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Abstract. Definition and fundamentals of tilings generated by Pisot numbers are

shown by arithmetic consideration. Results include the case that a Pisot number does

not have a finitely expansible property, i.e. a sofic Pisot case. Especially we show that

the boundary of each tile has Lebesgue measure zero under some weak condition.

1. Introduction.

First we explain notations used in this paper. The rational integers is de-

noted by Z, the rational numbers by Q, the complex numbers by C and the

positive integers by N . We denote by Z½u�, the ring generated by Z and u A C ,

and by QðuÞ, the minimum field containing Q and u. We write A� for the

subset of A with constraints by its subscript ‘�’, when the subscript is a con-

ditional term. For example, Zbl is the integers not less than l. Let b > 1 be a

real number which is not an integer. A greedy expansion of a positive real x in

base b is an expansion of a form:

x ¼
X

y

i¼N0

a�ib
�i ¼ a�N0

a�N0�1 � � �

with ai A ½0; bÞVZ and a ‘greedy condition’

x�
X

N

N0

a�ib
�i

�

�

�

�

�

�

�

�

�

�

< b�N

for all NbN0. Throughout this paper, we identify a�N0
a�N0�1 � � � with the cor-

responding word generated by A ¼ ½0; bÞVZ for the sake of simplicity. For a

greedy expansion:
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x ¼
Xy

i¼�k

a�ib
�i ¼ akak�1 � � � a0:a�1a�2 � � � ;

:a�1a�2 � � � is called the fractional part of x. If x < b�M then put a�i ¼ 0 for

iaM to extend definition of the fractional parts to x < 1. Similarly the integer

part of x is defined to be akak�1 � � � a0. As an example of symbolic dynamical

system and ergodic theory, this expansion was called ‘beta expansion’ and ex-

tensively studied in A. Rényi [14], W. Parry [12] and S. Ito and Y. Takahashi

[9]. In [7], F. Blanchard gave a necessary and su‰cient condition that the cor-

responding symbolic dynamical system belongs to some important classes of sub-

shifts, that is, finite type subshifts and sofic subshifts. For precise properties of

such subshifts, see [11].

Let us assume further that b > 1 be a Pisot number, that is, a real algebraic

integer whose conjugates other than itself have modulus less than one. An im-

portant feature of this restriction is that the corresponding dynamical system is

always sofic. We say this expansion is ‘eventually periodic’, if there exists a

positive integer L that a�N ¼ a�N�L for su‰ciently large N. Rather surprisingly,

this kind of expansion by Pisot numbers has analogous properties with usual

decimal or binary expansions. In fact, any greedy expansion of x A QðbÞ
b0 is

eventually periodic provided b is a Pisot number (see [16], [6]). A greedy ex-

pansion of x A QðbÞV ½0; 1Þ is purely periodic if there exists a positive integer L

that a�N ¼ a�N�L for N A N , i.e. the period start from a�1. If there exists M

that aN ¼ 0 for all NbM, the greedy expansion is said to be finite. Let FinðbÞ

be the set of all finite greedy expansions. A Pisot unit is a Pisot number which is

also an algebraic unit. If we assume that b is a Pisot unit which has a finitely

expansible property:

ðFÞ FinðbÞ ¼ Z½1=b�
b0;

then the expansion of a su‰ciently small rational number is purely periodic (see

[1]). The condition (F) su‰ciently implies that the corresponding dynamical

system is of finite type, i.e. a finite greedy word is obtained by the prohibition of

a finite set of words. See [8] and [4] for characterizations of (F). If a Pisot

number b does not satisfy (F), then the corresponding dynamical system is at

least sofic, i.e. any finite greedy word can be recognized by a finite automa-

ton. Thus we designate a Pisot number without (F) as a sofic Pisot number.

The main object of this paper is to study the topological structure of tilings

generated by Pisot units. In [18], W. P. Thurston proposed a method to con-

struct a tiling of some Euclidean space by a Pisot unit with (F). Remark that

this kind of tile was first introduced by G. Rauzy [15] in a di¤erent approach

closely related to substitutions. Fundamental properties of this tiling are studied
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in S. Akiyama [3] and B. Praggastis [13]. Although the strategies of these two

papers are quite di¤erent, it is shown in both of them that the origin is an inner

point of the ‘central tile’. As shown in [3], this fact has several important

consequences:

1. Each tile is the closure of its interior,

2. The boundary of each tile is nowhere dense,

being fit for the name ‘tiling’. Note that sometimes the first property is em-

ployed as a definition of a tile but here we use a definition after the equation (3)

in §1, i.e., a tile is the closure of the image by F of greedy expansions having a

fixed fractional part, where F is a standard embedding map defined in §2 to some

Euclidean space.

In this paper, we wish to generalize these tilings to a wider class of Pisot

units having a finite di¤erence property:

(W): For any element x of Z½1=b�
b0 and any positive e, there exist two

elements y; z in FinðbÞ with jzj < e such that x ¼ y� z,

which is obviously weaker than (F). It is shown in Proposition 3 that a class of

sofic Pisot units treated in [8] satisfies this property (W). It is likely that all Pisot

unit has the property (W)1.

Definition of tilings for such general Pisot units will be given in §2 by a

straightforward generalization of Thurston’s idea in [18] and mine in [3]. Under

this assumption (W), our goal is to show fundamental properties of this tiling and

to generalize the results shown under the stronger assumption (F). In §2, it will

be shown that the Euclidean space is covered by these tiles, there are only finitely

many tiles up to translation and the number of tiles coincides with that of

di¤erent tails of the characteristic sequence attached to b. Also an ‘inflation-

subdivision principle’ is established which says that any tile is subdivided into

arbitrary small a‰ne images of the tiles. Though the origin may no longer be

an inner point of a single tile but of a collection of tiles which correspond to

purely periodic expansions (Theorem 1), the tile is shown to be a closure of its

interior (Theorem 2). Moreover it is shown that the boundary has Lebesgue

measure zero (Theorem 3) clearly improving the results in [3] saying that it is

nowhere dense.

Hardest task of this paper is to show that this tiling has little overlaps. An

idea of an exclusive inner point in §3 will play an essential role to settle this

problem. For example, see Corollaries 1 and 2. It is interesting to see that the

purely algebraic criterion (W) is equivalent to the existence of an exclusive inner

1The author would like to express his deep gratitude to N. Sidorov for informing this conjecture

with applications to a di¤erent subject and for stimulating discussions.
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point (Proposition 2). As a result, we could show Theorem 3 by using number

theoretical arguments. Briefly speaking on the proof, we count greedy words

under some restrictions in §4, and show in §5 that su‰ciently many tiles, which

do not touch the boundary, can be ignored. Results in this paper, some part of

which was announced in [4], seems at least fundamental. Starting from these

observations, the author hopes there would be further topological studies on this

tiling.

Note that in [10], R. Kenyon and A. Vershik constructed a quite general

sofic partition related to some tiling by di¤erent approach. At present, the re-

lationship between their results and mine is not so clear. At least we may say

that here in this paper we only used integer digits to construct a sofic Pisot tiling,

which was a desirable fact in their paper. See Remark 1 of [10].

2. Construction and fundamental properties of the tiling.

Let b be a Pisot number of degree n and bð jÞ ð j ¼ 1; . . . ; nÞ be its con-

jugates. We also assume bð1Þ ¼ b, bð jÞ is real for j ¼ 1; . . . ; r1 and bð jÞ is com-

plex for j ¼ r1 þ 1; . . . ; r1 þ 2r2 ¼ n with

bðr1þjÞ ¼ complex conjugate of bðr1þr2þjÞ for j ¼ 1; . . . ; r2:

Denote xð jÞ ð j ¼ 1; . . . ; nÞ the corresponding conjugates of x A QðbÞ. Consider a

map F : QðbÞ ! Rn�1 defined by

FðxÞ ¼ ðxð2Þ; . . . ; xðr1Þ;Rðxðr1þ1ÞÞ;Iðxðr1þ1ÞÞ; � � � ;Rðxðr1þr2ÞÞ;Iðxðr1þr2ÞÞÞ;

that is, the ‘non trivial part’ of the standard embedding. Then we have

Lemma 1. Let b be a Pisot number. Then FðZ½b�
b0Þ is dense in Rn�1.

Proof. This is Proposition 1 of [3]. r

Lemma 2. The number of purely periodic elements in Z½b�
b0 is finite.

Proof. Each purely periodic element has the form:

0a

PN�1
i¼0 a�ib

�i

1� b�N
¼

PN�1
i¼0 a�ib

N�i

bN � 1
< 1:

Then we have

PN�1
i¼0 a�iðb

ð jÞÞN�i

ðbð jÞÞN � 1

�

�

�

�

�

�

�

�

�

�

a

PN�1
i¼0 bjbð jÞjN�i

1� jbð jÞjN
a

b

ð1� jbð jÞjÞ2
;

for j ¼ 2; . . . ; n. This means each purely periodic element has bounded absolute

values on every conjugates. The assertion follows immediately. r
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The finite set that consists of all purely periodic expansions in Z½b�
b0 is

denoted by P. Now we classify Z½b�
b0 by the fractional parts. Every element

x of QðbÞ
b0 has eventually periodic expansion by [16] or [6]. Write

x ¼
X

N0

a�ib
�i ¼ a�N0

a�N0�1 � � � a�M ½a�M�1 � � � a�M�L�;ð1Þ

when a�i ¼ a�i�L for ibM þ 1. Also we require that this expansion is minimal,

that is, we assume both a�M 0 a�M�L and L is minimal. For x A QðbÞ
b0, we

define functions MðxÞ and LðxÞ respectively by the values M and L in (1). In

other words, MðxÞ is the last index of the non periodic part of x and LðxÞ is

the length of the period of x. We say the expansion is finite when ai ¼ 0 for

i > M ¼ MðxÞ. Then every fractional part o can be written as

o ¼
XMðoÞ

i¼1

a�ib
�i þ b�MðoÞuð2Þ

with u A P. One can show

Lemma 3. P ¼ f0g is equivalent to (F).

Proof. It su‰ces to show that P ¼ f0g implies (F). Let x A Z½1=b�>0.

Take a su‰ciently large integer K that bKx A Z½b�>1 and write

bKx ¼ a�N0
a�N0�1 � � � a�M ½a�M�1 � � � a�M�L�:

Then we have a purely periodic element

½a�M�1 � � � a�M�L� � bM ¼ bMþKx�
XM

i¼N0

a�ib
M�i

A Z½b�
b0

which is clearly less than one. So P ¼ f0g implies that the expansion of x is

finite. r

Let Fr be the set of all fractional parts of Z½b�
b0 and So be the subset of

Z½b�
b0 consists of elements whose fractional part coincides with o. Of course

the set Fr is countable. It is convenient to define Sx for a general right infinite

(or finite) word x generated by A ¼ ½0; bÞVZ. If

x ¼ apap�1 � � � a0:a�1a�2 � � �

then Sx is the set of greedy expansions of the form:

aqaq�1 � � � apþ1apap�1 � � � a0:a�1a�2 � � �
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for qb p. Consider that the empty word l is an element of Fr and Sl is just the

set of greedy expansions with no fractional parts. According to the beginning

convention, the element 0 in P is identified with this empty word l. Now we

have

Z½b�
b0 ¼ 6

o AFr

So:

Applying F to both sides,

FðZ½b�
b0Þ ¼ 6

o AFr

FðSoÞ:ð3Þ

It is easily seen that FðSoÞ is a bounded set, since b is a Pisot number. Put

To ¼ FðSoÞ, where A is the closure of a set A in the Euclidean topology of Rn�1.

Hereafter we call To a tile. Let Bðx; rÞ ¼ fz A R
n�1

: jz� xj < rg, the open ball

of radius r centered at x. A family fAigi AL of sets in R
n�1 is locally finite if

for all x A R
n�1, there exists a positive r that the set fi A L : Ai VBðx; rÞ0qg is

finite.

Lemma 4. The family fTogo AFr is locally finite.

Proof. Let o A Fr. It su‰ces to show

lim
MðoÞ!y

distðf0g;FðSoÞÞ ¼ y;ð4Þ

where distðA;BÞ ¼ infa AA;b ABja� bj. Here jxj is the Euclidean norm of x in

R
n�1. As the set FðSoÞ is bounded, it is su‰cient to show

lim
MðxÞ!y

jFðxÞj ¼ y

for x A Z½b�
b0. Now we employ the idea in the proof of Lemma 1 in [3].

Suppose the contrary. Then there exist a constant C > 0 and a sequence ðxiÞ
y
i¼1

in Z½b�
b0 with

jFðxiÞj < C and MðxiÞ ! y:

Without loss of generality, we may assume xi < 1, since otherwise we can replace

xi by its fractional part. Then jFðxiÞj < C means that every conjugate of xi
has bounded absolute value. So fxi : i ¼ 1; 2; . . .g is a finite set. On the other

hand, by the definition of Mð�Þ, it is obvious that fxi : i ¼ 1; 2; . . .g is an infinite

set, which is a contradiction. r

Combining Lemmas 1, 4 and (3), we have

R
n�1 ¼ 6

o AFr

To;ð5Þ
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when b be a Pisot number. Indeed, if fAig
y

i¼1 is locally finite then

6
i AL

Ai ¼ 6
i AL

Ai:

Now we recall some fundamental results of [12]. Denote by ½x� the greatest

integer not greater than x. Expand 1� ½b�=b into the greedy form:

1� ½b�=b ¼
Xy

i¼2

c�ib
�i:

So formally we have

1 ¼
Xy

i¼1

c�ib
�i ¼ :c�1c�2 � � � ;

with c�1 ¼ ½b�. This expansion is called the characteristic sequence.

Let al b be the concatenation of two words a and b. A word b is a tail

of w if there exists a non empty word a that w ¼ al b. Let � be the partial

order of Parry, i.e. the lexicographical order generated by absolute values of

elements of A in the right direction. We say a is less than b when a � b and

a0 b and write a � b. A finite word o generated by A is realized by the greedy

expansion on b if and only if any sub word o 0 of o satisfy

o 0 � c�1c�2 � � � ;

i.e. the word o is less than the characteristic sequence at any starting point. For

an infinite word, we have a similar characterization, if we forbid some special

periodic expansion in the tail. To be more precise, when the characteristic se-

quence is finite:

1 ¼ :c�1c�2 � � � c�M ;

with c�M 0 0, we exclude infinite words whose tail can be

½c�1c�2 � � � c�Mþ1ðc�M � 1Þ�

from our consideration. Under this restriction, an infinite word generated by A

is a greedy expansion on b if and only if such word is lexicographically less than

the characteristic sequence at any starting point. Let us define Mð1Þ and Lð1Þ

similarly by the characteristic sequence. If the characteristic sequence is finite,

then let Lð1Þ ¼ 0.

From now on, we assume that b be a Pisot unit, so Z½b� ¼ Z½1=b�.

Lemma 5. There are exactly Mð1Þ þ Lð1Þ tiles up to translation.
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Proof. Let T be the set of all tails of the characteristic sequence :c�1c�2 � � � :

Since the characteristic sequence is periodic, T is a finite set. So we write this

set T ¼ fu1; u2; . . . ; ulg with ui � uiþ1 for i ¼ 1; . . . ; l� 1. Now we consider the

set So with o A Fr. If ui � o for some i and ui ¼ :c�qic�qi�1 � � � with qib 2, then

the word aNaN�1 � � � a0 lo A So has a necessary restriction

aqi�2aqi�3 � � � a0 � c�1c�2 � � � c�qiþ1:

First we consider the case that the characteristic sequence is finite. Then

000 � � � A T and l ¼ Mð1Þ þ 1 ¼ Mð1Þ þ Lð1Þ þ 1. Subdivide the set Fr into

Fr ¼ 6
Mð1ÞþLð1Þ

i¼1

Qi; Qi ¼ FrV ½ui; uiþ1Þ:

If ib 2 and o A Qi, then any element x A So has above mentioned restriction on

integer parts by u1; . . . ; ui. Conversely, if we take such restricted integer part y

then ylo is a greedy expansion. If i ¼ 1, then there are no restriction on the

integer part. Thus we have shown

So ¼ Sui þ o� ui; for o A Qi:

This shows that

To ¼ Tui þFðo� uiÞ;

which shows the assertion. Second assume that the characteristic sequence is not

finite. In this case, the word 000 � � � B T and l ¼ Mð1Þ þ Lð1Þ. Let u0 ¼ 000 � � �

and subdivide Fr into

Fr ¼ 6
Mð1ÞþLð1Þ�1

i¼0

Qi; Qi ¼ FrV ½ui; uiþ1Þ:

Then we can show the assertion similarly as above. r

We now have a locally finite tiling of the Euclidean space R
n�1 by finite kind

of tiles and their translations. Define, for any K A N , an a‰ne map GK from

R
n�1 to itself by

GKðx2; x3; . . . ; xnÞ ¼ ðx2; x3; . . . ; xnÞAK ;

where AK is a ðn� 1Þ � ðn� 1Þ matrix:

AK ¼ diagððbð2ÞÞ�K
; . . . ; ðbðr1ÞÞ�KÞnB1 n � � � nBr2
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with

Bj ¼
Rððbðr1þjÞÞ�KÞ Iððbðr1þjÞÞ�KÞ

�Iððbðr1þjÞÞ�KÞ Rððbðr1þjÞÞ�KÞ

 !

;

for j ¼ 1; . . . ; r2. Here diagðd1; . . . ; dsÞ is the s� s diagonal matrix of diagonal

elements d1; . . . ; ds and we define

AnB ¼
A 0

0 B

� �

;

for any square matrices A and B. As b is a Pisot number, GK must be an

expanding map. For a set AHRn�1, we denote by InnðAÞ the set of inner

points of A, and by qðAÞ ¼ AnInnðAÞ, the boundaries of A. Since GK is a ho-

meomorphism from Rn�1 onto itself, we have GKðAÞ ¼ GKðAÞ and GKðqðAÞÞ ¼

qðGKðAÞÞ for any subset A in Rn�1. We can show a commutative diagram:

QðbÞ ���!
�b�K

QðbÞ

F

?
?
?
y

?
?
?
y
F

Rn�1
���!

GK

Rn�1
;

ð6Þ

and GK2
� GK1

¼ GK1þK2
. Now b�KSo is subdivided into a disjoint sum of So 0

with Mðo 0Þ ¼ K þMðoÞ and

o 0 ¼ :d�1 � � � d�K lo:

This subdivision gives rise to a relation:

GKðToÞ ¼ 6
o 0

To 0 ;ð7Þ

since we can confirm

GKðToÞ ¼ Fðb�KSoÞ;

by (6). We call this property of our tiling an inflation-subdivision principle.

Especially when every conjugates bð jÞ ð j ¼ 2; . . . ; nÞ has a same absolute value,

the expanding map GK is just a similitude. This case occurs when and only

when b is a cubic Pisot unit which is not totally real. See Theorem 8.1.3 of [5].

First we show a generalization of Theorem 2 of [3].

Theorem 1. Suppose that b is a Pisot unit and consider the tiling generated

by b. Then the origin 0 belongs to To for any o A P and 0 is an inner point of

6
o AP

To.
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When the Pisot unit b has property (F) then this Theorem implies that the

origin is an inner point of the central tile Tl, by Lemma 3.

Proof. First we show that the origin is an inner point of 6
o AP

To. The

essential idea was found in the proof of Theorem 2 of [3]. It was shown in the

proof of Lemma 4 that

lim
MðxÞ!y

jFðxÞj ¼ y;

for x A Z½b�
b0. By this formula, for any C > 0 there exists m that if MðxÞbm

then jFðxÞj > C. Note that multiplication of 1=b causes a bijection from Z½b�
b0

to itself, since b is a unit. Replacing x with xb�mþ1, we see that for any C > 0

there exists m that if MðxÞ > 0 then jFðxÞj > Cðminn
j¼2jb

ð jÞjÞm�1. Note that C

and m are independent of the choice of x with MðxÞ > 0. This implies that

distðf0g;ToÞ > 0 when MðoÞ > 0. As we have already shown (5), we see that

the origin Fð0Þ ¼ ð0; 0; . . . ; 0Þ A R
n�1, denoted by 0, is an inner point of 6

o AP
To,

since P ¼ fo A Fr : MðoÞ ¼ 0g.

Second, let o A P and L ¼ LðoÞ. Then we have

o ¼ :½a�1 � � � a�L�:

So we see FðbkLoÞ A To, for k ¼ 1; 2; . . . and limk!y FðbkLoÞ ¼ 0. This shows

that 0 is an accumulation point of the closed set To. This proves the as-

sertion. r

3. Existence of inner points.

We say an inner point x in To is exclusive when x is not contained in other

tiles To 0 ðo 0 0oÞ. We consider the following property:

(Ex): There exists an exclusive inner point in Tl.

Reviewing the proof of Theorem 1, if b has property (F) then the origin is

an exclusive inner point of Tl. So (F) implies (Ex). However in a general case,

(Ex) seems no longer trivial. Assuming the contrary, if every inner point of Tl

is not exclusive then we can show

R
n�1 ¼ 6

o0m

To

for any fixed m A Fr. Indeed, if there exists an exclusive inner point of Tm then

one can find such an exclusive inner point of the form FðxÞ A Tm with x A Sm,

since FðSmÞ is dense in Tm. Thus there exists a positive g A R that

jFðxÞ �FðyÞj > g; y A Z½b�
b0nSm:
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Since Sm HSl þ m, substituting y by yþ m, we have

jFðx� mÞ �FðyÞj > g; y A Z½b�
b0nSl:

Thus Fðx� mÞ is an exclusive inner point of Tl. So rather curiously, if we pick

out any single tile then it is dispensable to cover the whole space, i.e. a family

fTog forms a double covering of Rn�1. Hence it is likely that all tiling generated

by Pisot units have the property (Ex). Hereafter we wish to consider a relation-

ship between (Ex) and (W).

Remark 1. It is not hard to show that Tl has an inner point, which is

not necessary exclusive. Indeed, by using the theorem of Baire-Hausdor¤, there

exists o A Fr that To contain an inner point. Since To HTl þ o, we can find an

inner point of Tl, similarly as above.

Now we prepare some Lemmas. Recall that 1 ¼ :c�1c�2 � � � is the char-

acteristic sequence.

Lemma 6. Let x and y be two elements of Z½b�
b0 with greedy expansions:

x ¼ x�Mx�M�1x�M�2 � � � ; y ¼ y�M y�M�1 y�M�2 � � �

and x > y. Here we permit x�M ¼ 0 or y�M ¼ 0 to simplify the notation.

Assume x�M 0 y�M . Then for any N A N there exists a positive e that if

x� y < e then we have

x�M � y�M ¼ 1

and

x�M�i ¼ 0; y�M�i ¼ c�i for i ¼ 1; 2; . . . ;N:

Proof. This lemma follows easily from the definition of the characteristic

sequence. r

Lemma 7. The characteristic sequence can not be purely periodic. In other

words, we always have Mð1Þ > 0.

Proof. Assume that the characteristic sequence has the form

1 ¼ :½c�1c�2 � � � c�L�:ð8Þ

This shows

bL � 1 ¼
XL

i¼1

c�ib
L�i

:
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Thus b is a root of a polynomial:

xL � c�1x
L�1 � c�2x

L�2 � � � � � c�Lþ1x� c�L � 1:

It can be shown that Lb 2. Indeed, if L ¼ 1 then b is an integer which is

excluded at the beginning. Calculating the L-th digit of the characteristic se-

quence by definition, we have

bL 1�
X

L�1

i¼1

c�ib
�i

 !" #

¼ c�L þ 1 < b:

So we have another characteristic sequence (!):

1 ¼ :c�1 � � � c�Lþ1ðc�L þ 1Þ:

Since characteristic sequence is unique, we get a desired contradiction. r

The next lemma, as well as its proof, will be frequently used later on.

Lemma 8. Let z A Z½b�
b0 whose fractional part is purely periodic. Then the

integer part of z coincides with that of zþ x when we take a su‰ciently small

x A Z½b�
>0.

Proof. Let z A Z½b�
b0

whose fractional part u is contained in P. Let

x < 1� u be a su‰ciently small element of Z½b�
>0 and compare the expansions

uþ x ¼ a�1a�2 � � � and u ¼ b�1b�2 � � � : By using Lemma 6, if a�1 > b�1 then

there exists a large M0 that b�1�i ¼ c�i for i ¼ 1; . . . ;M0. Let L1 the least

common multiple of Lð1Þ and LðuÞ and suppose M0bL1 þMð1Þ. Then we

have

b�1�Mð1Þ ¼ b�1�L1�Mð1Þ ¼ c�L1�Mð1Þ 0 c�Mð1Þ ¼ b�1�Mð1Þ;

which is a contradiction. So we see that a�1 ¼ b�1. Next we compare the ex-

pansions of uþ x� a�1b
�1 and u� a�1b

�1. By a similar argument we see a�2 ¼

b�2. Repeating this, one may assume that there exists a su‰ciently large M1

that a�j ¼ b�j for j ¼ 1; . . . ;M1. Let g be the least common multiple of LðuÞ for

u A PU f1g and consider a formal expansion:

zþ x ¼ z� uþ ðuþ xÞ ¼ aNaN�1 � � � a0:a�1a�2 � � � ;

with two greedy expansions z� u ¼ aN � � � a0 and uþ x ¼ :a�1a�2 � � � : Our aim

is to show that if we take a su‰ciently small x, i.e. a su‰ciently large M1 > g,

then this expression itself is a greedy expansion. Indeed, if the expansion

aNaN�1 � � � a0:a�1a�2 � � � is not a greedy expansion, by Lemma 6, there exist

N1 > 0 and a su‰ciently large N2 > 0 that aN1�i ¼ c�i for i ¼ 1; . . . ;N2. Let us
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take N2 > N1 þ g. Then u ¼ :b�1b�2 � � � A P is determined uniquely from the

expansion of uþ x ¼ :a�1a�2 � � � by periodicity and coincides with a tail of

the characteristic sequence. This shows that aNaN�1 � � � a0:b�1b�2 � � � contains

a sub word c�1c�2 � � � ; i.e. the characteristic sequence itself. But this causes a

contradiction, because z ¼ ðz� uÞ þ u ¼ aNaN�1 � � � a0:b�1b�2 � � � is a greedy ex-

pansion. r

Lemma 9. For any positive A, the set FðZ½b�V ½0;A�Þ is discrete in R
n�1.

Proof. It is enough to show that FðFrÞ is discrete. Indeed there exist

K A N and a homeomorphism GK that

GKðFðZ½b�V ½0;A�Þ ¼ FðZ½b�V ½0;Ab�K �ÞHFðZ½b�V ½0; 1ÞÞ:

Again by limMðxÞ!yjFðxÞj ¼ y, the set FðFrÞ must be discrete. r

There exists a concrete and practical way to find an exclusive inner point

with the help of Theorem 1:

Proposition 1. Take an element x A Sl. The point FðxÞ is an exclusive

inner point if and only if for any K0 A N there exists KbK0 that bKuþ x A Sl

for any u A P.

Proof. Reviewing the proof of Theorem 1, we see that the origin 0 ¼ Fð0Þ A

R
n�1 is, by an abuse of terminology, an exclusive inner point of 6

u AP
Tu. To

be exact, there exists a positive g1 that

jFðyÞj > g1; y A Z½b�
b0

/

6
u AP

Su:

Since bZ½b�
b0 ¼ Z½b�

b0, substituting y by b�Kðy� xÞ, we have

jFðxÞ �FðyÞj > g2; y A ðxþ Z½b�
b0Þ

/

6
u AP

ðxþ bKSuÞ

with some positive g2. Now we show that xþ bKSu HSl for su‰ciently large

K. Let u ¼ a�Ma�M�1 � � � and uþ b�Kx ¼ b�Mb�M�1 � � � be the greedy expan-

sions as in Lemma 6. By the assumption, uþ b�Kx A FinðbÞ. Since we may

assume that ðuþ b�KxÞ � u is su‰ciently small when K is large, by the proof of

Lemma 8, we see that there exists su‰ciently large M0 A N that a�M�i ¼ b�M�i

for iaM0. Proceeding along the same line with the proof of Lemma 8, multi-

plying bK and using the assumption xþ bKu A Sl, we see that xþ bKSu HSl

when K is su‰ciently large, as desired. As a result, we see

jFðxÞ �FðyÞj > g2; y A ðxþ Z½b�
b0ÞnSl:
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By Lemma 9, we see FðZ½b�V ½0; x�Þ is a discrete set. This shows that there

exists a positive constant g3 that

jFðxÞ �FðyÞj > g3; y A Z½b�
b0nSl;

which means that FðxÞ is an exclusive inner point of Tl. Next we will show the

converse. Assume the existence of an exclusive inner point. Since FðSlÞ is

dense in Tl, there exists x A Sl that FðxÞ be an exclusive inner point. If we take

a su‰ciently large K, then Fðxþ bKuÞ is an exclusive inner point for any u A P.

As xþ bKu A Z½b�
b0, we see that xþ bKu is contained in Sl, since otherwise

Fðxþ bKuÞ is not exclusive. r

Example 1. Let b be a Pisot unit whose irreducible polynomial is x3 �

3x2 þ 2x� 1. Then the characteristic sequence is 1 ¼ :20111 � � � : One can show

P ¼ f0; :111 � � �g. If we take x ¼ 10: ¼ b, then we have

1111 � � � 1111:111 � � � þ 10: ¼ 1111 � � � 1201:

This shows that FðbÞ is an exclusive inner point.

Example 2. Let b be a Pisot unit whose irreducible polynomial is x3 �

5x2 þ 2xþ 1. Then the characteristic sequence is 1 ¼ :42111 � � � : One can show

that P ¼ f0; :111 � � � ; :222 � � � ; :333 � � �g. If we take x ¼ 241:, then we have

1111 � � � 11111:111 � � � þ 241: ¼ 1111 � � � 11410:

2222 � � � 22222:222 � � � þ 241: ¼ 2222 � � � 23100:

3333 � � � 33333:333 � � � þ 241: ¼ 3333 � � � 40000:

This shows that Fð2b2 þ 4b þ 1Þ is an exclusive inner point.

We are now in position to show an important

Proposition 2. The conditions (W) and (Ex) are equivalent.

Proof. First we show that (W) implies (Ex). By Lemma 2, the set P

is finite. Write P ¼ fu1; u2; . . . ; usg. Then by the assumption (W), there exist

x1; y1 A FinðbÞ with u1 þ x1 ¼ y1 and x1 is small. Expand u2 þ x1 in a greedy

form:

u2 þ x1 ¼ a�Na�N�1 � � � a�M ½a�M�1 � � � a�M�L�

¼ a�Na�N�1 � � � a�M þ b�Mu 0
2

with M ¼ Mðu2 þ x1Þ, L ¼ Lðu2 þ x1Þ and u 0
2 A P. Using (W), one can find a

small x2 A FinðbÞ and y2 A FinðbÞ with u 0
2 þ x2 ¼ y2. Taking a su‰ciently small

x2 we have
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ui þ x1 þ b�Mx2 A FinðbÞ; for i ¼ 1; 2:

Indeed, u1 þ x1 þ b�Mx2 ¼ y1 þ b�Mx2 is contained in FinðbÞ when x2 is su‰-

ciently small. Also we see

u2 þ x1 þ b�Mx2 ¼ a�N � � � a�M þ b�My2;

and ju 0
2 � y2j is small. By using Lemma 8 and its proof, u2 þ x1 þ b�Mx2 A

FinðbÞ. Repeating this argument, we see that there exists a decreasing sequence

x1; x2; . . . ; xs in FinðbÞ that

ui þ
Xs

j¼1

xj A FinðbÞ; for i ¼ 1; 2; . . . ; s:

Let Lp be the least common multiple of LðujÞ ð j ¼ 1; . . . ; sÞ. Again by using

Lemma 8 and its proof and taking a su‰ciently small x1 ¼ x1, we may assume

that

ui þ b�KLp

Xs

j¼1

xj ¼ uið1� b�KLpÞ þ b�KLp ui þ
Xs

j¼1

xj

 !

A FinðbÞ

for i ¼ 1; 2; . . . ; s and Kb 0. Note that

uið1� b�KLpÞ ¼ oi loi l � � � loi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
K times

;

with some word oi of length Lp. Multiplying bKLp , the assertion follows im-

mediately from Proposition 1. Second we show the converse. Assume the con-

dition (Ex). So let FðxÞ be an exclusive inner point of Tl with x A Sl. Let

v A Z½b�
b0. Then there exists a K0 A N that Fðxþ bKvÞ is also an exclusive

inner point of Tl for all integer KbK0. By the definition of the exclusive inner

point, we have y ¼ xþ bKv A Sl. Thus we have

v ¼ b�Ky� b�Kx;

and both b�K y and b�Kx are contained in FinðbÞ. The proposition is proved.

r

Here we want to show there exists a finite algorithm to confirm (W).

Consider a slightly modified condition:

(W 0): For any element x of P and any positive e, there exist two elements

y; z in FinðbÞ with jzj < e such that x ¼ y� z.

Then we can prove
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Lemma 10. The assumption (W) is equivalent to (W 0).

Proof. It su‰ces to show that (W 0) implies (W). Any element x A FinðbÞ

has a form:

x ¼ a�Na�N�1 � � � a�M ½a�M�1 � � � a�M�L�

¼ a�Na�N�1 � � � a�M þ b�Mu

with M ¼ MðxÞ, L ¼ LðxÞ and u A P. Thus by (W 0), we can find b A FinðbÞ

and a small a A FinðbÞ that u ¼ b� a. By using the proof of Lemma 8, suf-

ficiently long leading words of uþ a and u coincides if we take a small a. This

implies that x ¼ a�Na�N�1 � � � a�M þ b�Mðuþ aÞ A FinðbÞ, since otherwise the

word a�Na�N�1 � � � a�M ½a�M�1 � � � a�M�L� itself can not be a greedy expansion.

Thus we have x ¼ x� b�Ma, as desired. r

It is obvious that (F) implies (W). We want to show here another su‰cient

condition of (W). Assume for a while that b > 1 is an arbitrary real number.

Let us denote by Zb0½b� the set of polynomials in b with non negative integer

coe‰cients. Consider the condition:

(Pf ): Zb0½1=b�HFin½b�.

By Theorem 3 of [8], if b > 1 is a root of the polynomial

xn � an�1x
n�1 þ an�2x

n�2 þ an�3x
n�3 þ � � � þ a1xþ a0;

with non negative integers ai ði ¼ 0; 1; . . . ; n� 1Þ with a0 > 0 and an�1 �
Pn�2

j¼0 a jb 2 then b has property (Pf ). Then we can show

Proposition 3. The condition (Pf ) implies (W).

Proof. By Proposition 1 of [4], (Pf ) implies that b is a Pisot number. Let

z A Z½1=b�
b0. Then z is expanded into

z ¼ a�Na�N�1 � � � a�M ½a�M�1 � � � a�M�L�

¼ a�Na�N�1 � � � a�M þ b�Mu

with M ¼ MðzÞ, L ¼ LðzÞ and u A P. Taking a K A N , one can rewrite this

expression to

z ¼ a�Na�N�1 � � � a�M þ b�Mð1� b�KLÞuþ b�M�KLu:ð9Þ

Note that

ð1� b�KLÞu ¼ :wlwl � � � lw
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

K times

;ð10Þ
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with w ¼ a�M�1 � � � a�M�L. Since u A Z½1=b�, there exists some s and we have an

expression:

b su ¼
Xn�1

j¼0

bjb
j ¼

X

bjb0

bjb
j �

X

bj<0

jbjjb
j; bj A Z:

Thus we can find x; y A Zb0½1=b� with u ¼ x� y. Putting this expression into

(9), we have

z ¼ a�Na�N�1 � � � a�M þ b�Mð1� b�KLÞuþ b�M�KLx� b�M�KL y:

Using (10), we see that

a�Na�N�1 � � � a�M þ b�Mð1� b�KLÞuþ b�M�KLx

is an element of Zb0½1=b�. As one can choose a su‰ciently large K, the prop-

osition is proved by using the assumption (Pf ). r

Now we go back to the story and assume that b is a Pisot unit again. In

Proposition 2, we have shown that a topological assumption (Ex) and an al-

gebraic assumption (W) are equivalent. Thus hereafter in this paper, we assume

(W).

Lemma 11. For any o A Fr, there exists an exclusive inner point in To.

Proof. Since FðSlÞ is dense in Tl and we assumed (W), so there exists

y A Sl so that FðyÞ be an exclusive inner point of Tl. Take any o A Fr:

o ¼ :c�1 � � � c�m½c�m�1 � � � cm�L�

¼ b�muþ :c�1 � � � c�m;

with u A P, MðoÞ ¼ m and L ¼ LðoÞ. Again by the result of Parry, for any

y ¼ apap�1 � � � a0: A Sl and any MbMð1Þ þ Lð1Þ,

bMyþ o ¼ apap�1 � � � a0 00 � � � 0
zfflfflffl}|fflfflffl{
M times

:c�1 � � � c�m½c�m�1 � � � cm�L�

is a greedy expansion by itself. This shows

Sk ¼ bMSl þ o for k ¼ 00 � � � 0
zfflfflffl}|fflfflffl{
M times

:lo:ð11Þ

Thus bM yþ o A So and FðbMyþ oÞ is an inner point of Tk, so clearly of To.

It remains to prove that this point is exclusive. Since FðyÞ is exclusive, we have

jFðyÞ �FðxÞj > g1; for x A Z½b�
b0nSl;
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with a positive g1. Similarly as in the proof of Proposition 1, there exists a

positive g2 that

jFðbMyþ oÞ �FðxÞj > g2; for x A oþ Z½b�
b0nSk:

Again by Lemma 9, there exists a positive g3 that

jFðbMyþ oÞ �FðxÞj > g3; for x A Z½b�
b0nSk;

which shows that FðbKyþ oÞ is an exclusive inner point of Tk, and consequently

of To. r

Let Inn�ðToÞ be the set of all exclusive inner points of To. The diameter of

the set AHR
n�1 is the value supx;y AA jx� yj.

Theorem 2. Let us assume (W). For any o A Fr, we have To ¼ Inn�ðToÞ ¼

InnðToÞ.

Proof. It su‰ces to show To ¼ Inn�ðToÞ. The inclusion To I Inn�ðToÞ is

clear, since To is closed. Let x A To. Then there exists a sequence ðxiÞ
y
i¼1 in So

with limFðxiÞ ¼ x. Write

xi ¼ � � � ai3ai2ai1ai0:lo:

One can find at least one b0 A A and infinite i ’s with b0 ¼ ai0. Denote the

corresponding subsequence by ðx
ð0Þ
i Þyi¼1 where

x
ð0Þ
i ¼ � � � a

ð0Þ
i3 a

ð0Þ
i2 a

ð0Þ
i1 b0:lo:

Next we find at least one b1 A A and infinite i ’s with b1 ¼ a
ð0Þ
i1 . Denote the

corresponding subsequence by ðx
ð1Þ
i Þyi¼1. Repeating this process, we get bj and

ðx
ð jÞ
i Þyi¼1 for j ¼ 0; 1; . . . : Putting dK ¼ bKbK�1 � � � b0:lo, we easily see that

limK!y FðdKÞ ¼ x. By Lemma 11, there exists an exclusive inner point vK of

To which belongs to its subdivided tile TdK , since GKðTdK Þ ¼ Tb�KdK
ðb�KdK A FrÞ

has an exclusive inner point. Noting the diameter of TdK tends to 0 as K ! y,

we see jFðdKÞ � vK j ! 0. Thus lim vK ¼ x, as desired. r

Corollary 1. For any distinct o;o 0 A Fr, we have InnðToÞVTo 0 ¼ q.

In other words, we finally know that every inner point of a tile is exclusive,

so InnðToÞ ¼ Inn�ðToÞ.

Proof. Let x A InnðToÞVTo 0 with o0o 0. Then there exists a sequence

ðxiÞ
y
i¼1 consists of exclusive inner points of To 0 which converge to x. So we can
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find some i that xi A InnðToÞV Inn�ðTo 0Þ, which is impossible by the definition of

an exclusive inner point. r

Corollary 2. For any o A Fr, there exist finite elements n1; n2; . . . ; nm of Fr

that

qðToÞ ¼ 6
m

i¼1

ðTo VTniÞ:

Proof. By using Lemma 4, there exist only finite elements nj 0o ð j ¼

1; 2; . . . ;mÞ such that To VTnj 0q. Let x A qðToÞ ¼ TonInnðToÞ. Then the

shrinking balls Bðx; 2�nÞ ðn ¼ 0; 1; 2; . . .Þ contain points xn ðn ¼ 0; 1; . . .Þ which

do not belong to To. Thus we have xn A6
m

j¼1
Tnj . One can find j0 A f1; 2; . . . ;mg

and an infinite subsequence ðx 0
kÞ

y
k¼1 of ðxnÞ

y
i¼0 that x 0

k A Tnj0
. This shows that

x A Tnj0
. So we have proved

qðToÞH 6
m

i¼1

ðTo VTniÞ:

We want to show the converse inclusion. Let x A To VTni . Then by Corollary

1, the point x is not an inner point of To. So x A TonInnðToÞ ¼ qðToÞ, as

desired. r

Remark 2. The reader see that the clue to show Corollaries 1 and 2 is the

existence of an exclusive inner point in each tile. If b has property (F) then we

have no problems in finding such points. However, this fact should have been

used more explicitly in the proof of Corollary 2 of [3].

4. Counting the number of subdivisions.

Let o A Fr and denote NoðrÞ be the number of greedy expansions of the

form:

ar�1ar�2 � � � a0:lo:

Then we have a formula:

Lemma 12. There exist constants gi > 0 ði ¼ 1; 2Þ depending only on b and o

such that

g1b
r
aNoðrÞa g2b

r
:

Proof. By Lemma 11, we see mn�1ðToÞ > 0 for any o A Fr. By using

Lemma 5, there exists a maximum of mn�1ðToÞ for o A Fr. Let a be the max-

imum and choose g A Fr with mn�1ðTgÞ ¼ a. By (5), we have
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bKmn�1ðToÞ ¼ mn�1ðGKðToÞÞð12Þ

a

X

o 0

mn�1ðTo 0Þ

a aNoðKÞ:

This shows the existence of g1 > 0.

Let 1 ¼ :c�1c�2 � � � be the characteristic sequence. Consider a function

FðzÞ ¼ 1�
Py

i¼1 c�iz
�i. Since characteristic sequence is eventually periodic and

the function FðzÞ can be expressed as a rational function of z, the function

FðzÞ has a meromorphic continuation to the whole z-plane. Again by the result

of [12], apart from trivial solution b, any other solutions of FðzÞ ¼ 0 have

modulus less than minf2; bg. Let h be the maximum modulus of such non trivial

solutions.

First we consider the case that the characteristic sequence is finite, that is,

c�i ¼ 0 for su‰ciently large i. So we put 1 ¼ :c�1 � � � c�M . By using the result

of Parry, we read NlðrþMÞ � c�1NlðrþM � 1Þ as a number of greedy words of

length rþM whose leading word is c�1, since c�1NlðrþM � 1Þ is the number of

greedy words whose head word is contained in f0; 1; . . . ; c�1 � 1g. Extending

this idea similarly, we see

NoðrþMÞ � c�1NoðrþM � 1Þ � c�2NoðrþM � 2Þ � � � � c�Mþ1Noðrþ 1Þ

is the number of elements y in Fr of the form

c�1c�2 � � � c�Mþ1 � � � � � � � � �
zfflfflfflfflffl}|fflfflfflfflffl{
rþ1 letters

:lo:

This number coincides with c�MNoðrÞ. Indeed the letter after c�Mþ1 must be

in f0; 1; . . . ; c�M � 1g, and there are no additional restrictions on the remaining

greedy word c�M�1 � � � lo. Thus we have a linear recurrence formula:

NoðrþMÞ ¼
XM

i¼1

c�iNoðrþM � iÞ:

So for any t > h, there exists a non negative c such that

NoðrÞ ¼ cb r þOðt rÞ;ð13Þ

since b is a root of FðzÞ ¼ 0 of maximum modulus. In fact we see c > 0, as we

have shown there exists g1 > 0. This proves the assertion for the finite char-

acteristic sequence. Next we assume that the characteristic sequence in not finite:

1 ¼ :c�1 � � � c�M ½c�M�1 � � � c�M�L�:
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By a similar trick as above, putting Noð0Þ ¼ 1, we have

Noð1Þa 1þ c�1Noð0Þ

Noð2Þa 1þ c�1Noð1Þ þ c�2Noð0Þ

Noð3Þa 1þ c�1Noð2Þ þ c�2Noð1Þ þ c�3Noð0Þ

.

.

.

NoðKÞa 1þ
X

K

i¼1

c�iNoðK � iÞ;

for any K A N . Let T be the set of all tails of the characteristic sequence

:c�1c�2 � � � and u A T be the minimum element with respect to the order �. Since

characteristic sequence is not finite, we see u0 00 � � � : Identify the tail word

u ¼ c�Mc�M�1 � � � with the value

:c�Mc�M�1 � � � ¼
X

y

i¼1

c�M�iþ1b
�i
:

Then we have

bK 1�
X

K

i¼�1

c�ib
�i

 !

b u > 0

for any integer Kb 2, by the definition of the characteristic sequence. Take

g2 > 0 so that both Noð1Þa g2b and g2ub 1 hold. Assume that NoðrÞa g2b
r

for raK � 1, then

NoðKÞa 1þ g2b
K
X

K

i¼1

c�ib
�i

a 1þ ðbK � uÞg2a g2b
K
:

This completes the proof. r

The asymptotic formula (13) might be valid for any non finite characteristic

sequence.

5. Lebesgue measure of the boundary.

Lemma 13. For any o A Fr, there exist a K A N and y A Fr that Ty H

InnðGKðToÞÞ.
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Proof. There exists an inner point of To, by Lemma 11. So for any R > 0,

there exists a K A N that GKðToÞ contains an open ball Bðx;RÞ. By Lemma 5,

there exists a maximum C > 0 of the diameter of To for o A Fr. Let R > C

and let Ty contains the center x. Then Ty must be contained in Bðx;RÞ, thus

Ty H InnðGKðToÞÞ. r

One of the main purpose of this paper is to show:

Theorem 3. Let b be a Pisot unit with the property (W). Then mðqðToÞÞ ¼ 0

for o A Fr. Here m ¼ mn�1 is Lebesgue measure of R
n�1.

Proof. By Lemma 5, there exists D ¼ maxo mðqðToÞÞ. Choose h A Fr such

that D ¼ mðqðThÞÞ. From the definition of GK , we see easily that mðGKðAÞÞ ¼

bKmðAÞ, for some K A N and a measurable set A. The main tool of the proof

is the inflation-subdivision principle:

GKðToÞ ¼ 6
o 0

To 0 :ð14Þ

By Lemma 13, there exist some K A N and y that Ty H InnðGKðToÞÞ. Applying

Corollaries 1 and 2, we see Ty does not touch the boundary of GKðToÞ. By

Lemma 5, one may assume that K is independent of the choice of o. So there

exists K such that

bKmðqðToÞÞa ðNoðKÞ � 1ÞD;

for any o A Fr. This inequality seems unsatisfactory at a glance, since NgðKÞb

bK in (12). However we can get more information by the generalization of this

argument. Let

c ¼ min
o;o 0

inf
m¼1;2;...

Noððm� 1ÞKÞ

No 0ðmKÞ
:

By Lemmas 5 and 12, we see c > 0. Considering the case o ¼ o 0, we have

c < 1. Then we have

mðGKðqðToÞÞÞa ðNoðKÞ � 1ÞD

a ð1� cÞNoðKÞD;

since Noð0Þ ¼ 1. Now we prove, for any m ¼ 1; 2; . . . and o A Fr,

mðGmKðqðToÞÞÞa ð1� cÞmNoðmKÞD;ð15Þ

by induction. Applying Gðm�1ÞK to (14),
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GmKðToÞ ¼ 6
o 0

Gðm�1ÞKðTo 0Þ

¼ 6
o 0

�

6
o 00

To 00

�

;

where o 00 is of the form :a�1 � � � a�ðm�1ÞK lo 0. Since Gðm�1ÞKðTyÞ does not touch

the boundary of GmKðToÞ,

GmKðqðToÞÞH 6
o 00y

Gðm�1ÞKðqðTo 0ÞÞ:

Thus we have

mðGmKðqðToÞÞÞa
X

o 00y

ð1� cÞm�1
No 0ððm� 1ÞKÞD

¼ ð1� cÞm�1ðNoðmKÞ �Nyððm� 1ÞKÞÞD

a ð1� cÞmNoðmKÞD;

so we have shown (15). Putting o ¼ h in (15)

bmKmðqðThÞÞa ð1� cÞmNhðmKÞmðqðThÞÞ;ð16Þ

for any m A N . By using Lemma 12, we have

mðqðThÞÞa g2ð1� cÞmmðqðThÞÞ:

As we can take any large m, we have D ¼ mðqðThÞÞ ¼ 0. r

6. Examples.

Let b ¼ 2:3247179572 � � � be a Pisot number defined by an irreducible poly-

nomial x3 � 3x2 þ 2x� 1. Then P ¼ f0;og with o ¼ :111 � � � : By Theorem 1,

the origin is an inner point of Tl UTo. The characteristic sequence is :20111 � � � :

So by Proposition 5, there exist 3 tiles up to translation. The tiling is self similar

in this case. (See Figure 1.)

Let b ¼ 2:87938524157 � � � be a Pisot number defined by an irreducible poly-

nomial x3 � 3x2 þ 1, which satisfies (Pf ). This polynomial is not totally real and

so the tiling is not self similar but self a‰ne. We can also show P ¼ f0;og with

o ¼ :111 � � � : Thus the origin is an inner point of Tl UTo. The characteristic

sequence is :22111 � � � so there are 3 tiles up to translation. (See Figure 2.)

Let b ¼ 2:2469796037 � � � which corresponds to x3 � 2x2 � xþ 1. The tiling

is self a‰ne. Since P ¼ f0; ½01�; ½10�; ½1�g, the origin is an inner point of Tl U

T½01� UT½10� UT½1�. The characteristic sequence is :2010101 � � � so there are 3 tiles

up to translation. (See Figure 3.)
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Figure 1. Sofic Pisot tiling for x
3
� 3x2

þ 2x� 1 ¼ 0

Figure 2. Sofic Pisot tiling for x
3
� 3x2

þ 1 ¼ 0
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