral F are as in the Model Example 1.

These will prove Theorem 2 under the additional assumption that the vector
fields V1, V2 exist on T 2. The case when this vector fields do not exist on T 2 will
be considered later, in Section 5.4: we will prove that this case can not happen (if
there exists an integral quadratic in momenta that is not a linear combination of
the Hamiltonian and the square of an integral linear in momenta).

4.2. At every point, the eigenvalues of F̃ i
j are real.

Lemma 4. There is no point p ∈ T 2 such that at this point ac < 0.

Proof. Suppose at p ∈ T 2 we have ac < 0. Let W0 be the connected
component of the set

W := {q ∈ T 2 | B1 and B2 are defined}

containing the point p. At every q ∈ W0 we have ac < 0. We consider the function
K : W0 → R, K = 1/(g∗(B1, B2)), where g∗ is the scalar product on T ∗T 2 induced
by g.

In any perfect coordinates (x, y) we have B1 = dx, B2 = dy, and g =
=(h)dxdy by Proposition 2. Then, K = =(h) for a holomorphic function h im-
plying it is harmonic function. When we approach the boundary W 0 \ W0, the
function K converges to 0. Indeed, in the admissible coordinates near a bound-
ary point the function K is f

√
|ac|, and ac

converges−−−−−−→ 0 (because at least one of
coefficients a, c is zero at the points of boundary).

Finally, by the maximum principle (for harmonic functions), the function h

is identically zero, which clearly contradicts the assumptions. Lemma 4 is proved.
¤

Corollary 2. At every point of T 2, the eigenvalues of F̃ i
j are real.

Proof. The eigenvalues are the roots of the characteristic polynomial
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χ(t) = det
(
F̃ i

j − t · δi
j

)
= det







fb

4
af

2
cf

2
fb

4


− t ·

(
1 0
0 1

)



= t2 − fb

2
t +

(fb)2

16
− acf2

4
. (18)

The discriminant of χ(t) is D = (1/4)(fb/2)2−((fb)2/16−acf2/4) = acf2/4.
We see that if ac ≥ 0 (which is fulfilled by Proposition 2) the discriminant is
nonnegative implying the eigenvalues of F̃ i

j are real. Corollary 2 is proved. ¤

Remark 10. For further use let us note that at the points such that ac = 0
the discriminant D of χ(t) given by (18) vanishes implying the tensor F̃ i

j has only
one eigenvalue (of algebraic multiplicity two), namely fb/4. At the points such
that ac > 0 the discriminant D > 0 implying the tensor F̃ i

j has two different real
eigenvalues.

4.3. The function L :=
∑∑∑

i F̃ i
i (:= trace(F̃ i

j )) is constant on each
connected component of the set of the points such that B1 or
B2 is not defined.

Lemma 5. The function L =
∑

i F̃ i
i (:= trace(F̃ i

j )) is constant on each
connected component of the set of the points such that B1 is not defined.

Proof. Let at the point p the form B1 is not defined. We consider a small
neighborhood U(p) of p. Lemma 5 is a direct corollary of the following

Statement. L is constant on each connected component of the set {q ∈
U(p) | B1 is not defined}.

Now, the above statement follows from the following two propositions:

Proposition 5. Assume B1 is not defined at every point of a neighborhood
of p. Then, L is constant in this neighborhood.

Proposition 6. Assume every neighborhood of p has a point such that B1

is defined. Then, for a certain neighborhood U(p) the function L is constant on
the connected component of the set {q ∈ U(p) | B1 is not defined} containing the
point p.

We will proceed as follows: we will first prove Proposition 5. Then, we prove
a technical Proposition 7. Finally, we will use Propositions 5, 7 in the proof of
Proposition 6.
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Proof of Proposition 5. Our goal is to prove that dL = 0 at p. Without
loss of generality, by Remark 6, we can assume c 6= 0 at the point p. We assume
that dL 6= 0 at p, and find a contradiction.

We denote by W0 the connected component of the set W := {q ∈ T 2 | B1 is
not defined} containing p. We denote by α : (−∞,+∞) → T 2 the integral curve
of V2 such that α(0) = p. Since W is invariant with respect to the flow of V2, the
curve α is a curve on W0. Let us show that the curve α is periodic.

In a small neighborhood of every point of the curve, we have a ≡ 0 implying

L = trace
(
F̃ i

j

)
= trace







0
b

2
b

2
c







0
f

2
f

2
0





 =

fb

2
.

Then, the second equation of (5) implies that, on W , the function L is invariant
with respect to the flow of V2. Hence, at every point of the curve α we have
dL 6= 0.

Then, the connected component of the set {q ∈ T 2 | L(q) = L(p)} containing
p coincides with the image of α. Since {q ∈ T 2 | L(q) = L(p)} is compact, the
image of α is compact implying the image of the curve is a closed circle.

The following cases are possible:

Case (a): For every t ∈ R, the form B2 is defined at the point α(t),
Case (b): There exists t ∈ R such that at the point α(t) the form B2 is not defined.

Under assumptions of Case (a), let us construct a perfect coordinate system in
a neighborhood U(α(t)) of every point α(t). We assume that every neighborhood
U(α(t)) is sufficiently small and is homeomorphic to the disk.

As the first coordinate x we take the function −2L (where L =
∑

i,j F̃ ijgij

as above). Since L is preserved by flow of V2, its differential is not zero in a small
neighborhood of every point α(t). Since dL(V2) = 0, the coordinate x can be taken
as the first admissible coordinate.

In order to construct the second coordinate y, we consider the curve γ :
[0, t + 1] → W connecting the points p = γ(0) and q ∈ U(c(t)) the such that
γ|[0,t] = α|[0,t], γ(t + 1) = q, and such that γ|[t,t+1] lies in U(α(t)). We put
y(q) :=

∫
γ

B2.
The function y is well-defined, its differential is B2 and is not zero at α(t).

The local coordinates x, y are as in Proposition 4(b). Then, in this coordinates,
the metric g is equal to (X(x) + (1/2)y)dxdy. Since V2(X) = 0 locally, and
since the functions X(α(t)) coincides on the intersection of the neighborhoods
U(α(t0)) and U(α(t0 + ε)) (for small ε), for every point of the curve α we have
X(α(t)) = X(α(0)) = X(p).
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When t ranges from −∞ to +∞, the coordinate y also ranges from −∞ to
+∞. Indeed,

∫
α|[0,t]

B2(α′(t)) =
∫ t

0
B2|α(s)(V2|α(s))ds, and B2(V2) is positive and

is therefore separated from zero on the compact set image(α).
Then, there exists t such that the value of y corresponding to α(t) is −2X(p).

At the point α(t), the metric g = (X(x)+(1/2)y)dxdy is degenerate which contra-
dicts the assumptions. Proposition 5 is proved under the additional assumptions
of Case (a).

Let us now prove Proposition 5 under assumptions of Case (b): we assume
that there exists t such that B2 is not defined at the point α(t).

Let (tmin, tmax), where tmin < 0 < tmax ∈ R, be the (open) interval such
that

• B2 is defined at α(t) for every t ∈ (tmin, tmax),
• B2 is not defined at α(tmin), and at α(tmax).

As in the proof for Case (a), we construct a perfect local coordinate system
x, y in a neighborhood U(α(t)) of every point α(t), where t ∈ (tmin, tmax). We put
x(q) := −2L(q) and y(q) :=

∫
γ

B2, where γ : [0, t + 1] → W , γ|[0,t] = α|[0,t], γ(t +
1) = q, and such that γ|[t,t+1] lies in U(α(t)). We assume that the neighborhood
U(α(t)) is sufficiently small implying B2 is defined at every point of U(α(t)), and
is homeomorphic to the disk.

By Proposition 4, in this coordinates, the metric is (X(x)+ (1/2)y)dxdy. Let
us show that the coordinate y converges to −2X(p) when t converges to tmax.

In order to do this, we consider the scalar product on T ∗T 2 induced by
g (we will denote this scalar product by g∗). We consider the function h :=
g∗(−2dL,B2). This is indeed a function (i.e., h does not depend on the choice of
an admissible coordinate system) which is defined at the points such that B2 is
defined. In admissible coordinates (x̃, ỹ) in the neighborhood of the point α(tmax),
the function is given by h = −2(1/f̃) · (∂L/∂x̃) · (1/

√
|c̃|). Since c̃(α(tmax)) = 0,

we have h(α(t)) t→tmax−−−−−→ ±∞. In the constructed above coordinates (x, y), we
have h(α(t)) = 1/(X(p) + y(α(t))/2) · 1 · 1. Then, X(p) + y(α(t))/2 t→tmax−−−−−→ 0.
Thus, y(α(t)) t→tmax−−−−−→ −2X(p).

Similarly one can show that the same is true for tmin, namely y(α(t)) t→tmin−−−−−→
−2X(p).

Since y(α(t)) =
∫ t

0
B2|α(s)(V2|α(s))ds, and B2|α(s)(V2|α(s)) is positive for all

s ∈ (tmin, tmax), the values of y(α(t)) can not converge to the same number for
t → tmax and for t → tmin. The obtained contradiction proves Proposition 5. ¤

Proposition 7. The set {q ∈ T 2 | B1 or B2 is defined in q} is connected.

Proof. It is sufficient to prove that every point p has a neighborhood U(p)
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such that the set S(p) := {q ∈ U(p) | B1 or B2 is defined in q} is connected. We
take a sufficiently small U(p), and consider admissible coordinates x, y in U(p).
We assume that the neighborhood is small enough so we can connect every two
points of this neighborhood by a geodesic.

If the set S(p) is not connected, at every point q ∈ U(p) we have a(q) = 0,
or c(q) = 0. Without loss of generality we can assume that at every point of U(p)
we have a = 0. Then, the point p satisfies the assumptions of Proposition 5 above
implying L = fb/2 = const on U(p).

Let us now consider the points U(p) \ S(p). At every such point, a = c = 0
implying

F̃ ij =




0
b

2
b

2
0


 =




0
L

f
L

f
0


 =

L

4
· gij .

Thus, at such points, F = (L/2)H = const ·H. Without loss of generality we can
assume that const = 0, otherwise we can replace F by (F − const ·H).

We take 5 points p1, . . . , p5 ∈ U(p) \ S(p) such that F|T∗pi
T 2 = 0 at these

points. Since F is an integral, it vanishes on every geodesic passing through any
of the points p1, . . . , p5. Take a point q ∈ U(p) in a small neighborhood of S,
and connect this point with the points p1, . . . , p5 by geodesics, see Figure 6. Let
ξ1 ∈ T ∗p1

T 2, . . . , ξ5 ∈ T ∗p5
T 2 be the vector-momenta of these geodesics at q. At

almost every q, the tangent vectors of the geodesics are mutually nonproportional
implying the vector-momenta ξi and ξj are not proportional for i 6= j.

Since F is an integral and F|T∗pi
T 2 ≡ 0, we have F (ξi) = 0. Thus, the

quadratic function F|TqT 2 vanishes in 5 mutually nonproportional points ξi. Hence,

Figure 6. The geodesic connecting the points pi with the point q, and their tangent
vectors at the point q. For almost every q, the tangent vectors are mutually nonpropor-
tional.
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F|T∗qT 2 ≡ 0. Thus, the restriction of F to a small neighborhood of p vanishes,
which clearly contradicts the assumptions. The contradiction proves Proposition
7. ¤

Combining Proposition 7, Remark 4, and Lemma 4, we obtain

Corollary 3. Let a > 0 at a point. Then, at every point of T 2 we have
a ≥ 0, c ≥ 0.

Proof of Proposition 6. We consider admissible coordinates x, y in a
small neighborhood U(p). We think that the point p has the coordinates
(x(p), y(p)) = (0, 0). In this coordinates, by Remark 4, the connected compo-
nent of the set {q ∈ U(p) | B1 is not defined at q} containing p is one of the
following sets (for a certain ε > 0):

W+ε := {q ∈ U(p) | 0 ≤ x(q) ≤ ε}, W−ε := {q ∈ U(p) | 0 ≥ x(q) ≥ −ε},
or W0 := {q ∈ U(p) | x(q) = 0}.

If the connected component of the set {q ∈ U(p) | B1 is not defined at q} containing
p is W+ε or W−ε, we are done by Proposition 5. We assume that the connected
component of the set {q ∈ U(p) | B1 is not defined at q} containing p is W0. Our
goal is to prove that ∂L/∂y = 0 for the points of this set.

Let us first observe that da|q = 0 for every q ∈ W0. Indeed, by Corollary 3,
the function a accepts an extremum (minimum or maximum) at q.

Then, the second equation of (5) tells us that ∂L/∂y = 0, i.e., L is constant
on the set {q ∈ U(p) | x(q) = x(p)}. Proposition 6 and Lemma 5 are proved. ¤

Remark 11. Since there is no essential difference between B1 and B2, the
function L is constant on every connected component of the set {q ∈ T 2 | B1 or
B2 is not defined at q}, as we claimed in the title of this section.

4.4. At a neighborhood of every point the metrics are Liouville,
or one eigenvalue of F̃ i

j is constant on the manifold.
Recall that integrals linear in momenta and Killing vector fields are closely

related: the function I = α(x, y)px + β(x, y)py is an integral of the geodesic flow
of g, if and only if the vector field v = (α, β) is a Killing vector field. Moreover,
the mapping I = α(x, y)px + β(x, y)py 7→ v = (α, β) is coordinate-independent.

By Lemma 4, at every point of T 2 we have ac ≥ 0.

Lemma 6. If there exists a point q such that at this point at least one of the
forms B1, B2 is not defined, then one of the eigenvalues of F̃ i

j is constant on the
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manifold.

Proof. We consider two sets:

W := {p ∈ T 2 | B1 and B2 are defined at p} and T 2 \W.

Assume T 2 \W 6= ∅. At every point s ∈ T 2, we denote by E1(s) ≤ E2(s) the
roots of the characteristic polynomial

χ(t) := det
(
F̃ i

j − t · δi
j

)

at the point s counted with multiplicities. (By Corollary 2, the roots of the
polynomials χ(t) are real). The functions E1 and E2 are at least continuous.

At the points of T 2 \ W , by Remark 10, we have E1 = E2 = L/2, where
L = trace(F̃ i

j ). Then, by Remark 11, both functions E1, E2 are constant on each
connected component of T 2 \W .

Since W is open, and since W ∪ (T 2 \W ) = T 2, in order to prove Lemma 6, it
is sufficient to show that at least one of the functions E1, E2 is constant on every
connected component of W .

We consider a point p such that at this point ac > 0, and denote by W0 the
connected component of W containing p.

At every point p0 of W0, we consider the vector fields ∂/∂x, ∂/∂y, where x, y

are perfect coordinates in a neighborhood of p0. Though the perfect coordinates
are local coordinates, these vector fields are well defined at all points of W0, see
Remark 9. Moreover, at every point p0 the vectors ∂/∂x, ∂/∂y form a dual basis
to the basis (B1, B2) in T ∗p0

T 2.
Let us show that the vector fields ∂/∂x, ∂/∂y are complete on W0. Since

the basis (B1, B2) is dual to the basis (∂/∂x, ∂/∂y), it is sufficient to show that
for every point q of the boundary ∂W0 := W 0 \ W0 the integral

∫ q

p
B1 = ±∞,

or
∫ q

p
B2 = ±∞. We consider admissible coordinates x̃, ỹ in a neighborhood of q.

Without loss of generality, x̃(q) = 0 and ã(0) = 0. As we explained in the proof
of Lemma 5, the differential dã|q = 0 implying ã(x̃) = x̃2α(x), where α(x) is a
smooth function in a neigborhood of 0. Then,

∫ q

p
B1 = const+

∫ 0

x̃0
(1/

√
|ã(s)|)ds =

const± ∫ 0

x̃0
(1/(|s|

√
|α(s)|))ds = ±∞.

Thus, the vector fields ∂/∂x, ∂/∂y are complete on W0.
We consider the local coordinates u = (1/2)(x + y) and v = (1/2)(x − y),

and the corresponding vector fields ∂/∂u = (1/2)(∂/∂x + ∂/∂y) and ∂/∂v =
(1/2)(∂/∂x− ∂/∂y). Since ∂/∂x, ∂/∂y are complete, the vector fields ∂/∂u, ∂/∂v

are also complete.
The coordinates u, v are as in Proposition 1. Then, by Proposition 1, in the
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coordinates (u, v), the metric and the integral have the form (U(u)−V (v))(du2−
dv2) and (U(u)p2

v − V (v)p2
u)/(U(u)− V (v)). Since f = U(u)− V (v) > 0, we have

U(u) > V (v).
Let us note that at every point of W0, the local functions U and V have a

clear geometric sense, and, therefore, are globally given at all points of W0, and
can be continuously prolonged up to the boundary. Indeed, in the coordinates
(u, v) the matrix of F̃ i

j is

(−V (v) 0
0 −U(u)

)
.

Thus, U = −E1 and V = −E2.
Consider the action of the group (R2,+) on W0 generated by the vector fields

∂/∂u and ∂/∂v. The action is well defined, since the vector fields commute and
are complete. The action is transitive and locally-free. Then, W0 is diffeomorphic
to the torus, to the cylinder, or to R2. Since T 2 \ W0 6= ∅, W0 can not be the
torus.

Now suppose W0 is a cylinder. Then, its boundary has at most two connected
components. Each integral curve of at least one of the vector fields ∂/∂u and ∂/∂v

is not closed. Without loss of generality, we assume that for every p ∈ W0 the
integral curve of the vector field ∂/∂v is not closed (i.e., it is the generator of the
cylinder, or a standard winding on the cylinder. In the case the boundary of W0 has
two boundary components, the integral curve of ∂/∂v attracts to one component
of the boundary for t → +∞, and to another component of the boundary for
t → −∞).

For every boundary component, there exists a sequence of the points of any
integral curve of ∂/∂v converging to a point of the boundary component. In-
deed, the closure of W0 is compact, so every sequence of points has a converging
subsequence. We consider a converging subsequence of the sequence φ(0, p) = p,
φ(1, p), φ(2, p), φ(3, p), . . . where φ : R×W0 → W0 denotes the flow of the vector
field ∂/∂v. Clearly, this sequence can not converge to a point of W0. Then, it
converges to a point of a boundary component. Since the function E1 = −U is
constant along the integral curve, the value of E1 on the boundary coincides with
the value of E1 at the point p. Similarly, the sequence points φ(0, p) = p, φ(−1, p),
φ(−2, p), φ(−3, p), . . . has a subsequence converging to another component of the
boundary. Then, the value of E1 on both components of the boundary coincides
and is equal to the value of E1 at every point of W0. Then, the function E1 is
constant on W0.

Let us use the same idea to show that W0 can not be diffeomorphic to R2.
Indeed, in this case ∂W0 has one connected component, and the orbits of both
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vector fields ∂/∂u, ∂/∂v are not closed implying U(u) = V (v) at every point,
which clearly contradicts the assumptions.

Finally, one of the eigenvalues of F̃ i
j is constant on W0. Lemma 6 is proved.

¤

4.5. If one eigenvalue of F̃ i
j is constant, then there exists an inte-

gral linear in momenta.
By Lemma 6, we have the following two possibilities (not disjunkt):

(1) one of the eigenvalues of F̃ i
j is constant,

(2) at every point ac > 0.

The goal of this section is to show that in the first case there exists an integral
linear in momenta (at least on an appropriate double cover of the torus; later (in
Section 5.2) we show that the integral exists already on the torus, see Corollary
6).

Lemma 7. Let one of the eigenvalues of F̃ i
j is constant. Then, for a certain

(at most, double) cover of the torus, the lift of the integral is a linear combination
of the square of an integral linear in momenta and the lift of the Hamiltonian.
Moreover, there exists no point q such that F|T∗q T 2 ≡ const ·H|T∗q T 2 .

Proof. Without loss of generality we can assume that one of the eigen-
values of F̃ i

j is identically 0, otherwise we replace F by F − const · H for the
appropriate const ∈ R. Then, F̃ i

j has rank at most 1.
Let F̃ i

j 6= 0 at a point q. We consider local coordinate (u, v) in U(q) such that
∂/∂u lies in the kernel of F̃ i

j . In this coordinates, the (symmetric) matrix of F̃ ij

satisfies the equation

(
F̃ 11 F̃ 12

F̃ 21 F̃ 22

)(
1
0

)
= 0

implying F̃ 11 = F̃ 12 = F̃ 21 = 0. Then, in this coordinates F = F̃ 22p2
v implying

that the integral is locally the square of the function
√

F 22pv, if F̃ 22 > 0, or√−F 22pv, if F̃ 22 < 0. Then, the (linear in momenta) function
√

F 22pv (if F̃ 22 > 0)
or
√−F 22pv (if F̃ 22 < 0) in a local integral linear in momenta, and

√
F 22(∂/∂v)

(if F̃ 22 > 0) or
√−F 22(∂/∂v) (if F̃ 22 < 0) is a Killing vector field.

Let us show that the points such that F̃ i
j = 0 are isolated. Indeed, otherwise

there exist two such points, say p1 and p2, in a sufficiently small neigborhood U .
For every point q of this neighborhood we consider the geodesics connecting pi

with q. For almost every q, the geodesics intersect transversally at the point q, see
Figure 7.
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Figure 7. The geodesic connecting the points pi with the point q, and their tangent
vectors at the point q. At almost every q, the tangent vectors of the geodesics at the
point q are linearly independent.

We denote by ξ1, ξ2 vector-momenta of these geodesics at the point q. Since
F|T∗pi

T 2 ≡ 0, we have F (ξ1) = F (ξ2) = 0 implying F|T∗pi
T 2 ≡ 0. Since this is

fulfilled for almost every point q of a small neighborhood, the integral F vanishes
identically on two linearly independent vector-momenta, which impossible for the
integral F = F̃ 22p2

v (for F̃ 22 6= 0).
Thus, the points q such that F|T∗qT 2 ≡ 0 are isolated. Then, the set N :=

{q ∈ T 2 | F|T∗qT 2 ≡ 0} is discrete. Hence, the set T 2 \N = {q ∈ T 2 | F|T∗qT 2 6≡ 0}
is connected implying that F̃ ij is zero or positive semi-definite everywhere, or zero
or negative semi-definite everywhere. Without loss of generality we can think that
F̃ ij is zero or positive semi-definite everywhere, otherwise we replace F by −F .

Let us show that in a small neighborhood U(p) of every point p there exists
precisely two integrals linear in momenta such that

(a) they are smooth at every points q 6∈ N , and
(b) the square of each of these integrals is equal to F .

If p 6∈ N , the statement is evident: in the constructed above local coordinates

u, v the integrals are ±√F = ±
√

F̃ 22p2
v = ±pv

√
F̃ 22. Since every neighborhood

has a point from T 2 \N , in a neighborhood of every point there exist at most two
such integrals. Thus, in order to prove the statement above we need to prove that
in a neighborhood of every point from N there exists at least one such integral
(the second one will be minus the first).

Let p ∈ N . We take a small neighborhood U(p) homeomorphic to the disk,
and consider U(p) \ γ, where γ is a geodesics starting at the point p, see Figure
8. Since U(p) \ γ is simply-connected and contains no point from N , on U(p) \ γ

there exists an integral I = α(x, y)px + β(x, y)py linear in momenta such that
I2 = F . We consider the Killing vector field v := (α, β) corresponding to this
integral. Since the value of this integral on each geodesic passing through p is
zero, the Killing vector field (α, β) is orthogonal to geodesics containing p. Then,
the qualitative behaviour of the vector field at the points of a small circle around
p is as on Figure 8. Indeed, they are tangent to the level curves of the geodesic
distance function to the point p, which are hyperbolas (one of them is on Figure
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8) and light-line geodesics though p.

Figure 8. Qualitative behaviour of the vector field v
at the points of a small circle around p.

We see that the vector field v is oriented in the same direction on the different
sides of γ, implying that one can prolong the vector field to U(p) \ {p}. Then,
there exists the integral I linear in momenta such that I2 = F in U(p) \ p as we
claimed.

Since in a small neighborhood U(p) of every point p there exists precisely two
integrals linear in momenta satisfying the conditions (a), (b) above, an integral
linear in momenta satisfying the conditions (a), (b) above exists on T 2, or on the
double cover of T 2. The first statement of Lemma 7 is proved.

Let us prove the second statement of Lemma 7: let us show that the set N is
actually empty. Indeed, the index of the vector field v is negative at the points of
N , see Figure 8, and is zero at all other points. But the sum of the indexes of any
vector field on the torus must be zero.

Thus, there exists an integral linear in momenta satisfying the condition (b)
above on the torus, or on the double cover of the torus. Lemma 7 is proved. ¤

Remark 12. We would like to point out that, in order to define the index
of a vector field v at a point q such that v(q) = ~0, we actually do not need that
the vector field is smooth at the point q. In fact, we did not find the local proof
that the vector field v we used in the proof of Lemma 7 is smooth at the points
of N (of cause, it is smooth at all other points; since later we proof that v 6= ~0 at
all points we obtain finally that it is smooth). Indeed, we can define the index of
a zero of a vector field as the winding number of the vector field on a small circle
around the point. This number is clearly independent of the choice of the small
circle, and is used in the proof of the fact that the Euler characteristic of a surface
is minus the sum of the indexes of all zeros of a vector field (which is used to show
that N is empty set).
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Corollary 4. Let v be a nontrivial Killing vector field of a pseudo-
Riemannian metric g on the torus T 2. Then, there is no point p ∈ T 2 such
that v = 0 at p.

Proof. In the Riemannian case (and, therefore, if g has signature (−,−)),
Corollary 4 is evident. Indeed, the Killing vector field preserves the complex
structure corresponding to the metric, and is therefore holomorphic (with respect
to the complex structure). By the Abel Lemma, it has no zeros.

Let now the signature of the metric be (+,−). We consider the integral linear
in momenta corresponding to the Killing vector field. It vanishes at the points
where the Killing vector field vanishes. The square of this integral is an integral
quadratic in momenta. If the linear integral is α(x, y)px + β(x, y)py, its square is
F = α2p2

x + 2αβpxpy + β2p2
y, and the matrix F̃ ij (such that F =

∑
i,j F̃ ijpipj) is

(
α2 αβ
αβ β2

)
.

We see that its rang is ≤ 1 implying that 0 is a (constant) eigenvalue of F̃ i
j . Then,

by Lemma 7, there exists no point such that α = β = 0 implying there exists no
point such that v = 0. Corollary 4 is proved. ¤

Remark 13. Actually, our final goal is to prove that a nontrivial integral
linear in momenta exists already on the torus (and not on the double cover of the
torus). We will do it later, in Section 5. By Corollary 6 (whose proof does not use
Theorem 2, so no logical loop appears), the integral linear in momenta satisfying
the condition (b) above exists already on the torus.

4.6. Proof of Theorem 2 under the assumption that the vector
fields V1, V2 exist on the whole torus.

Let the geodesic flow of g of signature (+,−) on the torus admits an integral
quadratic in momenta; assume the integral is not a linear combination of the
square of an integral linear in momenta and the Hamiltonian. As everywhere in
Section 4, we assume that the vector fields V1, V2 satisfying conditions (A,B,C)
from Section 3.1 exist on the whole torus. By Lemmas 6, 7, at every point of the
manifold ac > 0.

We consider the vector fields ∂/∂u, ∂/∂v from the proof of Lemma 6. These
vector fields commute and never vanish. Then, they generate a locally free action
of (R2,+) on T 2. The stabilizer G of this actions is a subgroup of (R2,+) with
the following properties: it is

• discrete, and
• the quotient space is compact.



144 V. S. Matveev

Then, it is a lattice, i.e., G = {k · ξ + m · η | (k, m) ∈ R} for certain linearly
independent vectors ξ, η. Then, there exists a natural diffeomorphism φ : R2/G →
T 2. We identify R2/G and T 2 by this diffeomorphism and consider the lift of the
metric and the integral to R2. By Proposition 1, in the coordinate system (u, v)
on R2, the metric and the integral are (U(u)− V (v))(du2− dv2) and ±(U(u)p2

v −
V (v)p2

u)/(U(u)−V (v)), i.e., are as in Model Example 1. Since the metric and the
integral are preserved by the lattice, the functions U and V are preserved by the
lattice as well. Thus, the metric on R2/G are as in Model Example 1. Theorem
2 is proved (under the additional assumption that the vector fields V1, V2 exist on
the whole torus).

5. Proof of Theorem 4, final step of the proof of Theorem 2, and
proof of Theorem 3.

5.1. Flat metrics of signature (+, −) on T 2, and their Killing vec-
tor fields.

By the Gauss-Bonnet Theorem, a metric of constant curvature on the torus
is flat (= has zero curvature). Recall that by the standard flat torus we consider
(R2/G, dxdy), where (x, y) are the standard coordinates on R2, and G is a lattice
generated by two linearly independent vectors.

It is well-known that every torus (T 2, g) such that the metric g is flat and
has signature (+,−) is isometric to a standard one. Indeed, by [12], the flat torus
is geodesically complete implying its universal cover is isometric to (R2, dxdy).
The fundamental group of the torus, (Z2,+), acts on (R2, dxdy). The action is
isometric, free, and discrete. It is easy to see that every orientation-preserving
isometry of (R2, dxdy) without fixed points is a translation. Then, Z2 acts as a
lattice generated by two linearly independent vectors, and (T 2, g) is isometric to
a certain (R2/G, dxdy).

The space of Killing vector fields of (R2, dxdy) is a 3-dimensional linear vector
space generated by two translations (1, 0) = ∂/∂x and (0, 1) = ∂/∂y, and the
pseudo-rotation (−x, y) = −x(∂/∂x) + y(∂/∂y). Then, the space of Killing vector
fields on the flat torus (R2/G, dxdy) is two-dimensional and is generated by the
Killing vector fields (1, 0) = ∂/∂x and (0, 1) = ∂/∂y. Note that, depending on the
values of the constants (const1, const2) 6= (0, 0), every integral curve of the Killing
vector field const1 · ∂/∂x + const2 · ∂/∂y is either a closed curve, or an everywhere
dense winding on the torus.

5.2. Killing vector fields on the torus of nonconstant curvature.
Proposition 8. Let the metric g of nonconstant curvature on the torus T 2

admits a nonzero Killing vector field v. Then, there exists a free action of the
group (R/Z,+) on the torus such that the infinitesimal generator of this action is
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proportional to the Killing vector v with a constant coefficient of proportionality.

Proof. We denote by R the scalar curvature of g. By Corollary 4, the
vector field v has no zeros on T 2. Then, the Killing vector field generates a locally-
free action of the group (R,+). Let us prove that the Killing vector field (after
an appropriate scaling) actually generates the action of the group SO1 = R/Z

without fixed points.
Indeed, take a point p such that dR 6= 0, and consider the orbit of the Killing

vector field containing the point. Since the flow of a Killing vector field preserves
the curvature, at every point q of the orbit we have R(q) = R(p) and dR 6= 0.
Then, the orbit coincides with the connected component of the set {q ∈ T 2 |
R(q) = R(p)} containing the point p implying it is a circle.

We consider the action ρ : R × T 2 → T 2 of the group (R,+) generated by
the flow of the vector field. Since the orbit through p is a circle, for certain t0 > 0
we have ρ(t0, p) = p and for no t ∈ (0, t0) ρ(t, p) = p. Without loss of generality
we can think that t0 = 1, otherwise we replace v by t0 · v.

Since the action ρ is isometric and orientation-preserving, it commutes with
the exponential mapping exp : TT 2 → T 2. Then, the mapping ρ(1, ·) : T 2 → T 2

is identity in a small neighborhood of the point p. Since the point p was arbitrary,
for every point q ∈ T 2 we have ρ(1, q) = q and ρ(t, q) 6= q for t ∈ (0, 1). Thus, the
action of the group (R/Z,+) is well-defined, and has no fixed points. Proposition
8 is proved. ¤

Corollary 5. Let v be a nonzero Killing vector field on the torus (T 2, g),
where g has signature (+,−). Then, there exists no involution σ : T 2 → T 2

without fixed point that preserves the orientation and the metric, and sends the
vector field v to −v.

Proof. If the metric g has constant curvature, as we have recalled in Sec-
tion 5.1, the torus is isometric to (R2/G, dxdy) for a lattice G generated by two lin-
early independent vectors ξ and η, and the Killing vector field is const1 ·ξ+const2 ·η
for (const1, const2) 6= (0, 0). The involution σ without fixed points that pre-
serves the orientation and the metric induces an isometry of (R2, dxdy) without
fixed points that preserves the orientation and the metric. Such isometry is a
translation and can not send the Killing vector field const1 · ξ + const2 · η to
−(const1 · ξ + const2 · η). Corollary 5 is proved under the assumption that g has
constant curvature.

Assume now that the curvature of g is not constant. Then, by Proposition
8, the Killing vector field (after the appropriate scaling) generates a free action of
(R/Z,+) on T 2. We consider the quotient space T 2/(R/Z). Since the action of
R/Z on T 2 is free, the quotient space is a 1-dimensional closed manifold, i.e., is
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diffeomorphic to S1. The orientation of the torus induces the orientation on S1.
The involution σ of the torus preserves the action, the orientation, and sends

v to −v. Then, it inverses the orientation of S1 = T 2/(R/Z). Then, it has a fix
point. We consider the orbit of R/Z corresponding to this point. The involution
σ preserves this orbits and changes the direction of the vector field v on this orbit.
Then, it has a fixed point which contradicts the assumptions. The contradiction
proves Corollary 5. ¤

Corollary 6. Let F be a nontrivial integral quadratic in momenta for the
geodesic flow of the metric g on the torus T 2 and π : T̃ 2 → T 2 be a double cover of
T 2. Assume the lift of the integral to T̃ 2 is a linear combination of the square of
a function linear in momenta and the lift of the Hamiltonian. Then, the integral
F is a linear combination of the square of an integral linear in momenta and the
Hamiltonian.

Proof. We consider the involution σ : T̃ 2 → T̃ 2 corresponding to the
cover: σ(p̃) = q̃ if π(p̃) = π(q̃) and p̃ 6= q̃. The involution preserves the lift of the
Hamiltonian and of the integral.

We consider the function I : T ∗T̃ 2 → R linear in momenta such that F =
const1 ·H +const2 · I2, where H and F denote the lift of the Hamiltonian and the
integral. Since the integral F is nontrivial, const2 6= 0 implying I is a nontrivial
integral (linear in momenta). We consider the Killing vector field v corresponding
to the integral. Since the involution σ preserves H and F , it preserves I2 =
(1/const2)(F − const1 ·H). Since by Proposition 8 the vector field v vanishes at
no point, either dσ(v) = v for all points, or dσ(v) = −v for all points. The second
possibility is forbidden by Corollary 5. Then, dσ(v) = v implying the integral I

on T̃ 2 induces an integral I (linear in momenta) on T 2 = T̃ 2/σ such that, on T 2,
F = const1 ·H + const2 · I2. Corollary 6 is proved. ¤

5.3. Proof of Theorem 4.
Let F be an integral linear in momenta of the geodesic flow of a metric g on

the torus T 2. We denote by v the corresponding Killing vector field. We consider
the action ρ of (R/Z,+) on T 2 from Proposition 8, the quotient space T 2/(R/Z)

diffeomorphic to the circle, and the tautological projection π : T 2 → T 2/(R/Z) =
S1. Let us construct a coordinate system (x ∈ R mod 1, y ∈ R mod 1) on T 2.
We parametrize S1 by (Y ∈ R mod 1), and put y(q) := Y (π(q)) ∈ R/Z). In
order to construct the coordinate x, we consider a smooth section c : S1 → T 2 of
the bundle. By definition of the section, for every q ∈ T 2 there exists a unique
t ∈ (R mod 1) such that ρ(t, q) ∈ image(c). We put x(q) = −t.

By construction, in this coordinates, the vector field v is ∂/∂x, and the cor-
responding integral linear in momenta is px. Let in this coordinates the metric
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g is given by g = K(x, y)dx2 + 2L(x, y)dxdy + M(x, y)dy2. Since the metric has
signature (+,−), we have KM − L2 = det

(
K L
L M

)
< 0. Thus, in order to prove

Theorem 4, it is sufficient to show that the functions K, L, M are functions of the
variable y only, i.e., ∂K/∂x = ∂L/∂x = ∂M/∂x = 0.

We denote by k(x, y), l(x, y),m(x, y) the components of the inverse matrix to
g:

(
k l
l m

)
=

(
K L
L M

)−1

.

Evidently, 2H = k(x, y)p2
x +2l(x, y)pxpy +m(x, y)p2

y, and the condition {F, 2H} =
0 reads

0 =
{
px, k(x, y)p2

x + 2l(x, y)pxpy + m(x, y)p2
y

}

=
∂k

∂x
p2

x + 2
∂l

∂x
pxpy +

∂m

∂x
p2

y,

i.e., is equivalent to the condition ∂k/∂x = ∂l/∂x = ∂m/∂x = 0. Then, the
coefficients k, l, m depend on the variable y only, implying that the coefficients
K, L, M also depend on the variable y only. Theorem 4 is proved. ¤

5.4. Proof of Theorem 2 under the assumption that the vector
fields V1, V2 do not exist on the torus.

We assume that the geodesic flow of the metric g on T 2 admits a nontrivial
integral F quadratic in momenta that is not a linear combination of the Hamilto-
nian and an integral linear in momenta. Assume the vector fields V1, V2 satisfying
assumptions (A,B,C) from Section 3.1 do not exist. We consider the double cover
π : T̃ 2 → T 2 such that V1, V2 satisfying (A,B,C) exist on T̃ 2. Then, by the proved
part of Theorem 2, the lift of the metric to T̃ 2 is as in Model Example 1 (we
identify T̃ 2 with R2/G and the lift g̃ of the metric with the metric from Model
Example 1). On the torus T̃ 2, the only possibility for the vector fields V1, V2 are
(we consider the standard orientation on R2):

V2 = λ

(
∂

∂x
+

∂

∂y

)
, V1 = µ

(
∂

∂x
− ∂

∂y

)
,

where λ and µ are smooth functions on T̃ 2 such that for every p̃ ∈ T̃ 2 we have
λ(p̃)µ(p̃) > 0, and x, y are the standard coordinates on R2.

We consider the involution σ corresponding to the cover π, that it σ(p̃) = q̃

if and only if π(p̃) = π(q̃) and p̃ 6= q̃. Since by assumptions the vector fields V1, V2
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do not exist on T 2, and the involution preserves the orientation, the metric g̃, and
the lift of the integral, we have

dσ

(
∂

∂x
+

∂

∂y

)
= −

(
∂

∂x
+

∂

∂y

)
and dσ

(
∂

∂x
− ∂

∂y

)
= −

(
∂

∂x
− ∂

∂y

)

implying

dσ

(
∂

∂x

)
= − ∂

∂x
and dσ

(
∂

∂y

)
= − ∂

∂y
. (19)

But on the torus R2/G there is no involution with no fixed point with the property
(19). The contradiction shows that the situation assumed in this section, namely
that the vector fields V1, V2 do not exist on T 2, is impossible. Theorem 2 is proved.

¤

5.5. Proof of Theorem 3.
We assume that g is a metric of signature (+,−) on the Klein bottle K2 whose

geodesic flow admits an integral quadratic in momenta. We also assume that the
lift of the integral to the oriented cover is not a linear combination of the lift of
the Hamiltonian and the square of a function linear in momenta. Our goal is to
prove that (K2, g) is as in Model Example 2.

We consider the oriented cover π : T 2 → K2, and the lift of the metric and the
integral to T 2. They satisfy the assumptions in Theorem 2. Hence we can think
that T 2, the lift of the metric, and the lift of the integral are as Model Example 1:

T 2 = R2/G, g = (X(x)− Y (y))(dx2 − dy2), and F =
X(x)p2

y − Y (y)p2
x

X(x)− Y (y)
,

where G = {k · ξ + m · η | k, m ∈ Z}.
Next, consider the universal cover π̃ := π ◦ P : R2 → K2, where P is the

canonical projection from R2 to R2/G. We consider the action of the fundamental
group of the Klein bottle on R2 corresponding to π̃. Recall that the fundamental
group of K2 is generated by two elements, say A and B, satisfying the relation
ABA−1B = 1:

π1(K2) = 〈A,B|ABA−1B = 1〉. (20)

This action has the following properties:

(a) It preserves the metric and the integral,
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(b) It is free and discrete.

Let us show that the condition (a) implies the condition

(a′) For every element α ∈ π1(K2) we have

dα

(
∂

∂y

)
= ± ∂

∂y
, dα

(
∂

∂x

)
=

∂

∂x
. (21)

Indeed, since at every point (x, y) ∈ R2 the factor X(x) − Y (y) 6= 0, and
since every nonempty level {X = const1} intersects with every nonempty level
{Y = const2}, without loss of generality we can think that X(x) > Y (y) for all
(x, y) ∈ R2.

Now, in the coordinates x, y, the matrix of F i
j is

(−Y (y)
−X(x)

)
, so F̃ i

j has
eigenvalues −X(x), −Y (y).

Since the action preserves the metric and the integral, it preserves the eigen-
values X, Y and the eigenspaces span(∂/∂y) and span(∂/∂x) of this eigenspaces.
Since g(∂/∂x, ∂/∂x) = X(x) − Y (y), and α preserves X and Y , we have that
g(dα(∂/∂x), dα(∂/∂x)) = X(x) − Y (y) implying dα(∂/∂x) = ±∂/∂x. The proof
that dα(∂/∂y) = ±∂/∂y is similar.

Thus, the action preserves the standard flat metric dx2+dy2 on R2. Then, the
fundamental group of K2 acts as a crystallographic group. From the classification
of crystallographic groups [4, Section 1.7], it follows that every action of the group
(20) on R2 satisfying (a′, b) is generated by A, A(x, y) = (x + c,−y) and B,
B(x, y) = (x, y + d) for certain c 6= 0 6= d, i.e., is as the Model Example 2.
Theorem 3 is proved. ¤
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