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Abstract. We study lengths of helices of orders 3 and 4 which are gen-
erated by some Killing vector fields on a complex projective plane and on a
complex hyperbolic plane. We consider the moduli space of such helices under
the congruence relation and give a lamination structure on this space which
are closely related with the length spectrum. This shows that the moduli
space does not form a canonical building structure with respect to the length
spectrum.

1. Introduction.

When we study submanifolds in a non-flat complex space form, which is ei-
ther a complex projective space or a complex hyperbolic space, we know that some
extrinsic helical property of curves on submanifolds characterize these submani-
folds. For example, S. Maeda [11] characterized Veronese embeddings by a circular
property of extrinsic shapes of circles. It is also known that helices on a non-flat
complex space form have many different properties compared with helices on a real
space form, which is one of a standard sphere, a Euclidean space and a real hyper-
bolic space. Every helix on a real space form is generated by some Killing vector
field, but not for all on a non-flat complex space form. In the preceding paper [12]
Maeda and the author give a condition that helices on a non-flat complex space
form to be generated by some Killing vector field, and in [7], we show that there
are bounded helices of proper order 3 on a complex hyperbolic space. Needless to
say that all helices of proper order 3 are unbounded on a Euclidean space and on
a real hyperbolic space. We are hence interested in more on geometric properties
of helices on a non-flat complex space form; their closedness, their lengths and so
on.

In this paper we restrict ourselves to helices of proper order less than 5 on
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a non-flat complex space form which are generated by some Killing vector fields
and each of which lies on some totally geodesic complex plane. We call such
helices essential and Killing. As a sequel of the preceding papers [7], [12] we
study bounded property and closedness of essential Killing helices, and also give
their lengths. Our idea is based on combining a geometric property obtained
through Naitoh’s embedding in [14] and an algebraic property on cubic equations
associated with helices. By use of this result on lengths, we consider lamination
structures on a moduli space of helices, which is a set of congruence classes of
helices. In the preceding paper [2], we give lamination structures on moduli spaces
of helices of proper order less than 4 on real space forms. Corresponding to these
we give lamination structures on moduli spaces of Killing helices of proper order
less than 5 associated with length spectrum of helices on non-flat complex space
forms. We then find structures of these moduli spaces for real and complex space
forms are quite different from each other.

2. Essential Killing helices.

A smooth curve γ parameterized by its arclength on a Riemannian manifold
M is said to be a helix of proper order d if it satisfies the following system of
ordinary differential equations

∇γ̇Yj = −κj−1Yj−1 + κjYj+1, 1 ≤ j ≤ d, (2.1)

with positive constants κ1, . . . , κd−1 and an orthonormal system {Y1 = γ̇,

Y2, . . . , Yd} of vector fields along γ. Here we set κ0 = κd = 0 and Y0, Yd+1 to
be null vector fields along γ. These constants κ1, . . . , κd−1 and the frame field
{Y1, . . . , Yd} are called the geodesic curvatures and Frenet frame of γ, respectively.
A helix of proper order 1 is a geodesic and a helix of proper order 2 is called a
circle of positive geodesic curvature.

We say a helix to be Killing if it is generated by some Killing vector field.
Trivially every helix on a real space form is Killing. On the other hand, on a
non-flat complex space form CMn a helix is not necessarily Killing. For a helix γ

of proper order d with Frenet frame {Y1, . . . , Yd}, we define its complex torsions
τij (1 ≤ i < j ≤ d) by τij = 〈Yi, JYj〉, where J is the complex structure on CMn.
It was shown in [13] that a helix γ is Killing if and only if each of its complex
torsions are constant along γ. By (2.1) we see complex torsions of Killing helices
of proper order d satisfy the relations

(
τ ′ij =

) − κi−1τi−1 j + κiτi+1 j − κj−1τi j−1 + κjτi j+1 = 0, (2.2)
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where we set τij = 0 for i, j which do not satisfy 1 ≤ i < j ≤ d. It is known that
Killing helices are closely related with submanifolds in a complex space form. We
here give some examples. We denote by CPn(c) a complex projective space of
constant holomorphic sectional curvature c.

Example 1. Let f : CP 1(2) → CP 2(4) be a Veronese embedding of order
2 which is defined as f

(
[z0, z1]

)
=

[
z2
0 ,
√

2z0z1, z
2
1

]
with homogeneous coordinates.

If we consider a circle γ of positive geodesic curvature k on CP 1(2), then the
extrinsic shape f ◦ γ through f is as follows:

(1) When k =
√

2/2, it is a helix of proper order 3 with geodesic curvatures
κ1 =

√
6/2, κ2 =

√
3;

(2) otherwise, it is a helix of proper order 4 with geodesic curvatures κ1 =
√

k2 + 1,
κ2 = 3k/

√
k2 + 1, κ3 = |2k2 − 1|/√k2 + 1.

Example 2 ([9]). Let ι : G(r) → CPn(4) be an isometric embedding of a
geodesic sphere of radius r. For a geodesic γ we define its structure torsion τγ by
τγ = 〈γ̇,−JN 〉 with complex structure J on CPn and a unit normal N of G(r)
in CPn. Its extrinsic shape ι ◦ γ in CPn is as follows:

(1) When τγ = ± cot r in the case π/4 ≤ r < π/2, it is a geodesic;
(2) when τγ = ±1, it is a circle of geodesic curvature 2| cot 2r|;
(3) when τγ = 0, it is a circle of geodesic curvature cot r;
(4) otherwise, it is a helix of proper order 4 with geodesic curvature κ1 = | cot r−

τ2
γ tan r|, κ2 = |τγ |

√
1− τ2

γ tan r, κ3 = cot r.

Each of them lies on some totally geodesic CP 2.

On a non-flat complex space form CMn, it is clear that a helix of proper
order d lies on some totally geodesic CMm with m = min{n, 2d}. We shall call a
helix on CMn of proper order either 2d−1 or 2d essential if it lies on some totally
geodesic CMd. If we borrow a terminology in [16], we may say that it is complex
d-planner. Clearly, every geodesic on CMn lies on some totally geodesic CM1

hence is essential. A circle on CMn is essential if and only if its complex torsion
is τ12 = ±1. As we have relations (2.2) and |τij | ≤ 1, we obtain the following.

Lemma 1 ([5]).

(1) A helix of proper order 3 on CMn is essential and Killing if and only if its
geodesic curvatures and complex torsions satisfy

τ12 = ± κ1√
κ2

1 + κ2
2

, τ13 = 0, τ23 = ± κ2√
κ2

1 + κ2
2

,
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where double signs take the same signatures.
(2) A helix of proper order 4 on CMn is essential and Killing if and only if their

geodesic curvatures and complex torsions satisfy one of the following;

i) τ12 = τ34 = ± κ1 + κ3√
κ2

2 + (κ1 + κ3)2
, τ23 = τ14 = ± κ2√

κ2
2 + (κ1 + κ3)2

,

τ13 = τ24 = 0,

ii) τ12 = −τ34 = ± κ1 − κ3√
κ2

2 + (κ1 − κ3)2
, τ23 = −τ14 = ± κ2√

κ2
2 + (κ1 − κ3)2

,

τ13 = τ24 = 0.

In each of the above conditions double signs take the same signatures.

As a consequence of this, we find that if γ is an essential Killing helix of proper
order 3 on CMn then the vector fields in its Frenet frame {γ̇, Y2, Y3} satisfy

Y3 =
(

κ1

κ2

)
γ̇ ∓

(√
κ2

1 + κ2
2

κ2

)
JY2.

Also, if γ is an essential Killing helix of proper order 4 on CMn, the vector fields
in its Frenet frame {γ̇, Y2, Y3, Y4} satisfy





κ2Y3 = (κ1 + κ3)γ̇ ∓
√

κ2
2 + (κ1 + κ3)2JY2,

κ2Y4 = ∓
√

κ2
2 + (κ1 + κ3)2Jγ̇ − (κ1 + κ3)Y2,

in the case i) in Lemma 1, and they satisfy





κ2Y3 = (κ1 − κ3)γ̇ ∓
√

κ2
2 + (κ1 − κ3)2JY2,

κ2Y4 = ±
√

κ2
2 + (κ1 − κ3)2Jγ̇ + (κ1 − κ3)Y2,

in the case of ii) in Lemma 1.
In the following sections, we study essential Killing helices of proper orders 3

and 4 on a complex projective space CPn(4) and on a complex hyperbolic space
CHn(−4) of constant holomorphic sectional curvature −4. We say a smooth curve
γ parameterized by its arclength closed if there is positive tc satisfying γ(t + tc) =
γ(t) for all t. The minimal positive tc with this property is called the length of γ

and is denoted by length(γ). When a smooth curve γ is not closed, we say it is
open and set length(γ) = ∞. On CPn(4), circles of geodesic curvature κ and of
complex torsion ±1 are closed and have length 2π/

√
κ2 + 4 (see [1]).
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3. Lengths of essential Killing helices on CP n.

In this section we study when essential Killing helices of proper orders 3 and
4 are closed on a complex projective space. When we study curves on a complex
projective space, it is a basic idea to use a Hopf fibration $ : S2n+1 → CPn(4)
of a standard sphere of radius 1 onto a complex projective space of constant
holomorphic sectional curvature 4. We denote by N the outward unit normal of
S2n+1 in Cn+1. The Riemannian connections ∇ and ∇ on CPn(4) and Cn+1 are
related by

∇XY = ∇XY − 〈X, Y 〉N + 〈X, JY 〉JN (3.1)

for arbitrary vector fields X, Y on CPn(4). Here we regard X, Y as horizontal
vector fields on S2n+1 and we denote the complex structure on Cn+1 also by J .

For the sake of later use, we here summarize some results in [5] which were
obtained by two ways; a geometrical way through the isometric immersion given
by Naitoh [14] and an arithmetical way through the Hopf fibration. We take a
circle σ of geodesic curvature 1/

√
2 and of complex torsion τ (0 ≤ |τ | < 1) on

CPn(4). By the relation (3.1) we find its horizontal lift σ̂ with respect to the Hopf
fibration satisfies the differential equation

σ̂′′′ +
(

3
2

)
σ̂′ −√−1

(
τ√
2

)
σ̂ = 0

as a curve in Cn+1. We consider its characteristic equation λ3 + (3/2)λ −√−1τ/
√

2 = 0. By putting Λ = −√−1λ we obtain a cubic equation

Λ3 −
(

3
2

)
Λ +

τ√
2

= 0, (3.2)

which has three distinct real solutions a, b, c (a < b < c). Thus we find σ is of the
form σ(t) = $(Ae

√−1at + Be
√−1bt + Ce

√−1ct) with some A,B, C ∈ Cn+1. We
therefore find the following.

Fact 1 ([8]). Let σ be a circle of geodesic curvature 1/
√

2 and of complex
torsion τ (0 ≤ |τ | < 1) on CPn(4).

(1) If 0 < |τ | < 1, it is closed if and only if one of (hence all of) the ratios
a/b, b/c, c/a of the solutions of (3.2) is (are) rational. In this case its length is
given as
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length(σ) = 2π × L.C.M.
(
(b− a)−1, (c− a)−1

)
,

where L.C.M.(α, β) for positive numbers α, β denotes the minimum number
in the set {α, 2α, 3α, . . .} ∩ {β, 2β, 3β, . . .}.

(2) If τ = 0, the solutions of (3.2) are ±√6/2 and 0 (i.e. b = 0 and a = −c), hence
σ is closed and length(σ) = 2π/c = 2

√
6π/3.

On the other hand, we have the following.

Fact 2 ([8]). Let σ be a circle of geodesic curvature 1/
√

2 and of complex
torsion τ on CPn(4).

(1) If τ = ±1, it is closed and of length 2
√

2π/3.
(2) If τ = 0, it is closed and of length 2

√
6π/3.

(3) Otherwise, it is closed if and only if τ = q(9p2 − q2)(3p2 + q2)−3/2 with some
relatively prime positive integers p, q (p > q). In this case

length(σ) =
1
3
δ(p, q)π

√
2(3p2 + q2),

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

We now study an essential Killing helix γ of proper order 3 on CPn(4) with
geodesic curvatures κ1, κ2. We consider its horizontal lift γ̂ on S2n+1 with respect
to the Hopf fibration. Since its Frenet frame {Y1 = γ̇, Y2, Y3} satisfies the relation
κ2Y3 = κ1γ̇ ∓

√
κ2

1 + κ2
2JY2, we find by use of (3.1) that

∇γ̇∇γ̇ γ̇ = κ1∇γ̇Y2 − γ̇ = −(
κ2

1 + 1
)
γ̇ + κ1κ2Y3 + κ1τ12JN

= −γ̇ ∓
√

κ2
1 + κ2

2 J
(∇γ̇ γ̇ + N

)± κ2
1√

κ2
1 + κ2

2

JN .

Thus γ̂ satisfies the differential equation

γ̂′′′ ±
√
−(κ2

1 + κ2
2) γ̂′′ + γ̂′ ±

√−1κ2
2√

κ2
1 + κ2

2

γ̂ = 0 (3.3)

if we regard it as a curve in Cn+1. Comparing this with the equation of a horizontal
lift of a circle we obtain the following.

Theorem 1. Let γ be an essential Killing helix of proper order 3 on CPn(4)
with geodesic curvatures κ1, κ2 and complex torsion τ12 = ±κ1/

√
κ2

1 + κ2
2. We set
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τP (κ1, κ2) =
2(κ2

1 + κ2
2)

2 + 9(κ2
1 − 2κ2

2)
2(κ2

1 + κ2
2 + 3)3/2

√
κ2

1 + κ2
2

.

(1) When 0 < κ1 ≤
√

6/2 and 2κ2
2 = 9−2κ2

1±3
√

3(3− 2κ2
1), then τP (κ1, κ2) = 0

and γ is closed of length 2
√

3π/
√

κ2
1 + κ2

2 + 3.
(2) When τP (κ1, κ2) = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively prime

positive integers p, q with p > q, then γ is closed of length

δ(p, q)π

√
3p2 + q2

√
κ2

1 + κ2
2 + 3

,

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.
(3) Otherwise, it is open.

Proof. We study the characteristic equation

λ3 ±
√
−(κ2

1 + κ2
2) λ2 + λ±

√−1 κ2
2√

κ2
1 + κ2

2

= 0 (3.4)

for the differential equation (3.3) on a horizontal lift of γ. By putting θ =
{−3

√−1λ±
√

κ2
1 + κ2

2}/
√

2(κ2
1 + κ2

2 + 3), we find it turns to

θ3 − 3
2
θ ± 2(κ2

1 + κ2
2)

2 + 9(κ2
1 − 2κ2

2)
2
√

2(κ2
1 + κ2

2 + 3)3/2
√

κ2
1 + κ2

2

= 0. (3.5)

If we denote by
√−1ai (i = 1, 2, 3, a1 ≤ a2 ≤ a3) the solutions of (3.4), then the

solutions for (3.5) are âi = (3ai ±
√

κ2
1 + κ2

2)/
√

2(κ2
1 + κ2

2 + 3) (i = 1, 2, 3). Since
γ is expressed as

γ(t) = $
(
A1e

√−1a1t + A2e
√−1a2t + A3e

√−1a3t
)

= $
(
A1 + A2e

√−1(a2−a1)t + A3e
√−1(a3−a1)t

)

with some A1, A2, A3 ∈ Cn+1, we see γ is closed if and only if (a2 − a1)/(a3 − a1)
is rational. This condition is equivalent to the condition that the number (â2 −
â1)/(â3 − â1) is rational. As â1 + â2 + â3 = 0, we find that this condition holds
when τP (κ1, κ2) = 0 and that this condition is equivalent to the condition that
one of (hence all of) â2/â1, â3/â2, â1/â3 is (are) rational when τP (κ1, κ2) 6= 0. In
the latter case its length is given as
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length(γ) = 2π × L.C.M.
(
(a2 − a1)−1, (a3 − a1)−1

)

=
6π√

2(κ2
1 + κ2

2 + 3)
× L.C.M.

(
(â2 − â1)−1, (â3 − â1)−1

)
,

We here compare two cubic equations (3.2) and (3.5). We find â1, â2, â3 are
the solutions for (3.2) with τ = τP (κ1, κ2). By direct computation we see
|τP (κ1, κ2)| < 1. Since Fact 1 and 2 combine algebraic and geometric conditions,
we get the conclusion. ¤

Next we study essential Killing helices of proper order 4 on CPn(4). We first
consider an essential Killing helix γ of proper order 4 with geodesic curvatures
κ1, κ2, κ3 whose complex torsions satisfy the relations in Lemma 1 (2-i). By use
of (3.1) we find its horizontal lift γ̂ satisfies the differential equation

γ̂′′′ ±
√
−{κ2

2 + (κ1 + κ3)2} γ̂′′

+ (1− κ1κ3)γ̂′ ±
√−1 {κ2

2 + κ3(κ1 + κ3)}√
{κ2

2 + (κ1 + κ3)2}
γ̂ = 0. (3.6)

Its characteristic equation with variable λ turns to

θ3 −
(

3
2

)
θ ± τ+

P (κ1, κ2, κ3)√
2

= 0

with

τ+
P (κ1, κ2, κ3)

=
2{κ2

2 + (κ1 + κ3)2}2 − 9(2 + κ1κ3){κ2
2 + (κ1 + κ3)2}+ 27κ1(κ1 + κ3)

2{κ2
2 + (κ1 + κ3)2 + 3(1− κ1κ3)}3/2

√
κ2

2 + (κ1 + κ3)2
,

if we put

θ =
−3
√−1λ±

√
κ2

2 + (κ1 + κ3)2√
2{κ2

2 + (κ1 + κ3)2 + 3− 3κ1κ3}
.

Along the same lines as in the proof of Theorem 1, we obtain the following.

Theorem 2. Let γ be an essential Killing helix of proper order 4 on
CPn(4) with geodesic curvatures κ1, κ2, κ3 and complex torsion τ12 = ±(κ1 +κ3)/√

(κ1 + κ3)2 + κ2
2.
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(1) When its geodesic curvatures satisfy the relation

4κ2
2 = 9(2 + κ1κ3)− 4(κ1 + κ3)2 ± 3

√
3(12− 8κ2

1 + 4κ1κ3 + 3κ2
1κ

2
3),

then τ+
P (κ1, κ2, κ3) = 0, and γ is closed and is of length

2
√

3π√
κ2

2 + (κ1 + κ3)2 + 3− 3κ1κ3

.

(2) When τ+
P (κ1, κ2, κ3) = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively prime

positive integers p, q with p > q, then γ is closed and is of length

δ(p, q)π
√

3p2 + q2

√
κ2

2 + (κ1 + κ3)2 + 3− 3κ1κ3

.

(3) Otherwise, it is open.

We next consider an essential Killing helix γ of proper order 4 with geodesic
curvatures κ1, κ2, κ3 whose complex torsions satisfy the relations in Lemma 1 (2-
ii). We find its horizontal lift γ̂ of γ satisfies

γ̂′′′ ±
√
−{κ2

2 + (κ1 − κ3)2} γ̂′′

+ (1 + κ1κ3)γ̂′ ±
√−1 {κ2

2 − κ3(κ1 − κ3)}√
{κ2

2 + (κ1 − κ3)2}
γ̂ = 0. (3.7)

Its characteristic equation with variable λ turns to

θ3 −
(

3
2

)
θ ± τ−P (κ1, κ2, κ3)√

2
= 0

with

τ−P (κ1, κ2, κ3)

=
2{κ2

2 + (κ1 − κ3)2}2 − 9(2− κ1κ3){κ2
2 + (κ1 − κ3)2}+ 27κ1(κ1 − κ3)

2{κ2
2 + (κ1 − κ3)2 + 3(1 + κ1κ3)}3/2

√
κ2

2 + (κ1 − κ3)2
.

if we put
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θ =
−3
√−1λ±

√
κ2

2 + (κ1 − κ3)2√
2{κ2

2 + (κ1 − κ3)2 + 3 + 3κ1κ3}
.

We can hence conclude the following.

Theorem 3. Let γ be an essential Killing helix of proper order 4 on
CPn(4) with geodesic curvatures κ1, κ2, κ3 and complex torsion τ12 = ±(κ1−κ3)/√

(κ1 − κ3)2 + κ2
2.

(1) When its geodesic curvatures satisfy the relation

4κ2
2 = 9(2− κ1κ3)− 4(κ1 − κ3)2 ± 3

√
3(12− 8κ2

1 − 4κ1κ3 + 3κ2
1κ

2
3),

then τ−P (κ1, κ2, κ3) = 0, and γ is closed and is of length

2
√

3π√
κ2

2 + (κ1 − κ3)2 + 3 + 3κ1κ3

.

(2) When τ−P (κ1, κ2, κ3) = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively prime
positive integers p, q with p > q, then γ is closed and is of length

δ(p, q)π
√

3p2 + q2

√
κ2

2 + (κ1 − κ3)2 + 3 + 3κ1κ3

.

(3) Otherwise, it is open.

4. Behavior of essential Killing helices on CHn.

In this section we study some properties of essential Killing helices on a
complex hyperbolic space. We call a smooth curve γ unbounded in both di-
rections if both of the sets γ((−∞, 0]), γ([0,∞)) are unbounded. As a complex
hyperbolic space CHn is an example of a Hadamard manifold, we can consider
its ideal boundary ∂CHn with respect to the cone topology. For a smooth
curve γ which is unbounded in both directions, we set γ(∞) = limt→∞ γ(t),
γ(−∞) = limt→−∞ γ(t) ∈ ∂CHn if they exist. We call them the points at infinity
of γ. We shall call a smooth curve γ horocyclic if the following two conditions
hold:

i) γ(∞) = γ(−∞);
ii) if γ and a geodesic σ satisfying σ(∞) = γ(∞) cross at some point, then

they cross orthogonally at that point.
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Let $ : H2n+1
1 → CHn(−4) denote a canonical fibration of an anti de-Sitter

space H2n+1
1 (⊂ Cn+1) to a complex hyperbolic space of constant holomorphic

sectional curvature −4. We consider a Hermitian form 〈〈 , 〉〉 on Cn+1 defined by
〈〈z, w〉〉 = −z0w̄0+z1z̄1+· · ·+znw̄n for z = (z0, . . . , zn), w = (w0, . . . , wn) ∈ Cn+1.
The space H2n+1

1 is given as H2n+1
1 = {z ∈ Cn+1 | 〈〈z, z〉〉 = −1}. The Riemannian

connections ∇ and ∇ on CHn(−4) and on Cn+1 are related by

∇XY = ∇XY + 〈X, Y 〉N − 〈X, JY 〉JN (4.1)

for arbitrary vector fields X, Y on CHn(−4). Here we regard X, Y as horizontal
vector fields on H2n+1

1 and N denotes a normal vector field on H2n+1
1 in Cn+1

with 〈〈N ,N 〉〉 = −1.
We take an essential Killing helix γ of proper order 3 with geodesic curvatures

κ1, κ2 on CHn(−4). Since its Frenet frame {γ̇, Y2, Y3} satisfies the relation κ2Y3 =
κ1γ̇∓

√
κ2

1 + κ2
2JY2, by use of (4.1) we find its horizontal lift γ̂ on H2n+1

1 satisfies
the differential equation

γ̂′′′ ±
√
−(κ2

1 + κ2
2) γ̂′′ − γ̂′ ∓

√−1 κ2
2√

κ2
1 + κ2

2

γ̂ = 0 (4.2)

if we regard it as a curve in Cn+1.

Theorem 4. Let γ be an essential Killing helix of proper order 3
on CHn(−4) with geodesic curvatures κ1, κ2 and complex torsion τ12 =
±κ1/

√
κ2

1 + κ2
2.

(1) It is bounded if and only if its geodesic curvatures satisfy one of the following
conditions:

i) 0 < κ2 < 1/2 and (1− 4κ2
2)κ

2
1 > 2{2κ4

2 − 5κ2
2 + 1 + (1− 3κ2

2)
3/2};

ii) κ2 = 1/2 and κ1 > 5
√

2/4;
iii) 1/2 < κ2 < 1/

√
3 and

2
{− 2κ4

2 + 5κ2
2 − 1− (1− 3κ2

2)
3/2

}

< (4κ2
2 − 1)κ2

1 < 2
{− 2κ4

2 + 5κ2
2 − 1 + (1− 3κ2

2)
3/2

}
.

(2) When γ is not bounded, it is unbounded in both directions. In the cases
i) (1− 4κ2

2)κ
2
1 = 2

{
2κ4

2 − 5κ2
2 + 1 + (1− 3κ2

2)
3/2

}
with 0 < κ2 ≤ 1/2,

ii) (4κ2
2 − 1)κ2

1 = 2
{− 2κ4

2 + 5κ2
2 − 1± (1− 3κ2

2)
3/2

}
with 1/2 < κ2 ≤ 1/

√
3,

it has single point at infinity. In particular, if κ1 = 2
√

6/3, κ2 = 1/
√

3, it is
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horocyclic. In other cases, it has two distinct points at infinity.
(3) When γ is bounded, we set

τH(κ1, κ2) =
2(κ2

1 + κ2
2)

2 − 9(κ2
1 − 2κ2

2)
2(κ2

1 + κ2
2 − 3)3/2

√
κ2

1 + κ2
2

.

1) When 0 < κ1 < 3/
√

2 and 2κ2
2 = 3

√
6κ2

1 + 9− 2κ2
1− 9, then τH(κ1, κ2) =

0, and γ is closed and is of length 2
√

3π/
√

κ2
1 + κ2

2 − 3.
2) When τH(κ1, κ2) = ±q(9p2−q2)(3p2 +q2)−3/2 with some relatively prime

positive integers p, q with p > q, then γ is closed and is of length

δ(p, q)π

√
3p2 + q2

√
κ2

1 + κ2
2 − 3

.

3) Otherwise, it is open.

Proof. We consider the characteristic equation

λ3 ±
√
−(κ2

1 + κ2
2) λ2 − λ∓

√−1 κ2
2√

κ2
1 + κ2

2

= 0. (4.3)

of the differential equation (4.2). It turns to

Θ3 − 1
3
(
κ2

1 + κ2
2 − 3

)
Θ± 2(κ2

1 + κ2
2)

2 − 9(κ2
1 − 2κ2

2)
27

√
κ2

1 + κ2
2

= 0 (4.4)

if we put Θ = −√−1λ±
√

κ2
1 + κ2

2/3. When κ2
1 +κ2

2 ≤ 3, it is clear that this cubic
equation has only one real solution, except the case κ2

1 = 8/3, κ2
2 = 1/3. In the

exceptional case, 0 is the triple solution of this equation. Thus when κ2
1 + κ2

2 ≤ 3
we find γ is unbounded in both directions. When κ2

1 + κ2
2 > 3, by putting θ =

3Θ/
√

2(κ2
1 + κ2

2 − 3) we find the cubic equation (4.4) turns to

θ3 −
(

3
2

)
θ ± τH(κ1, κ2)√

2
= 0.

It is clear that it has only one real solution and two imaginary solutions when
|τH(κ1, κ2)| > 1 and that it has one double real solution when |τH(κ1, κ2)| = 1. In
these cases γ is also unbounded in both directions. Here, by direct computation
we have |τH(κ1, κ2)| ≥ 1 if and only if
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(
4κ2

2 − 1
)
κ4

1 + 4
(
2κ4

2 − 5κ2
2 + 1

)
κ2

1 + 4κ2
2

(
κ2

2 + 1
)2 ≥ 0.

When |τH(κ1, κ2)| < 1, comparing this cubic equation with (3.2), we obtain our
conclusions on bounded essential Killing helices of proper order 3.

What we have to show is the asymptotic behavior of unbounded essential
Killing helices. We represent CHn as a unit ball Dn(C) = {w = (w1, . . . , wn) ∈
Cn | ∑n

i=1 wiwi < 1}. By use of homogeneous coordinate the identification
CHn → Bn(C) is given by [z0, . . . , zn] 7→ (z1/z0, . . . , zn/z0). The ideal boundary
of CHn corresponds to the topological boundary of Dn(C). When (4.3) has
solutions of type

√−1α + β and
√−1α − β with real α, β (β > 0), we see γ is of

the form

γ(t) = $
(
Ae

√−1at + Be
√−1αt+βt + Ce

√−1αt−βt
)

with some real a and vectors A,B, C ∈ Cn+1. If we consider it on the ball model
Dn(C), its points at infinity are (B1/B0, . . . , Bn/B0) and (C1/C0, . . . , Cn/C0).
Since γ̂ does not satisfy differential equation of order less than 3, we find these
point do not coincide. Hence we see γ has two distinct points at infinity in this
case.

We hence consider the case κ2
1 = 8/3, κ2

2 = 1/3 and the case κ2
1 + κ2

2 > 3
and τH(κ1, κ2) = 1. In the former case, under the condition γ(0) = $(z), γ̇(0) =
d$(z, u), ∇γ̇ γ̇(0) = κ1d$(z, v) we have

γ(t) = $

(
z + t

(
u±

√
−1

3
z

)
+ t2

(√
2
3

v ±
√
−1

3
u +

z

3

))
,

hence it has single point at infinity. Further more, if we take a geodesic σ with
σ(0) = $(z), σ̇(0) = d$(z,

√
6 v ± √−3 u), it satisfies σ(∞) = γ(∞). As σ̇(0) is

orthogonal to γ̇(0), we find γ is horocyclic. In the latter case, the solutions of (4.3)
are ±√−1(K + L), ±√−1(K + L), ±√−1(−2K + L) with K =

√
κ2

1 + κ2
2 − 3/3,

L = −
√

κ2
1 + κ2

2/3. Hence γ is of the form

γ(t) = $
(
e±
√−1Lt

(
(A + tB)e±

√−1Kt + Ce∓2
√−1Kt

))
.

Hence we find it has single point at infinity. ¤

We here note that the first assertion of the above theorem was shown in [7].

Remark 1. When κ1 = 5/2
√

2, κ2 = 1/2, an essential unbounded Killing
helix γ in Theorem 4 is of the form
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γ(t) = $
(
(A + tB)e∓

√−6t/6 + Ce∓5
√−6t/12

)
,

A =
29
9

z ± 8
√

6
9

Ju +
10
√

2
3

v, B = ∓7
√

6
18

Jz +
7
3
u∓ 5

√
3

3
Jv,

C = −20
9

z ∓ 8
√

6
9

Ju− 10
√

2
3

v,

under initial condition γ(0) = $(z), γ̇(0) = d$(z, u), ∇γ̇ γ̇(0) = κ1d$(z, v). As
‖5√3v ± 7Ju‖2 = 124∓ 70

√
3τ12 = 22/3 does not coincide with (7/

√
6)2, we find

γ is not horocyclic.

Next we study essential Killing helices of proper order 4 on CHn(−4). We
first consider an essential Killing helix γ of proper order 4 with geodesic curvatures
κ1, κ2, κ3 whose complex torsions satisfy the relations in Lemma 1 (2-i). By use
of (4.1) we find its horizontal lift γ̂ on H2n+1

1 satisfies the differential equation

γ̂′′′ ±
√
−{κ2

2 + (κ1 + κ3)2} γ̂′′

− (1 + κ1κ3)γ̂′ ∓
√−1 {κ2

2 + κ3(κ1 + κ3)}√
{κ2

2 + (κ1 + κ3)2}
γ̂ = 0 (4.5)

as a curve in Cn+1.

Theorem 5. Let γ be an essential Killing helix of proper order 4 on
CHn(−4) with geodesic curvatures κ1, κ2, κ3 and complex torsion τ12 = ±(κ1 +
κ3)/

√
(κ1 + κ3)2 + κ2

2.

(1) It is unbounded in both directions if and only if its geodesic curvatures satisfy
one of the following conditions:

i) (3/4)κ2
1 + κ2

2 + {κ3 − (κ1/2)}2 ≤ 3;
ii) (3/4)κ2

1 + κ2
2 + {κ3 − (κ1/2)}2 > 3 and |τ+

H (κ1, κ2, κ3)| ≥ 1, where

τ+
H (κ1, κ2, κ3)

=
2{κ2

2 + (κ1 + κ3)2}2 + 9(2− κ1κ3){κ2
2 + (κ1 + κ3)2} − 27κ1(κ1 + κ3)

2{κ2
2 + (κ1 + κ3)2 − 3(1 + κ1κ3)}3/2

√
κ2

2 + (κ1 + κ3)2
.

Otherwise it is bounded.
(2) In the cases

i) (3/4)κ2
1 + κ2

2 + {κ3 − (κ1/2)}2 = 3,
ii) (3/4)κ2

1 + κ2
2 + {κ3 − (κ1/2)}2 > 3 and τ+

H (κ1, κ2, κ3) = ±1,
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it has single point at infinity. If γ is not bounded and its geodesic curvatures
do not satisfy above, it has two distinct points at infinity.

(3) Suppose γ is bounded. Hence (3/4)κ2
1 + κ2

2 + {κ3 − (κ1/2)}2 > 3 and
|τ+

H (κ1, κ2, κ3)| < 1.

1) When τ+
H (κ1, κ2, κ3) = 0, then γ is closed and is of length

2
√

3π√
κ2

2 + (κ1 + κ3)2 − 3(1 + κ1κ3)
.

2) When τ+
H (κ1, κ2, κ3) = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively

prime positive integers p, q with p > q, then γ is closed and is of length

δ(p, q)π
√

3p2 + q2

√
κ2

2 + (κ1 + κ3)2 − 3(1 + κ1κ3)
.

3) Otherwise, it is open.

Proof. The characteristic equation of (4.5) with variable λ turns to

Θ3 − 1
3
{
κ2

2 + (κ1 + κ3)2 − 3(1 + κ1κ3)
}
Θ

± 1
27

[
2{κ2

2 + (κ1 + κ3)2}2

− 9(1 + κ1κ3){κ2
2 + (κ1 + κ3)2}+ 27{κ2

2 + κ3(κ1 + κ3)}
]

× {κ2
2 + (κ1 + κ3)2}−1/2

= 0.

if we put Θ = −√−1λ ± (1/3)
√

κ2
2 + (κ1 + κ3)2. When κ2

2 + (κ1 + κ3)2 ≤
3(1 + κ1κ3), it has only one real solution, hence we find γ is unbounded
in both directions. When κ2

2 + (κ1 + κ3)2 > 3(1 + κ1κ3), we set θ =
3Θ/

√
2{κ2

2 + (κ1 + κ3)2 − 3(1 + κ1κ3)}. We then find the characteristic equation
turns to θ3 − (3/2)θ ± τ+

H (κ1, κ2, κ3)/
√

2 = 0. We hence get the conclusion. ¤

We next consider an essential Killing helix γ of proper order 4 with geodesic
curvatures κ1, κ2, κ3 whose complex torsions satisfy the relations in Lemma 1 (2-
ii). By use of (4.1) we find its horizontal lift γ̂ on H2n+1

1 satisfies the differential
equation
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γ̂′′′ ±
√
−{κ2

2 + (κ1 − κ3)2} γ̂′′

− (1− κ1κ3)γ̂′ ∓
√−1 {κ2

2 − κ3(κ1 − κ3)}√
κ2

2 + (κ1 − κ3)2
γ̂ = 0 (4.6)

as a curve in Cn+1.

Theorem 6. Let γ be an essential Killing helix of proper order 4 on
CHn(−4) with geodesic curvatures κ1, κ2, κ3 and complex torsion τ12 = ±(κ1 −
κ3)/

√
(κ1 − κ3)2 + κ2

2.

(1) It is unbounded in both directions if and only if its geodesic curvatures satisfy
one of the following conditions:

i) (3/4)κ2
1 + κ2

2 + {κ3 + (κ1/2)}2 ≤ 3;
ii) (3/4)κ2

1 + κ2
2 + {κ3 + (κ1/2)}2 > 3 and |τ−H (κ1, κ2, κ3)| ≥ 1, where

τ−H (κ1, κ2, κ3)

=
2{κ2

2 + (κ1 − κ3)2}2 + 9(2 + κ1κ3){κ2
2 + (κ1 − κ3)2} − 27κ1(κ1 − κ3)

2{κ2
2 + (κ1 − κ3)2 − 3(1− κ1κ3)}3/2

√
κ2

2 + (κ1 − κ3)2
.

Otherwise it is bounded.
(2) In the cases

i) (3/4)κ2
1 + κ2

2 + {κ3 + (κ1/2)}2 = 3,
ii) (3/4)κ2

1 + κ2
2 + {κ3 + (κ1/2)}2 > 3 and τ−H (κ1, κ2, κ3) = ±1,

it has single point at infinity. If γ is not bounded and its geodesic curvatures
do not satisfy above, it has two distinct points at infinity.

(3) Suppose γ is bounded. Hence (3/4)κ2
1 + κ2

2 + {κ3 + (κ1/2)}2 > 3 and
|τ−H (κ1, κ2, κ3)| < 1.

1) When τ−H (κ1, κ2, κ3) = 0, then γ is closed and is of length

2
√

3π√
κ2

2 + (κ1 − κ3)2 − 3(1− κ1κ3)
.

2) When τ−H (κ1, κ2, κ3) = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively
prime positive integers p, q with p > q, then γ is closed and is of length

δ(p, q)π
√

3p2 + q2

√
κ2

2 + (κ1 − κ3)2 − 3(1− κ1κ3)
.

3) Otherwise, it is open.
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5. Lamination on the moduli space of essential Killing helices.

We devote this section for constructing lamination structures on moduli spaces
of essential Killing helices of order less than 5 on non-flat complex space forms.
We call two smooth curves γ1, γ2 on a Riemannian manifold M which are param-
eterized by their arclengths congruent to each other if there exist an isometry ϕ of
M and a constant t0 with γ2(t+t0) = ϕ◦γ1(t) for all t. We denote by E Hd(CMn)
the set of all congruence classes of essential Killing helices of porper order d on
CMn. It is known that two helices γ1, γ2 are congruent to each other if and only
if they satisfy the following conditions:

i) they are of the same proper order d;
ii) their geodesic curvatures coincide, i.e. κ

(1)
j = κ

(2)
j for 1 ≤ j ≤ d− 1;

iii) there is t0 satisfying either τ
(1)
ij (t0) = τ

(2)
ij (0) for 1 ≤ i < j ≤ d or τ

(1)
ij (t0) =

−τ
(2)
ij (0) for 1 ≤ i < j ≤ d.

Here κ
(`)
j and τ

(`)
ij denote the geodesic curvature and the complex torsion of γ`. By

Lemma 1 we find that the moduli spaces of essential Killing helices are as follows:

E H1(CMn) ∼= {0}, E H2(CMn) ∼= (0,∞),

E H3(CMn) ∼= (0,∞)2, E H4(CMn) ∼= (0,∞)2 × (
R \ {0}).

Here, for a point (κ1, κ2, κ3) ∈ (0,∞)2×(
R\{0}), it corresponds to the congruence

class of Killing helices with geodesic curvatures κ1, κ2, κ3 and complex torsions in
the condition (2-i) in Lemma 1 if κ3 > 0, and it corresponds to the congruence
class of Killing helices with geodesic curvatures κ1, κ2,−κ3 and complex torsions
in the condition (2-ii) in Lemma 1 if κ3 < 0. Set theoretically it seems they form
a “building structure”. In this section we consider them from the viewpoint of
lengths of helices.

We define L : E Hd(CMn) → (0,∞] by L ([γ]) = length(γ), where [γ]
denotes the congruence class containing a helix γ. We call L the length spectrum
of essential Killing helices. First we consider helices on CPn. On E H3(CPn) ∪
E H4(CPn) ∼= (0,∞)2×R we consider a foliation G = {Gµ}µ∈(−1,1) given by Gµ =
{[γ(κ1, κ2, κ3)] | τP (κ1, κ2, κ3) = µ}, where [γ(κ1, κ2, κ3)] denotes the congruence
class of helices of proper order 3 or 4 corresponding to (κ1, κ2, κ3) ∈ (0,∞)2 ×R,
and

τP (κ1, κ2, κ3) =





τ+
P (κ1, κ2, κ3), if κ3 > 0,

τP (κ1, κ2), if κ3 = 0,

τ−P (κ1, κ2,−κ3), if κ3 < 0.
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Figure 1. Foliation on E H3(CP n). Figure 2. Foliation on BE H3(CHn).

If we induce the canonical topology and differential structure on E H3(CPn) ∪
E H4(CPn) as a subset of R3, Theorems 1, 2 and 3 guarantee the following.

Proposition 1. The length spectrum L : E H3(CPn) ∪ E H4(CPn) →
(0,∞] is smooth on each leaf Gµ. Each leaf is maximal with respect to the continuity
of L .

We here give a figure of the foliation G |E H3(CP n) restricted on E H3(CPn)
(Fig. 1). The reader should pay attention on the behaviour of leaves near the κ1-
axis. Their behavior is different from the behavior of leaves of canonical foliation
on the moduli space of helices on a standard sphere (see [3]). If we consider
the topological closure of each leaf Gµ|E H3(CP n) with µ > 0 in [0,∞) × [0,∞),
then it has an end point in κ1-axis. From the viewpoint of the length spectrum,
E H1(CPn) ∪ E H2(CPn) ∼= [0,∞) and E H3(CPn) ∪ E H4(CPn) ∼= (0,∞)2 ×R

do not form a “building structure”, because L : E H1(CPn) ∪ E H2(CPn) → R

is continuous and bounded.
We here make mention of our foliation a bit more. We here consider all circles

on CPn (see [15] for some basic properties of circles). Let H2(CPn) denote the
moduli space of circles of positive geodesic curvature on CPn, which is congruent
to the set (0,∞) × [0, 1]. As we see in [2], we have a foliation F = {Fµ}µ∈[0,1)

on H2(CPn) \ E H2(CPn). For (κ, τ) ∈ (0,∞)× [0, 1], we denote by [σ(κ, τ)] the
congruence class of circles containing a circle of geodesic curvature κ and complex
trosion τ . Leaves on H2(CPn) \ E H2(CPn) are given as

Fµ =

{{[σ(κ, 0)] | κ > 0}, if µ = 0,
{
[σ(κ, τ)]

∣∣ 3
√

3κτ(κ2 + 1)−3/2 = 2µ, 0 < τ < 1
}
, if µ > 0.
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Theorems 1, 2 and 3 show that we have a surjective map Φ : E H3(CPn) ∪
E H4(CPn) → H2(CPn) \ E H2(CPn) which satisfies the following properties.

1) It is continuous with respect to induced Euclidean topology;
2) It preserves the foliation structure, Φ(Gµ) = F|µ|;
3) Φ([γ(κ1, 1, κ3)]) = [σ(1/

√
2, τP (κ1, κ2, κ3))].

Next we consider the moduli space of Killing helices on a complex hyperbolic
space. On CHn we have both bounded and unbounded essential Killing helices
of proper orders 3 and 4. We hence consider the moduli space BE Hd(CHn)
of bounded essential Killing helices of proper order d. On BE H3(CHn) ∪
BE H4(CHn) ⊂ (0,∞)2 ×R we have a foliation G = {Gµ}µ∈(−1,1) given by

Gµ =
{
[γ(κ1, κ2, κ3)] | κ2

2 + (κ1 + κ3)2 > 3(1 + κ1κ3), τH(κ1, κ2, κ3) = µ
}
,

where τH(κ1, κ2, κ3) is defined just the same way as for CPn.

Proposition 2. The length spectrum L : BE H3(CHn)∪BE H4(CHn) →
(0,∞] is smooth on each leaf Gµ. Each leaf is maximal with respect to the continuity
of L .

We denote by BH2(CHn) the moduli space of bounded circles of positive
geodesic curvature on CHn. On this space we have a foliation F = {Fµ}µ∈[0,1)

whose leaves are given as

Fµ =

{{[σ(κ, 0)] | κ > 1}, if µ = 0,
{
[σ(κ, τ)]

∣∣ 3
√

3κτ(κ2 − 1)−3/2 = 2µ, 0 < τ < 1, κ > 1
}
, if µ > 0.

Theorems 4, 5 and 6 show that we have a surjective map Φ : BE H3(CHn) ∪
BE H4(CHn) → BH2(CHn) \BE H2(CHn) which satisfies the following prop-
erties.

1) It is continuous with respect to induced Euclidean topology;
2) It preserves the foliation structure, Φ(Gµ) = F|µ|;
3) Φ

(
[γ(3

√
2/2, κ2, 0)]

)
=

[
σ(2, τH(κ1, κ2))

]
.

We also point out that on E H3(CHn)∪E H4(CHn) we can consider a lamination
{Gµ}µ∈R ∪ {G (u)

ν }ν∈R which is given by
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G (u)
ν =





[γ(κ1, κ2, κ3)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

κ2
2 + (κ1 + κ3)2 ≤ 3(1 + κ1κ3),

1
2
[
2{κ2

2 + (κ1 + κ3)2}2

+ 9(2− κ1κ3){κ2
2 + (κ1 + κ3)2} − 27κ1(κ1 + κ3)

]

× {3(1 + κ1κ3)− κ2
2 + (κ1 + κ3)2}−3/2

× {κ2
2 + (κ1 + κ3)2}−1/2

= ν





.
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