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Abstract. Generalizing the Ohio completeness property, we introduce the

notion of �-Ohio completeness. Although many results from a previous paper by

the authors may easily be adapted for this new property, there are also some

interesting differences. We provide several examples to illustrate this. We also

have a consistency result; depending on the value of the cardinal d, the countable

union of open and !1-Ohio complete subspaces may or may not be !1-Ohio

complete.

1. Introduction.

All spaces under consideration are Tychonoff. For all undefined notions we

refer to [6]. A topological space X is Ohio complete if for every compactification

�X of X there is a G�-subset S of �X such that X � S and for every y 2 S nX,

there is a G�-subset of �X which contains y and misses X. Ohio completeness was

introduced by Arhangel’ski�� in [1] where it turned out to be a useful concept for

the study of properties of remainders in compactifications.

Let � be an infinite cardinal number. It is quite natural to generalize Ohio

completeness by saying that a space X is �-Ohio complete if for every

compactification �X of X there is a G�-subset S of �X such that X � S and for

every y 2 S nX, there is a G�-subset of �X which contains y and misses X. Here a

subspace of a space X is called a G�-subset if it is the intersection of at most

�-many open subsets of X.

Observe that any space is �-Ohio complete, for some large enough �. Also, if

either the Čech-number or the compact covering number of a space does not

exceed �, then this space is �-Ohio complete.

Ohio complete spaces were studied in [2] and [3]. In this paper we will focus

our attention on unions of �-Ohio complete subspaces. Since all the positive

results proved in [3] can be easily generalized for �-Ohio completeness, our main

purpose will be to construct counterexamples for the �-Ohio complete case. This

will be done in the main section. We will construct a non �-Ohio complete space

which is the union of a locally countable family of closed and �-Ohio complete
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subspaces. Next we will show that, if � is a regular cardinal, the union of �-many

open and �-Ohio complete subspaces need not be a �-Ohio complete space.

The last section is devoted to positive results about open sums. We shall

prove that the union of �-many open and �-Ohio complete subspaces is

kcovð��Þ-Ohio complete. This result implies several interesting consistency

results. In particular, if d ¼ !1, then the union of countably many open and

!1-Ohio complete subspaces is again !1-Ohio complete. This statement may fail if

d > !1. Here the cardinal d is the compact covering number of the space !! of

irrationals (see [5] for more information).

Throughout the paper we will use the terminology introduced in [3]. Of

course the terminology there was only introduced for Ohio completeness, but the

�-Ohio complete generalization is straightforward.

2. Examples.

In [3] it was proved that the union of a locally finite family of closed and Ohio

complete subspaces is again Ohio complete and the same holds for �-Ohio

completeness. In contrast, the union of a locally countable family of closed and

Ohio complete subspaces need not be Ohio complete by [3, Example 5.3]. The

obvious generalization of this example shows that the union of a locally-� family

of closed and Ohio complete subspaces need not be �-Ohio complete. The

following example is much better, since it shows that even a locally countable

union of closed and Ohio complete subspaces may fail to be �-Ohio complete.

EXAMPLE 2.1. Fix an infinite cardinal number � and let � ¼ �þ. The space

� carries the discrete topology. Let �� ¼ � [ f1g be its one-point compactifica-

tion. Let A be a family which is maximal with respect the following property:

(1) A � ½� �!,
(2) 8A;B 2 A ðA 6¼ B! A \ Bj j < !Þ.

Recall that the well-known space Y ¼  ð�;A Þ is defined as follows (see for

example [5, p.153]). The underlying set of Y is � [A , the points of � are isolated

and a basic neighborhood of A 2 A has the form fAg [ ðA n F Þ, where F is finite.

It is clear from the definition that Y is covered by countable open sets.

We claim that the subspace A is not a G�-subset of Y . To prove this it

suffices to show that every closed subset of Y which misses A is finite. If this were

not the case, then we could find a countably infinite closed subset C of Y which

misses A . Since the family A was chosen maximal, there must exist some A 2 A

such that A \ C is countably infinite. But then, every neighborhood of A

intersects C, a contradiction.
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We let Z ¼ Y � �� and X be the subspace of Z given by:

X ¼ ðY � �Þ [ ðA � f1gÞ:

We use [3, Lemma 5.1] (the proof can be easily adapted for �-Ohio completeness)

to show that X is not �-Ohio complete. Since A is not a G�-subset of Y , the space

X is not a G�-subset of Z. To conclude that X is not �-Ohio complete, observe

that Z nX contains no non-empty G�-subset of Z.

It remains to verify that X is the union of a locally countable family of closed

and Ohio complete subspaces of X. Let � be the projection of X onto the first

coordinate. We let the closed cover C of X be given by:

C ¼ f��1ðyÞ : y 2 Y g:

Note that the fibers of � are homeomorphic to either �� or � , which are both Ohio

complete since they are locally compact. Furthermore, since Y is locally countable

in itself and � is continuous, it follows that C is locally countable in X.

We now turn towards open sum theorems. In [3, Example 5.7] it was shown

that the countable union of open and Ohio complete subspaces need not be Ohio

complete. We can then ask whether the union of �-many open and �-Ohio

complete subspaces is �-Ohio complete. From the next theorem it will follow that,

at least for � regular, this is not the case. Moreover it will follow that, under the

assumpion � < d, the countable union of open and Ohio complete subspaces need

not even be �-Ohio complete. In the final section of this paper we will show that

on the other hand the countable union of open and Ohio complete subspaces is

always d-Ohio complete.

Fix an infinite regular cardinal � and consider the space 2�. We call a set a

G<�-subset if it is a G�-subset for some � < �. We denote by ð2�Þ<� its

G<�-modification. So the topology on ð2�Þ<� is generated by the collection of all

G<�-subsets of 2
�. Now consider the following subset of ð2�Þ:

E<� ¼ fx 2 2� : f� < � : x� 6¼ 0gj j < �g:

Note that this set is dense in the space ð2�Þ<�. Recall that the Baire number of a

space with no isolated points, also called the Novák number, is the minimal

cardinality of a family of closed nowhere dense subsets whose union is the whole

space. In [8, Lemma 1.3(b)] it is proved that the Baire number of the space ð2�Þ<�
is always greater than or equal to �þ. This result implies the following.
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LEMMA 2.2. For regular �, the set E<� is not a G�-subset of ð2�Þ<�.

PROOF. Note that since � is regular, the set E<� is equal to the union of sets

of the form 2� � f0g�n�, for � < �. These sets are all closed and nowhere dense in

ð2�Þ<�.
So if E<� were a G�-subset, then its complement would be the union of

�-many closed sets which are all nowhere dense since E<� is dense in ð2�Þ<�. So by

the previous observation, we would have that the Baire number of the space

ð2�Þ<� were less than or equal to �, contradicting [8, Lemma 1.3(b)]. �

The example constructed in the following theorem is very similar to [3,

Example 5.7], see also [4, Example 2.4].

THEOREM 2.3. Let � and � be infinite cardinal numbers, with � regular.

There exists a space X with the following properties:

(1) If X is �-Ohio complete, then E<� is a G�-set in ð2�Þ<�,
(2) X is the union of �-many open and �-Ohio complete subspaces.

PROOF. We set E ¼ E<�. For every e 2 E, we fix a collection AðeÞ of one-
to-one functions from � into D ¼ 2� n E, which is maximal with respect to the

following conditions:

(i) 8f 2 AðeÞ 8� < � ðfð�Þ � � ¼ e � �Þ,
(ii) 8f; g 2 AðeÞ ðf 6¼ g! jranðfÞ \ ranðgÞj < �Þ.

Fix a discrete space Y of cardinality �þ and let !Y ¼ Y [ f1g be its one-

point compactification. For every � 2 �, with E� we denote the subspace

2� � f0g�n�. Put A� ¼
S
e2E� AðeÞ and A ¼

S
�2� A� and let Z ¼ A [ ðD� !Y Þ. If

f 2 A and � < �, we let

Uðf; �Þ ¼ ffg [
[

ffð�Þ � !Y : � < � < �g:

The collection B, which serves as a base for a topology on Z, is given by

fUðf; �Þ : f 2 A; � < �g [ fR� U : R � D; U is an open subset of !Y g:

We leave it to the reader to verify that topologized in this way, the space Z is

Hausdorff and zero-dimensional and hence Tychonoff.

We let X be the subspace of Z given by A [ ðD� Y Þ. In the following claim

we will prove assertion (1). The proof is almost identical to the argument used in

[4, Example 2.4].
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CLAIM 1. If X is �-Ohio complete, then E is a G�-set in ð2�Þ<�.

PROOF OF CLAIM. Striving for a contradiction, assume that X is �-Ohio

complete but E is not a G�-subset of ð2�Þ<�.
Since for every d 2 D, the subspace fdg � !Y of Z is homeomorphic to !Y ,

the set Z nX contains no non-empty G�-subsets of Z. Then, by [3, lemma 5.1] X

must be a G�-subset of Z. This implies that A is a G�-subset of the subspace

A [ ðD� f1gÞ of Z. Hence D ¼
S
�<� G�, where each G� � f1g is closed in

A [ ðD� f1gÞ.
By assumption D is not the union of �-many closed subsets of ð2�Þ<�, so for

some � < �, E \ Cl<�ðG�Þ 6¼ ; (where the closure is taken in ð2�Þ<�). So we may

fix e 2 E, such that for every � < �, there is some g 2 G� such that g � � ¼ e � �.

But this means that we may find an injective function f : �! G� such that for

every � 2 �, fð�Þ � � ¼ e � �.

Since the collection AðeÞ was maximal, it follows that for some f 0 2 AðeÞ, we
have that jranðfÞ \ ranðf 0Þj ¼ �. But this means that f 0 is in the closure of the set

G� � f1g (closure in A [ ðD� f1gÞ), which is a contradiction. C

We will now prove assertion (2), that is that X is the union of �-many open

and �-Ohio complete subspaces. For each � < �, we let X� ¼ A� [ ðD� Y Þ. It is
not hard to verify that X� is an open subspace of X and of course

X ¼
S
fX� : � < �g. It remains to prove that each X� is �-Ohio complete.

CLAIM 2. For each � < �, the space X� is �-Ohio complete.

PROOF OF CLAIM. Fix � < �. Note that both A� and D� Y are discrete

subspaces of X�. Since a discrete space is (�-)Ohio complete, we have that X� is

the union of two (�-)Ohio complete subspaces. The space D� Y is clearly an open

subspace of X�, and the set A� is a G�-subset of X�. Indeed, one verifies easily

that A� ¼
T
���<�

S
f2A�

ðUðf; �Þ \X�Þ.
So it follows that X� is the union of two G�-subsets which are both �-Ohio

complete. By Corollary 4.2 in [3] it follows that X� is �-Ohio complete. C

This completes the proof of the theorem. �

The previous theorem may be applied to obtain several interesting examples.

EXAMPLE 2.4. Assume � < d. Then the union of countably many open and

Ohio complete subspaces need not be �-Ohio complete.

PROOF. Consider the space X constructed in the previous theorem with

� ¼ !. If X were �-Ohio complete, then E<! would be a G�-subset of ð2!Þ<!.
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However in this case E<! is homeomorphic to the space of rationals in ð2!Þ<!,
which is just the Cantor set. Of course, since � < d, the set of rationals is not a

G�-subset of 2
!. �

EXAMPLE 2.5. Assume � regular. Then the union of �-many open and

�-Ohio complete subspaces need not be �-Ohio complete.

PROOF. It suffices to apply Theorem 2.3 with � ¼ �, and then use

Lemma 2.2. �

3. Positive results.

Having obtained several counterexamples, we now provide some positive

results on open sum theorems for �-Ohio completeness. In particular, the results

of this section will allow us to prove that, under the assumption d ¼ !1, the

countable open union of !1-Ohio complete subspaces is !1-Ohio complete.

Recall that the covering number of a space X, denoted by kcovðXÞ, is the

minimal cardinality of a collection K of compact subsets of X which covers X. In

the next lemma we will refer to kcovð��Þ. In this case the space � always carries

the discrete topology. Of course � � kcovð��Þ � ��.

LEMMA 3.1. Let X be a space. Then the union of �-many G�-subsets of X is

a Gkcovð��Þ-subset of X.

PROOF. Let G be a family of G�-subsets of X, with jG j ¼ �. For every

G 2 G , we fix a sequence ðG�Þ�2� of open subsets of X such that G ¼
T
�2� G�.

Since jG j ¼ �, the space �G is homeomorphic to ��, and then we may write

�G ¼
S
�2kcovð��ÞK� , where each K� is a compact subset of �G .

For every � 2 kcovð��Þ, we let f� : G ! ½��<! be the function defined as

f� ðGÞ ¼ pGðK� Þ, where pG denotes the projection of �G onto the G-th factor, and

we let F ¼ ff� : � 2 kcovð��Þg.
For every f 2 F , we letWf ¼

S
G2G

T
�2fðGÞG� andW ¼

T
f2F Wf . It is clear

thatWf is an open subset of X containing
S
G , and thenW is a Gkcovð��Þ-subset of

X containing
S
G . We shall now prove that actually W ¼

S
G .

To this end, suppose that x 62
S
G . Then, for every G 2 G we may fix an index

�G 2 � such that x 62 G�G . Since the point y ¼ ð�GÞG2G 2 �G , there exists some

� 2 kcovð��Þ such that y 2 K� . By construction, x 62Wf� so that x 62 W . �

We say that a subspace X of a space Z is �-Ohio embedded in Z, if there is a

G�-subset S of Z such that X � S and for every y 2 S nX, there is a G�-subset of

Z which contains y and misses X. Such a G�-subset S will be called a �-good

G�-subset with respect to X. For more information about �-Ohio embedded
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spaces and �-good G�-subsets see [3].

THEOREM 3.2. Let X be a space. Suppose that U is a cover of X consisting

of G�-subsets, with jU j ¼ �. If X � Z, and every element of U is �-Ohio embedded

in Z, then X is kcovð��Þ-Ohio embedded in Z.

PROOF. Let U ¼ fU� : � 2 �g. For every � 2 �, we may fix a G�-subset S�
of Z which is �-good with respect to U�. Note that since U� is a G�-subset of X, we

may assume without loss of generality that S� \X ¼ U�. Then, by Lemma 3.1,

the set S ¼
S
�2� S� is a Gkcovð��Þ-subset of Z. We claim that S is kcovð��Þ-good

with respect to X. First of all, note that X � S, since U� � S�, for � 2 �. So it

remains to show that every point in S nX can be separated from X by a

Gkcovð��Þ-subset of Z. Actually we will prove more: such a point can be separated

from X by a G�-subset of Z.

So, fix an arbitrary point z 2 S nX. Then z 2 S� n U�, for some � 2 �. Then,

by construction, there is a G�-subset T of Z such that z 2 T and T \ U� ¼ ;. But
then, since S� \X ¼ U�, the set S� \ T is a G�-subset of Z which contains z and

misses X. �

Since d ¼ kcovð!!Þ, the following corollary shows that the union of countably

many open and Ohio complete subspaces is d-Ohio complete. So Example 2.4 is

best possible.

COROLLARY 3.3. Let X be a space. Let U be a cover of X consisting of

G�-subsets, with jU j ¼ �. Suppose that every element of U is contained in a

�-Ohio complete subspace of X. Then X is kcovð��Þ-Ohio complete.

PROOF. Fix an arbitrary compactification �X of X. Since every element of

U is contained in a �-Ohio complete subspace of X, it follows from [3, Proposition

2.1] and [3, Corollary 2.5] that every element of U is �-Ohio embedded in �X. So

by the previous theorem, X is kcovð��Þ-Ohio embedded in �X. Since �X was an

arbitrary compactification of X, this shows that X is kcovð��Þ-Ohio complete. �

Our main interest is in open sum theorems. In particular we have the

following.

COROLLARY 3.4. Assume d ¼ !1. Let U be a countable open cover ofX such

that every element of U is contained in an !1-Ohio complete subspace of X, then X

is !1-Ohio complete.

PROOF. It suffices to observe that kcovð!!1 Þ ¼ d (see for example [9,

Proposition 3.6]), and then apply Corollary 3.3. �
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Let us denote the least cardinal � for which the union of �-many open and

�-Ohio complete subspace fails to be �-Ohio complete with the symbol Oð�Þ.
Then the following theorem holds.

THEOREM 3.5. Let � be an infinite cardinal number.

(1) If � is regular then Oð�Þ � �.

(2) If � is a cardinal number such that kcovð��Þ ¼ �, then Oð�Þ > �.

(3) Assuming the GCH, then Oð�Þ � cfð�Þ.
(4) Assuming the GCH and � regular then Oð�Þ ¼ �.

(5) If � < d, then Oð�Þ ¼ !.

(6) Oð!1Þ ¼
!1; if d ¼ !1,
!; if d > !1.

�

PROOF. Assertion (1) follows from Example 2.5. Corollary 3.3 implies (2).

For assertion (3), observe that GCH implies that, if � < cfð�Þ, then �� ¼ � (see

[7, Theorem 5.15]) and then kcovð��Þ ¼ �. This implies Oð�Þ � cfð�Þ. Assertions

(1) and (3) imply (4). Assertion (5) follows from Example 2.4. Finally, (6) follows

from Corollary 3.4 and Example 2.4 (� ¼ !1). �

QUESTION 3.6. If � is a singular cardinal, is it still true that Oð�Þ � �?

Finally, we consider locally countable and point-countable open sum

theorems. By [3, Corollary 4.5], a point-finite and hence also locally finite union

of open and !1-Ohio complete subspaces is again !1-Ohio complete. However as

we have seen, if d > !1, then even a countable union of open and !1-Ohio complete

subspaces may fail to be !1-Ohio complete.

Now, if d ¼ !1, then the countable open sum theorem is true for !1-Ohio

completeness, but we do not know the answer to the following.

QUESTION 3.7. Assume d ¼ !1. Does the point-countable or locally count-

able open sum theorem for !1-Ohio completeness hold?

REMARK 3.8. Let us point out that the notion of Ohio completeness could

be generalized in even a more general way. Given infinite cardinal numbers � and

�, we say that a space X is ð�; �Þ-Ohio complete if for every compactification �X of

X there is a G�-subset S of �X such that X � S and for every y 2 S nX, there is a

G�-subset of �X which contains y and misses X.

So this notion is a further elaboration of the Ohio completeness property. Of

course, many of the results in [3] may be rephrased in terms of this notion, with

the two (possibly distinct) variables � and �. The interested reader may verify

that in certain results the first of these two variables plays a more important role
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than the second and in other results it is the other way around. In particular, in

the second example of this paper (Theorem 2.3) we added a one-point compacti-

fication of a space Y in the second coordinate, where the size of Y may be

arbitrarily large. So if � is regular, then for any cardinal �, the union of �-many

open and �-Ohio complete spaces may fail to be ð�; �Þ-Ohio complete.
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