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Abstract. For a finite group G, an L (G)-free gap G-module V is a
finite dimensional real G-representation space satisfying the two conditions:
(1) V L = 0 for any normal subgroup L of G with prime power index. (2)
dim V P > 2 dim V H for any P < H ≤ G such that P is of prime power order.
A finite group G not of prime power order is called a gap group if there is
an L (G)-free gap G-module. We give a necessary and sufficient condition for
that G is a gap group for a finite group G satisfying that G/[G, G] is not a
2-group, where [G, G] is the commutator subgroup of G.

1. Introduction.

Let G be a finite group and p a prime. In this paper we regard the trivial
group as a p-group. We denote by Pp(G) the set of p-subgroups of G, let Op(G),
called the Dress subgroup of type p, be the smallest normal subgroup of G whose
index is a power of p, possibly 1, and denote by Lp(G) the set of subgroups L of
G which contain Op(G). We denote by π(G) the set of prime divisors of the order
of G. Set

P(G) =
⋃

p∈π(G)

Pp(G) and L (G) =
⋃

p∈π(G)

Lp(G).

Let V be a G-module, which means a finite dimensional real G-representation
space. For a set F of subgroups of G, we say that V is F -free if V H = {0} for all
H ∈ F . An L (G)-free G-module V is called a gap G-module if

dimV P > 2 dim V H

for all pairs (P, H) of subgroups of G with P ∈ P(G) and P < H. The inequality
arose from equivariant surgery theory [7], [8], [2], [5]. A finite group G not of
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prime power order is called a gap group if there is a gap G-module. The purpose
of this paper is to study which finite groups are gap groups.

Let us recall that the following groups are gap groups:

• Any nontrivial finite perfect group [4].
• Any finite group with P(G) ∩L (G) = ∅ and O2(G) = G [3].
• The symmetric group Sn of degree n ≥ 6 [1].
• Any finite group with P(G) ∩L (G) = ∅ such that Op(G) 6= G for at least

two odd primes p [6].
• Any extension of a gap group by a group of odd order [6].
• Any finite group which has a gap quotient group [10].

In this paper we give a characterization of gap groups with Op0(G) 6= G for a
unique odd prime p0. The main theorems are as follows.

Theorem 1.1. Suppose that P(G)∩L (G) = ∅, O2(G) 6= G and Op0(G) 6=
G for a unique odd prime p0. Then G is a gap group if and only if every subgroup
K with O2(G) C K ≤ G and [K : O2(G)] = 2 is a gap group.

Theorem 1.2. Suppose that P(G) ∩ L (G) = ∅, [G : O2(G)] = 2 and
Op0(G) 6= G for a unique odd prime p0. Then G is a gap group if and only if there
is an element of G outside O2(G) of order 2a, a ≥ 2 or

∑ 2
|CG(g)/O2(CG(g))| < 1,

where the sum is taken over all representatives of conjugacy classes (g) of elements
g of G outside O2(G) of order 2 such that O2(CG(g)) is a p0-group.

This paper is organized as follows. In Section 2, we consider L (G)-free G-
modules V satisfying that

dimV P ≥ 2 dim V H

for all pairs (P, H) of subgroups of G with P ∈ P(G) and P < H. For a gap
G-module W , the complexification of W satisfies the gap hypothesis:

dimC V P > 2 dimC V H

for all pairs (P, H) of subgroups of G with P ∈ P(G) and P < H. To show that
G is a gap group it suffices to show that there is an L (G)-free complex G-module
W satisfying the gap hypothesis. In Section 3, we discuss gap complex modules
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by decomposition of submodules in the complex representation ring and give the
proof of Theorem 1.1. In Section 4, we consider modules V induced from modules
over cyclic subgroups C and estimate the integer

dimC V P − 2 dimC V H ,

which corresponds with the number of the fixed point set (P\G/C)H/P if [H :
P ] = 2. Finally, in Section 5, we prove Theorem 1.2 and show its corollaries.

2. Nonnegative modules.

We denote by D(G) the set of all pairs (P, H) of subgroups of G such that
P < H ≤ G and P ∈ P(G). For a G-module V , we define a function dV : D(G) →
Z by

dV (P, H) = dimV P − 2 dim V H .

We say that V is positive (resp. nonnegative) at (P, H) if dV (P, H) is positive
(resp. nonnegative), and that V is positive (resp. nonnegative) on E if V is positive
(resp. nonnegative) at any element of E for a subset E of D(G). Further we briefly
say that V is positive (resp. nonnegative) if V is positive (resp. nonnegative) on
D(G). Then an L (G)-free G-module V is a gap module if and only if V is positive.

Let R[G] be the real regular representation space. For a finite group G, we
define the G-module

V (G) = (R[G]−R)−
⊕

p∈π(G)

(
R[G/Op(G)]−R

)
.

If G is a group of prime power order, then V (G) = {0} holds. Laitinen and
Morimoto [3] show that V (G) is an L (G)-free nonnegative G-module.

Proposition 2.1 ([3, Theorem 2.3]). Let (P, H) ∈ D(G). dV (G)(P, H) = 0
implies that P ∈ L (G) or Oq(G)P = G for any odd prime q and [H : P ] =
[O2(G)H : O2(G)P ] = 2.

We set

D2(G) =
{
(P, H) ∈ D(G) | [H : P ] = [O2(G)H : O2(G)P ] = 2

and Oq(G)P = G for all odd primes q
}
.
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The induced G-module IndG
KV of a nonnegative K-module V is nonnegative

on D2(G). We construct a gap module by assembling nonnegative modules.
For an element x of G, let ψ(x) be the set of odd primes q such that there

exists a subgroup N of G satisfying x ∈ N and Oq(N) 6= N . For a finite group G,
we define the subset E2(G) of GrO2(G) as the set of elements x of order 2 such
that |ψ(x)| > 1 or O2(CG(x)) /∈ P(G), and define E4(G) as the set of elements
x of GrO2(G) of order a power of 2 greater than 2 with |ψ(x)| > 0 [11]. Recall
that the trivial group is a p-group by our convention. The sets E2(G) and E4(G)
are invariant subsets of G with respect to the conjugation by elements of G. Set
E(G) = E2(G) ∪ E4(G).

Proposition 2.2 ([11, Propositions 4.1, 4.2 and 4.5]). Suppose that P(G)∩
L (G) = ∅. For each h ∈ E(G), there is an L (G)-free nonnegative G-module Wh

such that Wh is positive at (P, H) ∈ D2(G) if H r P meets the conjugacy class
(h) of h in G.

Note that Gr (O2(G)∪E(G)) is an invariant subset of G with respect to the
conjugation by elements of G. Let S be the set of conjugacy classes of elements of
2-power order which do not lie in O2(G)∪E(G). We denote by E 2(G) the subset
of D2(G) consisting of (P, H) such that E(G) ∩H r P is empty and O2(CG(h))
is a subgroup of P if (x) contains an element h of H r P for any (x) ∈ S and in
addition P is a q-group if ψ(h) = {q}.

Theorem 2.3. If P(G) ∩L (G) = ∅ then there exists an L (G)-free non-
negative G-module which is positive on D(G)r E 2(G).

Proof. Let T1 be a complete set of all representatives of conjugacy classes
of elements of E(G). By Proposition 2.2, for each h ∈ T1, we take an L (G)-
free nonnegative G-module Wh such that Wh is positive at (P, H) ∈ D2(G) if
H r P meets the conjugacy class (h) of h in G. Let T2 be a complete set of all
representatives of conjugacy classes of elements g of Gr (O2(G)∪E(G)) of order
2 such that CG(g) is not a 2-group, and put Hg = O2(CG(g))〈g〉 for g ∈ T2. Note
that O2(CG(g)) ∈ P(G) and Hg is not a 2-group for g ∈ T2 since g /∈ E2(G). Put

V = V (G)⊕
⊕

h∈T1

Wh ⊕
⊕

g∈T2

IndG
Hg

V (Hg)

which is an L (G)-free nonnegative G-module. We show that V is positive on
D(G) r E 2(G). Let (P, H) ∈ D(G) r E 2(G). If (P, H) /∈ D2(G) then V (G) is
positive at (P, H) and so is V . Suppose that (P, H) ∈ D2(G). Then E(G)∩HrP

is not empty or O2(CG(h)) is not a subgroup of P for some element h of H r P
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of 2-power order. If E(G) ∩H r P is not empty then Wh is positive at (P, H) for
h ∈ T1 with (h) ∩H r P 6= ∅ by Proposition 2.2 and thus so is V . Suppose that
E(G) ∩H r P is empty. Then there is an element h of H r P of 2-power order
such that O2(CG(h)) is not a subgroup of P . In particular O2(CG(h)) is not the
trivial group and then CG(h) is not a 2-group. Furthermore, since h /∈ E(G), the
element h has order 2 and thus h ∈ T2. For g ∈ T2 with (g) ∩ H r P 6= ∅, the
equation dIndG

Hg
V (Hg)(P, H) = 0 implies that P ≥ O2(Hg) = O2(CG(g)) by [11,

Lemma 4.3]. Thus we take g ∈ T2 such that (g) = (h) and then IndG
Hg

V (Hg) is
positive at (P, H). Therefore V is also positive at (P, H). We complete the proof.

¤

3. Gap complex modules.

A gap module means a real G-representation space which is positive. By
seeing the complexification and realification, there is an L (G)-free gap G-module
if and only if there is an L (G)-free complex G-module W such that

dimC WP > 2 dimC WH

for (P, H) ∈ D(G). So, we also use the same words, a gap module, a nonnegative
module etc. for complex modules. For an arbitrary element X of the complex
representation ring R(G) of G, we define a function dX : D(G) → Z by

(
dimC UP − dimC V P

)− 2
(
dimC UH − dimC V H

)
,

where U and V are complex G-modules such that U − V represents X. Note that
the set of dX for X ∈ R(G) is a complex vector space.

For a complex G-module U , we put

UL (G) = (U − UG)−
⊕

p∈π(G)

(U − UG)Op(G).

This G-module UL (G) is the maximal L (G)-free G-submodule of U .
Let IrrL (G)(G) be the subset of R(G) consisting of isomorphism classes of

L (G)-free irreducible complex G-modules and let CycIndL (G)(G) be the subset
of R(G) consisting of isomorphism classes of complex modules (IndG

Cξ)L (G) for
cyclic subgroups C of G and C-modules ξ.

We have the following proposition.

Proposition 3.1. Let G be a finite group. The following are equivalent.



96 T. Sumi

(1) G is a gap group.
(2) There exist nonnegative integers kV for V ∈ IrrL (G)(G) such that

∑

V ∈IrrL (G)(G)

kV dV (P, H) > 0

for any (P, H) ∈ D(G).
(3) There exist rational numbers qW for W ∈ CycIndL (G)(G) such that

∑

W∈CycIndL (G)(G)

qW dW (P, H) > 0

for any (P, H) ∈ D(G).
(4) There exist integers nW for W ∈ CycIndL (G)(G) such that

∑

W∈CycIndL (G)(G)

nW dW (P, H) > 0

for any (P, H) ∈ D(G).

Proof. An L (G)-free G-module W can be written as

∑

V ∈IrrL (G)(G)

kV V

in R(G) for some nonnegative integers kV and then

dW (P, H) =
∑

V ∈IrrL (G)(G)

kV dV (P, H).

Thus (1) and (2) are equivalent. By the same way it is easy to see that (3) implies
(2). Furthermore clearly (3) and (4) are equivalent. For each V ∈ IrrL (G)(G),
there exist rational numbers qV,W for W ∈ CycIndL (G)(G) such that

V =
∑

W∈CycIndL (G)(G)

qV,W W

in R(G) by Artin’s theorem [9, Section 9.2 Corollary]. Thus (2) implies (3). ¤
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We give a proof of Theorem 1.1.

Proof of Theorem 1.1. If G is a gap group, then all subgroups K with
O2(G) / K ≤ G and K 6= O2(G) are gap groups by [6, Proposition 3.1]. We show
the converse. Suppose that all subgroups K with O2(G) / K ≤ G, possessing
nontrivial cyclic quotients K/O2(G) and [K : O2(G)] = 2 are gap groups. Take
an L (K)-free gap K-module WK for each such subgroup K. Put

V = V (G)⊕
⊕

K

IndG
KWK .

We show that V is an L (G)-free gap G-module. Recall that IndG
KWK is an L (G)-

free nonnegative G-module since WK is an L (K)-free nonnegative K-module [11,
Lemma 2.4]. Thus V is L (G)-free and nonnegative. Let (P, H) ∈ D(G). Note
that V is a sum of nonnegative G-modules. If (P, H) /∈ D2(G) then

dV (P, H) ≥ dV (G)(P, H) > 0.

Suppose that (P, H) ∈ D2(G). Since Op0(G)P = G, the group P is a nontrivial
p0-group. Thus [O2(G)H : O2(G)] = 2 and then

dV (P, H) =
∑

K

dIndG
KWK

(P, H) ≥ dIndG
O2(G)H

WO2(G)H
(P, H).

It holds that PeO2(G)H ∈ (P\G/O2(G)H)H/P and in particular the set
(P\G/O2(G)H)H/P is not empty. Since WK is a gap K-module,

dV (P, H) ≥ dWO2(G)H
(P, H) > 0

by Proposition 4.1.
Therefore we have V is positive at (P, H) and thus V is an L (G)-free gap

G-module. ¤

4. Induced modules and double cosets.

In this section we estimate values of the function dV for V ∈ CycIndL (G)(G).
Let K, P and H be subgroups of G with [H : P ] = 2. Then H/P can act

on the set P\G/K via hP · PgK = PhgK. We frequently compute the number
dIndG

KW (P, H) for (P, H) ∈ D2(G) by the following formula.
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Proposition 4.1 ([6, Lemma 0.6]). Let K, P and H be subgroups of G

with [H : P ] = 2. For a (complex ) K-module W , it holds that

dIndG
KW (P, H) =

∑

PgK∈(P\G/K)H/P

dW (K ∩ g−1Pg, K ∩ g−1Hg).

Furthermore PgK ∈ (P\G/K)H/P if and only if [K ∩ g−1Hg : K ∩ g−1Pg] = 2.

The following two lemmas are obtained by direct calculation.

Lemma 4.2. Let G be a finite group such that G/O2(G) is abelian. For
(P, H) ∈ D2(G), if K is a subgroup of O2(G)P , then d(IndG

KW )L (G)
(P, H) = 0 for

any K-module W .

Proof. Let (P, H) ∈ D2(G). Recall that Op(G)P = G for any odd prime
p. Since

dim(UL (G))K = (dim UK − dimUG)−
∑

p∈π(G)

(
dimUOp(G)K − dimUG

)

for a subgroup K of G and a G-module U , then

d(IndG
KW )L (G)

(P, H) = dIndG
KW (P, H)− dIndG

KW (O2(G)P, O2(G)H).

By Proposition 4.1 it suffices to show that both (P\G/K)H/P and (O2(G)P\
G/K)O2(G)H/O2(G)P are empty. First we show that (O2(G)P\G/K)O2(G)H/O2(G)P

is empty. Suppose that O2(G)PgK ∈ (O2(G)P\G/K)O2(G)H/O2(G)P . Then
O2(G)HgK = O2(G)PgK. There is an element a of H r P such that a ∈
O2(G)PgKg−1. Since G/O2(G) is abelian and K ≤ O2(G)P , it holds that
a ∈ O2(G)P . It is a contradiction against [O2(G)H : O2(G)P ] = 2. There-
fore the set (O2(G)P\G/K)O2(G)H/O2(G)P is empty and then so is (P\G/K)H/P ,
since the identity map over G induces a map from (P\G/K)H/P to (O2(G)P\
G/K)O2(G)H/O2(G)P . ¤

Lemma 4.3. Let G be a finite group with [G : O2(G)] = 2 and C a cyclic
subgroup of G of even order such that C ∩ O2(G) has odd order. Let ξj be an
irreducible complex C-module whose character sends xk to exp((2jkπ

√−1)/|C|)
(0 ≤ j < |C|). Then
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d(IndG
Cξj)L (G)

(P, H) =





−|(P\G/C)H/P |+ 1, j = 0

|(P\G/C)H/P | − 1, j = |C|/2

0, j 6= 0, |C|/2

for any (P, H) ∈ D2(G) with dIndG
CV (C)(P, H) = 0.

Proof. Let x be an element of G such that 〈x〉 = C. It holds that

d(IndG
Cξj)L (G)

(P, H)

= dIndG
Cξj

(P, H)− dIndG
Cξj

(O2(G)P, O2(G)H)

=
∑

PgC∈(P\G/C)H/P

dξj

(
g−1Pg ∩ C, g−1Hg ∩ C

)− dIndG
Cξj

(O2(G), G)

=
∑

PgC∈(P\G/C)H/P

dξj
(O2(G) ∩ C,C)− dξj

(O2(G) ∩ C, C)

= −|(P\G/C)H/P | − 1
|C|/2

|C|/2∑

k=1

χξj
(x2k−1)

= −2(|(P\G/C)H/P | − 1)
|C|

|C|/2∑

k=1

exp
(

2j(2k − 1)π
√−1

|C|
)

= −2(|(P\G/C)H/P | − 1)
|C| exp

(
2jπ

√−1
|C|

) |C|/2∑

k=1

exp
(

4j(k − 1)π
√−1

|C|
)

=





−|(P\G/C)H/P |+ 1, j = 0

|(P\G/C)H/P | − 1, j = |C|/2

0, j 6= 0, |C|/2. ¤

Lemma 4.4. Let G be a finite group, P a subgroup of G of odd order, H a
subgroup of G with [H : P ] = 2, and C a cyclic subgroup of G of even order. Let a

be an element of C of order 2. Then (P\G/C)H/P = ∅ if and only if the conjugacy
class (a) in G does not meet with H. Furthermore, if bab−1 ∈ H for b ∈ G, then

(P\G/C)H/P = P\PbCG(a)/C.

In particular, if b−1Pb ≥ O2(CG(a)) and |C|/2 is odd, then
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|(P\G/C)H/P | = |CG(a)|
2|O2(CG(a))| .

Proof. Let PgC ∈ (P\G/C)H/P . Take an element h of H of order 2. Then
h /∈ P . Then PgC = PhgC which implies that xh ∈ gCg−1 for some x ∈ P . An
element of 〈xh〉 of order 2 forms x′h = gag−1 for some x′ ∈ P . Since any elements
of H of order 2 are conjugate in H, there is y ∈ H such that y−1hy = gag−1.
Thus (P\G/C)H/P is not empty if and only if a and h are conjugate in G. We
may assume that y ∈ P since if necessary we may replace y by yh. If bab−1 = h

for some b ∈ G, then g ∈ y−1bCG(a) ⊂ PbCG(a) since y−1bab−1y = gag−1 and
thus (P\G/C)H/P = P\PbCG(a)/C.

Suppose that b−1Pb ≥ O2(CG(a)) and |C|/2 is odd. Set P ′ = b−1Pb and
H ′ = b−1Hb. The group C is a subgroup of CG(a), a ∈ H ′ and P ′ ≥ O2(CG(a)).
Since a map

(P ′ ∩ CG(a))\CG(a) → P ′\P ′CG(a)

sending (P ′ ∩ CG(a))q to P ′q is a CG(a)-bijection as right CG(a)-sets, we have

P\PbCG(a)/C ∼= P ′\P ′CG(a)/C ∼= (P ′ ∩ CG(a))\CG(a)/C

= O2(CG(a))\CG(a)/C ∼= CG(a)/O2(CG(a))C

and thus

|(P\G/C)H/P | = |CG(a)|
2|O2(CG(a))| . ¤

Let CycIndout
L (G)(G) be the subset of CycIndL (G)(G) consisting of isomor-

phism classes of complex modules over cyclic subgroups C of G with C 6≤ O2(G).
We extend Proposition 3.1 slightly.

Proposition 4.5. Let G be a finite group with P(G) ∩ L (G) = ∅. The
following are equivalent.

(1) G is a gap group.
(2) There exist integers kV for V ∈ IrrL (G)(G) such that

∑

V ∈IrrL (G)(G)

kV dV (P, H) > 0

for any (P, H) ∈ E 2(G).



The gap hypothesis for finite groups 101

(3) There exist rational numbers qW for W ∈ CycIndout
L (G)(G) such that

∑

W∈CycIndout
L (G)(G)

qW dW (P, H) > 0

for any (P, H) ∈ E 2(G).
(4) There exist integers nW for W ∈ CycIndout

L (G)(G) such that

∑

W∈CycIndout
L (G)(G)

nW dW (P, H) > 0

for any (P, H) ∈ E 2(G).

Proof. We denote by C[G] the regular representation space. For an L (G)-
free complex G-module V , −V +mC[G]L (G) becomes an L (G)-free G-module for
a sufficiently large integer m, since C[G]L (G) contains every L (G)-free irreducible
complex G-module. Let U be an L (G)-free nonnegative complex G-module which
is positive on D(G)rE 2(G) by Theorem 2.3. We may assume that U has C[G]L (G)

as a submodule since if necessary we replace U by U ⊕ C[G]L (G). For (P, H) ∈
D(G), if (P, H) /∈ E 2(G) then U is positive at this pair (P, H) and thus there is an
integer m such that X+mU is an L (G)-free G-module which is positive on D(G)r
E 2(G) for X ∈ R(G). In particular, if dX(P, H) > 0 for an arbitrary (P, H) ∈
E 2(G), then X + mU is an L (G)-free gap G-module for some m. Therefore (1)
and (2) are equivalent.

Let C be a cyclic subgroup of O2(G) and ξ a complex C-module. For (P, H) ∈
D2(G), the set (P\G/C)H is empty, since [H : P ] = [O2(G)H : O2(G)P ] = 2.
Thus d(IndG

Cξ)L (G)
(P, H) = 0. Therefore, it holds that dW (P, H) = 0 for any

(P, H) ∈ E 2(G) and any W ∈ CycIndL (G)(G) r CycIndout
L (G)(G). The remaining

part of the proof is similar as the proof of Proposition 3.1 and so we omit it. ¤

5. Proof of Theorem 1.2.

Throughout this section we let G be a finite group such that P(G)∩L (G) =
∅, [G : O2(G)] = 2, and Op0(G) 6= G for a unique odd prime p0. Then E2(G) is a
subset of elements g of G outside O2(G) of order 2 such that O2(CG(g)) is not a
p0-group and E4(G) is the set of elements of order a power of 2 greater than 2.

For a subset E of D(G) suppose that there is an L (G)-free nonnegative G-
module W such that W is positive on D(G) r E . If an L (G)-free G-module V

satisfies that V is positive on E , then V ⊕ (dimV +1)W is a gap G-module. Thus
we give a condition for that there is an L (G)-free G-module V which is positive
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on E 2(G).
We write x ≥ y (resp. x > y), if xi ≥ yi (resp. xi > yi) for any i, where

x = t(x1, . . . , xk) and y = t(y1, . . . , yk). Let Q be the set of rational numbers.
Let S1 be a complete set of representatives of conjugacy classes of elements of

2-power order which does not lie in O2(G) and S3 the set consisting of all elements
of S outside E(G). Fix a Sylow 2-subgroup G2 of G. We may assume that CG2(x)
is a Sylow 2-subgroup of CG(x) for each x ∈ S1 without loss of generality. Since it
is not easy to determine ψ(x) for g ∈ G, we consider a weaker condition than one
of E(G). Note that p0 contains in ψ(x) for any element x of G, since Op0(G) 6= G.
Let S2 be the set consisting of all elements g of S1 such that |g| ≥ 4, or |g| = 2 and
O2(CG(g)) is a p0-group. Clearly, S3 ⊂ S2 ⊂ S1. Also note that P is a nontrivial
p0-group for (P, H) ∈ D2(G), since Op0(G)P = G. Let E 2

0 (G) be the set consisting
of all (P, H) ∈ D2(G) such that O2(CG(g)) is a subgroup of P for an arbitrary
element g of H rP of order 2. H rP has no element of order divisible by 4 since
|H| = 2p0

i for some i > 0 and all elements of H r P of order 2 are conjugate by
Sylow’s theorem. It holds that

E 2(G) ⊂ E 2
0 (G) ⊂ D2(G) ⊂ D(G).

Set n = |CycIndout
L (G)(G)| and m = |E 2

0 (G)|. Further, let D = (dV (P, H)) be
an m × n matrix whose columns correspond to V ∈ CycIndout

L (G)(G) and rows
correspond to (P, H) ∈ E 2

0 (G).
Since [G : O2(G)] = 2, we have

∑

a∈S2

|G2|
|CG2(a)| ≤

∑

a∈S1

|G2|
|CG2(a)| ≤ |G2|

(
1− |G2|

|O2(G) ∩G2|
)

=
|G2|
2

and thus

∑

a∈S2

2
|CG2(a)| ≤

∑

a∈S1

2
|CG2(a)| ≤ 1.

In particular, if E(G) is not empty, then

∑

a∈S2

2
|CG2(a)| < 1.

Note that any element of S2 has order 2. Let S2 = {x1, . . . , xr} and put sj =
|CG2(xj)/〈xj〉| for 1 ≤ j ≤ r. Then
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r∑

j=1

s−1
j ≤ 1.

Put

A = (a1, . . . ,ar) =




s1 − 1 −1 −1 · · · −1
−1 s2 − 1 −1 · · · −1

−1 −1 s3 − 1
. . .

...
...

...
. . . . . . −1

−1 −1 · · · −1 sr − 1




.

Theorem 5.1. The following are equivalent.

(1) G is a gap group.
(2)

∑r
j=1 s−1

j 6= 1.
(3) Z(G) := {y ∈ Zr | Ay = 0, y ≥ 0, y 6= 0} is empty.

Proof. Let (P, H) ∈ E 2
0 (G). Since |P | is odd and [H : P ] = 2, there is a

unique element xj of S2 such that (xj) ∩H r P 6= ∅. Let C be a cyclic subgroup
C of G with C 6≤ O2(G). Since [G : O2(G)] = 2, if gCg−1 ∩ H r P has an
element of order 2 for an element g ∈ G, the order |C| is not divisible by 4. Thus
if |C| is divisible by 4, then (P\G/C)H is empty. In addition, by Lemma 4.3, for
V ∈ CycIndout

L (G)(G), it holds that

dV (P, H) = −1, 0, ±(|(P\G/C)H/P | − 1
)
,

where V is an L (G)-free G-module induced from a cyclic subgroup C with C 6≤
O2(G).

If (xj) ∩ C = ∅ if and only if dV (P, H) = −1, since |(O2(G)P\G/C| = 1.
Otherwise, suppose that a := g−1xjg ∈ C for some g ∈ G. Then |C|/2 is odd
since [G : O2(G)] = 2. Let yxjy

−1 ∈ H r P for some y ∈ G. Since (yg)a(yg)−1 ∈
H r P , P contains O2(CG((yg)a(yg)−1)). By [11, Lemma 4.3], it holds that
dIndG

CV (C)(P, H) = 0. Thus,

∣∣(P\G/C)H/P
∣∣ =

|CG(xj)|
2|O2(CG(xj))| =

sj

2

by Lemma 4.4. Let D′ be the matrix with r rows by removing all duplicate rows
from the m × n matrix D = (dV (P, H)). The inequality Dx > 0 is equivalent
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to the inequality D′x > 0. Vectors a1, . . . ,ar are appeared in column vectors of
the matrix D′, and each column vector of D′ is a1, . . . ,ar, 0, or t(−1, . . . ,−1). If
necessary, permuting the column vectors of D′, we may assume that D′ = (A,A′)
for some r × (n− r) matrix A′.

Suppose that
∑r

j=1 s−1
j 6= 1, that is,

∑r
j=1 s−1

j < 1. Setting t = 1 −∑r
j=1 s−1

j > 0, we have

D′




(ts1)−1

...
(tsr)−1

0
...
0




= A




(ts1)−1

...
(tsr)−1


 =




1
...
1


 > 0.

Thus there is a vector x ≥ 0 in Qn such that Dx > 0 which implies that G is
a gap group by Proposition 4.5. Furthermore, there is a vector x > 0 such that
Ax > 0. Thus for an arbitrary nonzero vector y ≥ 0, it holds that txAy > 0 and
so Z(G) is an empty set. Therefore (2) implies both (1) and (3).

Conversely suppose that
∑r

j=1 s−1
j = 1. Then A is a singular symmetric

matrix. In fact, Ay = 0 for y = t(s−1
1 , . . . , s−1

r ) ∈ Qr. Thus y ∈ Z(G) which
means that (3) implies (2). If there is a vector x > 0 such that Ax > 0, then
ty(Ax) must be positive, since y > 0, but (tyA)x = 0, a contraction. Thus (1)
implies (2). ¤

Proof of Theorem 1.2. Note that
∑

a∈S1
(2/|CG2(a)|) ≤ 1. In particu-

lar if E4(G) 6= ∅ then

r∑

j=1

s−1
j <

∑

a∈S1

2
|CG2(a)| ≤ 1

and thus G is a gap group by Theorem 5.1. Suppose that E4(G) = ∅. The set S2

is a complete set of conjugacy classes (g) of elements g of G outside O2(G) of order
2 such that O2(CG(g)) is a p0-group. Thus the assertion immediately follows from
Theorem 5.1, since

r∑

j=1

s−1
j =

∑

a∈S2

2
|CG(a)/O2(CG(a))| . ¤
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Let A be a finite abelian group and h an element of order 2. Let D be a finite
group generated by A and h with relation hah = a−1 for any a ∈ h. We call the
group D a generalized dihedral group.

Theorem 5.1 implies the following corollaries.

Corollary 5.2. If one of the following properties holds, then G is a gap
group.

(1) E(G) is not empty.
(2) There are two elements of G2 r O2(G) of order 2 which are conjugate in G

but not conjugate in G2.
(3) G2 is not a generalized dihedral group.

Here G2 is a Sylow 2-subgroup of G.

Proof. If (1) or (2) holds, then it is easy to see that
∑r

j=1 s−1
j < 1 and

thus G is a gap group. Now we show the case (3). Suppose that G is not a gap
group. Then E4(G) = ∅ by (1). Thus any element of G2 r O2(G) has order 2.
Therefore G2 is a generalized dihedral group. ¤

Corollary 5.3. Let K be a finite group such that Op(K) 6= K for p = 2
and a unique odd prime p and L (K) ∩P(K) = ∅ and K2 a Sylow 2-subgroup of
K. If O2(K) ∩K2 is not abelian, then K is a gap group.

Proof. Suppose that K is not a gap group. By Theorem 1.1, there is a
subgroup L of G with [L : O2(K)] = 2 which is not a gap group. Then a Sylow
2-subgroup L2 of L is a generalized dihedral group by Corollary 5.2 (3). Since
O2(L) = O2(K), the group O2(K) ∩K2 = O2(L) ∩ L2 is abelian. ¤

By the similar proof of Theorem 5.1 replacing S2 and E 2
0 (G) by S3 and E 2(G)

respectively, we have the following theorem and omit the proof.

Theorem 5.4. The group G is a gap group if and only if

∑

g∈S3

2
|CG2(g)| 6= 1.

Corollary 5.5. Suppose that
∑r

j=1 s−1
j = 1. Then S2 = S3. Letting g be

an element of G outside O2(G) of order 2 and N a subgroup of G, if g ∈ N and
Op(N) 6= N for an odd prime p, then p = p0.

Proof. By the assumption, G is not a gap group. Then
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∑

g∈S2

2
|CG2(g)| =

∑

g∈S3

2
|CG2(g)| = 1

and thus S2 = S3. Let g be an element of G outside O2(G) of order 2 and N a
subgroup of G such that g ∈ N . Since an element conjugate to g lies in S3 then
ψ(g) = {p0}. Thus if Op(N) 6= N for an odd prime p, then p = p0. ¤
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