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On higher dimensional Luecking’s theorem

By Boo Rim Choe

(Received Jan. 28, 2008)

Abstract. D. Luecking has recently proved that a Toeplitz operator with mea-
sure symbol on the Bergman space of unit disk has finite rank if and only if its
symbols is a linear combination of point masses. In this note we extend this theorem
to higher dimensional cases.

1. Introduction.

In a recent paper [3] D. Luecking has provided an elegant proof of a theorem
asserting that a Toeplitz operator (interpreted in a more general way) with measure
symbol on the Bergman space of unit disk has finite rank if and only if its symbol
is a linear combination of point masses. This theorem was actually proved in [2]
by D. Luecking himself, but there was a serious gap in its proof. So, he finally
reproved his own “theorem” after twenty years.

Let D be the unit disk of the complex plane C. The Bergman space L2
a(D)

is defined to be space of all square-integrable holomorphic functions on D. View-
ing L2

a(D) as the Hilbert subspace of L2(D) = L2(D, dA) where dA denotes the
normalized area measure on D, we see that there is a Hilbert space orthogonal
projection P : L2(D) → L2

a(D), the Bergman projection, which is realized by the
integral

Pf(z) =
∫

D

f(z)
(1− zw)2

dA(w)

for f ∈ L2(D).
For u ∈ L∞(D), the Toeplitz Tu with symbol u is defined by

Tuf = P (uf)
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for f ∈ L2
a(D). The symbol u being essentially bounded, Tu is clearly a bounded

linear operator on L2
a(D). The integral realization of the Bergman projection

allows one to extend the notion of Toeplitz operators to densely-defined Toeplitz
operators with unbounded symbols, or even with measure symbols. That is, the
Toeplitz operator Tµ with symbol µ, a complex Borel measure on D, is defined by

Tµf(z) =
∫

D

f(z)
(1− zw)2

dµ(w)

for holomorphic polynomials f ∈ P(C), the algebra of holomorphic polynomials
on C. Note that Tµ takes P(C) into the space of holomorphic functions on D.

Let P∗(C) denote the space of all conjugate-linear functionals on P(C).
Given a compactly supported complex Borel measure µ on C, let Lµ : P(C) →
P∗(C) denote the linear operator defined by

Lµf(g) =
∫

C

fg dµ

for f, g ∈ P(C). When µ is supported in D, we have, formally,

∫

D

(Tµf)g dA = Lµf(g) f, g ∈ P(C), (1.1)

which reveals a close connection between operators Tµ and Lµ. Of course, this
equality is not always true in the strict sense; justification of implicit exchange of
integrals would be required. At this point of difficulty Luecking [3] noticed that
there is a more natural way to connect operators Tµ and Lµ. Based on that, he
has shown the following result which implies the analogue for Toeplitz operators;
see Section 3.

Theorem (Luecking). Lµ has finite rank if and only if µ is a linear com-
bination of point masses.

Some steps of the proof of this theorem in [3] depend on certain properties
restricted to one variable case and generalizations to several variable cases (though
possible as in the current note) do not seem to be straightforward.

In this little note I follow the main scheme of Luecking’s one variable proof
and prove a higher dimensional analogue with hope that this might serve as a
convenient reference for several variable theory. Some parts of Luecking’s proofs
are repeated for completeness, some more details are provided in some steps for
reader’s convenience, and, when necessary, appropriate adjustments are made for
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several variables.

The author thanks Hyungwoon Koo for his kind suggestion of the proof of
Lemma 2.2.

2. Proofs.

Fix a positive integer n for the rest of the note. Let P(Cn) denotes the
algebra of all holomorphic polynomials on Cn and let P∗(Cn) denote the space
of all conjugate-linear functionals on P(Cn).

Some of notations, introduced for one variable case in the previous section,
will also be used for several variable case. Namely, given a compactly supported
complex Borel measure µ on Cn, let Lµ : P(Cn) → P∗(Cn) denote the linear
operator defined by

Lµf(g) =
∫

Cn

fg dµ

for f, g ∈ P(Cn).
For the rest of this section we fix a complex Borel measure µ, supported in a

compact subset of Cn, and assume that Lµ has finite rank, say less than N . We
will show that µ is supported on a finite set containing less than N points.

Given f1, . . . , fN ∈ P(Cn), functionals Lµf1, . . . , LµfN are linearly depen-
dent and thus

c1Lµf1 + · · ·+ cNLµfN = 0

for some nontrivial choice of coefficients c1, . . . , cN . Let g1, . . . , gN ∈ P(Cn)
be given. Taking inner products and using the notation µ(fg) :=

∫
Cn fg dµ for

simplicity, we see that the system of linear equations




µ(f1g1) . . . µ(fNg1)
...

...
µ(f1gN ) . . . µ(fNgN )







x1
...

xN


 = 0

has a nontrivial solution, namely (x1, . . . , xN ) = (c1, . . . , cN ). So, we have

det




µ(f1g1) . . . µ(fNg1)
...

...
µ(f1gN ) . . . µ(fNgN )


 = 0. (2.1)
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Before proceeding, we introduce some more notation. Let Cn×N stand for
the product of N copies of Cn. A general point in Cn×N is denoted by z =
(z1, . . . , zN ) where zj ∈ Cn for each j. Denote by µN the product measure
µ × · · · × µ on Cn×N and denote by P(Cn×N ) the algebra of all holomorphic
polynomials on Cn×N .

Now, since determinant is linear in each column, we may rephrase (2.1) (going
back to the integral notation) as

∫

Cn×N

f1(z1) · · · fN (zN )∆(g1,...,gN )(z) dµN (z) = 0 (2.2)

where

∆(g1,...,gN )(z) = det




g1(z1) . . . g1(zN )
...

...
gN (z1) . . . gN (zN )


 .

Inserting monomials fj into (2.2) and then considering finite sums, we may replace
the product f1(z1) · · · fN (zN ) in (2.2) by any holomorphic polynomials on Cn×N .
Namely, we have

∫

Cn×N

ψ(z)∆(g1,...,gN )(z) dµN (z) = 0 (2.3)

for ψ ∈ P(Cn×N ) and gj ∈ P(Cn) for each j.
Given a permutation σ on {1, . . . , N}, let σz = (zσ(1), . . . , zσ(N)) for z ∈

Cn×N . Let ϕ be a function defined on a permutation-invariant set U ⊂ Cn×N .
We say that ϕ is n-symmetric on U if

ϕ(σz) = ϕ(z), z ∈ U

for all permutations σ. Also, we say that ϕ is n-antisymmetric on U if

ϕ(σz) = (sgn σ)ϕ(z), z ∈ U

for all permutations σ. Here, sgn σ = 1 if σ is even and sgnσ = −1 if σ is odd.
We denote by CS(U) the space of all continuous n-symmetric functions on U .

Given a function ϕ on U that is not necessarily n-(anti)symmetric, we let
ϕs and ϕa denote n-symmetrization and n-antisymmetrization of ϕ, respectively.
That is,
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ϕs(z) =
1

N !

∑
σ

ϕ(σz) and ϕa(z) =
1

N !

∑
σ

(sgn σ)ϕ(σz)

for z ∈ U where sums are taken over all permutations σ.
Let PS(Cn×N ) and PA(Cn×N ) denote the subspace of P(Cn×N ) consisting

of all n-symmetric holomorphic polynomials and all n-antisymmetric holomorphic
polynomials, respectively.

Lemma 2.1. The equality

∫

Cn×N

ψϕdµN = 0

holds for all ψ ∈ P(Cn×N ) and ϕ ∈ PA(Cn×N ).

Proof. Note that ∆(p1,...,pN ) ∈ PA(Cn×N ) for all monomials p1, . . . , pN ∈
P(Cn). Thus, such functions span a subspace, say S , of PA(Cn×N ). By (2.3)
it is sufficient to show S = PA(Cn×N ).

We first observe a close connection with n-antisymmetrization and determi-
nant. Given functions g1, . . . , gN on Cn, denote by ⊗N

j=1gj the function defined
by

[⊗N
j=1gj

]
(z) = g1(z1) · · · gN (zN ). Note that we have

[⊗N
j=1gj

]
a
(z) =

1
N !

∑
σ

(sgnσ)g1(zσ(1)) · · · gN (zσ(N)) =
1

N !
∆(g1,...,gN )(z).

Thus, taking arbitrary monomials gj on Cn and considering linear combinations,
we see that ϕa ∈ S for all ϕ ∈ P(Cn×N ). Accordingly, for ϕ ∈ PA(Cn×N ), we
have ϕ = ϕa ∈ S , as required. ¤

Let ΦS be the algebra consisting of all linear combinations of functions of
the form ψϕ where ψ, ϕ ∈ PS(Cn×N ). Clearly, ΦS contains constant functions
and is self-adjoint, i.e., closed under complex conjugation. Since an n-symmetric
holomorphic polynomial has the same values at points that are permutations of
one another, ΦS does not separate points. However, ΦS separates two points
that are not permutations of each another, as in Lemma 2.2 below. Given a
point a ∈ Cn×N , we denote by [a] the set of all points obtained by permuting
a1, . . . , aN . Note that if [a] 6= [b], then [a] ∩ [b] = ∅.

Lemma 2.2. If [a] 6= [b], then there is some ψ ∈ PS(Cn×N ) such that
ψ(a) 6= ψ(b).
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The proof below is quite analytic. I wonder whether there is a simple algebraic
proof.

Proof. We first introduce some temporary notation. For positive in-
tegers d ≤ N , denote by εd the d-th elementary symmetric polynomial in
λ = (λ1, . . . , λN ) ∈ CN . This means that εd(λ)’s are determined by the equa-
tion

N∏

j=1

(t− λj) =
N∑

d=1

(−1)dεd(λ)tN−d.

So, we have

ν = (λσ(1), . . . , λσ(N)) for some σ ⇐⇒ εd(λ) = εd(ν) for all d (2.4)

for ν, λ ∈ CN .
Assume [a] 6= [b]. Let s be a sufficiently large positive number. Given j, k =

1, . . . , N , denote by ck
j (s) the point in Cn whose m-th component is log{(akm +

s)/(bjm + s)} where log is the principal branch. Note ck
j (s) = 0 if and only if

ak = bj . Since [a] 6= [b], we have ck
j (s) 6= 0 for some j and k. Let Hs be the set of

all points z ∈ Cn such that ck
j (s)·z 6= 0 whenever ak 6= bj . Here, x·y =

∑n
j=1 xjyj

denotes the Hermitian inner product of x, y ∈ Cn. Put ηk
j (s) = ck

j (s)|ck
j (s)|−1

when ak 6= bj . Now we choose a sequence s` → ∞ such that ηk
j (s`) converges to

some ηk
j ∈ Cn with |ηk

j | = 1 for each j, k. Let H = ∩`Hs`
. Note Cn \ H is the

union of countably many (n− 1)-dimensional subspaces. In particular, H is dense
in Cn. Thus we can pick some ζ ∈ H such that |ζ| = 1, ζj ≥ 0 for all j, and
ηk

j · ζ 6= 0 for all ηk
j . Put δ = 1

2 minj,k |ηk
j · ζ| > 0. Note δ is independent of `.

Note minj,k |ηk
j (s`) · ζ| → 2δ and maxj,k |ck

j (s`)| → 0 as ` → ∞. We now fix
a large ` such that

min
j,k

∣∣ηk
j (s`) · ζ

∣∣ > δ and max
j,k

∣∣ck
j (s`)

∣∣ <
1√

n(M + 1)
(2.5)

where M = 2
√

n/δ. For w ∈ Cn with |wj | ≤ 1 for all j, we have by the first part
of (2.5)

∣∣ηk
j (s`) · (Mζ + w)

∣∣ ≥ M
∣∣ηk

j (s`) · ζ
∣∣− |w| ≥ Mδ −√n > 0,

and thus Mζ + w ∈ H.
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Now, choose numbers wj ∈ [0, 1] in such a way that components of Mζ+w are
all positive integers. Put α = Mζ + w ∈ H. Let π = πα,` denote the polynomial
(z1 + s`)α1 · · · (zn + s`)αn on Cn. Also, for d = 1, . . . , N , let Ed = Ed,π denote the
function on Cn×N defined by

Ed(z) = εd

(
π(z1), . . . , π(zN )

)
.

Note Ed ∈ PS(Cn×N ) for all d. We claim Ed(a) 6= Ed(b) for some d. To reach
a contradiction assume Ed(a) = Ed(b) for all d. By (2.4) there is a permutation
σ = σπ such that

(
π(b1), . . . , π(bN )

)
=

(
π(aσ(1)), . . . , π(aσ(N))

)
,

which yields

π(aσ(1))
π(b1)

= · · · = π(aσ(N))
π(bN )

= 1.

Rephrasing this in terms of components and then taking logarithms, we have

c
σ(j)
j (s`) · α = 0 (mod 2πi) (2.6)

for each j. Since αm ≤ M + 1 for each m, we have by the second part of (2.5)

∣∣cσ(j)
j (s`) · α

∣∣ ≤ 1

for each j. Thus (2.6) holds without (mod 2πi) so that c
σ(j)
j (s`) · α = 0 for all j.

Since α ∈ H, we obtain c
σ(j)
j (s`) = 0. This yields bj = aσ(j) for all j. So, we have

b = σa and thus [a] = [b], which is a contradiction. ¤

The following lemma shows that ΦS is dense in CS(Cn×N ) in the topology
of uniform convergence on compact sets.

Lemma 2.3. Let K be a permutation-invariant compact subset of Cn×N .
Then ΦS is uniformly dense in CS(K).

Proof. Define an equivalence relation ∼ on K by that a ∼ b if and only
if a = σb for some permutation σ. So, the equivalence class containing a ∈ K

is precisely the set [a]. Equip X := K/ ∼ with the standard quotient topology.
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Namely, a set E ⊂ X is open if and only if ∪[a]∈E [a] is open in K. It is not hard
to see that X is compact and Hausdorff.

There is a canonical isomorphism between CS(K) and C(X), which is iso-
metric when both spaces are endowed with sup norm topologies. That is, for
ψ ∈ CS(K), define ψ̃([z]) = ψ(z). Clearly, ψ̃ is well defined, ψ̃ ∈ C(X) and
‖ψ̃‖C(X) = ‖ψ‖CS(K). Conversely, given h ∈ C(X), define ĥ(z) = h([z]). Clearly,

ĥ ∈ CS(K) and ‖h‖C(X) = ‖ĥ‖CS(K). Furthermore, we have ̂̃
ψ = ψ for ψ ∈ CS(K)

and ˜̂
h = h for h ∈ C(X).
Let Φ̃S be the set of all functions ψ̃ induced by functions ψ ∈ ΦS . Note that

Φ̃S is a self-adjoint subalgebra of C(X) and contains constant functions. Moreover,
Φ̃S separates points by Lemma 2.2. Thus Φ̃S is uniformly dense in C(X) by
the Stone-Weierstrass theorem. So, using the canonical isometric isomorphism
mentioned above, we conclude that ΦS is uniformly dense in CS(K), as required.

¤

Let V be the N -th Vandermonde polynomial defined by

V (λ) = det




1 . . . 1
λ1 . . . λN
...

...

λN−1
1 . . . λN−1

N




=
∏

i>j

(λi − λj)

for λ = (λ1, . . . , λN ) ∈ CN .
Fix a compact set E ⊂ Cn containing the support of µ. Suppose the support

of µ contains N distinct points a1, . . . , aN . Choose p ∈ P(Cn) such that p(aj) 6=
p(ak) for all j, k with j 6= k. Note Vp(a) 6= 0 where a = (a1, . . . , aN ). Associated
with p is the polynomial Vp on Cn×N defined by

Vp(z1, . . . , zN ) = V (p(z1), . . . , p(zN )).

Note that Vp is n-antisymmetric.
Since the product of an n-symmetric function and an n-antisymmetric func-

tion is n-antisymmetric, an application of Lemma 2.1 to functions ψ = ψ1Vp and
ϕ = ψ2Vp with ψ1, ψ2 ∈ PS(Cn×N ) yields

∫

Cn×N

F |Vp|2 dµN = 0 (2.7)
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for all F ∈ ΦS . Since EN is permutation-invariant, it follows from Lemma 2.3
that (2.7) is valid even for all F ∈ CS(EN ).

Note that the measure |Vp|2 dµN is permutation-invariant. Thus, for a func-
tion F ∈ C(EN ) that is not necessarily n-symmetric, the integral in (2.7) remains
the same if F is replaced with its n-symmetrization Fs ∈ CS(EN ). Hence we
see that (2.7) is valid even for all functions F continuous on EN . Accordingly,
|Vp|2 dµN is the zero measure and thus µN is supported in the zero variety of Vp.
Note that a is contained in the support of µN . So, Vp(a) = 0, which is a contra-
diction. This contradiction shows that µ is supported on a finite set containing
less than N points, as desired.

Thus we conclude higher dimensional Luecking’s theorem as follows. Note
that the sufficiency is clear.

Theorem 2.4. Let µ be complex Borel measure on Cn supported in a com-
pact set. Then Lµ has finite rank if and only if µ is a linear combination of point
masses.

3. Some consequences.

As in [3], one may apply Theorem 2.4 to Toeplitz operators on a bounded
domain in Cn that might be quite general. For example, consider a complete
circular bounded domain Ω ⊂ Cn with normalized volume measure dV on it. By
“complete circular” we mean that if z ∈ Ω and γ is a complex number with |γ| ≤ 1,
then γz ∈ Ω.

Let L2
a(Ω) and L2

ph(Ω) be the Bergman space and the pluriharmonic Bergman
space on Ω, respectively. The space L2

ph(Ω) consists of all pluriharmonic functions
in L2(Ω) = L2(Ω, dV ). Let Ka(z, w) and Kph(z, w) be the Bergman kernel for
L2

a(Ω) and the pluriharmonic Bergman kernel for L2
ph(Ω), respectively. These are

the kernels uniquely determined by the reproducing properties

f(z) =
∫

Ω

f(w)Ka(z, w) dV (w), f ∈ L2
a(Ω)

and

f(z) =
∫

Ω

f(w)Kph(z, w) dV (w), f ∈ L2
ph(Ω).

The domain being a complete circular domain, any pluriharmonic function on Ω
can be uniquely written in the form f + g where f, g are holomorphic functions on
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Ω with g(0) = 0. So, the Bergman kernel and the pluriharmonic Bergman kernel
are closely related by

Kph(z, w) = Ka(z, w) + Ka(w, z)− 1; (3.1)

see [1].
Let µ be a complex Borel measure on Ω. We define T a

µ , the Toeplitz operator
associated with L2

a(Ω), by

T a
µf(z) =

∫

Ω

f(w)Ka(z, w) dµ(w)

for f ∈ P(Cn). Similarly, we define T ph
µ , the Toeplitz operator associated with

L2
ph(Ω), by replacing the kernel Ka(z, w) with Kph(z, w). The operator T a

µ (T ph
µ )

takes P(Cn) into H(Ω) (ph(Ω)), the space of holomorphic (pluriharmonic) func-
tions on Ω.

Since the Bergman kernel is conjugate symmetric and the pluriharmonic
Bergman kernel is symmetric, we again have the formal analogues of (1.1) in
this context:

∫

Ω

(T a
µf)g dV = Lµf(g) =

∫

Ω

(T ph
µ f)g dV

for f, g ∈ P(Cn). For either equality to be true in the strict sense, justification
of implicit exchange of integrals would also be required. So, we follow below
Luecking’s interpretation of Toeplitz operators.

Let’s consider the pluriharmonic case; the holomorphic case is similar and
simpler. Given a multi-index α = (α1, . . . , αn), let eα be the normalized monomial
on Cn of multi-degree α, i.e., eα(z) = zα‖zα‖−1

L2(Ω). Given a function F ∈ ph(Ω)
with Taylor series F =

∑
α aα(F )eα +

∑
β 6=0 bβ(F )eβ , define ΛF (eα) = aα(F ) for

each α and then extend ΛF to all of P(Cn) by conjugate-linearity. Each F ∈
ph(Ω) thus naturally induces ΛF ∈ P∗(Cn). Since Ka(z, w) =

∑
α eα(z)eα(w)

(as is well-known), it is easily seen from (3.1) that

ΛT ph
µ f (g) =

∫

Ω

fg dµ

for all f, g ∈ P(Cn). So, ΛT ph
µ f = Lµf for f ∈ P(Cn). This implies that if the

range of T ph
µ is spanned by finitely many functions Fj ’s in ph(Ω), then the range

of Lµ is spanned by ΛFj ’s.
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Thus we have the following consequence.

Corollary 3.1. Let µ be a complex Borel measure on Ω. Then the following
conditions are equivalent :

(a) T a
µ : P(Cn) → H(Ω) has finite rank ;

(b) T ph
µ : P(Cn) → ph(Ω) has finite rank ;

(c) µ is a linear combination of point masses.

Following [3], we observe another application on certain approximation prop-
erties associated with zero sets. We first introduce some notation.

For a subset Q of C(Ω), we denote by Z(Q) the zero set of Q. That is, Z(Q) is
the set of all points in Ω where functions in Q vanish simultaneously. Conversely,
for a subset E of Ω, we denote by J(E) the ideal in C(Ω) consisting of all functions
in C(Ω) vanishing on E.

Given a subspace W of L2
a(Ω), denote by Ŵ the closure in C(Ω) of the span

of L2
aW := {fg : f ∈ L2

a(Ω), g ∈ W} in the topology of uniform convergence on
compact sets.

Corollary 3.2. Let W be a subspace of L2
a(Ω) with finite codimension.

Then Z(W ) is a finite set and Ŵ = J(Z(W )). In particular, if Z(W ) = ∅, then
Ŵ = C(Ω).

Proof. Endowed with the topology of uniform convergence on compact
sets, the space C(Ω) is locally convex and its continuous linear functionals are
identified with complex Borel measures supported on compact sets in Ω; see, for
example, [4, p. 88]. Let Y be the annihilator space of L2

aW . Assume first Y 6= {0}.
Then there is a complex Borel measure µ 6= 0 supported on a compact set in Ω
such that

0 =
∫

Ω

fg dµ =
∫

Ω

(Tµf)g dV

for all f ∈ L2
a(Ω) and g ∈ W . This shows that TµL2

a(Ω) is contained in W⊥, which
is finite dimensional. By Corollary 3.1 µ is supported on some finite set in Ω, say
Eµ. It follows that TµL2

a(Ω) is spanned by finitely many kernel functions Ka(·, b)
for b ∈ Eµ. Note Ka(·, b) ∈ W⊥ for b ∈ Eµ. Set E = ∪µ∈Y Eµ.

Note that functions Ka(·, b) with b ∈ E are linearly independent and contained
in W⊥. Hence E is a finite set and is contained in Z(W ) by the reproducing
property. In fact we have E = Z(W ), because point masses (or point evaluations)
at each point of Z(W ) belong to Y . Now, since each µ ∈ Y is supported in E,
J(E) = J(Z(W )) is annihilated by all µ ∈ Y . Thus J(Z(W )) ⊂ Ŵ and the
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converse containment is clear. Next, the case Y = {0} is easily treated by the fact
that Y = {0} if and only if Z(W ) = ∅, which one may see from the proof above.

¤

The pluriharmonic analogue of Corollary 3.2 also holds by the same proof.
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