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Abstract. The aim of this paper is to find a general class of data in
which the global well-posedness for the exterior initial-boundary value problem
to the Kirchhoff equation is assured. The result obtained in the present paper
will be applied to the existence of scattering states. A class of weighted Sobolev
spaces will be also presented in which the global well-posedness is assured.
For this purpose, the method of generalized Fourier transforms is developed
for some oscillatory integral associated with this equation. The crucial point
is to obtain the resolvent expansion of the minus Laplacian around the origin
in C, and the differentiability of the generalized Fourier transforms.

1. Introduction and statement of results.

The Kirchhoff equation was proposed by Kirchhoff in 1883, as a model of the
vibrating string with fixed ends. The global well-posedness on bounded domains
was studied by some authors (see, e.g., [25], [26]). Up to the last decade many
authors have investigated the global well-posedness for the Cauchy problem to the
Kirchhoff equation with small data in Sobolev spaces (see [2], [4], [5], [6], [7], [8],
[11], [16], [18], [19], [28], [33]). Greenberg and Hu studied this equation with
small C∞0 data in one dimensional space ([11]). After them, the general space
dimensional case was thoroughly investigated by D’Ancona and Spagnolo [5], [6],
[7], [8] in a weighted Sobolev space, and then, Yamazaki found a more general
class of initial data to ensure the global well-posedness ([33]).

The global well-posedness for the initial-boundary value problem to the Kirch-
hoff equation in exterior domains is also of interest. The study of this problem
was initiated by Racke in 1995 (see [27]). He employed the generalized Fourier
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transforms to get the small amplitude global solutions in a Sobolev space. Heiming
improved his result (see [12], [17]). But then, they assumed that the supports of
the generalized Fourier transform of data are away from the origin. The main ob-
ject in the present paper is to remove this restrictive assumption and improve the
regularity of the data (see Theorem 1.4), together with introducing more general
class of data which ensures the global well-posedness (see Theorem 1.1). The crui-
cial tool in our argument is the asymptotic expansion of resolvent of −∆ around
the origin in the complex plane (see Proposition 2.5). We should refer to the
results of Yamazaki (see [34], [35]), who gave some sufficient conditions with-
out any weight condition on data. That is, she assumed that the data belong to
W s,q(Ω) ×W s−1,q(Ω) for some s > 2 and q ∈ (1, 2) depending on n(≥ 3), where
Ω is a non-trapping domain in Rn (see example 1.2). We have an advantage of
considering the classes of Theorems 1.1 and 1.4 below; they are more useful in the
scattering problem rather than the ones in [12], [27], [34], [35].

Once the global well-posedness is established, a problem will arise whether
the scattering states exist or not. We will formulate this problem in Theorem 1.5.
For the Cauchy problem to the Kirchhoff equation, the scattering operators were
constructed by Yamazaki [33]. This result was recently extended to a wider class
of the variable coefficients by Kajitani (see [16]).

To become more precise, let Ω be an arbitrary exterior domain in Rn (n ≥ 1)
such that Rn \ Ω is compact and its boundary ∂Ω is of C∞. We consider the
initial-boundary value problem to the Kirchhoff equation, for function u = u(t, x):

∂2
t u−

(
1 +

∫

Ω

|∇u|2 dx

)
∆u = 0, t 6= 0, x ∈ Ω, (1.1)

with the data

u(0, x) = f0(x), ∂tu(0, x) = f1(x), x ∈ Ω, (1.2)

and the boundary condition

u(t, x) = 0, t ∈ R, x ∈ ∂Ω. (1.3)

We shall introduce notation in order to state the results. For a non-negative integer
m and real number κ, we define the weighted Sobolev space over a domain G in
Rn:

Hm
κ (G) =

{
f : 〈x〉κ∂α

x f ∈ L2(G), |α| ≤ m
}
,

where 〈x〉 = (1+ |x|2)1/2 and we put L2
κ(G) = H0

κ(G). We define also the weighted
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Sobolev space Hσ
κ (G) of fractional order σ ≥ 0 by the complex interpolation

method:

Hσ
κ (G) =

[
L2

κ(G),Hm
κ (G)

]
θ
, σ ≤ m, σ = θm with 0 ≤ θ ≤ 1,

where m is an integer. Hσ(G) (or even H1
0 (G)) is the usual Sobolev space of order

σ over G. Let A be a self-adjoint realization of −∆ on L2(Ω) with the Dirichlet
boundary condition in the exterior domain Ω, i.e.,

{
D(A) = H2(Ω) ∩H1

0 (Ω),

Au = −∆u, u ∈ C∞0 (Ω).
(1.4)

Since A is the non-negative self-adjoint operator on L2(Ω), we can define the square
root A1/2 of A. In what follows, we put |D| = A1/2.

In order to state the global well-posedness for the problem (1.1)–(1.3), we
introduce a class Yk(Ω):

Yk(Ω) :=
{
(f, g) ∈ (H

3
2 (Ω) ∩H1

0 (Ω))×H
1
2 (Ω) : |||(f, g)|||Yk(Ω) < +∞}

, (k > 1),

with

|||(f, g)|||Yk(Ω) = sup
τ∈R

(1 + |τ |)k
{∣∣∣

(
eiτ |D||D| 32 f, |D| 32 f

)
L2(Ω)

∣∣∣

+
∣∣∣
(
eiτ |D||D| 32 f, |D| 12 g

)
L2(Ω)

∣∣∣ +
∣∣∣
(
eiτ |D||D| 12 g, |D| 12 g

)
L2(Ω)

∣∣∣
}

,

where (f, g)L2(Ω) denotes the L2(Ω)-inner product of f and g.
We are now in a position to state the results. The main result is as follows:

Theorem 1.1. Let n ≥ 1. If the data f0(x) and f1(x) satisfy (f0, f1) ∈
Yk(Ω) for some k > 1 and

‖∇f0‖2L2(Ω) + ‖f1‖2L2(Ω) + |||(f0, f1)|||Yk(Ω) ¿ 1,

then the initial-boundary value problem (1.1)–(1.3) admits a unique solution u ∈
C(R;H3/2(Ω) ∩H1

0 (Ω)) ∩ C1(R;H1/2(Ω)).

The class Yk(Rn) in Rn is introduced in [33] (see also [16], [28]). The inclu-
sions among the classes Yk(Ω) are as follows:

Yk(Ω) ⊂ Yl(Ω) if k > l > 1. (1.5)
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The definition of Yk(Ω) is somewhat complicated, hence we give two examples of
spaces contained in Yk(Ω):

Example 1.2. Let n ≥ 4 and Rn \Ω ⊂ {x ∈ Rn : |x| ≤ r0} for some r0 > 0.
Assume that Ω is non-trapping in the sense that there exists Tr0 > 0 such that
no geodesic of length Tr0 is completely contained in Ω ∩ {x ∈ Rn : |x| ≤ r0}. Let
2(n − 1)/(n − 3) < p < ∞ and 1/p + 1/q = 1. Let M be an integer satisfying
M ≥ (n + 1)(1/2− 1/p). Then it is proved in [34, Theorem 4] that

W 2M,q
0 (Ω)×W 2M−1,q

0 (Ω) ⊂ Yk(n)(Ω),

where k(n) = (n − 1)(1/2 − 1/p) > 1 and W 2M,q
0 (Ω) is the completion of C∞0 (Ω)

in the norm ‖ · ‖W 2M,q(Ω). Notice that 2M > 2(n + 1)/(n− 1).

Example 1.3. For σ ≥ 0 and κ ∈ R, let Hσ
κ,0(Ω) be the completion of

C∞0 (Ω) in the norm ‖ · ‖Hσκ(Ω). Then it will be proved in Lemma 3.2 that if n ≥ 3
and Rn \ Ω is star-shaped with respect to the origin, then the inclusion

Hs0+1
s(k),0(Ω)×Hs0

s(k),0(Ω) ⊂ Yk(Ω)

holds for any s0 > (n + 1)/2, s(k) > max(n + 1/2, k + n/2) and k ∈ (1, n]. This
inclusion can be proved by using the generalized Fourier transforms.

As a consequence of Theorem 1.1, example 1.3 and the inclusion (1.5), we
have:

Theorem 1.4. Let Ω, n, s0, s(k) be as in Example 1.3. If the data f0(x) and
f1(x) satisfy

f0(x) ∈ Hs0+1
s(k),0(Ω), f1(x) ∈ Hs0

s(k),0(Ω)

for some k > 1, and

‖f0‖H
s0+1
s(k) (Ω)

+ ‖f1‖H
s0
s(k)(Ω) ¿ 1,

then the initial-boundary value problem (1.1)–(1.3) admits a unique solution u ∈
∩j=0,1,2C

j(R;Hs0+1−j(Ω)).

Let us make a few remarks to compare our results with what is known in
[12], [27], [34], [35]. Theorem 1.1 improves the above results in the sense that
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any geometrical condition on Ω is not assumed, while Heiming [12] and Racke [27]
did not require any geometrical condition on Ω, if the supports of the generalized
Fourier transform of data are compact. Moreover, Theorem 1.4 removes the as-
sumption that the supports of the generalized Fourier transform of the data are
away from the origin, which is assumed in [12], [27]. Roughly speaking, this con-
dition means that the integrals over Ω of the data with any polynomially weight
vanish. The class in example 1.2 is based on the Lp-Lq decay estimates for wave
equation. Finally, when n = 3, if the data belong to a subspace of (W 9,q

0 (Ω))2

for some q ∈ (1, 2), then the global well-posedness in H3(Ω) is obtained by [35,
Theorem 5]. We note that neither assumption on data of Theorem 1.4 and both
Example 1.2 and the class of [35, Theorem 5] imply the other.

Let us finalize this section by stating the existence of scattering states for the
problem (1.1)–(1.3). The development of scattering problem in the classes of [12],
[27], [34], [35] would be complicated. On the other hand, the advantage of the
classes of Theorems 1.1 and 1.4 is to be able to discuss the scattering problem
more easily. Thus we have the following:

Theorem 1.5. Let k > 2. For any solution u(t, x) to (1.1)–(1.3) in
Theorem 1.1, there exist unique solutions u±(t, x) ∈ C(R;H3/2(Ω) ∩ H1

0 (Ω)) ∩
C1(R;H1/2(Ω)) of equations ∂2

t u± − c2
∞∆u± = 0 with the Dirichlet boundary

condition on ∂Ω such that

‖∇u±(t, ·)−∇u(t, ·)‖L2(Ω) + ‖∂tu±(t, ·)− ∂tu(t, ·)‖L2(Ω) = O(|t|−(k−2)) (1.6)

as t → ±∞, where the propagation speed c∞ is uniquely determined by an equation

c∞ =

√
1 +

1
2

(
‖∇u±(0, ·)‖2L2(Ω) +

1
c2∞
‖∂tu±(0, ·)‖2L2(Ω)

)
. (1.7)

As to the Cauchy problem, the condition k > 2 is sharp. For, when 1 < k ≤ 2,
it is proved in [21] that there exists a solution of the Kirchhoff equation to the
Cauchy problem in Rn which is never asymptotic to any free solution of the wave
equation as t → ±∞.

2. Resolvent estimates and the generalized Fourier transforms.

In this section we will review some results on the asymptotic behaviours of
the resolvent of A and define the generalized Fourier transforms. We will apply
these results to prove Example 1.3, or even Theorem 1.4. Consider the Helmholtz
equation with a parameter z ∈ C in Ω:
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{
(−∆− z)u = f in Ω,

u = 0 on ∂Ω.
(2.1)

It is well known that 0 is not eigenvalue of A, hence, the spectrum σ(A) of A

is absolutely continuous. Thus σ(A) coincides with [0,∞). Therefore, L2(Ω) is
absolutely continuous space. We denote by R(z) = (A− z)−1 the resolvent of A.
We shall analyze the asymptotic behaviour of R(z) as |z| → ∞ and z → 0. The
basic ideas are simlar to those of Iwashita [14] who developed the cut-off technique
to study the behaviour of resolvent R(z) of the Stokes operator as z → 0 (see also
Iwashita and Shibata [15], and Tsutsumi [30]). The high energy part and its
differentiability are rather well known (see Heiming [12], Mochizuki [22], [23],
Racke [27] and Wilcox [32], and also Isozaki [13] who studied the Schrödinger
operators with long range potentials). Based on these resolvent behaviours, we
can obtain the differentiability properties of the generalized Fourier transforms.

In what follows we often use the following function space: For a domain G in
Rn we define

Ĥ2(G) = the completion of C∞0 (G) by
∑

|α|=2

‖∂α
x · ‖L2(G).

We set

Σ+ = {z ∈ C \ 0 : 0 < argz ≤ π}, Σ− = {z ∈ C \ 0 : −π ≤ argz < 0}, (2.2)

and we denote by B(X, Y ) the space of all bounded linear operators from X to
Y .

2.1. The behaviour of the resolvent R0(z) around the origin.
Let us consider the Helmholtz equation in Rn with a parameter z ∈ C:

(−∆− z)u = f in Rn. (2.3)

When f ∈ L2(Rn) and z ∈ C, we can write the solution u(x; z) to (2.3) as follows:

u(x; z) = (R0(z)f)(x) = F−1
0

[
f̂(ξ)
|ξ|2 − z

]
(x),

where F0f = f̂ and F−1
0 f stand for the Fourier transform and the inverse Fourier

transform of f on Rn, respectively.
The asymptotic behaviour of R(z) = (A− z)−1 near the origin in C is based

on the following two results. The first one is due to Lemma 2.2 of Murata [24]
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whose original version is stated in general elliptic operators (see also Theorems
1.2–1.4 of Iwashita and Shibata [15]). To this end, we introduce a function space:
For σ ≥ 0, and a non-negative integer k, 0 ≤ θ < 1, a Banach space X, we
say that an X-valued function f belongs to o(σ, k + θ;X) if f is holomorphic on
Uδ,± = {z ∈ C : |Rez| < δ, 0 < ±Imz < 1} for some δ > 0, k-times differentiable
on Uδ,± \ {0} and satisfies

∥∥f (j)(z)
∥∥

X
= o(zσ−j) as z → 0 in Uδ,±

for j = 0, . . . , k, and when k + θ ≤ σ + 1, f satisfies the additional estimate

( ∫ δ−h

−δ

∥∥f (k)(x + h + iy)− f (k)(x + iy)
∥∥p

X
dx

)1/p

≤ Chθ, h > 0, 0 ≤ ±y ≤ 1,

where p = ∞ if k + θ ≤ σ and p = (k + θ − σ)−1 if σ < k + θ ≤ σ + 1.

Lemma 2.1 (Lemma 2.2 of [24] (Murata)). Let n ≥ 1, ε(n) = 0 for n odd
and ε(n) = 1 for n even, σ > −1/2 and s > max(σ + 1, 2σ + 2 − n/2). Then in
B(L2

s(R
n),H2

−s(R
n)) one has the expansion

R0(z) =
[σ+1−n/2]∑

j=0

zn/2−1+j(log z)ε(n)Fj +
[σ]∑

j=0

zjGj + o(zσ) (2.4)

as z → 0 in Σ±, where the convention is
∑l

j=k ak = 0 when l < k; and the

remainder term belongs to o
(
σ, d;B(L2

s(R
n),H2([σ]+1)

−s (Rn))
)

for any d with d <

s−1/2. Here the operators Fj belong to B(L2
r(R

n),Hν
−r(R

n)) for any r > n/2+2j

and ν > 0; and Gj ∈ B(L2
r(R

n),H2(j+1)
−r′ (Rn)) for any r and r′ such that (i)

r, r′ > 2j + 2− n/2 and r + r′ > 2j + 2 when j < n/2− 1; (ii) r, r′ > 2j + 2− n/2
when j ≥ n/2− 1.

When d > σ in (2.4), the singularity would appear in the derivatives of re-
mainder term near z = 0. We note that Vainberg proved the asymptotic expansion
(2.4) in a more stringent space B(L2

comp(Rn),H2
e (Rn)) than Lemma 2.1, where

L2
comp(Rn) is the subspace of L2(Rn)-functions with compact supports, and the

space H2
e (Rn) is the subspace of H2(Rn)-functions with weight e−|x| (see [31,

Theorem 10]).

The second result is concerning with the asymptotic behaviour of R0(0)f near
infinity.
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Lemma 2.2. Let n ≥ 3 and s > n/2. Put u = R0(0)f . If f ∈ L2
s(R

n), then
u ∈ Ĥ2(Rn) ∩H1

s−1(R
n) and

lim
R→∞

1
Rn

∫

R<|x|<2R

|u(x)|2 dx = 0. (2.5)

Proof. We use an idea of [14, Lemma 2.2] that treated the stationary
Stokes equation. The derivatives ∂α

x u, |α| = 2, become

∂α
x u(x) = i|α|F−1

0

[
ξα

|ξ|2 f̂(ξ)
]
(x).

Observing that the multipliers ξα/|ξ|2 are homogeneous of order 0, we conclude
from the L2-boundedness of the singular integral operators that u ∈ Ĥ2(Rn).
Inserting the cut-off function χ(ξ) ∈ C∞0 (ξ) equal to one for |ξ| ≤ 1/2 and 0 for
|ξ| ≥ 1, we can write u = u1 + u2, where

u1(x) = F−1
0

[
χ(ξ)f̂(ξ)
|ξ|2

]
(x), u2(x) = F−1

0

[
(1− χ(ξ))f̂(ξ)

|ξ|2
]
(x).

We claim that u2 satisfies (2.5). In fact, let m be an integer with m ≤ s ≤ m + 1.
Then

{
‖〈x〉mu2‖L2(R<|x|<2R) ≤ Cm‖〈x〉mf‖L2(R<|x|<2R),

‖〈x〉m+1u2‖L2(R<|x|<2R) ≤ Cm+1‖〈x〉m+1f‖L2(R<|x|<2R),

with certain constants Cm, Cm+1 independent of R. Hence, interpolating these
estimates we get

‖〈x〉su2‖L2(R<|x|<2R) ≤ Cs‖〈x〉sf‖L2(R<|x|<2R).

Similarly, we get u2 ∈ H1
s−1(R

n), since f ∈ L2
s(R

n). Then u2 satisfies (2.5), since

1
Rn

∫

R<|x|<2R

|u2(x)|2 dx ≤ R−2s−n

∫

R<|x|<2R

〈x〉2s|u2(x)|2 dx

≤ CsR
−2s−n

∫

R<|x|<2R

〈x〉2s|f(x)|2 dx → 0

as R →∞.
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In order to see that u1 satisfies (2.5), we show that u1 can be represented by
a C∞ kernel bounded by C〈x− y〉−(n−2), C > 0. Indeed, we note that R0(0) is a
convolution operator with a kernel G0(x− y) defined by

G0(x) =
Γ(n/2)

4(n− 2)πn/2
· 1
|x|n−2

. (2.6)

Put

K(w) =
∫

Rn

eiw·ξ χ(ξ)
|ξ|2 dξ.

Then K(w) is of class C∞(Rn) and we can write

u1(x) = (K ∗ f)(x) =
∫

Rn

K(x− y)f(y) dy.

On the other hand, since u1(x) = u(x)− u2(x) and u(x) = (G0 ∗ f)(x), it follows
that

u1(x) =
∫

Rn

G0(x− y)f(y) dy −
∫

Rn

G1(x− y)f(y) dy, (2.7)

where G1(x − y) is a C∞ kernel of u2(x) and majorized by C〈x − y〉−k for any
k ∈ N . The boundedness of K(x − y) is obvious provided n ≥ 3. Hence we
conclude from (2.6)–(2.7) that

|K(x− y)| ≤ C〈x− y〉−(n−2).

As a by-product, we have u1 ∈ H1
s−1(R

n). Now we can estimate

∫

R<|x|<2R

|u1(x)|2 dx ≤ C

∫

R<|x|<2R

∣∣∣∣
∫

Rn

〈x− y〉−(n−2)|f(y)| dy

∣∣∣∣
2

dx. (2.8)

Putting V (x) = {y ∈ Rn; |x|/2 ≤ |y| ≤ 2|x|}, we see that

∫

R<|x|<2R

∣∣∣∣
∫

V (x)

〈x− y〉−(n−2)|f(y)| dy

∣∣∣∣
2

dx

≤ C

( ∫

R<|x|<2R

〈x〉−(2s−n) dx

)
‖f‖2L2

s(Rn) ≤ CR2(n−s)‖f‖2L2
s(Rn). (2.9)
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By the assumption s > n/2, we have

2(n− s) < n. (2.10)

On the other hand, we can estimate

∫

R<|x|<2R

∣∣∣∣
∫

Rn\V (x)

〈x− y〉−(n−2)|f(y)| dy

∣∣∣∣
2

dx

≤
( ∫

R<|x|<2R

〈x〉−2(n−2) dx

)∣∣∣∣
∫

Rn

〈y〉−2s〈y〉2s|f(y)|2 dy

∣∣∣∣
2

≤ CR−2(n−2)+n‖f‖2L2
s(Rn). (2.11)

Thus combining (2.8)–(2.11) with n ≥ 3, we conclude that u1 satisfies (2.5). Fur-
thermore, we have u ∈ Ĥ2(Rn)∩H1

s−1(R
n). The proof of Lemma 2.2 is complete.

¤

2.2. Resolvent estimates in high frequency.
The resolvent estimates are thoroughly investigated by Mochizuki [22], [23]

(see also Wilcox [32]). As a starting point, we have:

Lemma 2.3 (Limiting absorption principle (Mochizuki [22], [23])). Let n ≥
1 and s > 1/2. Then, for any λ > 0 there exist strong limits s− limε↘0 R(λ±iε) =
R(λ ± i0) in B(L2

s(Ω),H2
−s(Ω)). The functions u± = R(λ ± i0)f for f ∈ L2

s(Ω)
are the unique outgoing and incoming solutions to (2.1), respectively, in the sense
that

u± ∈ L2
−s(Ω), ∇(

e±i
√

λ|x|u±
) ∈ L2

−s−1(Ω).

In addition to the above assumption, let us suppose n ≥ 3, and that Rn \Ω is
star-shaped with respect to the origin. Then, for any a > 0 there exists a constant
C = C(a) > 0 such that

‖R(λ± i0)f‖L2
−s(Ω) ≤ Cλ−1/2‖f‖L2

s(Ω), f ∈ L2
s(Ω) (2.12)

for all λ > a.

We remark that Mochizuki proved the estimate

‖R(λ± i0)f‖L2
−s(Ω) ≤ C‖f‖L2

s(Ω), f ∈ L2
s(Ω)
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for any compact interval in λ > 0 in an arbitrary domain Ω (see [23], cf. [32]), and
the upper bound is removed and the estimate (2.12) is obtained for λ À 1 under
the assumption that Rn \Ω is star-shaped (see [22]). Combining these results, we
get (2.12) for all λ > a.

Based on Lemma 2.3, Heiming established the differentiability property of
the resolvent by employing the argument of Isozaki [13, Theorem 1.10] (see [12,
Theorem 2.8], cf. [17]).

Lemma 2.4 (Heiming [12]). Let n ≥ 3. Assume that Rn \ Ω is star-shaped
with respect to the origin. Then, for any s > 1/2, a > 0 and N ∈ N , R(λ± i0) are
N -times strongly differentiable with respect to λ > a in B(L2

s+N (Ω), L2
−s−N (Ω)).

Furthermore, the following estimate hold :

∥∥∂α
ξ R(|ξ|2 ± i0)f

∥∥
L2
−s−|α|(Ω)

≤ Cα|ξ|−1‖f‖L2
s+|α|(Ω), f ∈ L2

s+|α|(Ω)

for all ξ ∈ Rn with |ξ| > a and any multi-index α.

2.3. Resolvent expansions aroud the origon.
We recall the definition of the sets Σ± in (2.2). Then the main result of this

subsection is as follows:

Proposition 2.5. Let n ≥ 3 and s > n/2. Then there exists an opera-
tor R̃(z) ∈ B(Hm

s (Ω),Hm+2
−s (Ω)) for any integer m ≥ 0 such that R̃(z) depends

meromorphically in z ∈ Σ± having the following properties:

( i ) The set Λ of poles is discrete and countable.
( ii ) R̃(z)f is a solution to (2.1) for z ∈ Σ± \ Λ and f ∈ L2

s(Ω).
(iii) Let Σ±(ε) = Σ±∩{z ∈ C : |z| < ε} for ε > 0. Then there exists ε0 > 0 such

that Σ±(ε0) ∩ Λ = ∅ and in B(Hm
s (Ω),Hm+2

−s (Ω)) one has the expansion

R̃(z) = z
n
2−1(log z)ε(n)F + G(z) + o(z

n
2−1), (2.13)

as z → 0 in Σ±(ε0), where ε(n) = 0 for n odd and ε(n) = 1 for n even;
the operator F belongs to B(Hm

s (Ω),Hm+ν
−s (Ω)) for any ν > 0, G(z) is a

polynomial of z of degree [n/2−1] and belongs to B(Hm
s (Ω),Hm+2

−s (Ω)), and
the remainder term belongs to o

(
n/2−1, d;B(Hm

s (Ω),Hm+2([n/2−1]+1)
−s (Ω))

)
for any d < s− 1/2.

(iv) R̃(z) = R(z) on Hm
s (Ω) for all z ∈ Σ±(ε0).

Relating with Proposition 2.5 and referring the notation of the remark of
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Lemma 2.1, we should mention the results of Iwashita and Shibata [15] and Tsut-
sumi [30] in which R̃(z) belong to B(L2

comp(Ω),H2
e (Ω)). Thus Proposition 2.5 im-

proves the results of [15], [30], since B(L2
comp(Ω),H2

e (Ω)) ⊂ B(L2
s(Ω),H2

−s(Ω)).

We often use notation Ωd = Ω ∩ Bd(0), where Bd(0) is the ball in Rn with
radius d centered at the origin. We prepare the following:

Lemma 2.6. Let n ≥ 3. Suppose that u ∈ Ĥ2(Ω) ∩H1
s′(Ω) for some s′ ∈ R

satisfies

{
∆u = 0 in Ω,

u = 0 on ∂Ω,

and

lim
R→∞

1
Rn

∫

R<|x|<2R

|u(x)|2 dx = 0. (2.14)

Then u ≡ 0 in Ω.

Proof. We claim that u(x) is analytic in Ω and behaves like

∂α
x u(x) = O(|x|−(n−2+|α|)), |α| ≤ 1 (2.15)

as |x| → ∞. To see this, let us consider the extension of u to Rn. We denote by
ũ such an extension. More precisely, we define ũ to be ũ(x) = ψ(x)u(x), where
ψ(x) ∈ C∞(Rn) is equal to 0 in a domain O b Rn \ Ω and one in Ω. Then ũ

satisfies (2.14).
We set f̃ = −∆ũ. Then f̃ ∈ L2

s(R
n) and f̃ = 0 in Ω. It is well known that

Poisson equation has a unique solution in S ′(Rn) (=the space of all tempered
distributions) up to an additive polynomial. Hence ũ can be represented as

ũ(x) =
∫

Rn

G0(x− y)f̃(y) dy + polynomials,

where

G0(x) =
Γ
(

n

2

)

4(n− 2)π
n
2
· 1
|x|n−2

.
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Thus, by using the asymptotic behaviour (2.14), we get

ũ(x) =
∫

Rn

G0(x− y)f̃(y) dy. (2.16)

Since ũ = u in Ω, the analyticity of u and asymptotics (2.15) follow from (2.16).
Finally, we prove that u = 0 in Ω. Integrating by parts, we have

∫

ΩR

|∇u(x)|2 dx = −
∫

ΩR

∆u(x)u(x) dx +
∫

∂ΩR

x

|x| · ∇u(x)u(x) dSR

=
∫

|x|=R

x

|x| · ∇u(x)u(x) dSR. (2.17)

We observe from (2.15) that ∇u(x)u(x) = O(|x|−2n+3) as |x| → ∞. Then, letting
R →∞ in (2.17), we have

∫

Ω

|∇u(x)|2 dx = 0,

which impiles that u is constant in Ω. Hence by using the condition that u = 0 on
∂Ω, we conclude that u = 0 in Ω. The proof of Lemma 2.6 is complete. ¤

Proof of Proposition 2.5. The proof can be done along the idea of [14,
Theorem 3.1]. We may prove the case m = 0 on acount of the elliptic regularity
theorem. Let us introduce numbers b and d such that d > b > r0 +3 and fix them,
where r0 > 0 is chosen such that Rn \ Ω ⊂ Br0(0) = {x ∈ Rn : |x| < r0}. Put
Ωd = Ω∩Bd(0). We consider the boundary value problem to the Poisson equation
in the bounded domain Ωd:

{−∆u = f in Ωd,

u = 0 on ∂Ωd.
(2.18)

By the elliptic regularity theorem, for any f ∈ L2(Ωd), there exists a unique
solution u ∈ H2(Ωd) to (2.18) such that

‖u‖H2(Ωd) ≤ C‖f‖L2(Ωd).

Hence the mapping of f ∈ L2(Ωd) to the unique solution u ∈ H2(Ωd) determines
an operator in B(L2(Ωd),H2(Ωd)), which is denoted by L. Take C∞-functions
ϕ(x) and χ(x) such that ϕ(x) = 1 for |x| ≥ b and equal to 0 for |x| < b − 1;
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χ(x) = 1 for |x| ≥ b − 2 and equal to 0 for |x| < b − 3. For f ∈ L2
s(Ω), let fd be

the restriction to Ωd, and let f0 = f in Ω and equal to 0 in Rn \ Ω. Define the
operator R1(z) by

R1(z)f = ϕR0(z)(χf0) + (1− ϕ)Lfd, f ∈ L2
s(Ω). (2.19)

Then we have R1(z) ∈ B(L2
s(Ω),H2

−s(Ω)), and R1(z)f satisfies R1(z)f |∂Ω= 0.
The operator thus defined obeys

(−∆− z)R1(z)f = f + S(z)f in Ω (2.20)

for any f ∈ L2
s(Ω), where S(z) is defined

S(z)f = −{
2(∇ϕ) · ∇+ ∆ϕ

}{
R0(z)(χf0)− Lfd

}− z(1− ϕ)Lfd. (2.21)

The support of S(z)f is contained in Ωd and S(z) ∈ B(L2
s(Ω),H1

s (Ω)), and hence,
S(z) is a compact operator in L2

s(Ω). S(z) is holomorphic in z ∈ Σ±, continuous
in Σ± ∪ {0}, and has the same asymptotic expansion as that for R0(z) as z → 0
in Σ±.

Lemma 2.7. Let the operator S(z) be defined as (2.21). Then the inverse
(I +S(z))−1 of I +S(z) exists as a B(L2

s(Ω), L2
s(Ω))-valued meromorphic function

of z ∈ Σ±. The set Λ of poles is discrete and countable, and has no intersection
with Σ±(ε0) for some ε0 > 0. In addition, (I + S(z))−1 has the same type of
expansion as (2.4) from Lemma 2.1 with σ = n/2− 1.

Proof. We can claim that (I + S(0))−1 ∈ B(L2
s(Ω), L2

s(Ω)). Indeed, if we
prove that I +S(0) is injective, the conclusion follows from Fredholm’s alternative,
since the operator S(0) is compact. Therefore, for the time being, we concentrate
on proving the injectivity of I + S(0). Let us assume that

(I + S(0))f = 0, f ∈ L2
s(Ω).

Then it follows from (2.20) that

{
∆R1(0)f = 0 in Ω,

R1(0)f = 0 on ∂Ω.
(2.22)

We observe from (2.19) that R1(0)f = R0(0)(χf0) for |x| ≥ b. Therefore, it follows
from Lemma 2.2 that
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



R1(0)f ∈ Ĥ2(Ω) ∩H1
s′(Ω),

limR→∞
1

Rn

∫

R<|x|<2R

|R1(0)f |2 dx = 0.

Then we conclude from Lemma 2.6 that

R1(0)f = 0 in Ω. (2.23)

The equality (2.23) together with (2.19) imply that

R0(0)(χf0) = 0 for |x| ≥ b, (2.24)

Lfd = 0 for x ∈ Ω, |x| ≤ b− 1. (2.25)

Since R0(0)(χf) satisfies the equation −∆R0(0)(χf0) = χf0 in Rn, it follows from
(2.24) that χf0 = 0 for |x| ≥ b, i.e.,

f = 0 for |x| ≥ b. (2.26)

Similarly, Lfd satisfies the equation −∆Lfd = fd in Ωd, and hence, by using (2.25),
we get

f = 0 for x ∈ Ω, |x| ≤ b− 1.

These imply that χf0 = f0 and

{−∆R0(0)(χf0) = f0 in Rn,

R0(0)(χf0) = 0, on |x| = d.
(2.27)

On the other hand, if we define

v =

{
Lfd in Ωd,

0 in Rn \ Ω,

then we see from the elliptic regularity theorem that v ∈ H2(Bd(0)), and

{−∆v = f0 in Bd(0),

v = 0 on |x| = d.
(2.28)
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Hence it follows from (2.27)–(2.28) that R0(0)(χf0) = v in Bd(0), and hence,

R0(0)(χf0) = Lfd in Ωd,

which implies that R1(0)f = Lfd in Ωd. By this relation and (2.23) we have

0 = −∆R1(0)f = −∆Lfd = fd in Ωd,

i.e., f = 0 in Ωd, which together with (2.26) shows f = 0 in Ω. This proves the
injectivity of I + S(0).

Put M = ‖(I + S(0))−1‖B(L2
s(Ω)). By the continuity of S(z) in z ∈ Σ±,

there exists ε0 > 0 such that ‖S(0)− S(z)‖B(L2
s(Ω)) < 1/2M for any z ∈ Σ±(ε0).

Thus the inverse (I + S(z))−1 is obtained as a Neumann series expansion: For
z ∈ Σ±(ε0),

(I + S(z))−1 = (I + S(0))−1
∞∑

j=0

[
(S(0)− S(z))(I + S(0))−1

]j
. (2.29)

Since S(z) is holomorphic in Σ±, applying analytic Fredholm’s alternative, we
conclude from [9, Lemma 13] that (I + S(z))−1 exists in Σ± as a meromorphic
function, and the set Λ of the poles is discrete and countable in Σ±. The expansion
follows from Lemma 2.1 with σ = n/2− 1 and (2.29). The proof of Lemma 2.7 is
complete. ¤

Completion of the proof of Proposition 2.5. Define

R̃(z) = R1(z)(I + S(z))−1. (2.30)

Then the assertions (i)–(iii) of Proposition 2.5 are an immediate consequence of
Lemma 2.1, Lemma 2.7 and (2.30). The assertion (iv) follows from the fact that the
resolvent set of A contains Σ±(ε0). The proof of Proposition 2.5 is now finished.

¤

2.4. Generalized Fourier transforms.
Following Wilcox [32], let us define the generalized Fourier transforms in an

arbitrary exterior domain. The existence of the limits R(|ξ|2 ± i0) is assured by
Lemma 2.3. Introducing a function j(x) ∈ C∞(Rn) vanishing in a neighbourhood
of Rn \ Ω and equal to one for large |x|, let us define the generalized Fourier
transform as follows:
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(F±f)(ξ) = lim
R→∞

(2π)−n/2

∫

ΩR

ψ±(x, ξ)f(x) dx in L2(Rn),

where we put

ψ±(x, ξ) = j(x)eix·ξ+
[
R(|ξ|2±i0)Mξ(·)

]
(x) with Mξ(x) = (A−|ξ|2)(j(x)eix·ξ).

Notice that we can write formally

Mξ(x) = −(∆j(x) + 2iξ · ∇j(x))eix·ξ, (2.31)

hence, suppMξ(·) ⊂ Br0+1(0) \ Br0(0) for any fixed ξ ∈ Rn. The kernel ψ±(x, ξ)
is called eigenfunction of the operator A with eigenvalue |ξ|2 in the sense that,
formally, (A − |ξ|2)ψ±(x, ξ) = 0, but ψ(x, ξ) /∈ L2(Ω). Similarly, the inverse
transform is defined by

(
F ∗
±g

)
(x) = lim

R→∞
(2π)−n/2

∫

BR(0)

ψ±(x, ξ)g(ξ) dξ in L2(Ω).

We treat F+f only and drop the subscript +, since F−f can be dealt with by
essentially the same method. The transform Ff thus defined obeys the following
properties (see, e.g., Shenk II [29, Theorem 1 and Corollary 5.1]):

• F is the unitary mapping

F : L2(Ω) → L2(Rn).

Hence

FF ∗ = I.

• F is fulfilled with the generalized Parseval equality:

(Ff,Fg)L2(Rn) = (f, g)L2(Ω), f, g ∈ L2(Ω). (2.32)

• F diagonalizes the operator A in the sense that

F (ϕ(A)f)(ξ) = ϕ(|ξ|2)(Ff)(ξ), (2.33)

where ϕ(A) is the operator defined by the spectral reperesentation theorem
for self-adjoint operators.
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The following lemma is concerning with the differentiability properties of the
generalized Fourier transform (Ff)(ξ).

Lemma 2.8. Let n ≥ 3 and ε0 be the number as in Proposition 2.5. Then
the following estimates hold :

(i) (High frequency estimates). Assume that Rn\Ω is star-shaped with respect
to the origin. Let s > 1/2. If f ∈ L2

s+|α|(Ω) for some multi-index α, then

∣∣∣∣∂α
ξ

∫

Ω

[R(|ξ|2 + i0)Mξ(·)](x)f(x) dx

∣∣∣∣ ≤ Cα,ε0‖f‖L2
s+|α|(Ω) (2.34)

for all |ξ| ≥ ε0. In particular, we have

∣∣∂α
ξ (Ff)(ξ)

∣∣ ≤
∣∣∂α

ξ (F0(jf))(ξ)
∣∣ + Cα,ε0‖f‖L2

s+|α|(Ω) (2.35)

for all |ξ| ≥ ε0, where (F0g)(ξ) denotes the Fourier transform of g(x) on Rn.
(ii) (Low frequency estimates). Let s > n+1/2. Then the following estimates

hold for all 0 < |ξ| ≤ ε0:

∣∣∣∣∂α
ξ

∫

Ω

[R(|ξ|2 + i0)Mξ(·)](x)f(x) dx

∣∣∣∣

≤ Cα,ε0

{
1 + |ξ|n−2−|α|∣∣(log |ξ|)ε(n)

∣∣}‖f‖L2
s(Ω) (2.36)

for any |α| ≤ n− 2, and

∣∣∣∣∂α
ξ

∫

Ω

[R(|ξ|2 + i0)Mξ(·)](x)f(x) dx

∣∣∣∣ ≤ Cα,ε0(1 + |ξ|n−2−|α|)‖f‖L2
s(Ω) (2.37)

for |α| = n− 1, n, provided f ∈ L2
s(Ω). In particular, we have

∣∣∂α
ξ (Ff)(ξ)

∣∣ ≤ ∣∣∂α
ξ (F0(jf))(ξ)

∣∣

+ Cα,ε0

{
1 + |ξ|n−2−|α|∣∣(log |ξ|)ε(n)

∣∣}‖f‖L2
s(Ω) (2.38)

for all 0 < |ξ| < ε0 and |α| ≤ n− 2, and

∣∣∂α
ξ (Ff)(ξ)

∣∣ ≤
∣∣∂α

ξ (F0(jf))(ξ)
∣∣ + Cα,ε0(1 + |ξ|n−2−|α|)‖f‖L2

s(Ω) (2.39)

for all 0 < |ξ| < ε0 and |α| = n− 1, n.
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Proof. The derivatives of the first term in (Ff)(ξ) are estimated by
|∂α

ξ (F0(jf))(ξ)|. Hence we may concentrate on estimating the perturbative term
in (Ff)(ξ).

(i) By using the Schwarz inequality, we have

∣∣∣∣∂α
ξ

∫

Ω

[R(|ξ|2 + i0)Mξ(·)](x)f(x) dx

∣∣∣∣

≤ ∥∥∂α
ξ [R(|ξ|2 + i0)Mξ(·)]

∥∥
L2
−s−|α|(Ω)

‖f‖L2
s+|α|(Ω) (2.40)

for s > 1/2. Since Mξ(x) has the compact support in x ∈ Ω, it follows from (2.31)
that

∥∥∂β
ξ Mξ(·)

∥∥
L2

s+|α|(Ω)
≤ Cβ(1 + |ξ|), (ξ ∈ Rn) (2.41)

for any β, and hence, we get, by using Lemma 2.4,

∥∥∂α
ξ [R(|ξ|2 + i0)Mξ(·)]

∥∥
L2
−s−|α|(Ω)

≤
∑

|β|≤|α|
Cα,β,ε0 |ξ|−1

∥∥∂β
ξ Mξ(·)

∥∥
L2

s+|α|(Ω)
≤ Cα,ε0

for all |ξ| ≥ ε0. This estimate together (2.40) imply the required estimate (2.34).
(ii) As to the low frequency part, instead of the additional weight |α| on f , we

need to restrict the exponent s to s > n+1/2 when we consider the differentiability
of the resolvent. In fact, if we choose d = n as d < s − 1/2 in the part (iii)
of Proposition 2.5, then the remainder term in asymptotic expansion (2.13) of
R(|ξ|2 + i0) is n-times differentiable in 0 < |ξ| ≤ ε0, and we can estimate

∣∣∣∣∂α
ξ

∫

Ω

[R(|ξ|2 + i0)Mξ(·)](x)f(x) dx

∣∣∣∣

≤ ∥∥∂α
ξ [R(|ξ|2 + i0)Mξ(·)]

∥∥
L2
−s(Ω)

‖f‖L2
s(Ω)

≤
∑

|β|≤|α|
Cα,β

∥∥∂α−β
ξ R(|ξ|2 + i0)

∥∥
B(L2

s(Ω),H2
−s(Ω))

∥∥∂β
ξ Mξ(·)

∥∥
L2

s(Ω)
‖f‖L2

s(Ω)

≤ Cα

∑

|β|≤|α|

∥∥∂α−β
ξ R(|ξ|2 + i0)

∥∥
B(L2

s(Ω),H2
−s(Ω))

‖f‖L2
s(Ω) (2.42)

for |α| ≤ n, where we used the estimate (2.41). By using the asymptotic expansion
(2.13) in Proposition 2.5 we can write
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R(|ξ|2 + i0) = |ξ|n−2(log |ξ|)ε(n)F + G(|ξ|2) + o(|ξ|n−2) in B(L2
s(Ω),H2

−s(Ω))

for 0 < |ξ| ≤ ε0, where G(|ξ|2) is the polynomial of degree 2[n/2 − 1] in ξ, and
the remainder term is n-times differentiable in 0 < |ξ| ≤ ε0. Then we have, for
|α| ≤ n− 2,

∑

|β|≤|α|

∥∥∂α−β
ξ R(|ξ|2 + i0)

∥∥
B(L2

s(Ω),H2
−s(Ω))

≤
∑

|β|≤|α|
Cα,β

{|ξ|n−2−|α|+|β|∣∣(log |ξ|)ε(n)
∣∣ +

∣∣∂α−β
ξ G(|ξ|2)∣∣ + |ξ|n−2−|α|+|β|}

≤ Cα,ε0

{
1 + |ξ|n−2−|α|∣∣(log |ξ|)ε(n)

∣∣}, (2.43)

where we used the estimate
∑
|β|≤|α| |∂α−β

ξ G(|ξ|2)| ≤ Cα,ε0 for |ξ| ≤ ε0. For
|α| ≥ n − 1, the logarithmic factor is negligible. Thus (2.36)–(2.37) follow from
(2.42)–(2.43). ¤

3. Proof of Theorems 1.1 and 1.4.

First we shall prove Theorem 1.1 along an idea of D’Ancona and Spagnolo
[7]. Let us consider the linear problem:

∂2
t u− c(t)2∆u = 0, x ∈ Ω, (3.1)

for t 6= 0, with the initial condition

u(0, x) = f0(x), ∂tu(0, x) = f1(x), (3.2)

and the boundary condition

u(t, x) = 0, (t, x) ∈ R× ∂Ω. (3.3)

Here c(t) satisfies a suitable condition introduced later. We define a new function

c̃(t)2 = 1 +
∫

Ω

|∇u|2 dx. (3.4)

This defines a map

Θ : c 7→ c̃.
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If we can find a fixed point of Θ in a suitable space, the solution u(t, x) to (3.1)–
(3.3) will be a solution to the original problem (1.1)–(1.3).

Now let us introduce a set K as follows:

A set K : Given Λ > 1, K > 0 and k > 1, the function c(t) ∈ Liploc(R)
belongs to K = K (k,Λ,K) if the following two conditions are satisfied :

1 ≤ c(t) ≤ Λ,

|c′(t)| ≤ K(1 + |t|)−k.

The following proposition is crucial in the argument.

Proposition 3.1. Let c(t) ∈ K . Then there exist two constants B > 0 and
M > 0 such that if K satisfies K < B, then

1 ≤ c̃(t) ≤ 1 + ‖∇f0‖L2(Ω) +
M

k − 1
|||(f0, f1)|||Yk(Ω), (3.5)

|c̃′(t)| ≤ M(1 + |t|)−k|||(f0, f1)|||Yk(Ω). (3.6)

Proof. The proof is essentially based on the methods of [7, Theorem 1.1]
and [35, Thoerem 4]. For the solution u(t, x) to (3.1)–(3.3), we define two functions

v±(t) =
e±iϑ(t)|D|

√
c(t)

(∂tu∓ ic(t)|D|u),

where we put

ϑ(t) =
∫ t

0

c(s) ds.

We need two functionals

I(r, t) =
(|D|e2ir|D|v−(t), v+(t)

)
L2(Ω)

,

J(r, t) =
(|D|e2ir|D|v+(t), v+(t)

)
L2(Ω)

+
(|D|e2ir|D|v−(t), v−(t)

)
L2(Ω)

for r, t ∈ R. Then it can be checked that

2c̃(t)c̃′(t) = ImI(ϑ(t), t). (3.7)
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Hence it suffices for our purpose to derive the decay estimate for I(ϑ(t), t) when
t ≥ 0.

Defining

|f |k = sup
r∈R

(1 + |r|)k|f(r)|

for every function f on R, we shall prove the following estimate:

sup
t≥0

|I(·, t)|k ≤ 2M|||(f0, f1)|||Yk(Ω) (3.8)

for a suitable constant M depending only on k and Λ.
To begin with, we prove that there exists a constant C1 such that

|I(·, 0)|k + |J(·, 0)|k ≤ C1|||(f0, f1)|||Yk(Ω). (3.9)

It follows from the definition of |||(f0, f1)|||Yk(Ω) that

∣∣∣
(|D|e2ir|D|v−(0), v+(0)

)
L2(Ω)

∣∣∣

≤
∣∣∣− c(0)

(
e2ir|D||D| 32 f0, |D| 32 f0

)
L2(Ω)

∣∣∣ +
∣∣∣c(0)−1

(
e2ir|D||D| 12 f1, |D| 12 f1

)
L2(Ω)

∣∣∣

+
∣∣∣i

(
e2ir|D||D| 32 f0, |D| 12 f1

)
L2(Ω)

+ i
(
e2ir|D||D| 12 f1, |D| 32 f0

)
L2(Ω)

∣∣∣

≤ C(1 + |2r|)−k|||(f0, f1)|||Yk(Ω),

which implies that

|I(·, 0)|k ≤ C|||(f0, f1)|||Yk(Ω).

In a similar way, we have the same type estimate for J(·, 0). Hence we obtain
(3.9).

Let us prove (3.8). By the definition of v±(t) we have

v′±(t) = − c′(t)
2c(t)

e±2iϑ(t)|D|v∓(t). (3.10)

Differentiating I(r, t) and J(r, t) with respect to t and plugging (3.10) into the
resulting ones, we get
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∂tI(r, t) = − c′(t)
2c(t)

J(r − ϑ(t), t),

∂tJ(r, t) = −c′(t)
c(t)

(
I(r + ϑ(t), t) + I(−r + ϑ(t), t)

)
.

Write these equations into integral equation:

I(r, t) = I(r, 0)− 1
2

∫ t

0

c′(s)
c(s)

J(r − ϑ(s), 0) ds

+
1
2

∫ t

0

c′(s)
c(s)

∫ s

0

c′(σ)
c(σ)

× (
I(r − ϑ(s) + ϑ(σ), σ) + I(−r + ϑ(s) + ϑ(σ), σ)

)
dσds. (3.11)

Defining [g]k = supt≥0 |g(·, t)|k, we see from (3.11) that

(1 + |r|)k|I(r, t)| ≤ |I(·, 0)|k + I1 + I2, (3.12)

where

I1 =
K

2
|J(·, 0)|k(1 + |r|)k

∫ t

0

(1 + s)−k(1 + |r − ϑ(s)|)−k ds,

I2 =
K2

2
[I]k(1 + |r|)k

∫ t

0

(1 + s)−k

∫ s

0

(1 + σ)−k

× {
(1 + |r − ϑ(s) + ϑ(σ)|)−k + (1 + | − r + ϑ(s) + ϑ(σ)|)−k

}
dσds.

Notice that

ϑ′(s) = c(s) ≥ 1, ϑ(s) =
∫ s

0

c ≤ Λs,
1 + ϑ(s)

1 + s
≤ Λ.

Then changing variable ρ = ϑ(s) in I1 and using (3.9), we have

I1 ≤
C1KΛk|||(f0, f1)|||Yk(Ω)

2
(1 + |r|)k

∫ t

0

(1 + ϑ(s))−k(1 + |r − ϑ(s)|)−k ds

≤ C1KΛk|||(f0, f1)|||Yk(Ω)

2
(1 + |r|)k

∫ ∞

0

(1 + ρ)−k(1 + |r − ρ|)−k dρ

ϑ′(s)
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≤ 2k−1C1KΛk

k − 1
|||(f0, f1)|||Yk(Ω), (3.13)

where we have used the following well-known inequality: If θ1 and θ2 are real
numbers with max(θ1, θ2) > 1, then

∫ ∞

0

(1 + |t− s|)−θ1(1 + s)−θ2 ds ≤ c(θ1, θ2)(1 + |t|)−min(θ1,θ2)

holds with c(θ1, θ2) = 2min(θ1,θ2)/(max(θ1, θ2)− 1). In a similar way, we can treat
the term I2, and we have

I2 ≤ K2Λ2k

2
[I]k(1 + |r|)k

∫ t

0

(1 + ϑ(s))−k

∫ s

0

(1 + ϑ(σ))−k

× {
(1 + |r − ϑ(s) + ϑ(σ)|)−k + (1 + |ϑ(s) + ϑ(σ)− r|)−k

}
dσds

≤ 22kK2Λ2k

(k − 1)2
[I]k. (3.14)

Applying the estimate (3.9) to the first term in the right-hand side of (3.12) and
combining this with (3.13)–(3.14), we arrive at

[I]k ≤ C1|||(f0, f1)|||Yk(Ω) +
2k−1C1KΛk

k − 1
|||(f0, f1)|||Yk(Ω) +

22kK2Λ2k

(k − 1)2
[I]k.

If K satisfies

K <
1√
2

k − 1
2kΛk

≡ B,

then

[I]k ≤ 2
(

C1 +
2k−1C1BΛk

k − 1

)
|||(f0, f1)|||Yk(Ω) ≡ 2M|||(f0, f1)|||Yk(Ω),

which proves (3.8).
We now apply the estimate (3.8) to obtain the decay estimate of c̃′(t). It

follows from (3.7) that

|c̃′(t)| ≤ 1
2
|I(ϑ(t), t)| ≤ M|||(f0, f1)|||Yk(Ω)(1 + t)−k, (3.15)
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which proves the estimate (3.6).
It remains to prove the estimate (3.5). The first inequality is obvious, if we

recall the definition (3.4) of c̃(t). As to the second inequality, integrating (3.15)
and using

c̃(t) ≤ c̃(0) +
∫ ∞

0

|c̃′(τ)| dτ,

we get

c̃(t) ≤ c̃(0) +
M

k − 1
|||(f0, f1)|||Yk(Ω).

Since c̃2(0) = 1 + ‖∇f0‖2L2 , we obtain (3.5). The proof of Proposition 3.1 is now
complete. ¤

Proof of Theorem 1.1. We employ the Schauder-Tychonoff fixed point
theorem. Let c(t) ∈ K , and we fix the data (f0, f1) ∈ Yk(Ω). Then it follows from
Proposition 3.1 that the map

Θ : c(t) 7→ c̃(t)

maps K into itself provided that the quantity ‖∇f0‖2L2(Ω) + |||(f0, f1)|||Yk(Ω) is suffi-
ciently small. Now K may be regarded as the convex subset of the Fréchet space
L∞loc(R), and we endow K with the induced topology.

Compactness of K . Since K is uniformly bounded and equi-continuous on
every compact t-interval, one can deduce from the Ascoli-Arzelà theorem that
K is relatively compact in L∞loc(R), and it is sequentially compact. This means
that every sequence {cj(t)}∞j=1 in K has a subsequence, denoted by the same,
converging to some c(·) ∈ Liploc(R):

cj(t) →
(j→∞)

c(t) in L∞loc(R), ‖c(·)‖L∞(R) ≤ Λ,

where we used the equation

cj(t)− cj(t′) =
∫ t

t′
c′j(τ) dτ, (3.16)

and the assumption that

|c′j(t)| ≤ K(1 + |t|)−k ∈ L1(R). (3.17)
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Moreover, the derivative c′(t) exists almost everywhere on R. Now, for the deriva-
tive c′(t), if we prove that

|c′(t)| ≤ K(1 + |t|)−k a.e. t ∈ R, (3.18)

then c(t) ∈ K , which proves the compactness of K . We prove (3.18). Let t0 ∈ R

be an arbitrarily point where c(t) is differentiable. Since we have, by (3.16)–(3.17),

∣∣∣∣
1
2h
{cj(t0 + h)− cj(t0 − h)}

∣∣∣∣ =
∣∣∣∣

1
2h

∫ t0+h

t0−h

c′j(t) dt

∣∣∣∣ ≤
1
2h

∫ t0+h

t0−h

K(1 + |t|)−k dt,

for h > 0, we can take the limit in this equation with respect to j, so that

∣∣∣∣
1
2h
{c(t0 + h)− c(t0 − h)}

∣∣∣∣ ≤
1
2h

∫ t0+h

t0−h

K(1 + |t|)−k dt.

Then, letting h → +0, we conclude that

|c′(t0)| ≤ K(1 + |t0|)−k.

Since t0 is arbitrary, we get (3.18).
Continuity of Θ on K . We may consider the case t > 0, since the case t < 0

can be treated in the same way. Let us take a sequence {cm(t)} in K such that

cm(t) → c(t) ∈ K in L∞loc(0,∞) (m →∞),

and let um(t, x) and u(t, x) be corresponding solutions to cm(t) and c(t), re-
spectively, with fixed data (f0, f1) ∈ Yk(Ω). Then we prove that the images
c̃m(t) := Θ(cm(t)) and c̃(t) := Θ(c(t)) satisfy

c̃m(t) → c̃(t) in L∞loc(0,∞) (m →∞). (3.19)

The functions vm := um − u, m = 1, 2, . . ., solve the following initial-boundary
value problem:





∂2
t vm − c(t)2∆vm = {cm(t)2 − c(t)2}∆um, (t, x) ∈ R× Ω,

vm(0, x) = 0, ∂tvm(0, x) = 0, x ∈ Ω,

vm(t, x) = 0, (t, x) ∈ R× ∂Ω.
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Differentiate the energy E(vm(t)) for vm with respect to t, where

E(vm(t)) = ‖v′m(t)‖2L2(Ω) + c(t)2‖∇vm(t)‖2L2(Ω), (′ = ∂t).

Then we get

E′(vm(t)) = −2{cm(t)2 − c(t)2}Re(∆um(t), v′m(t))L2(Ω)

+ 2c(t)c′(t)‖∇vm(t)‖2L2(Ω)

≤ 2
∣∣cm(t)2 − c(t)2

∣∣‖um(t)‖H3/2(Ω)‖v′m(t)‖H1/2(Ω) + 2
c′(t)
c(t)

E(vm(t)).

(3.20)

Since ‖um(t)‖H3/2(Ω) and ‖v′m(t)‖H1/2(Ω) are bounded by the quantity
‖f0‖H3/2(Ω) + ‖f1‖H1/2(Ω), we integrate (3.20) and apply Gronwall’s lemma to
obtain, for all t ≥ 0,

E(vm(t)) ≤ C

( ∫ t

0

∣∣cm(τ)2−c(τ)2
∣∣ dτ

)(‖f0‖H3/2(Ω)+‖f1‖H1/2(Ω)

)2
e2
R∞
0

|c′(τ)|
c(τ) dτ ,

which implies that

∇um(t) → ∇u(t)

u′m(t) → u′(t)

}
in L∞loc(0,∞;L2(Ω)) as m →∞.

Hence we get (3.19), which proves the continuity of Θ. ¤

Completion of the proof of Theorem 1.1. By using the Schauder–
Tychonoff fixed point theorem, we can show that Θ has a fixed point in K , and
hence, we conclude that the solution u(t, x) to (3.1)–(3.3) is the solution to (1.1)–
(1.3). The uniqueness of solutions is obvious. This proves Theorem 1.1. ¤

Proof of Theorem 1.4. We need a decay estimate of some oscillatory
integrals.

Lemma 3.2. Let n ≥ 3. Assume that Rn \ Ω is star-shaped with respect to
the origin. Let f1 ∈ H

γ1+1/2
s(k),0 (Ω) and f2 ∈ H

γ2+1/2
s(k),0 (Ω) for some s(k) > max(n +

1/2, k + n/2), k ∈ (1, n], and for some γ1, γ2 > n/2. Consider the oscillatory
integral of the form
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F (τ) =
∫

Rn

eiτ |ξ|(Ff1)(ξ)(Ff2)(ξ)|ξ| dξ, (τ ∈ R).

Then

|F (τ)| ≤ C(1 + |τ |)−k‖f1‖H
γ1+1/2
s(k) (Ω)

‖f2‖H
γ2+1/2
s(k) (Ω)

.

The proof of Lemma 3.2 is rather long and will be postponed in the last part
of this section.

Put γ1 = γ2 = s0 − 1/2 in Lemma 3.2. Recall the definition of Yk(Ω). If we
choose (Ff1)(ξ), (Ff2)(ξ) as |ξ|(Ff0)(ξ) in Lemma 3.2, one has

∣∣∣
(
eiτ |ξ||ξ| 32 Ff0, |ξ| 32 Ff0

)
L2(Rn)

∣∣∣ ≤ C(1 + |τ |)−k‖|D|f0‖2Hs0
s(k)(Ω)

.

If we choose (Ff1)(ξ), (Ff2)(ξ) as (Ff1)(ξ) in Lemma 3.2, one has

∣∣∣
(
eiτ |ξ||ξ| 12 Ff1, |ξ| 12 Ff1

)
L2(Rn)

∣∣∣ ≤ C(1 + |τ |)−k‖f1‖2Hs0
s(k)(Ω)

.

If we choose (Ff1)(ξ) as |ξ|(Ff0)(ξ), and (Ff2)(ξ) as (Ff1)(ξ) in Lemma 3.2,
respectively, one has

∣∣∣
(
eiτ |ξ||ξ| 32 Ff0, |ξ| 12 Ff1

)
L2(Rn)

∣∣∣ ≤ C(1 + |τ |)−k‖|D|f0‖H
s0
s(k)(Ω)‖f1‖H

s0
s(k)

.

These estimates imply Example 1.3:

Hs0+1
s(k),0(Ω)×Hs0

s(k),0(Ω) ⊂ Yk(Ω).

Therefore, applying Theorem 1.1, we conclude that the H3/2 solution u(t, x) exists
globally in R. Thus, by using Theorem 2 from [1, Arosio and Garavaldi] we can
readily check that u(t, x) belongs to ∩j=0,1,2C

j(R;Hs0+1−j(Ω)). The proof of
Theorem 1.4 is finished. ¤

Proof of Lemma 3.2. First, we observe that F (τ) is bounded in τ ∈ R,
provided that f1 ∈ H1/2(Ω) and f2 ∈ H1/2(Ω). In fact, by using the generalized
Parseval identity (2.32) and diagonalization property (2.33), we have

|F (τ)| ≤
∫

Rn

|(Ff1)(ξ)| |(Ff2)(ξ)| |ξ| dξ ≤ ‖f1‖
H

1
2 (Ω)

‖f2‖
H

1
2 (Ω)

.
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Hence we have only to prove the case |τ | ≥ 1. To prove the decay estimate of
F (τ), we divide it into the high frequency part and low frequency one. Recall the
number ε0 in Proposition 2.5. Inserting the cut-off function χ(ξ) ∈ C∞(Rn) equal
to one for |ξ| ≥ ε0 and 0 for |ξ| ≤ ε0/2, we write

F (τ) = F1(τ) + F2(τ)

=
∫

Rn

eiτ |ξ|χ(ξ)(Ff1)(ξ)(Ff2)(ξ)|ξ| dξ

+
∫

Rn

eiτ |ξ|(1− χ(ξ))(Ff1)(ξ)(Ff2)(ξ)|ξ| dξ.

We shall derive the decay estimate of F1(τ) for |τ | ≥ 1. On the support of χ(ξ),
we see that |∇ξ(τ |ξ|)| = |τ |. Since the support of the amplitude function is away
from the origin, and since k-fold ξ-derivatives of the amplitude function decay as
|ξ| → ∞ for any integer k, we can perform k-fold integration by parts with an
operator P = ∇ξ(τ |ξ|)

i|∇ξ(τ |ξ|)|2 · ∇ξ; thus we find that

F1(τ) =
∫

Rn

eiτ |ξ|(P ∗)k
[
χ(ξ)|ξ|−γ1−γ2(F |D|γ1+1/2f1)(ξ)(F |D|γ1+1/2f2)(ξ)

]
dξ,

where we used the diagonalization property (2.33). Then, by using (2.35) from
Lemma 2.8, we can write

|F1(τ)| ≤ Ck|τ |−k
∑

|ν|≤|µ|≤k

∫

Rn

〈ξ〉−γ1−γ2

×
∣∣∣∂µ−ν

ξ

{(
F [|D|γ1+

1
2 f1]

)
(ξ)

}∣∣∣
∣∣∣∂ν

ξ

{(
F [|D|γ2+

1
2 f2]

)
(ξ)

}∣∣∣ dξ

≤ Ck|τ |−k
∑

|ν|≤|µ|≤k

∫

Rn

〈ξ〉−γ1−γ2

×
[∣∣∣∂µ−ν

ξ

{(
F0[j|D|γ1+

1
2 f1]

)
(ξ)

}∣∣∣ + C‖f1‖
H

γ1+ 1
2

s+|µ−ν|(Ω)

]

×
[∣∣∣∂ν

ξ

{(
F0[j|D|γ2+

1
2 f2]

)
(ξ)

}∣∣∣ + C‖f2‖
H

γ2+ 1
2

s+|ν| (Ω)

]
dξ

for any k ∈ N and s > 1/2. Here, by using the properties of the Fourier transform
on Rn and the Schwarz inequality, we have
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∫

Rn

〈ξ〉−γ1−γ2

∣∣∣∂µ−ν
ξ

{(
F0[j|D|γ1+

1
2 f1]

)
(ξ)

}∣∣∣ dξ ≤ C‖f1‖
H

γ1+ 1
2

|µ−ν| (Ω)
,

∫

Rn

〈ξ〉−γ1−γ2

∣∣∣∂ν
ξ

{(
F0[j|D|γ2+

1
2 f2]

)
(ξ)

}∣∣∣ dξ ≤ C‖f2‖
H

γ2+ 1
2

|ν| (Ω)
,

and hence, we get

|F1(τ)| ≤ Ck|τ |−k
∑

a≤k

(
‖f1‖

H
γ1+ 1

2
k−a (Ω)

‖f2‖
H

γ2+ 1
2

a (Ω)
+ ‖f1‖

H
γ1+ 1

2
k−a (Ω)

‖f2‖
H

γ2+ 1
2

s+a (Ω)

+ ‖f1‖
H

γ1+ 1
2

s+k−a(Ω)
‖f2‖

H
γ2+ 1

2
a (Ω)

+ ‖f1‖
H

γ1+ 1
2

s+k−a(Ω)
‖f2‖

H
γ2+ 1

2
s+a (Ω)

)

≤ Ck|τ |−k
∑

a≤k

‖f1‖
H

γ1+ 1
2

s+k−a(Ω)
‖f2‖

H
γ2+ 1

2
s+a (Ω)

(3.21)

for any k ∈ N and s > 1/2.
We now turn to the estimate of F2(τ). For brevity, we denote the symbol in

the integral F2(τ) by

A(ξ) = (1− χ(ξ))(Ff1)(ξ)(Ff2)(ξ)|ξ|.

Making change of variable ξ = λω (λ = |ξ|, ω ∈ Sn−1), we have

F2(τ) =
∫

Sn−1

∫ ∞

0

eiλτA(λω)λn−1 dλdω.

We shall prove the following:

|F2(τ)| ≤ Ck|τ |−k‖f1‖L2
s(k)(Ω)‖f2‖L2

s(k)(Ω) (3.22)

for s(k) > max(n + 1/2, k + n/2) and k = 1, . . . , n. Writing

∣∣∂k−1
λ (A(λω)λn−1)

∣∣ =
∣∣∂k−1

λ {λn(1− χ(λω))(Ff1)(λω)(Ff2)(λω)}∣∣

≤ Cn,k

k−1∑
a=0

λn−k+a+1
∑

a1+a2≤a

∣∣∂a1
λ (Ff1)(λω)

∣∣ ∣∣∂a2
λ (Ff2)(λω)

∣∣

and applying (2.38)–(2.39) in Lemma 2.8 to the last factor, we get
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∣∣∂k−1
λ (A(λω)λn−1)

∣∣

≤ Cn,k

k−1∑
a=0

λn−k+a+1
∑

a1+a2≤a

× [∣∣∂a1
λ (F0(jf1))(λω)

∣∣ + {1 + λn−2−a1 |(log λ)ε(n)|}‖f1‖L2
s(Ω)

]

× [∣∣∂a2
λ (F0(jf2))(λω)

∣∣ + {1 + λn−2−a2 |(log λ)ε(n)|}‖f2‖L2
s(Ω)

]

for s > n + 1/2, which implies that

∂k−1
λ (A(λω)λn−1) → 0 as λ → 0

provided k = 1, . . . , n. Here the logarithmic terms are negligible for |a1| = n − 1
or |a2| = n− 1. Then integrating by parts, we get

∣∣∣∣
∫

Sn−1

∫ ∞

0

eiλτA(λω)λn−1 dλdω

∣∣∣∣

≤ Ck|τ |−k

∫

Sn−1

∫ ∞

0

∣∣∂k
λ(A(λω)λn−1)

∣∣ dλdω (3.23)

for k = 0, 1, . . . , n. Writing the perturbative term in the representation (Ff)(ξ)
as V (f)(ξ), we have

(Ff)(ξ) = (F0[jf ])(ξ) + V (f)(ξ),

and hence,

A(λω) = (1− χ(λω))
{
λ(F0[jf1])(λω)(F0[jf2])(λω) + λV (f1)(ξ)(F0[jf2])(λω)

+ λ(F0[jf1])(λω)V (f2)(λω) + λV (f1)(λω)V (f2)(λω)
}

= A1(λω) + A2(λω) + A3(λω) + A4(λω).

By Lemma A from [8] (cf. Lemma A.1 from [7]), we have

∫

Sn−1

∫ ∞

0

∣∣∂k
λ(A1(λω)λn−1)

∣∣ dλdω ≤ Ck

∑

a≤k

‖f1‖L2
k−a(Ω)‖f2‖L2

a(Ω), (3.24)

provided k = 1, . . . , n + 1. As to A2(λω), we have
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∫

Sn−1

∫ ∞

0

∣∣∂k
λ(A2(λω)λn−1)

∣∣ dλdω

≤
∑

|α|≤k

Ck,α

∫

Sn−1

∫

0<λ<ε0

∣∣∂k−|α|
λ (λnV (f1)(λω))

∣∣∥∥∂α
ξ (F0[jf2])

∥∥
L∞(Rn)

dλdω.

Here, on the support of A2(λω), using (2.36)–(2.37) in Lemma 2.8 we see that

∑

|α|≤k

∣∣∂k−|α|
λ (λnV (f1)(λω))

∣∣∥∥∂α
ξ (F0[jf2])

∥∥
L∞(Rn)

≤ Ck

∑

a≤k

{
1 + λ2n−2−k+a|(log λ)ε(n)|}‖f1‖L2

s(Ω)‖f2‖L2
a+s′ (Ω)

for k = 1, . . . , n, provided s > n + 1/2 and s′ > n/2. The functions
λ2n−2−k|(log λ)ε(n)| are integrable over (0, ε0), since n ≥ 3, and hence, we get,
for k = 1, . . . , n,

∫

Sn−1

∫ ∞

0

∣∣∂k
λ(A2(λω)λn−1)

∣∣ dλdω ≤ Ck‖f1‖L2
s(Ω)‖f2‖L2

k+s′ (Ω) (3.25)

for s > n + 1/2 and s′ > n/2. We have also the estimate (3.25) for A3(λω) in a
similar way. As to A4(λω), using again (2.36)–(2.37) in Lemma 2.8, we see that

∣∣∂k
λ(A4(λω)λn−1)

∣∣ ≤ Ck

∑

a≤k

∣∣∂k−a
λ {λn/2V (f1)(λω)}∣∣∣∣∂a

λ{λn/2V (f2)(λω)}∣∣

≤ Ck

∑

a≤k

{
λ(n−2)+n/2−k+a|(log λ)ε(n)|+ λn/2−k+a

}

× {
λ(n−2)+n/2−a|(log λ)ε(n)|+ λn/2−a

}‖f1‖L2
s(Ω)‖f2‖L2

s(Ω)

≤ Ck

{
λn−2|(log λ)ε(n)|+ 1

}2
λn−k‖f1‖L2

s(Ω)‖f2‖L2
s(Ω)

for s > n + 1/2. Since n ≥ 3, we get

∣∣∣∣
∫

Sn−1

∫ ∞

0

∂k
λ(A4(λω)λn−1) dλdω

∣∣∣∣ ≤ Ck‖f1‖L2
s(Ω)‖f2‖L2

s(Ω) (3.26)

for s > n + 1/2 and k = 1, . . . , n. Thus the required estimate (3.22) follows from
(3.23)–(3.26).

Combining the estimates (3.21)–(3.22), we arrive at the estimate
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|F (τ)| ≤ Ck(1 + |τ |)−k‖f1‖H
γ1+1/2
s(k) (Ω)

‖f2‖H
γ2+1/2
s(k) (Ω)

(3.27)

for any s(k) > max(n + 1/2, k + n/2) and k = 1, . . . , n. But then (3.27) holds
also for any real k ∈ [1, n], if we use a method similar to the one used in [33,
Lemma 2.1]. Actually F (τ) can be regarded as the particular form of bilinear
operators T (f1, f2)(τ) from H

γ1+1/2
s(k) (Ω) × H

γ2+1/2
s(k) (Ω) to the space Zk = {g(t) :

(1 + |t|)k|g(t)| ∈ L∞(Ω)} defined by

T (f1, f2)(τ) =
∫

Rn

eiτ |ξ|(Ff1)(ξ)(Ff2)(ξ)|ξ| dξ,

where Zk is the Banach space with the norm ‖g(t)‖Zk
= ess.supt∈R(1+ |t|)k|g(t)|.

It is readily seen, by the complex interpolation between k and k + 1 (0 < θ < 1)
with k = 1, . . . , n − 1, that [Zk, Zk+1]θ and

[
H

γ+1/2
s(k) (Ω),Hγ+1/2

s(k+1)(Ω)
]
θ

(γ = γ1

or γ2) coincide with Zk+θ and H
γ+1/2
s(k+θ)(Ω), respectively. Hence the multilinear

interpolation theorem (see Theorem 4.4.1 of [3]) implies that

‖T (f1, f2)(τ)‖Zk+θ
≤ Ck+θ‖f1‖H

γ1+1/2
s(k+θ) (Ω)

‖f2‖H
γ2+1/2
s(k+θ) (Ω)

.

Then putting κ = k + θ, we have

|T (f1, f2)(τ)| ≤ Cκ(1 + |τ |)−κ‖f1‖H
γ1+1/2
s(κ) (Ω)

‖f2‖H
γ2+1/2
s(κ) (Ω)

for any κ ∈ [1, n], which proves Lemma 3.2. ¤

4. Proof of Theorem 1.5.

The following lemma can be found in [20, Theorem 1.1] which is proved in
the whole space Rn. However, it holds even in the exterior domains.

Lemma 4.1. Let n ≥ 1. For the linear problem (3.1)–(3.3), we assume that
the function c(t) ∈ Liploc(R) satisfies

inf
t∈R

c(t) > 0,

c(t) = c±∞ + o(1) for some c±∞ > 0 as t → ±∞.

If c(t)− c±∞ is integrable on R, i.e., the function
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Ψ(t) =
∫ t

0

(c(τ)− c±∞) dτ

has the finite limits as t → ±∞, then for each finite energy solution u(t, x) to (3.1)–
(3.3), there exist finite energy solutions u±(t, x) to equations ∂2

t u±−c2
±∞∆u± = 0

in Ω with the boundary condition u±(t, x) = 0 on ∂Ω, such that

‖∇u±(t, ·)−∇u(t, ·)‖L2(Ω) + ‖∂tu±(t, ·)− ∂tu(t, ·)‖L2(Ω)

= O

( ∫ +∞

|t|
(c(τ)− c±∞) dτ

)

as t → ±∞.

Let c(t) ∈ K . Then we have proved in Section 3 that the solution u to (3.1)–
(3.3) is also the solution to (1.1)–(1.3) provided that the data are sufficient small.
Furthermore, we have

c(t) =
√

1 + ‖∇u(t, ·)‖2L2(Ω). (4.1)

It follows from Proposition 3.1 that there exists constants c±∞ > 0 such that

c(t)− c±∞ = O(|t|−k+1) as t → ±∞.

Then the existence of scattering states u±(t, x) and the asymptotic behaviour (1.6)
in Theorem 1.5 follow from Lemma 4.1, since Ψ(t) has the finite limits as t → ±∞
on account of our assumption k > 2.

We prove the equation (1.7). Since u±(t, x) are the free waves with prop-
agation speeds c±∞ and have the finite energy, they satisfy the property of an
equipartition of energy, so that the potential energy (c2

±∞/2)‖∇u±(t)‖2L2(Ω) are
asymptotically equal to the kinetic energy (1/2)‖∂tu±(t)‖2L2(Ω) (see [10]). This
means that

lim
t→−∞

c2
±∞
2
‖∇u±(t)‖2L2(Ω) = lim

t→±∞
1
2
‖∂tu±(t)‖2L2(Ω)

=
1
4
(
c2
±∞‖∇u±(0)‖2L2(Ω) + ‖∂tu±(0)‖2L2(Ω)

)
. (4.2)

Putting

lim
t→±∞

‖∇u±(t)‖L2(Ω) = λ±∞,
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we have, by using the first equality in (4.2),

lim
t→±∞

‖∂tu±(t)‖2L2(Ω) = c2
±∞λ2

±∞, (4.3)

and by (4.1), c±∞ and λ±∞ are related with

c2
±∞ = 1 + λ2

±∞. (4.4)

Thus, combining (4.3)–(4.4), we get

lim
t→±∞

‖∂tu±(t)‖2L2(Ω) = c2
±∞(c2

±∞ − 1).

Combining this limit and the second equality in (4.2), we conclude that c±∞ satisfy
(1.7).

Finally, we prove the equality:

c+∞ = c−∞. (4.5)

We define the energy for the equation (1.1) to be

‖u(t)‖2E =
1
2
‖∇u(t)‖2L2(Ω) +

1
4
‖∇u(t)‖4L2(Ω) +

1
2
‖∂tu(t)‖2L2(Ω).

Multiplying the equation (1.1) by ∂tu and integrating it over Ω, we get the following
energy identity:

‖u(t)‖E = ‖u(0)‖E . (4.6)

Letting t → ±∞ in (4.6) and using the asymptotics (1.6), we have

1
2
λ2
±∞ +

1
4
λ4
±∞ +

1
2
(
1 + λ2

±∞
)
λ2
±∞ = ‖u(0)‖2E . (4.7)

Put

φ(λ) =
1
2
λ2 +

1
4
λ4 +

1
2
(1 + λ2)λ2 for λ > 0.

Then it follows from (4.7) that
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φ(λ+∞) = φ(λ−∞). (4.8)

By the injectivity of φ(λ) we conclude that λ+∞ = λ−∞, and hence, c+∞ = c−∞.
The proof of Theorem 1.5 is complete. ¤

Acknowledgements. The author would like to express his sincere grati-
tude to the referee for his/her careful reading of the manuscript and giving the
author many valuable comments.

Added in Proof. After the author submitted this paper, he has been
acquainted with a paper of K. Kajitani, (Advances in Phase Space Analysis of
PDEs (A. Bore, D. Del Santo, and M. K. V. Murthy, eds.), Progress in Nonlinear
Differential Equations and Their Applications, vol. 78, Birkhäuser, Boston, 2009,
pp. 141–153.), where a similar result of Theorem 1.1 is proved for a slightly wider
class in “the whole space Rn”. Also for the exterior problem, after some trivial
modifications, the global well-posedness can be proved for the class of Kajitani.
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