
doi: 10.2969/jmsj/06141261

Constructing geometrically infinite groups on

boundaries of deformation spaces

Dedicated to Professor Takao Matumoto on the occasion of his sixtieth birthday

By Ken’ichi OHSHIKA

(Received Oct. 14, 2008)

Abstract. Consider a geometrically finite Kleinian group G without

parabolic or elliptic elements, with its Kleinian manifold M ¼ ðH 3 [ �GÞ=G.
Suppose that for each boundary component ofM, either a maximal and connected

measured lamination in the Masur domain or a marked conformal structure is

given. In this setting, we shall prove that there is an algebraic limit � of quasi-

conformal deformations of G such that there is a homeomorphism h from IntM to

H 3=� compatible with the natural isomorphism from G to �, the given

laminations are unrealisable in H 3=�, and the given conformal structures are

pushed forward by h to those of H 3=�. Based on this theorem and its proof, in the

subsequent paper, the Bers-Thurston conjecture, saying that every finitely

generated Kleinian group is an algebraic limit of quasi-conformal deformations of

minimally parabolic geometrically finite group, is proved using recent solutions of

Marden’s conjecture by Agol, Calegari-Gabai, and the ending lamination

conjecture by Minsky collaborating with Brock, Canary and Masur.

1. Introduction.

The deformation space AHðGÞ of a Kleinian group G is defined to be the

space of faithful discrete representations of G into PSL2C taking parabolic

elements to parabolic elements, modulo conjugacy. One of the most important

topics in the theory of Kleinian groups is to study topological structure of

deformation spaces. When a Kleinian group G is geometrically finite, it is known

that its quasi-conformal deformation space, which we denote by QHðGÞ, forms an

open neighbourhood of the identity representation of G in its entire deformation

space AHðGÞ. The topological types of quasi-conformal deformation spaces are

well understood, in terms of Teichmüller space of the region of discontinuity, by

work of Ahlfors, Bers, Kra, Maskit and Sullivan among others. It is conjectured

by Bers and Thurston that the entire deformation space AHðGÞ is the closure of

the union of quasi-conformal deformation spaces of (minimally parabolic)

geometrically finite Kleinian groups isomorphic to G. Taking this into account,
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we can see that a crucial step for understanding deformation spaces is to study the

boundaries of quasi-conformal deformation spaces.

On the other hand, the ending lamination conjecture, which was recently

proved by Minsky partially in collaboration with Brock, Canary and Masur ([29],

[10]), asserts that topologically tame Kleinian groups can be classified, up to

conjugacy, completely by the following four invariants: the homeomorphism types

of the quotient hyperbolic 3-manifolds, the parabolic loci, the conformal

structures at infinity associated to geometrically finite ends, and the ending

laminations associated to geometrically infinite ends. Also by recent resolution of

Marden’s conjecture by Agol and Calegari-Gabai ([2], [13], see also Soma [46] for

a simplified proof on the line of Calegari-Gabai), it is now known that every

finitely generated Kleinian group is topologically tame. Consider a geometrically

finite Kleinian group G and its quasi-conformal deformation space QHðGÞ. Then,
to obtain a complete list of topologically tame Kleinian groups in AHðGÞ, we have
only to show that for a given quadruple of invariants, with obvious necessary

conditions for the quadruple to be realised, such as the condition that no two

laminations are homotopic in the 3-manifold, we can construct a (topologically

tame) Kleinian group on the boundary of QHðGÞ realising the quadruple.

In the main theorem of this paper, we shall prove that if we assume that the

parabolic locus is empty, any triple of the remaining invariants, such that the

third one consists of maximal and connected laminations represented by a

measured lamination in the Masur domain no two of which are homotopic and

none of which cover laminations on embedded non-orientable surfaces, can be

realised by a topologically tame Kleinian group without parabolic elements on the

boundary of the quasi-conformal deformation space as its homeomorphism type,

its conformal structures at infinity, and its unrealisable laminations.

We should note the following facts to understand the meaning of this

statement. As was shown in [39], the first invariant always coincides with the

homeomorphism type of H 3=G for a topologically tame Kleinian group without

parabolic elements on the boundary of the quasi-conformal deformation space.

(This is not the case if we allow new parabolic elements to appear in the limit. See

Anderson-Canary [3].) Therefore, we need to fix the first invariant to be the

homeomorphism type of H 3=G. By a result of Canary [15], for purely loxodromic

topologically tame groups, every measured lamination representing an ending

lamination must be a maximal and connected lamination contained in the Masur

domain, which is the set of measured laminations intersecting every limit of

boundaries of compressing discs.

Two ending laminations for distinct ends cannot be homotopic each other

and no ending lamination can be homotopic to a double cover of a lamination on a

closed non-orientable surface, as can be seen by the argument of Section 6.4 in
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Bonahon [6]. In our main theorem, it will turn out that these conditions for

measured laminations on the boundary, that every one is contained in the Masur

domain, that no two are homotopic, and that no one doubly covers a lamination

on a non-orientable surface, are also sufficient for them to represent unrealisable

laminations in a topologically tame Kleinian group on the boundary of the quasi-

conformal deformation space.

By Bonahon’s work, ending laminations must be unrealisable laminations.

Conversely, it can be proved that any unrealisable lamination contained in the

Masur domain of a boundary component of a core is the image of an ending

lamination by an auto-homeomorphism acting on the fundamental group by an

inner-automorphism. This fact, which should be regarded as the uniqueness of

unrealisable laminations, was proved by Bonahon in the case of freely

indecomposable groups. For non-free but freely decomposable groups the

argument in Ohshika [39] shows this. It is most difficult to prove this fact in

the case when the group is free. In the setting of the limit group as in our main

theorem, this has been proved in Ohshika [40], which is the sequel to the present

paper. For free Kleinian groups in general, Namazi and Souto [33] have proved

this.

Based on the argument in this paper, in [40], we have succeeded in

generalising the convergence theorem which is the key step of our argument in

this paper by removing the restrictions that G is purely loxodromic and that given

laminations are maximal and connected. Combining this result with the

resolutions of Marden’s conjecture and the ending lamination conjecture, and

showing that the unrealised laminations in the limit groups are actually ending

laminations as was explained above, we have proved that the Bers-Thurston

density conjecture is true. Namely, every finitely generated Kleinian group is an

algebraic limit of quasi-conformal deformations of a minimally parabolic geo-

metrically finite group. See Ohshika [40] for more details.

For the Bers-Thurston density conjecture in the case of freely indecompos-

able groups, there is another approach which is quite different from ours. This is

due to Bromberg and Bromberg-Brock ([12], [8]) and used the technique of the

deformation of cone manifolds. Their method uses the ending lamination

conjecture only for the case when the manifolds have injectivity radii bounded

away from 0.

Our main theorem can also be regarded as a generalisation of the main

theorem in [36], where we dealt with Kleinian groups whose corresponding

hyperbolic 3-manifolds have boundary-irreducible compact cores. To make the

result of [36] adaptable to general (finitely generated and torsion-free) Kleinian

groups, it was necessary to prove a convergence theorem for freely decomposable

Kleinian groups, generalising the main theorem of [35]. One of the most difficult
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steps for that had been the case of functions groups, which was solved by

Kleineidam-Souto [23] recently. See Theorem 4.2. In [24], they also gave a proof

of a special case of our main theorem in the case when G is a geometrically finite

function group independently of our work here.

Now we state the main theorem.

THEOREM 1.1. Let G be a geometrically finite Kleinian group without

torsions or parabolic elements. Let M be a compact 3-manifold whose interior is

homeomorphic to H 3=G, and S1; . . . ; Sm its boundary components. (We can

identify M with the Kleinian manifold ðH 3 [ �GÞ=G.) Suppose that at least one

maximal and connected measured laminations �j1 ; . . . ; �jp contained in the Masur

domains are given on boundary components Sj1 ; . . . ; Sjp among S1; . . . ; Sm, and

marked conformal structures m1; . . . ;mq on the remaining boundary components

Si1 ; . . . ; Siq . WhenM is homeomorphic to Sj1 � I and p ¼ 2, we further assume that

the supports of �j1 and �j2 are not homotopic inM. WhenM is homeomorphic to a

twisted I-bundle over a non-orientable surface S0, we further assume that �j1 is not

a lift of a measured lamination on S0 where Sj1 is regarded as a double cover of S0

via M. Then there exists a geometrically infinite Kleinian group ð�;  Þ with the

following properties on the boundary of QHðGÞ in AHðGÞ.

(1) The hyperbolic 3-manifold H 3=� is topologically tame, i.e., there is a

compact 3-manifold M 0 whose interior is homeomorphic to H 3=�.

(2) There is a homeomorphism f :M !M 0 inducing (a conjugate of ) the

isomorphism  : G! � when we identify G with �1ðMÞ and � with

�1ðM 0Þ.
(3) For each ik ¼ i1; . . . ; iq, the end of H 3=� corresponding to fðSikÞ is

geometrically finite and its marked conformal structure at infinity

coincides with f�ðmkÞ.
(4) For each jk ¼ j1; . . . ; jp, the lamination fð�jkÞ is unrealisable in M 0. (See

Remark 1.2-(2) below.)

(5) If G is not free, then � has no parabolic elements, and the end facing

fðSjkÞ for jk ¼ j1; . . . ; jp is geometrically infinite.

We should remark the following.

REMARK 1.2.

(1) In Ohshika [37], we gave a sufficient condition for a collection of simple

closed curves to be made parabolic elements in a geometrically finite

group on the boundary of quasi-conformal deformation space. The

theorem above can be regarded as a geometrically infinite version of this

result. In [40], which is a sequel to this one, a generalisation of our main
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theorem here allowing laminations to be disconnected and parabolic

elements to exist is given.

(2) In the theorem, we have only stated that fð�jkÞ is unrealisable in M 0. To

show that fð�jkÞ really represents an ending lamination inM 0, we need to

show the uniqueness of the supports of unrealisable laminations (in the

Masur domain) up to diffeomorphism homotopic to the identity. As was

explained before, this fact is not easy to prove particularly in the case

when the group is free, and its proof can be found in Ohshika [40]. An

alternative proof of this fact in the case of free groups can be found in

Namazi-Souto [33].

The tameness of the limit group � in the case when G is free needs the

result of Brock-Souto [11] and Brock-Bromberg-Evans-Souto [9] or a

general resolution of Marden’s conjecture by Agol [2] and Calegari-Gabai

[13]. In other cases, the unrealisability of the fð�jkÞ implies the tameness.

We present here an outline of the proof of the main theorem. We shall

construct a sequence of quasi-conformal deformations of G using the Ahlfors-Bers

map so that for each boundary component on which a measured lamination is

given, the corresponding conformal structures converge to the projective class of

that lamination in the Thurston compactification of the Teichmüller space. The

crucial step of the proof is to show that such a sequence converges after passing to

a subsequence. By applying Bonahon’s theory of characteristic compression body

to a compact core of H 3=G, we shall express G using amalgamated free products

and HNN extensions composed of function groups and freely indecomposable

groups. Using Kleineidam-Souto’s theorem, we see that if we restrict �i to a factor

which is a function group, then the sequence converges after taking a

subsequence. On the other hand, we can make use of Morgan-Shalen’s

interpretation of Thurston’s theory by using the language of R-trees to show

that the restriction of �i to a freely indecomposable factor also converges. It will

remain to show that these imply that the original groups, which can be obtained

by amalgamated free products and HNN extensions from these groups, also

converges. This will be shown using the fact the amalgamating subgroups

converge to a quasi-Fuchsian group.

The author would like to express his gratitude to the referee for his/her

comments and suggestions which, the author hopes, have made this paper clearer

and more readable.

2. Preliminaries.

Kleinian groups are discrete subgroups of PSL2C ¼ SL2C=f�Eg. We regard

Kleinian groups as acting on H 3 by isometries and on its sphere at infinity S2
1,
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which is identified with the Riemann sphere, by conformal automorphisms.

Throughout this paper, we assume Kleinian groups to be finitely generated and

torsion free. A non-identity element of a (torsion-free) Kleinian group is either

loxodromic or parabolic. For a Kleinian group G, its limit set on S2
1 is denoted by

�G. The complement of �G in S2
1 is called the domain of discontinuity of G, and is

denoted by �G, on which G acts properly discontinuously. The quotient �G=G is a

Riemann surface, which is known to be of finite type by work of Ahlfors.

For a hyperbolic 3-manifold N , its convex submanifold that is minimal

among those which are deformation retracts of N is called the convex core of N.

We say that a Kleinian group G is geometrically finite when the convex core of

H 3=G has finite volume. A Kleinian group G and H 3=G are said to be

topologically tame when H 3=G is homeomorphic to the interior of a compact 3-

manifold. As was shown by Marden [25], geometrically finite Kleinian groups are

topologically tame. In particular, when G is geometrically finite and has no

parabolic elements, the Kleinian manifold ðH 3 [ �GÞ=G gives a compactification

of H 3=G.

For an open 3-manifold N, its compact 3-submanifold C is said to be a

compact core of N if the inclusion of C into N is a homotopy equivalence. Scott

proved, in [44], that any irreducible open 3-manifold with finitely generated

fundamental group has a compact core. In particular, for a (finitely generated,

torsion-free) Kleinian group G, the quotient manifold H 3=G has a compact core.

It was proved by McCullough-Miller-Swarup [28] that for any two compact cores

C1; C2 of an irreducible 3-manifold M, there is a homeomorphism from C1 to C2

inducing an inner-automorphism of �1ðMÞ ¼� �1ðC1Þ ¼� �1ðC2Þ.
A group is said to be freely indecomposable when it cannot be decomposed

into a non-trivial free product, otherwise freely decomposable. When a 3-manifold

has fundamental group which is finitely generated and freely indecomposable, its

compact core is boundary-irreducible, i.e., every boundary component is

incompressible.

Let N be a hyperbolic 3-manifold without cusps having finitely generated

fundamental group, and C its compact core. Then the ends of N correspond one-

to-one to the boundary components of C, since for each boundary component S of

C, there is only one end contained in the component of N n C touching S. We say

that the end as above faces S in this situation.

An end of a hyperbolic 3-manifold N without cusps is said to be geometrically

finite when it has a neighbourhood intersecting no closed geodesics in N,

otherwise geometrically infinite. The hyperbolic manifold N is geometrically finite

if and only if all the ends of N are geometrically finite. For each geometrically

finite end of N ¼ H 3=G, there is a unique component � of �G=G which is attached

to the end e in the Kleinian manifold ðH 3 [ �GÞ=G. In this situation, the
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conformal structure of � is called the conformal structure at infinity of the end e.

Let S be a closed hyperbolic surface. A geodesic lamination on S is a closed

subset of S consisting of disjoint simple geodesics. The geodesics constituting a

geodesic lamination are called the leaves. A geodesic lamination endowed with a

transverse measure on arcs which is invariant by translations along leaves is

called a measured lamination. (We assume the measure to be non-zero for any arc

with its interior intersecting the leaves.) The set of measured laminations on S

endowed with a weak topology with respect to the measures on transverse arcs is

denoted by ML ðSÞ and called the measured lamination space of S. The space

which we obtain by taking the quotient of ML ðSÞ n f;g, identifying a measured

lamination with another obtained by multiplying the transverse measure by a

scalar, is called the projective measured lamination space and denoted by

PML ðSÞ. We call points in PML ðSÞ projective laminations. A measured

lamination or a projective lamination is said to be maximal when it is not a proper

sublamination of another measured lamination or projective lamination. The

underlying geodesic lamination of a measured lamination or a projective

lamination is called its support. A measured lamination or a projective lamination

is said to be connected when its support is connected as a subset of S.

Here we shall give a remark on correspondence of our terminology with that

as was used in Otal [41] and Kleineidam-Souto [23]. There, they defined a

geodesic lamination or a measured lamination to be arational when its

complementary regions are all simply connected. A measured lamination is

arational if and only if it is maximal and connected in our sense. They also use the

term ‘‘minimal lamination’’, which is equivalent to ‘‘connected lamination’’ in the

case of measured laminations. Arational measured laminations are automatically

minimal.

Thurston defined a natural compactification of the Teichmüller space T ðSÞ
whose boundary is identified with PML ðSÞ. (Recall that the Teichmüller space

is the space of marked conformal structures on S modulo isotopic equivalence.

This can be regarded as the space of marked hyperbolic structures since there is a

one-to-one correspondence between the conformal structures and the hyperbolic

structures.) Let S be the set of isotopy classes of simple closed curves on S. We

consider the space of non-negative functions from S to Rþ, denoted by RS
þ , and

its projectivisation PRS
þ . The Teichmüller space T ðSÞ is embedded into RS

þ by

taking g 2 T ðSÞ to a function whose value at s 2 S is the length of the closed

geodesic representing s with respect to g. Likewise, the measured lamination

space ML ðSÞ is embedded in RS
þ by taking � to a function whose value at s is

ið�; sÞ, where ið�; sÞ is defined to be the infimum of
R
� d� for the transverse

measure � of � and � ranging over all the simple closed curves representing s. The

Thurston compactification coincides with the compactification of the image of
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T ðSÞ in PRS
þ for these embeddings. Refer to Fathi-Laudenbach-Poénaru [20] for

more details.

Let us now consider the situation where a hyperbolic surface S is identified

with a boundary component of a compact core of C a hyperbolic 3-manifold N .

DEFINITION 2.1 (Masur domain). We define a subset C ðSÞ of the measured

lamination space ML ðSÞ to be the set of weighted disjoint unions of simple closed

curves bounding compressing discs in C. Then the Masur domain M ðSÞ is defined
as

M ðSÞ ¼ f� 2 ML ðSÞjið�; cÞ 6¼ 0 for all c 2 C ðSÞg;

where C ðSÞ denotes the closure of C ðSÞ in ML ðSÞ. Also, we call the image of the

Masur domain in the projective lamination space the projectivised Masur domain.

We should note that the definition of the Masur domain in Otal [41] differs

from the one we gave above in the case when C is a ‘‘small compression body’’

obtained as a boundary connected sum of two I-bundles over closed surfaces. This

difference does not matter in our setting, for we only deal with maximal and

connected measured laminations in the Masur domain.

Let ðS;mÞ be a closed hyperbolic surface and N a hyperbolic 3-manifold. A

continuous map f : S ! N is said to be a pleated surface when

(1) the length metric on S induced from that on N coincides with that of m,

and

(2) there is a geodesic lamination ‘ on ðS;mÞ such that both f j‘ and f jðS n ‘Þ
are totally geodesic.

A geodesic lamination or a measured lamination on S which a pleated surface f

maps totally geodesically is said to be realised by f .

With regard to a measured lamination � on a surface S contained in a

hyperbolic 3-manifold N, we say that � is realisable if there is a pleated surface

homotopic to the inclusion of S realising �, and unrealisable otherwise.

An ending lamination for an end of a topologically tame 3-manifold is defined

as follows. Let N be a topologically tame hyperbolic 3-manifold without cusps,

having a compact core C such that N n C ¼� @C �R. Let e be a geometrically

infinite end of N facing a boundary component S of C. Then, as was shown by

Canary [15], there is a sequence of simple closed curves fcjg on S, whose

projective classes converge to a projective lamination ½�� contained in the

projectivised Masur domain of S regarded as the boundary component of C, such

that there are closed geodesics c�j homotopic to cj in N n C tending to the end e as
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j! 1. In this situation, the support of � is defined to be the ending lamination of

e, and the projective lamination ½�� or its representative � is said to represent the

ending lamination of e. It is known that the ending lamination of a topologically

tame end is unique. (This was proved by Bonahon in the case when C is boundary-

irreducible. Canary showed that this can be generalised to the case when C may

be boundary-reducible.) An ending lamination is always unrealisable. Conversely

it has been proved that if N is an algebraic limit of geometrically finite groups,

then for a maximal and connected measured lamination � in M ðSÞ which is

unrealisable, there is a homeomorphism h of C acting on �1ðCÞ as an inner-

automorphism such that hð�Þ represents the ending lamination of the end facing

S. (See Ohshika [40] or Namazi-Souto [33].) We shall not use this fact in the proof

of our main theorem. Our result using this is given in [40].

A compression body is a connected compact 3-manifold V with @V ¼
@eV t @iV , where we call @eV the exterior boundary, and @iV the interior

boundary, such that no components of @iV are spheres and V is obtained by

attaching disjoint 1-handles to a product neighbourhood of @iV . As an exceptional

case, we also regard handlebodies as compression bodies whose interior

boundaries are empty. The exterior boundary @eV consists of only one component,

which is compressible. The interior boundary @iV is incompressible. We do not

allow the attached 1-handles to be empty, and accordingly, do not regard trivial

I-bundles over closed surfaces as compression bodies. For a disjoint union of

compression bodies, we denote by @e and @i the union of exterior boundaries and

the union of interior boundaries respectively.

Bonahon showed in [5] that for any compact irreducible 3-manifold C, there

exists a disjoint union V of compression bodies in C, unique up to isotopy, such

that the exterior boundary @eV is the union of all the compressible components of

@C, the interior boundary @iV lies in IntC, and C n V is irreducible and boundary-

irreducible. (When C is boundary-irreducible, we set V to be empty.) Such a

union of compression bodies is called the characteristic compression body of C.

For a Kleinian group G, its deformation space, denoted by AHðGÞ, is the set
of equivalence classes of pairs ð�;  Þ, where  is a faithful discrete representation

of G into PSL2C taking parabolic elements of G to parabolic elements, and � its

image. It should be noted that we allow loxodromic elements of G to be mapped to

parabolic elements of �. Two pairs are identified in AHðGÞ when they are

conjugate by an element of PSL2C . We endow AHðGÞ with the quotient topology

induced from the space of representations of G into PGL2C .

A Kleinian group ð�;  Þ 2 AHðGÞ is called a quasi-conformal deformation of

G when there exists a quasi-conformal homeomorphism f : S2
1 ! S2

1 such that

f�f�1 ¼  ð�Þ for every � 2 G as actions on S2
1. The subset of AHðGÞ consisting of

quasi-conformal deformations of G is denoted by QHðGÞ. It is known that QHðGÞ
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is an open subset of AHðGÞ when G is geometrically finite.

Consider a point m in the Teichmüller space T ð�G=GÞ. The point m can be

realised by a quasi-conformal homeomorphism preserving the markings from the

surface �G=G with the original marked conformal structure to �G=G with the

marked conformal structure m. It is known, by work of Bers, that there exists a

quasi-conformal homeomorphism on S2
1 inducing a quasi-conformal deformation

of G, whose restriction to �G induces the quasi-conformal map above. Moreover,

such a quasi-conformal deformation is uniquely determined as an element in

QHðGÞ. Therefore, there is a map q : T ð�G=GÞ ! QHðGÞ taking m to the

corresponding quasi-conformal deformation. This map q is known to be a possibly

branched covering map, and is called the Ahlfors-Bers map.

For an isomorphism  from a Kleinian group G to another Kleinian group �,

there is a homotopically unique homotopy equivalence from H 3=G to H 3=�. We

denote such a homotopy equivalence by the same letter as the isomorphism but in

the upper case, e.g., � for the isomorphism  .

An R-tree is a complete metric space in which for any two points, there is a

unique simple arc connecting them, which is a geodesic. When we say that a group

G acts on an R-tree T , we mean that for any g 2 G, there is an isometry g : T ! T

and the group operation corresponds to the composition of isometries. A group

action on T is said to have small-edge stabilisers when for every non-trivial arc of

T , its stabiliser is virtually abelian.

Let N be a 3-manifold and T an R-tree. (We usually consider the case when

N is a universal cover of a compact 3-manifold.) A continuous map f : N ! T is

said to be weakly transverse when every x 2M, there is a neighbourhood U ¼�
D2 � I of x such that f jD2 � ftg is constant for every t 2 I and fjfpt:g � I is

monotone in the weak sense, i.e., if t lies in ½t1; t2� � I, then fðD2 � ftgÞ lies in the

(closed) segment between fðD2 � ft1gÞ and fðD2 � ft2gÞ. For a transverse map

f : N ! T , we can consider a codimension-1 measured lamination on N whose

support consists of points where f is not locally constant, and whose local flow box

is exactly D2 � I-neighbourhood as above with the transverse measure equal to

the metric induced on I from T by f. This lamination is called the dual lamination

of f (or the lamination dual to f).

An arc � in N is said to be monotonically transverse to a lamination L in N

when it is transverse to leaves and there is no subarc �0 : ½a; b� ! N of � whose

endpoints lie on the same leaf of L and �0ða; bÞ lies in the complement of L, i.e., �

cannot turn around in the complement and comes back to the same leaf. We say

that a weakly transverse map f : N ! T is strongly transverse to T if for any arc �

monotonically transverse to the dual lamination, f � � is monotone in the weak

sense, i.e., for any t 2 ½t1; t2� the point f � �ðtÞ lies on the segment joining f � �ðt1Þ
and f � �ðt2Þ.
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As is obvious from the definition the difference between weakly transverse

maps and strongly transverse maps lies in the fact that a weakly transverse map

may have folds, i.e., there may be a monotonically transverse arc in ~C which is

mapped to a non-monotone arc in the R-tree.

Now consider the situation when ~C is the universal covering of a 3-manifold

C, and let G be the covering translation group. Suppose that G acts on an R-tree

T isometrically. Considering a handle decomposition of C, we can construct an

equivariant weakly transverse map from ~C to T . (Refer to Morgan-Shalen [32].)

Then the lamination dual to f projects to a codimension-1 measured lamination in

C, which we also call the lamination dual to f .

From the lamination dual to a weakly transverse f above, we can construct

an R-tree T 0 by taking the completion of the leaf space, and �1ðCÞ acts on T 0 by

isometries. Nevertheless, this tree T 0 does not necessarily coincide with the

original tree T . If f is strongly transverse, there is an isometric embedding from T 0

to T which is equivariant under the action of �1ðCÞ. Therefore, if T is assumed to

be minimal, then the two R-trees coincide in this case.

3. Some results due to Thurston and Morgan-Shalen.

In this section, we shall present three theorems all of which are essentially

due to Thurston. The first of them is the following.

THEOREM 3.1. Let G be a freely indecomposable Kleinian group without

parabolic elements. Let C be a compact core of H 3=G. Suppose that we have a

sequence fð�i;  iÞ 2 AHðGÞg which does not have a convergent subsequence.

Then there are a sequence of disjoint unions of essential annuli fA1
i t . . . t

Ak
i g properly embedded in C, whose number k is constant with respect to i, and

positive weights w1
i ; . . . ; w

k
i , satisfying the following. The weighted union of annuli

w1
i A

1
i t 	 	 	 t wkiAk

i converges to a codimension-1 measured lamination in C. Let

fricig; fsidig be sequences of weighted simple closed curves on @C converging to

measured laminations in ML ð@CÞ. Then,

lim
i!1

lengthð�iðriciÞÞ
lengthð�iðsidiÞÞ

¼ lim
i!1

w1
i iðA1

i ; riciÞ þ 	 	 	 þ wki iðAk
i ; riciÞ

w1
i iðA1

i ; sidiÞ þ 	 	 	 þ wki iðAk
i ; sidiÞ

after taking a subsequence of fð�i;  iÞg whenever the limit of the right hand does

not have form of 0/0. Here for a weighted simple closed curve rici, the length

denoted by lengthð�iðriciÞÞ is defined to be rilengthðc�i Þ for the closed geodesic c�i
homotopic to �iðciÞ in H 3=�i. Moreover, if limi!1 w1

i iðA1
i ; riciÞ þ 	 	 	 þ wki iðAk

i ;

riciÞ > 0, then limi!1 lengthð�iðriciÞÞ ¼ 1.
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REMARK 3.2. This theorem does not say that C contains a measured

lamination geometrically realising the rescaled limit of ð�i; �iÞ, which is an action

of G on an R-tree. (The limit in this sense is the same as that in PRS , where S

denotes the set of free homotopy classes of essential closed curves in C and we

regard ð�i;  iÞ as a point there by letting an s-coordinate be the translation length

of  iðsÞ for every s 2 S .) The point is that in our conclusion, we only consider

weighted simple closed curves on @C. We do not claim that the same kind of

equality holds for every homotopy class of essential closed curves in C. In the

corresponding theorem stated without proof (Theorem 3.1) in our previous paper

[34], this distinction was not made clear, and accordingly the statement was

misleading. What was really needed there was nothing but Theorem 3.1 above.

Actually, there is an example of fð�i;  iÞg diverging in AHðGÞ whose rescaled
limit cannot be realised by a measured lamination in C. (The author was informed

that such a phenomenon was first observed by J-P. Otal.) This can be constructed

as follows. First assume that the characteristic pair of C contains a solid torus

component V such that @V n @C consists of more than three open annuli whose

core curves are homotopic in V to the axis of V . For simplicity, we assume that

@V n @C consists of four open annuli, whose closures we denote by A1; A2; A3; and

A4 assuming they lie in this order on @V . We can construct a 3-manifold C0

homotopy equivalent to M by pasting C n V to V by interchanging what was

pasted to A1 to what was pasted to A2. Then the natural homotopy equivalence

obtained by extending the identity map on C n V is not homotopic to a

homeomorphism unless there is a symmetry of C n V interchanging A1 with A2.

Now, we consider a measured lamination in C0 consisting of only one essential

annulus A with the unit weight properly embedded in ðV ; V \ @C0Þ separating

A2; A3 from A4; A1. There is an action of �1ðCÞ on a simplicial tree T

corresponding to the preimage of B in the universal cover of C0. It turns out

that this action cannot be realised by any measured lamination in C. In fact, any

essential annulus in V separates in C either what is pasted to A1 (under the rule of

pasting for C) from what is pasted to A3 or what is pasted to A2 from what is

pasted to A4 whereas A separates neither of them (under the rule of pasting for C0)

in C0.

On the other hand, this annulus A with unit weight appears obviously as a

rescaled limit of geometrically finite hyperbolic structure without cusps in IntC0.

Since C0 is obtained from C by what Canary-McCullough [17] called a primitive

shuffling, the subspaces, CCðCÞ in AHðCÞ consisting of geometrically finite

hyperbolic structures without cusps in IntC and CCðC0Þ consisting of those in

IntC0, bump each other, and we can easily see that this rescaled limit is realised as

that of groups in CCðCÞ as follows. A sequence of CCðCÞ whose rescaled Gromov

limit is A with unit weight is obtained by pinching the conformal structure at
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infinity along two simple closed curves corresponding to the components of @A on

@C0 at the same speed. This sequence can be approximated by bumping points of

CCðCÞ and CCðC0Þ corresponding to a geometrically finite structure with a

Z-cusp. Thus, this gives a rescaled limit which cannot be realised by a measured

lamination in C.

We should note that in this example a sequence of weighted annuli having the

properties of our theorem can be obtained as a disjoint union of two essential

annuli A0 tA00 in V � C such that A0 separates A1 from the rest of annuli whereas

A00 separates A3 from the rest, which is constant with respect to i.

PROOF OF THEOREM 3.1. Although this theorem is essentially due to

Thurston, we shall give its proof here since a detailed proof can be found in no

references. Here we adopt an argument using R-trees based on the results of

Morgan-Shalen [32] and Skora [45] combined with the efficiency of pleated

surfaces proved by Thurston. There may be an alternative approach using the

results of Thurston in [47] and [48].

Since we assumed that G is freely indecomposable, the compact core C of

H 3=G is boundary-irreducible. Consider the characteristic pairW of C. (See Jaco-

Shalen [21] and Johannson [22] for the definition of characteristic pair.) Since C is

atoroidal and has no torus boundary components, each component of its

characteristic pair is either an I-pair or a solid torus. The characteristic pair

has a property that every essential annulus can be homotoped (as a pair of maps)

into it. If a frontier component of an I-pair in the characteristic pair is homotopic

to a frontier component of another component which is a solid tours, then an

annulus homotopic to such a frontier component has two ways to be carried by the

characteristic pair. In the following argument, we always regard such an annulus

as being carried by a solid torus component.

We use the following reformulation of Thurston’s work by Morgan-Shalen

[32] using R-trees.

THEOREM 1 (Morgan-Shalen). Suppose that fð�i;  iÞg does not converge in

AHðGÞ even after passing to a subsequence. Then there are an isometric action of

G on an R-tree T with small edge-stabilisers and a weakly transverse G-equiv-

ariant map f from the universal cover ~C of C to T with the following conditions.

(1) There is a sequence of positive real numbers f�ig going to 0 such that

limi!1 �ilengthH 3=�i
ð ið�ÞÞ ¼ lengthT ð�Þ for every � 2 G, where lengthT

denotes the translation length on T . (We say that fð�i;  iÞg diverges to

this R-tree action in this situation.)

(2) The dual lamination L on C of f is carried by an incompressible branched

surface B.
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(3) The branched surface B, hence also the lamination L, can be properly

isotoped into the characteristic pair of C.

(4) The branched surface B carries only surfaces with Euler number 0.

To derive Theorem 3.1 from the theorem above, we need to deform the

weakly transverse map f so that if it is restricted to each boundary component S

of C it becomes a strongly transverse map to a subtree of T invariant under �1ðSÞ.
For that, first we need to refine Theorem 1 as follows to make it suitable for our

purpose.

COROLLARY 3.3. Let S be a component of @C, and ~C the universal cover of

C. In the situation of Theorem 1, let TS be the minimal invariant sub-R-tree of T

with respect to �1ðSÞ regarded as a subgroup of G. Let ~S be a component of the

preimage of S in ~C which is invariant under �1ðSÞ � G acting as covering

translations. Then, we can choose f in the conclusion of Theorem 1 so that f j ~S is a

weakly transverse map into TS.

PROOF. We first review an outline of the construction of f in the proof of

Theorem 1 provided that an action of G on an R-tree T as in the theorem was

given. (The existence of such an action was proved in Morgan-Shalen [31]. Also,

there are alternative proofs by Paulin [43] and Bestvina [4].) First fix a handle

decomposition of C. We can find a weakly transverse map g : ~C ! T whose dual

lamination � on C is normal with respect to the handle decomposition. Let B be a

branched surface carrying �. We make B incompressible by performing surgery

which corresponds to moving g by a homotopy, preserving the condition that B

carries the dual lamination of g. In this process, we homotope g in neighbourhoods

of compressing discs and discs of contact to compress B, and in a ball bounded by

an inessential sphere carried by B to remove a spherical part of the boundary.

Similarly we can make B boundary-incompressible by the boundary-compression

(along either a boundary-compression disc or a semi-disc of contact) and the

removal of inessential part carrying a boundary-parallel disc. (Although this

process needs a limit argument, the essence of the operation consists of these two.)

Let f be the thus modified weakly transverse equivariant map. It turns out that

the assumption that the action on T has small edge-stabilisers implies that the

branched surface B carrying the dual lamination can carry only surfaces with null

Euler characteristics. By the Jaco-Shalen-Johannson theory, it follows that the

dual lamination can be isotoped into the characteristic pair then.

Now we shall see how we can make f satisfy the condition of our corollary. In

the construction of the weakly transverse map g, it is clear that we can make gð ~SÞ
lie in TS. In the process of the modification of the map, the only part that affects

the restriction to ~S is that of boundary-compression, removing semi-discs of
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contact and removing parts carrying a boundary-parallel discs. We can choose a

boundary-compressing semi-disc � so that its intersection with the dual

lamination consists of arcs parallel to the arc � n @C. Then, since in the lift ~�

of � attached to ~S, every point has a point on ~S with the same image by g in T , we

see that ~� is mapped into TS. Therefore, after the boundary-compression, ~S

remains to be mapped into TS. If the limit is taken within the maps with this

property, the limit map has the same property. The same argument applies to

semi-discs of contact which intersect the dual lamination. (If it is disjoint from the

dual lamination, we can remove it without changing the weakly transverse map.)

It is easy to see that removing a part carrying a boundary-parallel disc does not

change the condition that ~S is mapped into TS since a lift ~D of such a disc can be

taken to be mapped into TS and the resulting map takes the disc on ~S parallel to ~D

to the image of ~D. �

LEMMA 3.4. We can homotope f equivariantly only in neighbourhoods of the

preimages of the compact leaves of Lj@C so that for every component S of @C with

L \ S 6¼ ;, the restriction f j ~S is a strongly transverse map onto TS, hence induces

an isomorphism, i.e., an isometry from the R-tree obtained as the completion of

the leaf space of the measured lamination dual to f j ~S, to TS which is equivariant

under the action of �1ðSÞ. (If S is disjoint from L, then TS consists of only one

point and f maps ~S to the point.) This process corresponds to identifying or

removing some of the compact leaves of Lj@C. For the thus obtained transverse

map f, the conditions of Theorem 1 remain valid.

PROOF. Let S be a component of @C with L \ S 6¼ ;. For a weakly

transverse map f, we denote the lamination on S dual to f j ~S by �f and that on ~S

by ~�f . By Proposition 3.1 in Skora [45], if f j ~S does not fold at an edge point, then

f j ~S is strongly transverse to TS, hence induces an isomorphism between the action

of �1ðSÞ on the R-tree obtained from the completion of the leaf space of the

lamination �f and the one on TS which is the restriction of the given action on T .

Furthermore, if an edge point x corresponds to (a lift of) a leaf of minimal

component which is not a closed leaf, then f j ~S cannot fold at x since the leaf

containing x is dense in the minimal component. (This means that if y does not lie

on a boundary leaf, for a short arc I transverse to the lamination at y, the map fjI
is monotone.)

Suppose now that x corresponds to (a lift of) a compact leaf of �f . Note that

the dual lamination �f may have parallel compact leaves which correspond to one

compact leaf as a geodesic lamination. Consider all the leaves of �f that are

parallel to the one corresponding to x. Let A be the smallest annulus on S

containing all these leaves. Then both components of @A are also leaves. Let ~A be
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a lift of A in ~S. Take points a; b on @ ~A, one on each boundary component. Let d be

dT ðfðaÞ; fðbÞÞ. If d > 0, then we can homotope f equivariantly only within the

translates of ~A in such a way that f j ~A becomes monotone in the transverse

direction and the total transverse measure of the leaves in ~A induced by f is equal

to d. If d ¼ 0, we can homotope f similarly within the translates of ~A and remove

all the leaves in the translates of ~A from the dual lamination. By repeating this

operation for every compact leaf, we can make f not fold at an edge point. Thus

we have shown, by Skora’s Proposition 3.1, we can homotope f so that f j ~S is a

strongly transverse map to TS. The map is surjective since we assumed TS to be

minimal.

In each step of this operation, the codimension-one measured lamination of C

dual to this new f may change. By this operation, some leaves which are annuli

contained in a component V of the characteristic pair are glued to other annuli in

another component V 0 and are pushed into the interior to form new annular

leaves. If these annuli are essential, then they are carried by the characteristic

pair, and the conditions in Theorem 1 are satisfied. If they are inessential, i.e.,

boundary-parallel, then we can further homotope f and remove these leaves as

before. We perform this modification of f for each component of @C. Thus we

have shown that the dual lamination of f satisfies the conditions in

Theorem 1. �

Having proved the lemma above, we can prove Theorem 3.1 as follows. Let

fricig; fsidig be sequences of weighted simple closed curves on @C as were given in

the statement of the theorem. Let S1; S2 be components on which fricig and fsidig
lie respectively, and � and � measured laminations to which fricig and fsidig
converge respectively.

At this point, we need another result by Thurston. Let S be a component of

@C. Then, Theorem 3.3 of Thurston [47] shows that there are a continuous

function K : ML ðSÞ ! R independent of i and a pleated surface fi : ðS;mS
i Þ !

H 3=�i homotopic to �ijS for each i, such that for any � 2 ML ðSÞ,

lengthH 3=�i
ð�ið�ÞÞ 
 lengthmS

i
ð�Þ 
 lengthH 3=�i

ð�ið�ÞÞ þKð�Þ: ð1Þ

This inequality is called the efficiency of pleated surfaces. It should be noted that

this efficiency necessitates the assumption that the surface is incompressible,

which is true in our case because C is boundary-irreducible. In the inequality,

lengthH 3=�i
ð�ið�ÞÞmeans, when � is connected, the length of a realisation of � by a

pleated surface homotopic to �i if it is realisable by such a pleated surface, and is

set to be 0 if it is not. When � is disconnected, the length is defined to be the sum

of the lengths of its components.
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Now, suppose first that both S1 and S2 intersect L. Lemma 3.4 implies that

fmSj
i g converges to a projective lamination represented by L \ Sj for j ¼ 1; 2 in

the Thurston compactification of the Teichmüller space. (See Skora [45] and Otal

[42].) Take simple closed curves � on S1 and 	 on S2 both intersecting L

essentially. As was shown in Exposé 8 of Fathi-Laudenbach-Poénaru [20], this

implies that

lim
i!1

lengthmS1
i
ðriciÞ

lengthmS1
i
ð�Þ

¼ lim
i!1

iðL \ S1; riciÞ
iðL \ S1; �Þ

;

and

lim
i!1

lengthmS2
i
ðsidiÞ

lengthmS2
i
ð	Þ ¼ lim

i!1

iðL \ S2; sidiÞ
iðL \ S2; 	Þ

:

Using the efficiency of pleated surfaces (1), we have

lim
i!1

lengthH 3=�i
ð�iðriciÞÞ

lengthH 3=�i
ð�ið�ÞÞ

¼ lim
i!1

lengthmS1
i
ðriciÞ

lengthmS1
i
ð�Þ ;

and

lim
i!1

lengthH 3=�i
ð�iðsidiÞÞ

lengthH 3=�i
ð�ið	ÞÞ

¼ lim
i!1

lengthmS2
i
ðsidiÞ

lengthmS2
i
ð	Þ :

On the other hand, by Theorem 1, there is a sequence of positive numbers

f�ig going to 0 such that for every g 2 G, we have that �ilengthH 3=�i
ð iðgÞÞ

converges to the translation length of g in T . Therefore, for the simple closed

curve � as above, we have limi!1 �ilengthH 3=�i
ð�ið�ÞÞ ¼ lengthT ð�Þ and by

Lemma 3.4, this is equal to ið�; L \ S1Þ since � lies on @C. Similarly,

limi!1 �ilengthH 3=�i
ð ið	ÞÞ ¼ ið	; L \ S2Þ. Combining these with the equations

above, we see that limi!1 �ilengthH 3=�i
ð�iðriciÞÞ ¼ limi!1 iðrici; LÞ and

limi!1 �ilengthH 3=�i
ð�iðsidiÞÞ ¼ limi!1 iðsidi; L \ S2Þ. Thus we have proved that

lim
i!1

lengthH 3=�i
ð�iðriciÞÞ

lengthH 3=�i
ð�iðsidiÞÞ

¼ lim
i!1

iðrici; LÞ
iðsidi; LÞ

:

Since L is a codimension-1 measured lamination which is a limit of a disjoint

union of weighted essential annuli by Theorem 1, we get the equality in the
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conclusion of our theorem under the assumption that both S1 and S2 intersect L.

Since �i ! 0 and limi!1 �ilengthH 3=�i
ð�iðriciÞÞ ¼ limi!1 iðrici; LÞ, we also obtain

the last sentence of the conclusion. (The equality is true even when S2 is disjoint

from L.)

Next suppose that one of S1; S2, say S1, is disjoint from L. (We do not need to

consider the case when both of S1; S2 are disjoint from L, for the right hand limit

has the form 0/0 then.) Then, each component of the preimage of S1 in ~C is

mapped to a point by f . Let 
 be a train track carrying both � and the ci for large

i. Then every component of the preimage of 
 is mapped to a point by f . By

regarding the ci as lying on 
 as a C1-curve, and pulling back the image of its

preimage to H 3=�i rescaled by �i, we have �ilengthH 3=�i
ð iðriciÞÞ ! 0. (Compare

with the argument in the chapitre 3 of Otal [42].) Since we are not

considering the case when the limit in the right hand side has the form 0/0,

we can assume that limi!1 iðsidi; LÞ > 0. Then by the argument above,

limi!1 �ilengthH 3=�i
ð�iðsidiÞÞ ¼ limi!1 iðsidi; LÞ > 0. Thus we have shown that

both of the limits

lim
i!1

lengthH 3=�i
ð�iðriciÞÞ

lengthH 3=�i
ð�iðsidiÞÞ

and lim
i!1

iðrici; LÞ
iðsidi; LÞ

are equal to 0 and that the equality holds. �

The following theorem appeared in Thurston [47] as Theorem 2.2, whose

proof can be found in the argument of Thurston [49].

THEOREM 3.5 (Thurston). Let S be a closed surface of genus greater than 1.

Let fmig be a sequence in the Teichmüller space T ðSÞ, which converges to a

projective lamination ½�� (represented by a measured lamination �) in the

Thurston compactification of T ðSÞ. Then there is a sequence of weighted simple

closed curves fwi�ig converging to the measured lamination � such that

lengthmi
ðwi�iÞ ! 0 as i! 1.

For a Kleinian group G, and a boundary component S of a compact core C of

H 3=G, we define the length function ‘ : M ðSÞ � AHðGÞ ! R as follows.

(1) For ð�;  Þ 2 AHðGÞ, when � can be realised by a pleated surface

homotopic to �jS, we set ‘ð�; ð�;  ÞÞ to be the length of � on the pleated

surface. (It is known that the length does not depend on the choice of

pleated surface realising �.)

(2) When � is connected and there is no pleated surface homotopic to �jS
realising �, we set ‘ð�; ð�;  ÞÞ to be 0.
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(3) When � is disconnected and is not realised, then we define ‘ð�; ð�;  ÞÞ to
be the sum of the ‘ð�j; ð�;  ÞÞ for the components �j of �.

The continuity of ‘ was first announced in Thurston [47] in the case when S is

incompressible. In the subset consisting of maximal and connected laminations in

ML ðSÞ (for incompressible S) its proof was given in Ohshika [38] based on

Bonahon’s work in [6]. Brock [7] gave a proof for the continuity of ‘ in the entire

set ML ðSÞ � AHðGÞ still in the case when S is incompressible. The following

theorem is a weak form of the continuity of ‘ in the general case where S may be

compressible. We can prove this using Bonahon’s technique generalised in [39].

We shall sketch a proof in the appendix.

THEOREM 3.6. Let fðGi; �iÞg 2 AHðGÞ be a sequence converging to ð�;  Þ,
and �i measured laminations in M ðSÞ converging to a maximal and connected

measured lamination � 2 M ðSÞ. Suppose that ‘ð�i; ðGi; �iÞÞ converges to 0 as

i! 1. Then there is no pleated surface homotopic to �jS realising � in H 3=�.

4. Convergence theorem.

The key step of the proof of Theorem 1.1 is to give a sufficient condition for a

sequence of quasi-conformal deformations to converge in the deformation space

AHðGÞ, which is formulated as follows.

THEOREM 4.1. Let G be a geometrically finite Kleinian group without

parabolic elements, which is not a quasi-Fuchsian group. Let M be a compact

3-manifold (Kleinian manifold) whose interior is identified homeomorphically with

H 3=G, and S1; . . . ; Sm its boundary components. Let �j1 ; . . . ; �jp be maximal and

connected measured laminations on boundary components Sj1 ; . . . ; Sjp among

S1; . . . ; Sm, which are contained in the Masur domain. (We regard the Masur

domain for an incompressible surface as the entire measured lamination space.)

Consider a sequence of quasi-conformal deformations fðGi; �iÞg of G induced from

conformal structures at infinity gi1; . . . ; g
i
m on S1; . . . ; Sm such that fgijng converges

as i! 1 in the Thurston compactification of the Teichmüller space to the

projective lamination ½�jn � for n ¼ 1; . . . ; p, and for the rest of k ¼ 1; . . . ;m, the

sequence fgikg stays in a compact set of the Teichmüller space. Then fðGi; �iÞg
converges in AHðGÞ after passing to a subsequence.

In the special case when G is a function group, this theorem was proved by

Kleineidam and Souto in [23].

THEOREM 4.2 (Kleineidam-Souto). Let G be a geometrically finite Kleinian

group without parabolic elements such that H 3=G is homeomorphic to the interior
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of a compression body V . Let S be the exterior boundary of V , and fmig a sequence

in the Teichmüller space T ðSÞ which converges in the Thurston compactification

of T ðSÞ to a maximal and connected projective lamination contained in the

projectivised Masur domain. Let fnig be any sequence in the Teichmüller space

T ð@iV Þ. Let ðGi; �iÞ be a quasi-conformal deformation of G which is given as the

image by the Ahlfors-Bers map of ðmi; niÞ 2 T ðSÞ � T ð@iV Þ. Then fðGi; �iÞg
converges in AHðGÞ after passing to a subsequence.

On the other hand, in [35], we proved a convergence theorem similar to

Theorem 4.1 in a more general setting for freely indecomposable Kleinian groups,

which implies, in particular, Theorem 4.1 in the case when G is freely

indecomposable. (This was based on Thurston’s theorem which is the same as

Theorem 3.1 in the present paper.) Note that the assumption in Theorem 4.1 that

measured laminations are contained in the Masur domains is void in this case.

This theorem in [35] also covers the case when G is a quasi-Fuchsian group with

the following extra assumption: In the case when G is a quasi-Fuchsian group

corresponding to an orientable surface and p ¼ 2, we further assume that the

supports of two measured laminations �1 and �2 are not homotopic inM. We shall

explain how to deal with quasi-Fuchsian groups corresponding to non-orientable

surfaces later in Section 5.

Our argument to prove Theorem 4.1 is basically as follows. First we shall

apply the Theorems 3.1 and 4.2 to subgroups of G corresponding to each

component of the characteristic compression body of C and the complement of the

characteristic compression body. Then we shall regard the group G as constructed

by gluing these convergent groups, and show the entire group converges by

analysing the group corresponding to the gluing surfaces.

Now, we start the proof. Let C be a convex core of H 3=G, which is also a

compact core since G is geometrically finite and has no parabolic elements.

Because of the existence of the ‘‘nearest point retraction’’ from M to C (refer to

Morgan [30]), there is a homeomorphism from C to M isotopic to the inclusion,

which is the homotopical inverse of the nearest point retraction. We call this

homeomorphism the natural homeomorphism from C to M. Let V be the

characteristic compression body of C, and V1; . . . ; Vn its components. Let GVk be a

subgroup of G corresponding to the image of �1ðVkÞ in �1ðMÞ ¼� G. The quasi-

conformal deformation ðGi; �iÞ induces that of GVk , which we denote by

ðGVk
i ; �ijGVkÞ, where GVk

i is nothing other than �iðGVkÞ.
The first step of the proof is to show that fðGVk

i ; �ijGVkÞg converges in

AHðGVkÞ.

LEMMA 4.3. The sequence fðGVk
i ; �ijGVkÞg converges in AHðGVkÞ after
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passing to a subsequence.

PROOF. The compression body Vk lifts homeomorphically to a compact core
~Vk of H

3=GVk . Since GVk is geometrically finite and has no parabolic elements, the

hyperbolic 3-manifold H 3=GVk is homeomorphic to the interior of a compact 3-

manifold V 0
k, which is obtained as a Kleinian manifold ðH 3 [ �GVk Þ=GVk . The

natural homeomorphism maps ~Vk homeomorphically to V 0
k. Let S be the exterior

boundary of V 0
k. Then we can identify S with a boundary component Sj of M via

the corresponding surfaces on the boundaries of ~Vk and Vk. Recall that in

Theorem 4.1, a marked conformal structure gij was given on Sj. We regard this gij
as a marked conformal structure on S by the identification given above. Then the

quasi-conformal deformation ðGVk
i ; �ijGVkÞ is the image of ðgij; hiÞ 2 T ðSÞ �

T ð@iV 0
kÞ by the Ahlfors-Bers map for some hi 2 T ð@iV 0

kÞ.
By assumption, fgijg either converges in the Thurston compactification of

the Teichmüller space to a maximal and connected projective lamination, which

is contained in the projectivised Masur domain, or stays in a compact set of the

Teichmüller space. In the former case, we can see that fðGVk
i ; �ijGVkÞg converges

after taking a subsequence by Theorem 4.2. In the latter case, by Theorem 2.1

in Canary [14], for every element � 2 GVk represented by a closed curve on S,

the translation length of �ið�Þ is bounded as i! 1. Since GVk ¼� �1ðV 0
kÞ is

carried by �1ðSÞ, this implies that fðGVk
i ; �ijGVkÞg converges after passing to a

subsequence. �

Let ð�Vk ;  VkÞ be the algebraic limit of a convergent subsequence of

fðGVk
i ; �ijGVkÞg. Recall that the closure of the complement of V in C is a

boundary-irreducible 3-manifold, which we shall denote by W .

We note that the compact core C of H 3=G can be constructed from the

components of W and the components of V by pasting them along incompressible

boundary components. If we allow ourselves to paste two boundary components of

V each other, then we can ignore the components of W which are product

I-bundles over closed surfaces. For, the homeomorphism type does not change by

gluing such a component one of whose boundary components does not lie on @iV ,

and we can realise the same manifold by pasting two boundary components of V if

such a component has both boundary components on @iV .

Let W1; . . . ;Wm be the components of W which are not product I-bundles

over closed surfaces. For each Wj, we define GWj to be a subgroup of G

corresponding to the image of �1ðWjÞ in �1ðCÞ ¼� G. Then Wj can be lifted

homeomorphically to a compact core ~Wj of H 3=GWj . Let ðGWj

i ; �ijGWjÞ be the

quasi-conformal deformation of GWj induced from ðGi; �iÞ. We denote by �
Wj

i a

homotopy equivalence from H 3=GWi to H 3=G
Wj

i corresponding to �ijGWj .
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LEMMA 4.4. The sequence fðGWj

i ; �ijGWjÞg converges in AHðGWjÞ after

passing to a subsequence.

PROOF. Suppose that fðGWj

i ; �ijGWjÞg does not have a convergent subse-

quence. Then, there are a boundary component ~T of ~Wj and disjoint unions of

essential annuli A1
i ; . . . ; A

l
i properly embedded in ~Wj with weights w1

i ; . . . ; w
l
i for

each i as in Theorem 3.1, such that ðw1
i A

1
i t 	 	 	 t wliAl

iÞ \ ~T , regarded as an

element of ML ð ~T Þ, converges to a (non-empty) measured lamination � on ~T as

i! 1. (In other words, we are considering ~T which intersects the codimension-1

lamination L which appeared in the proof of Theorem 3.1. The measured

lamination � is nothing but L \ ~T .) Let T be the image of ~T in Wj under the

covering projection. The surface T is either contained in @C or an interior

boundary component of some component Vk of V .

First consider the case when T is contained in @C. Recall that in the situation

of Theorem 4.1, we are given a sequence of marked conformal structures fgig on T

if we identify C with M by the natural homeomorphism. This gi is regarded as a

point in T ð ~T Þ by identifying ~T with T . By assumption, fgig either stays in a

compact set of T ð ~T Þ or converges in the Thurston compactification to a maximal

and connected projective lamination ½�� on ~T . Suppose first that the former is the

case. Let c be an essential simple closed curve on ~T such that iðc; �Þ > 0. The

length of the closed geodesic freely homotopic to �
Wj

i ðcÞ is bounded as i! 1 by

Sullivan’s theorem (see Epstein-Marden [19] for the proof) since the geodesic

length of c with respect to gi is bounded as i! 1. This contradicts the last

sentence of the conclusion of Theorem 3.1 asserting that the length of such a

closed geodesic goes to infinity as i! 1.

Next suppose that the latter is the case. Then, by Theorem 3.5, there exist a

sequence of simple closed curves fcig and positive real numbers frig such that

fricig converges to � and rilengthgiðciÞ ! 0. Let c�i be the closed geodesic in

H 3=G
Wj

i freely homotopic to �
Wj

i ðciÞ. Again by Sullivan’s theorem proved by

Epstein-Marden [19], this implies that rilengthðc�i Þ ! 0. By applying Theorem 3.1

to GWj , we see that this is possible only when ið�; �Þ ¼ 0. Since � is assumed to be

maximal and connected, the supports of � and � coincide; hence in particular � is

also maximal and connected. (Here the assumption that � is maximal and

connected is crucial.) Since � is the limit of ðw1
i A

1
i t . . . t wliAl

iÞ \ ~T , this happens

only when the characteristic pair of ~Wj is an I-bundle over a closed surface,

coinciding with the entire ~Wj. Since we are considering the case when T is a

boundary component of C, the component Wj ¼� ~Wj can be a twisted I-bundle

only when C ¼Wj. This is the case when G is a quasi-Fuchsian group

corresponding to a non-orientable surface, which we are excluding by assumption

now. As we assumed that Wj is not a product I-bundle over a closed surface, ~Wj
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cannot be a product I-bundle either. Thus, in either case, we are lead to a

contradiction.

Next we consider the case when T is an interior boundary component of a

component Vk of V . Since ~T intersects the limit L of w1
i A

1
i t 	 	 	 t wkiAk

i essentially,

it contains a simple closed curve c intersecting L essentially. The translation

length of �iðcÞ goes to infinity by Theorem 3.1. Then we see that for a subgroup

GT of GWj associated to the image of �1ðT Þ in �1ðWjÞ � �1ðCÞ, the sequence

fð�iðGT Þ; �ijGT Þg cannot converge as i! 1 even if we take a subsequence. Since

there is a conjugate of �iðGT Þ contained in GVk
i , this contradicts Lemma 4.3. �

Let C1 and C2 be two compact submanifolds of C, whose inclusions induce

monomorphisms between the fundamental groups, such that C1 \ C2 is a

connected closed surface T which is incompressible in C. Let G1 be a subgroup

of G corresponding to the image of �1ðC1Þ in �1ðCÞ ¼� G, and G2 one correspond-

ing to the image of �1ðC2Þ. Taking a conjugate of G2, we can assume that G1 \G2

is a subgroup of G corresponding to the image of �1ðT Þ in �1ðCÞ ¼� G. Let G0 be a

subgroup of G obtained as the amalgamated free product of G1 and G2 over

G1 \G2. Suppose that the two sequences of quasi-conformal deformations

fð�iðG1Þ; �ijG1Þg and fð�iðG2Þ; �ijG2Þg converge algebraically after passing to

subsequences.

LEMMA 4.5. In this situation, the sequence of quasi-conformal deformations

fð�iðG0Þ; �ijG0Þg also converges in AHðG0Þ after passing to a subsequence.

PROOF. Since we have only to prove the existence of convergent subse-

quence, we shall take a subsequence each time it is necessary in the proof without

mentioning it. Since fð�iðG1Þ; �ijG1Þg converges in AHðG1Þ, by taking conjugates,

we can assume that the sequence of representations f�ijG1g converges. It is

sufficient to prove that f�ijG0g also converges then.

Since fð�iðG2Þ; �ijG2Þg also converges, there are elements ti 2 PSL2C such

that ftið�ijG2Þt�1
i g converges. As G1 \G2 is isomorphic to �1ðT Þ and f�ijðG1 \

G2Þg converges to a Kleinian group, we can choose elements �; 	 2 G1 \G2 such

that both f�ið�Þg and f�ið	Þg converge to loxodromic elements, which do not

commute each other. We should note here that fti�ið�Þt�1
i g and fti�ið	Þt�1

i g also

converge to loxodromic elements of PSL2C . This is possible only when ftig
converges to an element of PSL2C , as we can easily see the moves under ti of the

fixed points on S2
1 of �ið�Þ and �ið	Þ. Therefore, we see that f�ijG2g also

converges as representations. Since G0 is generated by G1 and G2, it follows that

f�ijG0g also converges. �

Next consider a submanifold C0 in C whose inclusion induces a mono-
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morphism between the fundamental groups, and two of whose boundary

components are parallel in C. Let C0 be the submanifold of C obtained by

pasting the two parallel boundary components of C0. Let G
C0 be a subgroup of G

corresponding to the image of �1ðC0Þ in �1ðCÞ ¼� G. Then a subgroup GC0

corresponding to the image of �1ðC0Þ in �1ðCÞ ¼� G is obtained as an HNN-

extension of GC0 over a subgroup corresponding to the fundamental group of one

of the parallel boundary components of C0. Consider quasi-conformal deforma-

tions fð�iðGC0 Þ; �ijGC0 Þg of GC0
.

LEMMA 4.6. Suppose that the sequence fð�iðGC0Þ; �ijGC0Þg converges in

AHðGC0Þ. Then the sequence fð�iðGC0 Þ; �ijGC0 Þg also converges in AHðGC0 Þ after
passing to a subsequence.

PROOF. Let T1 and T2 be boundary components of C0 which are parallel in

C and pasted each other in C0. We regard the fundamental groups �1ðT1Þ and

�1ðT2Þ as contained in �1ðC0Þ by connecting a basepoint in C0 to T1; T2 by arcs in

C0. Then, the fundamental group �1ðC0Þ is generated by �1ðC0Þ and an element

t 2 �1ðC0Þ such that the conjugation by t gives an isomorphism from �1ðT1Þ to

�1ðT2Þ regarded as contained in �1ðC0Þ. Let GT1 and GT2 be the subgroups of GC0

corresponding to �1ðT1Þ and �1ðT2Þ respectively, and we use the same symbol t to

denote the element of GC0
corresponding to t 2 �1ðC0Þ. By assumption, f�ijGC0g

can be made to converge by taking conjugates; hence in particular f�ijGT1g and

f�ijGT2g converge. Since GT1 contains two elements both mapped to loxodromic

elements, which do not commute each other, by the same argument as in

Lemma 4.5, we see that f�iðtÞg must also converge. Thus, we have proved that

f�ijGC0g also converges. �

Hence, if neither V nor W is empty, starting from quasi-conformal

deformations of subgroups of G corresponding to components V and non-

product-I-bundle components ofW , for which the convergence of the correspond-

ing subgroups was proved in Lemmata 4.3, 4.4, and using the argument above

repeatedly, we see that fðGi; �iÞg converges in AHðGÞ after taking a subsequence.

For the case when V or W is empty, Theorem 4.2 above and Theorem 2.1 in [35]

imply Theorem 4.1. Thus, we have completed the proof of Theorem 4.1.

5. Proof of the main theorem.

For a geometrically finite group G without parabolic elements and measured

laminations �j1 ; . . . ; �jp as given in Theorem 1.1, we construct a sequence of quasi-

conformal deformations fðGi; �iÞg of G as follows. Let S1; . . . ; Sm be the boundary

components of the compactification M of H 3=G, as in the statement of the
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theorem. For each Sjk among the boundary components Sj1 ; . . . ; Sjp on which

measured laminations �jk are given, consider a sequence of marked conformal

structures fgijkg on Sjk which converges to the projective lamination ½�jk � in the

Thurston compactification of the Teichmüller space. For the remaining boundary

components Si1 ; . . . ; Siq , we define marked conformal structures gii1 ; . . . ; g
i
iq
to be

the given marked conformal structures m1; . . . ;mq in the statement, which are

constant with respect to i. Let q : T ð@MÞ ! QHðGÞ be the Ahlfors-Bers map. We

define a quasi-conformal deformation ðGi; �iÞ to be qðgi1; . . . ; gimÞ for the marked

conformal structures defined above.

By Theorem 4.1, this sequence fðGi; �iÞg converges to a Kleinian group ð�;  Þ
in AHðGÞ passing to a subsequence provided that Gi is not quasi-Fuchsian. When

Gi is quasi-Fuchsian, if the corresponding closed surface is orientable, we can

obtain the same result making use of Theorem 2.4 in [35], instead of Theorem 4.1.

(Actually this can be proved by the argument of Thurston’s double limit theorem

[47].)

Suppose that G is a quasi-Fuchsian group isomorphic to �1ðS0Þ for a non-

orientable surface S0. Then C is a twisted I-bundle over S0. By Theorem 3.1, there

exists a sequence of weighted unions of essential annuli w1
i A

1
i t 	 	 	 t wkiAk

i for

which the conclusion of the theorem holds; i.e., the limit of w1
i A

1
i t 	 	 	 t wkiAk

i

describes the behaviour of the three-dimensional geodesic lengths of closed curves

on the boundary. Since @C is identified with Sj1 , consider the limit of Sj1 \
ðw1

i A
1
i t 	 	 	 t wkiAk

i Þ in the measured lamination space and denote it by �. Then

obviously � is a lift of a measured lamination which represents S0 \ ðw1
i A

1
i t 	 	 	 t

wkiA
k
i Þ if we identify S0 with its cross section embedded in C. Since �j1 is maximal

and connected, it has non-trivial intersection with any measured lamination

except for those with the same supports as �j1 . By assumption, �j1 is not a lift of a

measured lamination on S0; hence its support is different from that of �. Therefore

we have ið�j1 ; �Þ > 0. This implies that if a sequence of weighted simple closed

curves fwi�ig converges to �j1 , then we have wilengthH 3=Gi
ð�ið�iÞÞ ! 1 by

Theorem 3.1. By Sullivan’s theorem proved in [19], this leads to wilengthgij1
ð�iÞ !

1, which contradicts Theorem 3.5. Thus we see that fðGi; �iÞg converges also in

this case.

Thus, in every case, we have a limit ð�;  Þ of fðGi; �iÞg after taking a

subsequence. Let C be the convex core of H 3=G as before. Let � : H 3=G! H 3=�

be a homotopy equivalence inducing the isomorphism  between �1ðH 3=GÞ ¼� G

and �1ðH 3=�Þ ¼� �, following our convention of the notation. To complete the

proof of Theorem 1.1, it is sufficient to prove the following proposition.

PROPOSITION 5.1. Regard S1; . . . ; Sm also as the boundary components of C

identifying C withM by the natural homeomorphism, and let C0 be a compact core
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of H 3=�. Then the restriction of the homotopy equivalence �jC can be homotoped

to a homeomorphism h : C ! C0, and the following hold.

(1) For each k ¼ 1; . . . ; p, the lamination hð�jkÞ is unrealisable in H 3=�.

Hence in particular � is geometrically infinite.

(2) Unless G is free, � has no parabolic elements and Tjk ¼ hðSjkÞ faces a

geometrically infinite and topologically tame end.

(3) For each of the remaining components, Sik , k ¼ 1; . . . ; q, the end facing

hðSikÞ is geometrically finite.

(4) � is topologically tame.

Therefore, in particular, H 3=� is compactified to a 3-manifold M 0, which is

homeomorphic to C0. The homeomorphism h extends to a homeomorphism

h :M !M 0, and the corresponding conformal structure at infinity on hðSikÞ is

h�ðmkÞ.

PROOF OF PROPOSITION 5.1 Let ci be the shortest simple closed geodesic

with respect to the hyperbolic structure on ðSjk ; gijkÞ. By the compactness of

PML ðSÞ, passing to a subsequence, there is a sequence of positive real numbers

ri such that fricig converges to a measured lamination �. Obviously we can

assume that either ri ! 0, or ri is constant and � is a simple closed curve, by

taking a subsequence. Since ci is the shortest simple closed geodesic, lengthgijk
ðciÞ

is bounded above independently of i. If ið�jk ; �Þ > 0, then by a well-known fact

about the Thurston compactification (see exposé 8 of [20] for instance), we have

rilengthgijk
ðciÞ ! 1, and we get a contradiction. Therefore ið�jk ; �Þ ¼ 0, which

implies the supports of �jk and � coincide by the assumption that �jk is maximal

and connected. In particular we see that � is not a simple closed curve, hence

ri ! 0, and that � is contained in M ðSjkÞ.
On the other hand, since the length of ci with respect to gijk is bounded above

as i! 1, its extremal length is also bounded above, and by Corollary 2 in Maskit

[26], we see that flengthH 3=Gi
ð�iðciÞÞg is bounded; hence rilengthH 3=Gi

ð�iðciÞÞ ! 0

as i! 1. By Theorem 3.6, it follows that � cannot be realised by a pleated

surface homotopic to �jSjk . (Recall that � is maximal and connected.) Since �jk
has the same support as �, the measured lamination �jk cannot be realised by such

a pleated surface either. Therefore once we can show �jC is homotoped to a

homeomorphism, (1) will follow.

Now assume that G is not free. Consider a subgroup �Sjk of � corresponding

to ð�jSjkÞ#�1ðSjkÞ in �1ðH 3=�Þ ¼� �, where # denotes the induced homomor-

phism. Let C0
Sjk

be a compact core of H 3=�Sjk . The map �jSjk can be lifted to a

map ~f : Sjk ! H 3=�Sjk . Since the measured lamination �jk cannot be realised by a

pleated surface homotopic to �jSjk , it cannot be realised by a pleated surface
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homotopic to ~f either. Therefore, as was shown in [41], there are pleated surfaces
~fn : Sjk ! H 3=�Sjk homotopic to ~f , which realise weighted simple closed curves in

the Masur domain converging to �jk , and tend to an end ~e as n! 1. By Theorem

4.1 in [39], this implies that the end ~e is geometrically infinite and has a

neighbourhood ~E homeomorphic to ��R such that ~f is homotopic (in H 3=�Sjk )

to a covering map onto �� ftg. By cutting H 3=�Sjk along �� ftg, and applying

the relative core theorem due to McCullough [27], we can see that there is a

compact core K containing �� ftg as a boundary component. The uniqueness of

core implies that there is a homeomorphism between the cores K and C0
Sjk
, which

induces an inner-automorphism of �1ðH 3=�Sjk Þ. In particular, there must be a

boundary component T of C0
Sjk

which is homeomorphic to �, and is homotopic to

�� ftg in H 3=�Sjk . Then, since the fundamental group of T carries a conjugate of

the image of �1ð~fðSjkÞÞ, which must be equal to the entire �1ðC0
Sjk
Þ, this can occur

only when C0
Sjk

is a compression body, and T is homeomorphic to Sjk . Thus, we see

that ~E is homeomorphic to Sjk �R in such a way that ~fðSjkÞ is homotopic in

H 3=�Sjk to the surface corresponding to Sjk � ftg.
Let p : H 3=�Sjk ! H 3=� be the covering map associated to the inclusion

�Sjk � �. The covering theorem of Canary [16], which is a generalisation of

Thurston’s covering theorem, implies that we can take a neighbourhood ~E of ~e

homeomorphic to Sjk �R as above so that pj ~E is a finite-sheeted covering to its

image; a neighbourhood E of an end e of H 3=�, which is homeomorphic to ��R

for a closed surface � in such a way that pjS � ftg covers �� ftg. By the same

argument as above, we can see that there is a boundary component of the compact

core C0, which is homotopic to �� ftg. This also implies that the end e is

geometrically infinite, topologically tame, and contains no cusps. This will show

(2) once �jC is shown to be homotopic to a homeomorphism to C0.

Thus, unless G is free, we have shown that for each Sjk among Sj1 ; . . . ; Sjp , the

homotopy equivalence � can be homotoped so that �jSjk is a finite-sheeted

covering onto a boundary component of the compact core C0.

Next we consider a boundary component Sik on which we fixed a conformal

structure to construct ðGi; �iÞ. As before, we let GSik be a subgroup of G

corresponding to the image of �1ðSikÞ in �1ðH 3=GÞ ¼� G. There is a unique

component Sik of �G=G which lies at infinity of the end facing Sik in the Kleinian

manifold ðH 3 [ �GÞ=G. Let �0 be a component of �G invariant by GSik , which is a

lift of Sik in �G. Let fi : S
2
1 ! S2

1 be a quasi-conformal homeomorphism inducing

the quasi-conformal deformation ðGi; �iÞ. Then fij�0 is conformal for all i. As was

shown in Lemma 3 in Abikoff [1], this implies that there is a component �0
0 of the

region of discontinuity ��, which is invariant by  ðGSik Þ, such that �0=G is

conformal to �0
0=� preserving the markings. (Here the markings make sense only

up to the ambiguity caused by auto-homeomorphisms of the boundaries of
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Kleinian manifolds which are homotopic to the identity in the Kleinian

manifolds.) Let S0
ik

be a boundary component of C0 facing the end which

corresponds to �0
0= ðGSik Þ. Then S0

ik
faces a geometrically finite end, whose

corresponding marked conformal structure at infinity is mk with the marking

determined by �jSik , and �jSik is homotopic to a homeomorphism onto S0
ik
via the

natural homeomorphism and the nearest point retraction.

Combining this with the preceding argument, we see that we can homotope �

so that each boundary component of C is mapped to a boundary component of C0

unless G is free. As C0 is a compact core, evidently we can assume that �ðCÞ � C0.

Since �jC is a homotopy equivalence to C0, by Waldhausen’s theorem [50], we can

further homotope � to a homeomorphism h from C to C0 unless G is free. In the

case when G is free, both C and C0 must be handlebodies and any homotopy

equivalence from C to C0 can be homotoped to a homeomorphism. Thus we have

completed the proof of (1)–(3).

It only remains to show the topological tameness of �. This has already been

proved for the case when G is not free by showing that every geometrically infinite

end corresponding to Sjk is topologically tame and the remaining ends are

geometrically finite. In the case when G is free, we need to invoke either the work

of Brock-Souto [11] and Brock-Bromberg-Evans-Souto [9] or a general resolution

of Marden’s conjecture by Agol [2] and Calegari-Gabai [13]. �

6. Appendix.

We shall give a sketch of the proof of Theorem 3.6. Since this theorem is

derived directly from the continuity of length function by Brock [7] in the case

when S is incompressible, we have only to deal with the case when S is

compressible. The main ingredients for this argument are contained in Ohshika

[39].

Suppose, seeking a contradiction, that there is a pleated surface homotopic to

�jS realising �. (Recall that we assumed that � is maximal and connected.) Then,

as was shown in Lemma 4.7 in [39], for any � > 0, there are a train track 
 with a

weight system ! carrying � and a map f : S ! H 3=� homotopic to �jS which is

adapted to 
 such that the total curvature and the total quadratic variation of

angles of fð
Þ are less than �. Here a map f is said to be adapted to a train track 


when each branch of 
 is mapped to a geodesic arc and there is a tied

neighbourhood N
 of 
 such that each tie is mapped to a point by f . The total

curvature of fð
Þ is defined to be the sum of the exterior angles formed by the

images of two adjacent branches multiplied by the weight flowing from the first

branch to the second. Similarly, the total quadratic variation of angles is the

weighted sum of the squares of such exterior angles.
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By taking a subsequence, we can assume that fGig converges geometrically

to a Kleinian group G1 containing � as a subgroup. Then, there is a

ðKi; riÞ-approximate isometry �i : BriðH 3=Gi; xiÞ ! BKiriðH 3=G1; x1Þ, where xi
and x1 are the images of some basepoint ~x 2 H 3, such that K�1

i dðx; yÞ 

dð�iðxÞ; �iðyÞÞ 
 Kidðx; yÞ for every x; y 2 BriðH 3=Gi; xiÞ, with ri ! 1 and

Ki ! 1. It is easy to see that for sufficiently large i, we can construct a map fi
homotopic to ��1

i � f which is adapted to 
 by defining for each branch b of 
 , its

image fiðbÞ to be the geodesic arc homotopic to ��1
i fðbÞ fixing the endpoints. Also,

we can easily show that the total curvature and the total quadratic variation of

angles for fið
Þ are less than 2� for sufficiently large i. (See the proof of

Lemma 6.10 in [39].)

Now, as we assumed that � is maximal and connected, we can take a train

track 
 as above so that every measured lamination near � is carried by 
 . Then

by the same argument as a proof of Proposition 5.1 of Bonahon [6] (Lemma 6.10 in

[39]), we see that for every � > 0, there are i0 and a neighbourhood U of � in M ðSÞ
such that for any weighted simple closed curve � 2 U , the closed geodesic ��i
homotopic to �ið�Þ has a part with length ð1� �Þlengthð��i Þ lying in the

�-neighbourhood of fið
Þ. By applying the same lemma fixing i and considering

a realisation of �i by a pleated surface homotopic to �ijS, we see that this gives a
positive lower bound for the length of the realisation of �i in H 3=Gi. This implies

that ‘ð�i; GiÞ is bounded below by a positive constant as i! 1, contradicting our

assumption.
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[42] J.-P. Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque,
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