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Abstract. We correct a theorem on the conductor of elliptic curves over
Q given in Introduction of the paper “The cuspidal class number formula for
the modular curves X1 (2p)”.

In Introduction of Takagi [3], I gave a theorem concerning the conductor of
elliptic curves over Q. But, since our arguments contained an error, the statement
of the theorem had a surplus assumption in the case of the prime conductor. 1T
give the corrected statement in the following.

Let A be an elliptic curve over @ of conductor n. Let r be 5 or 7 with r { n.
Agashe [1] proved that if n is square-free and r divides the order of the Q-rational
torsion subgroup of A(Q), then r divides the cuspidal class number hg(n) of Xo(n).

When n is a prime, Ogg [6] has shown that hg(n) is equal to the numerator of
(n —1)/12. On the other hand, in Takagi [2, Theorem 5.1], we gave the cuspidal
class number formula for n square-free, generalizing the formula of Ogg. When n
is composite, we see from this that r divides ho(n) if and only if n has a prime
factor congruent to £1 modulo r. Combining these results we have the following

THEOREM. Let n be a square-free integer. Let A be an elliptic curve over
Q of conductor n. Let r be 5 or 7 with r { n.

(1) Assume that n is a prime. If A has a Q-rational point of order r, then n =1
(mod r).

(2) Assume that n is composite. If A has a Q-rational point of order r, then n
has a prime factor congruent to +1 modulo r.

ExaMPLES. In Table 1 of Cremona [4], all elliptic curves over @ of conductor
n < 1000 are listed. In the list there exist 45 elliptic curves A with 5 | |A(Q)|.

2010 Mathematics Subject Classification. Primary 11G18; Secondary 11F03, 11G05, 14GO05,
14G35, 14H40, 14H52.

Key Words and Phrases. modular curve, modular unit, cuspidal class number, elliptic curve,
Jacobian variety, torsion subgroup.


http://dx.doi.org/10.2969/jmsj/06410087

88 T. TAKAGI

Among them the number of the curves with 5 { n is 25, and all these 25 curves
have a square-free conductor. Among the 25 curves, the number of the curves
such that n is a prime is 2, and both of them (the curves 11A1 and 11A3) have
the conductor n = 11 = 1(mod5), which are examples of the case (1) of the
theorem. Among the other 23 curves which have a composite n, the number of
the curves such that n has a prime factor p with p = 1(mod5) (respectively
p = —1(mod5)) is 14 (respectively 9). The curves with the least n which have a
prime factor p = 1 (mod 5) are 66C1 and 66C2. Both of them have the conductor
n =606 =2-3-11 with p = 11. The curve with the least n which have a prime
factor p = —1 (mod 5) is 38B1, and its conductor is n = 38 = 2 - 19 with p = 19.

In the list there exist 10 elliptic curves A with 7 | |A(Q)|. Among them the
number of the curves with 7 1 n is 6, and all these 6 curves have a composite, square-
free conductor. Among the 6 curves, the number of the curves such that n has a
prime factor p with p = 1 (mod 7) (respectively p = —1 (mod 7)) is 4 (respectively
2). The curve with the least n which has a prime factor p = 1 (mod 7) is 174B1,
and its conductor is n =174 = 2 -3 - 29 with p = 29 = 1 (mod 7). The curve with
the least n which has a prime factor p = —1 (mod 7) is 26B1, and its conductor is
n=26=2-13 withp =13 = —1(mod7).

OBSERVATIONS. The theorem considers the elliptic curves of conductor n
with r f n. On the contrary, for the elliptic curves of conductor n with r | n, we
have the following observations. In Table 1 of Cremona [5], all elliptic curves over
Q of conductor n < 180000 are listed. In the list there exist 868 (respectively 54)
elliptic curves A with 5 | |A(Q)| (respectively 7 | |[A(Q)]), among them the number
of the curves such that 5 | n (respectively 7 | n) is 456 (respectively 21), and the
number of the curves such that 5 || n (respectively 7 || n) is 283 (respectively 12).
For each r = 5,7, we observe that all curves in this list with | |[A(Q)| and r || n
satisfy that the conductor n is square-free and has a prime factor congruent to +1
modulo 7.
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