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Abstract. Let f: N — P be a smooth map between n-dimensional oriented
manifolds which has only folding singularities. Such a map is called a folding map.
We prove that a folding map f : N — P canonically determines the homotopy class of
a bundle map of TN @ 0y to TP @ 6p, where 6y and 6p are the trivial line bundles over
N and P respectively. When P is a closed manifold in addition, we define the set
Qo1a(P) of all cobordism classes of folding maps of closed manifolds into P of degree 1
under a certain cobordism equivalence. Let SG denote the space limy_ .., SGj, where
SG; denotes the space of all homotopy equivalences of S¥~! of degree 1. We prove
that there exists an important map of Qgq(P) to the set of homotopy classes [P, SG].
We relate Qg q(P) with the set of smooth structures on P by applying the surgery
theory.

Introduction.

Let N and P denote oriented smooth manifolds of dimension # in this paper.
We shall say that a smooth map germ of (N, x) into (P,y) has a singularity of
folding type at x if it is written as (x1,x2,...,X,) — (x},X2,...,X,) under suitable
local coordinate systems of N and P near x and y respectively. A smooth map
f: N — P is called a folding map if it has only folding singularities.

It follows from Eliashberg that given a smooth map f : N — P, in many
cases there exists a folding map of N into P homotopic to f if and only if the
vector bundles TN and f*(TP) are stably equivalent. In this paper we shall
clarify the reason why this phenomenon occurs by using the results of and it
will lead us to prove by the surgery theory due to [K-M], and that if
n>135, Pis a closed oriented and simply connected manifold and if the surgery
obstruction of Kervaire invariant vanishes for P, then a given folding map of
degree 1 determines, up to a certain equivalence, a smooth manifold P’ and a
homotopy equivalence of P’ into P of degree 1.
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In the 2-jet space J2(n,n) we shall consider the subspace Q'° consisting of
all jets of either regular germs or germs with folding singularities at the origin.
In we have proved that there exists a topological embedding i, of SO(n + 1)
into Q' giving a homotopy equivalence. The rotation group SO(n) acts on
J?(n,n) through the source space R" and the target space R" and also does on
SO(n+1) from the left-hand and the right-hand sides through SO(n) x SO(1).
We shall show in §2 that i, is equivariant with respect to these actions of
SO(n) x SO(n).

In the 2-jet bundle J2(N,P), let Q'°(N,P) be its subbundle associated
with Q1% If we provide N and P with Riemannian metrics, then we can
reduce the structure groups of J2(N,P) and Q!°(N,P) to SO(n) x SO(n). Let
SO(TN ® Oy, TP®0p) Dbe the subbundle of Hom(TN @ Oy,TP @ Op)
associated with SO(n+ 1), where €y and 0p are the trivial line bundles over
N and P respectively. Then we obtain a topological embedding i(N,P) :
SO(TN ® Oy, TP ® 0p) — Q'°(N, P), which is a fibre map over N x P asso-
ciated with i,.

THEOREM 1. Let N and P be oriented smooth manifolds with Riemannian
metrics of dimension n. Then the embedding i(N,P) : SO(TN @ Oy, TP ® 0p) —
QlO(N , P) covering the identity of N x P gives a homotopy equivalence of fibre
bundles.

This theorem together with [Proposition 3.1 will yield the following, where
bundle maps are fiberwise linear.

COROLLARY 2. The homotopy classes of orientation preserving bundle maps of
TN @ Oy into TP @ Op correspond bijectively to the homotopy classes of continuous
sections of Q'°(N, P) over N. This correspondence does not depend on the choice
of Riemannian metrics of N and P. In particular, the jet-extension jf of a folding
map f : N — P determines the homotopy class of an orientation preserving bundle
map of TN @ Oy into TP @ Op.

The proofs will be given in §3. These results should be compared with
[E, 3.9 and Theorem 3.10] and [Sa, Lemma 3.1].

Let fi: N;— P (i=0,1) be two folding maps of degree 1. We shall say
that they are fold-cobordant when there exists a folding map F of (W,0W) into
(Px[0,1],Px0UP x 1) of degree 1 such that

(i) W is oriented with 0W = NyU (—N;) and the collar of W is identified

with No x [0,6) UN; x (1 —¢,1],

(11) F|N() X [0,8) :f() X id[07g) and F|N1 X (1 — &, 1] :fl X l'd(l,g’l],
where ¢ is a sufficiently small positive real number. Let Qq(P) denote the set
of all fold-cobordism classes of folding maps to P of degree 1.
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Let Gy (resp. SGx) denote the space of all homotopy equivalences (resp. of
degree 1) of S¥=! with compact-open topology. The suspension of a homotopy
equivalence yields the inclusion of Gy into Gy, (resp. SGx into SGy.1). We set
G=lim;_ ., Gy and SG=lim;_. ., SGy respectively. Similarly set O=1lim;_.., O(k).
By considering the quotient space Gi/O(k) by the acton of O(k) on Gy, set
G/O = limkﬂm Gk/O(k)

In §4 we shall prove by using and the results about spherical

fibre spaces ((Atl], [B2], [WI] and [W2]) that there exists an important map
of Qa(P) to [P,SG] (Theorem 4.2 and 5.5). This enables us to define new

invariants of Qgq(P) (Corollary 4.7).

A homotopy equivalence f : N — P of degree 1 is called a smooth structure
on P. We will say that two smooth structures on P, f;: N;— P (i=0,1), are
equivalent if there is a diffeomorphism d : Ny — N; such that f; is homotopic to
fiod. Let #(P) denote the set of all equivalence classes of smooth structures on
P. Let #“"(P) denote its subset of all equivalence classes of smooth structures
f:P'— P such that TP’ and f*(TP) are stably equivalent. Then the group
bP,.1 of homotopy n-spheres bounding parallelizable manifolds acts on .#"“"¢(P)
as usual. Let iy:2 — §” be a map of degree 1 for a homotopy n-sphere
2 ebP,.;. The action of 2 on f is defined by the connected sum of maps,
ftis: P'4Y — P§S" = P. The quotient set of ¥"*"¢(P) by this action of bP,,; is
denoted by “"(P)/bP,.;.

In §5 we shall prove the following theorem by applying Sullivan’s exact
sequence in the surgery theory ([Su]) and [E, Theorem 3.10] to the map w
projected to [P, G/O].

THEOREM 3. Let P be a closed oriented and simply connected smooth
manifold of dimension n > 5. We assume that if n =2 (mod 4), then the surgery
obstruction of Kervaire invariant vanishes for P. Then there exists a surjection
of Qo1a(P) onto S*(P)/bP,, such that a smooth structure f : P' — P of class
C™ with only folding singularities in Q4(P) is mapped to the equivalence class
of f modulo bP,.;.

All manifolds are of class C*. Maps are basically continuous, but may be
smooth (of class C®) if so stated.

The author would like to thank the refree for his careful reading of the
manuscript of the paper and kind comments.

§1. Notations.

The space of all homomorphisms of a vector space V' into a vector space W
will be denoted by Hom(V, W). Let J2(N, P) be the 2-jet space of manifolds N
and P. Let ny and 7np be the projections mapping a jet to its source and target
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respectively. Let L?(n) be the group of 2-jets of all diffeomorphisms of (R",0).
J?(N,P) has the structure group L*(n) x L*(n). Let Hom(TN @ S*(TN), TP)
be the vector bundle over N x P with structure group GL(n) x GL(n) = L*(n) x
L*(n), which is the union of all spaces Hom(T N @ S*(T;N), T, P) for (x,y) of
N x P, where SZ(TXN) denotes the 2-fold symmetric product of T\N. If we
provide N and P with Riemannian metrics and Riemannian connections, then we
have the exponential maps (see, for example, [N]) defined on neighbourhoods of
the zero vectors of T\N and T,P,

expy y : (TxN,0) — (N,x) and
eXpP,y . (]}P,O) - (Pay)

respectively. An orthonormal basis of TN (resp. 7T,P) gives its local
coordinate system of (N,x) (resp. (P,y)) compatible with the differentiable
structure of N (resp. P). By using them we can define the map J : J>(N, P) —
Hom(TN @ S*(TN), TP) as follows.

Let z=j2f with y =f(x) be a 2-jet in Jx%y(N , P), which is the subset of
J2(N,P) consisting of all 2-jets of smooth map germs of (N,x) into (P,y).
Then define J(z) to be the 2-jet of (epry)*l of oexpy . at 0, which becomes
a linear map of TN @ S*(T,N) into T,P. It 1s shown by the properties of
exponential maps that J is a bundle map between bundles with structure group
L?*(n) x L*(n). The Riemannian metrics of TN and TP reduce the structure
group of Hom(TN @ S*(TN), TP) to SO(n) x SO(n). We note that J depends
on metrics and Riemannian connections of N and P. However, any two
Riemannian metrics are homotopic ([Ste, 12.12]) and so all J’s are homotopic.
This kind of observation can be found in [P]. Another homotopy theoretic
approach to this fact can be found in [D].

Set D=7y (TN) and P =np(TP). Then there is a homomorphism d :
D — P defined as follows. Let z =j2f with y = f(x) be a jet of Jx27y(N, P). Let
D. and P. be the fibres of D and P over z respectively. Then d;.:D. — P.
refers to df : TN, — TP,. We define X'(N, P) (resp. 2. (N, P)) to be the set of
all jets z in J2(N, P) (resp. Jx%y(N, P)) with dim(Ker(d; .)) =i. Then we have
the subbundle K = Ker(d;) and the cokernel bundle Q = Cok(d,) over X'(N, P).
In the second intrinsic derivative d, : K — Hom(K, Q) is defined using the
second derivatives of z.  We define Z'°(N, P) (resp. ~ i?y(N , P)) to be the set of
all jets z in J*(N,P) (resp. JZ,(N,P)) such that dim(Ker(d;)) =1 and dy :
K. — Hom(K.,Q.) is an isomorphism. Let Q'°(N,P) denote the union of all
regular jets and X'°(NV, P), which becomes an open subbundle of J*(N, P).

Let JK(n,n) refer to JOIfO(R”,R"). We shall identify J'(n,n) with
Hom(R",R") as usual. Let X' be its subspace consisting of all homomor-
phisms o:R" — R" with dim(Ker(x)) =i. Next J?(n,n) is identified with
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Hom(R" @ S*R",R"). We usually denote its element as («,f) with «: R" — R"
and B:S’R" — R". Consider the composition of the restriction f|S?(Ker(a))
and the natural projection of R" onto Cok(x). It induces a new
homomorphism of Ker(x) into Hom(Ker(a), Cok(a)) denoted by 5. Let X1 be
the subspace of J2(nm,n) consisting of all elements («,8) such that
dim(Ker(«)) =1 and dim(Ker(8)) =0. The notation X' is often used for
X' x Hom(S?R",R") if there is no confusion. The space Q'’(n,n) means
20U in J%(n,n). It is an open subspace. We say that a 2-jet of X' and
also its singularity at the origin are of folding type.

The two constructions above of X (R",R"), X"\(R",R") and 2’ 3"
correspond to each other by J. Let Q'°(N,P) denote the subbundle of
Hom(TN @ S%(TN), TP) associated with Q'°. 1t is clear that J gives a bundle
map of Q'°(N,P) to Q(N,P)’.

0 B
Let e; be the j-th unit vector. Let /; be the unit matrix of rank j. Let /_ be the
matrix f,_; 4+ (—1). Let A(d) with d = (d,...,d,) be the diagonal matrix with
diagonal components d. Let SO(n) x SO(1) be the set consisting of all matrices
T + (1) with T € SO(n).

Let p;: & — X; (i=0,1) be fibre bundles or spherical fibre spaces. In this
paper a continuous map ¢: ¢y — &; is called a fibre map over c¢: Xy — X if
pioc=cop.

An equivalence class with representative x in a set will be denoted by [x] and
it is often abbreviated as x if there is no confusion.

: . . (A4 0
For two square matrices A and B, let A + B denote the matrix < )

§2. Homotopy type of Q'°(n,n).

First we briefly review the result of [An]. There has been constructed an
embedding i, of SO(n+ 1) into Q'°(n,n), which has its image as a deformation
retract. For M € SO(n+ 1), let Me,; be written as x = ‘(xy,...,x,,b). Ifbis
not equal to —1 (resp. 1), let r(x) (resp. 7(x)) be the matrix of the rotation which
1s the identity on the subspace orthogonal to x and e,,; and rotates the great
circle through x and e,;; so as to carry e,;; (resp. —e,;1) to x. Note that
r(ens1) = F(—enp1) = I+1. Then the matrices r(x)"'M and 7(x)"'M have the
forms U(M) 4 (1) and I_U(M)' 4 (—1) with some n-matrices U(M) and U(M)’
in SO(n) respectively.

Let s(M) be the vector ‘(sq,...,s,) such that s; = x;/(1 — b*)"/* for b # +1
and that s(M) can be any vector of length 1 for b = +1.

For n>2, let d, denote the n-vector (a/vn-—1,...,a/vn—1,b/\/n),
where a and b are real numbers with a”> + (h*/n) =1 and a > 0. Let S be any
matrix of SO(n) with Se, = s(M). An elementary observation in linear algebra



362 Y. ANDO

shows the following relations in which G(s(M)) = SI_'S and b # +1:
SI_'S = (5; — 2si5;), F(x) ' or(x) = G(s(M)) + (1) and

UM) =1_G(s(M))UM).
Consider the homomorphism «(M) : R" — R" defined as follows:

SA(d ) SU(M) for b > 0

SA(d )1 'SI_-UM)" forb <0 and

for n > 2, oc(M):{

for n=1, o(M)=>.

This definition does not depend on the choice of S for s(M). In particular, if
b =1, then a(M) = (1//n)U(M) and if b = —1, then a(M) = (1//n)I_U(M)'.
Note that if n =1, then U(M) = U(M)" = (1).

For a vector se R" of length 1, Ue SO(n) and u with 0 <u <1, we let
¢u(s, U)(x,y) denote the quadratic form ‘x'USA4(0,...,0,u)'SUy and define the
homomorphism S, (s, U) : S2R" — R" by B,(s, U)(x,y) = qu(s, U)(x,p)s. Now
we define the homomorphism B(M) : S’R" — R" as follows:

Bi1_p(s(M), U(M)) for b >0
Brip(s(M), G(s(M)I_U(M)") for b <0

(1-b)s(M) forb=>0
(1+b)s(M) forb <0.

forn>2, p(M)= { and

for n=1, B(M) _{

In particular, if b = +1, then f(M) is the null homomorphism.
Then the topological embedding giving a homotopy equivalence

in: SO+ 1) — Qn,n)
is defined by i,(M) = (a(M),F(M)) (this is denoted by ho/h’ in [An, §5]).

REmMARK 2.1. We give two remarks concerning i,(M).

(i) Let us explain how M is constructed from a folding map germ asso-
ciated to i,(M). The Jacobian matrix of this germ is «(M), from which we
obtain the number b and the matrices U(M) and U(M)" by [An, §3]. The vector
s(M) is constructed to be a vector of length 1 on Cok(a(M)) and to have the
inward direction with respect to the image of this folding map germ. By
definition, M is determined from b, s(M), U(M) and U(M)'.

(ii) In the definition of f(M) it does not matter to replace 1 +5b and 1 —5
by (1-5%)""?

Here we consider the actions of SO(n) x SO(n) on SO(n+ 1) and on J?(n,n)
as follows. An element (O’,'0) of SO(n) x SO(n) acts on each element M of
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SO(m+1) and («,B) of J*(n,n) as
(0,/0) M = (0' + (1)M(0 1 (1)) and
(0I7 ZO) ’ (aaﬁ) - (a/aﬁl)a

where o'(x) = O'a(Ox) and p'(x,y) = O'B(Ox,0Oy) respectively. Note that
Q'"(n,n) is invariant with respect to this action.

We shall prove that i, is equivariant with respect to the actions of SO(n) x
SO(n). Tts proof needs a complicated observation about the embedding i,.
First we shall prepare two lemmas. According to [Ste, (23.3)], the matrix
representations of r(x) and 7(x) are given by

P) XiXj X1
= TR ] and
................ n
s -x, b
i Il .
F(x) = 1-b _).Cn
X{uunn. X, —b respectively.

LemMa 2.2, Let x=1'(xy,...,X,,b) be Me,., as above. Let y=
“(¥iy---y¥n,b) be (O' 4 (1))x for an O’ in SO(n). Then we have

PrOOF. Since r(x) is equal to the matrix

(In+( )) (1/( )) (xl,,xn,l+b)(x1,,xn,—(1+b))
and “(yy,..., yn) O''(x1,...,xy,), it follows from a direct calculation that r(y) =
(0" + (1))r(x) (0" + (1)). The second formula follows similarly. O

LemMa 2.3. Let M' = (0’ 4+ (1))M(O 4 (1)) for O and O' in SO(n). Then
we have

i) UM')=0'UM)O for b>0
(i) UMY =1.0'T_UM)'O for b<0 and

(iii) G(s(M'NI_U(M")' = O'G(s(M))I_U(M)'O.
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Proor. It follows from [Lemma 2.2 that

) M = r(n) (0" 4 (1)M(0 (1))
= (0" + (1)r(x)"'M(0 4 (1))
= (0" + ()(U(M) + (1))(0 + (1))
=0'UM)0 (1) and

)" M =Fy) (0" + (1)M(0 4 (1))
= (0" + (1))F(x)"'M(0 + (1))
= (0" +(M)(-UM)" + (=1))(0 + (1))
=0'I.UM) 04+ (-1
=1 (I.O'L_.UM)'0) + (—1).

Thus (i) and (ii) follow from the definition of U(M’) and U(M')’. From (ii), it
follows that

G(s(M))I_UM"' = GO's(tM)I_UM")
=0'SI_'S'0'I_(1.0'I_U(M)'0)
= 0'SI_'SI_.UM)'0
= 0'G(s(M)I_U(M)'O. O
We are ready to prove the following.

PROPOSITION 2.4.  The embedding i, is equivariant with respect to the actions
of SO(n) x SO(n) on SO(n+1) and on J*(n,n).

Proor. The assertion for n =1 1is trivial, since the actions are trivial.
Hence we assume n > 2 in the following. Let M, O’, O and M’ be as in [Lemmal
2.3 and set x' = M'e,;; = (O’ +(1))x. We use the notations given in the
definition of i,. We have that s(M') = O’s(M). Using we obtain
the following.

If » >0, then

w(M") = 0'SA(d)'S'O'UM')
=0'SA(d)'S'0'0'UM)O
= 0'SA(d ) 'SUM)O
= O0'a(M)0O and
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BM')(x,y) = qi-s(s(M"), UM"))(x,p)s(M’)
= X'UM")O'SA(0,...,0,1 —b)'S'O' UM ys(M")
= x'(0'U(M)0)0'S4(0,...,0,1 —b)'S'0’
x (0'U(M)0)y0's(M)
= x'0'U(M)SA(0,...,0,1 —b)'SUM)0y0's(M)
= 0'B(M)(Ox, 0y).
If b <0, then
a(M') = O0'SA(d)I_'S'O'T_UM'")
=0'SA(d)I-'S'0'I_(I_0'1_U(M)'0)
= 0'SA(dy)_'SI_UM)'O
= 0'a(M)O and
B(M")(x,y) = qiip(s(M"), G(s(M")L_U(M")) (x, p)s(M")
= 'x'(O'G(s(M))I_U(M)'0)0'S4(0,...,0,1+b)
x 'S'0'(0'G(s(M))I-U(M)'0)y0's(M)
= 'x'0'(G(s(M))I_U(M)")S4(0,...,0,1+b)
x 'S(G(s(M))I-U(M)")0yO's(M)
= q145(s(M), G(s(M))I_U(M)")(Ox, Oy)O's(M)
= O'B(M)(Ox,0y).

This proves that i, is equivariant with respect to the actions of SO(n) x

SO(n). O

§3. Associated fibre bundles.

First we shall give the precise definition of the embedding i(N, P) and prove
and [Corollary 2.

By providing N and P with Riemannian metrics, we have the bundle
map J:J?(N,P) — Hom(TN @ S*>(TN), TP) over N x P as defined in §l.
The last bundle has the structure group SO(n) x SO(n) through TN and
TP. The map J induces a diffeomorphism between fibers Jx%y(N ,P) and
Hom(T,N @ S*(T,N), T,P). We shall apply the embedding i,: SO(n+ 1) —
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Q"(n,n)( =« Hom(R" ® S’R",R")) to Hom(TN ® S*(TN), TP). Then we ob-
tain the subspace homeomorphic to SO(n+1) denoted by SO, ,(N,P) in
Hom(T,N @ S*(T,N), T,P). This space is well defined by [Proposition 2.4,  The
space SO(N, P) is defined to be the union of all spaces SO, ,(N, P) in Q'°(N, P)’,
where (x,y) varies all over N x P. It becomes a subbundle with structure group
SO(n) x SO(n) coming from those of TN and TP.

By the Riemannian metrics of N and P we have the subbundle
SO(TN ® On, TP @ 0p) of Hom(TN @ Oy, TP @ 0p) associated with SO(n + 1).
Let i(N, P)" be the map of SO(TN @ Oy, TP @ 0p) to Q'°(N, P)" associated with
in. It is clear that its image coincides with SO(N, P) and is homotopy equivalent
to Q1°(N,P)’ by [An, §5] and [Proposition 2.4. Then i(N, P) in Introduction is
defined to be (J7!)oi(N,P)".

ProOF OF THEOREM 1. The assertion follows from the fact that i(N,P)" is a
homotopy equivalence of fibre bundles. N

Let GL; (TN @® 0Oy, TP@®0p) be the subbundle of Hom(TN @ Oy,
TP @ 0p) associated with GL*(n+1). Let iso:SO(TN ® Oy, TP ® 0p) —
GL (TN ®@ 0y, TP®0p) be the inclusion, which becomes a homotopy
equivalence of fibre bundles covering idyyp. Let (i(N,P))':Q'(N,P) —
SO(TN @ Oy, TP ® 0p) be the homotopy inverse of i(N,P)’. Then we consider
the fibre map

iso o (i(N,P)) " o JJQ"(N, P):
QN,P) - Q%N,P) — SO(TN @ Oy, TP @ 0p)

- GL;H

(TN @ Oy, TP @® 0p)

giving a homotopy equivalence of fibre bundles. Then the following proposition
follows from the fact that all of the maps J’s are homotopic to each other as
explained in §l.

ProposiTioN  3.1. The homotopy class of the fibre map isoo
(i(N,P)) " o J|Q'(N,P) covering idyyp does not depend on the choice of
Riemannian metrics of N and P.

PrOOF OF CoroLLARY 2. The set of all continuous sections of
GL (TN ®@ Oy, TP®0p) over N corresponds bijectively to that of all
bundle maps of TN @ 0y to TP @ 0p preserving orientations. For a folding
map f: N — P, the section j?f determines the homotopy class of a section
of GL (TN ® 0y, TP ® 0p) by [Proposition 3.]. It gives a bundle map
f:TN @0y — TP ® 0p determined up to homotopy. ]
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The notation f always refers to the bundle map in the proof above.

Let ¢ and 7 (resp. ¢’ and 5’) be vector bundles over a topological space X
(resp. Y). For bundle maps b:¢ — &' and b’ :p — 5’ covering the same map
of X into Y, define the sum b@®b :E@Dn—E @y by bV ) v®w)=
b(v) ®b'(w). In the rest of the paper, k denotes an integer greater than n + 2.
Let ¢y and 5, be vector bundles of dimension k£ over the same manifold X of
dimension 7. Let 0y denote the trivial bundle X x R’ (/>1). Then the set
of homotopy classes of bundle maps of &y to #, corresponds bijectively to that
of bundle maps of ¢y @0; to nX(-BH)? by the correspondence defined by
mapping / to h@id(ﬂ)?)' In fact, this can be proved by using the fact that
ni(O(k+¢),0(k)) =~ {0} for i<k. When two bundle maps hy, and h; are
homotopic, we write /iy ~ h;. All vector bundles of dimension not less than k
over X will be called stable. For the tangent bundle 7X of X, we will denote
TX ® 0y (/>2) by the symbol ry without specifying the number /, which is
called the stable tangent bundle of X. When N and P are embedded in R"*, vy
and vp refer to the stable normal bundles of N and P of dimension k respectively.
Then we have the following by virtue of [Proposition 3.3 below.

PropoSITION 3.2. Let N and P be oriented manifolds of dimension n with
fixed trivializations ty : Tty @ vy — Qf,k and tp i tp @ vp — H}%k. Then a folding

map f: N — P determines the homotopy class of a bundle map v(f): vy — vp
over f such that f ® v(f) satisfies the property described in Proposition 3.3.

Let &y and 7y (resp. &p and np) be vector bundles over N (resp. P) of
dimension k >n+ 2. Suppose that we have the trivializations ty : &y @y —
0]%,]‘ and tp : Ep D yp — ng. A bundle map b : szvk — Qﬁk overamap f: N — P
is canonically identified with the pair (f, o), where the continuous map o : N —
GL(2k) satisfies b(x,v) = (f(x),a(x)(v)) for any v in R* and x in N. Hence b is
often denoted as « by neglecting f when there is no confusion. Let o7!: N —
GL(2k) be the map defined by o' (x) = a(x)™". Let i, : N — GL(m) be the map
such that i,(x) is always the unit matrix /,. Let f: N — GL(2k) be another
map. Then the following is easy to prove (see, for example, [At2, p. 76]):

(i) a~p if and only if a @iy, ~f D iy, for m>1,

(i) a@® o' is homotopic to iy,

(1) o @ f is homotopic to f @ a.

Then we have the following proposition.

PROPOSITION 3.3. Under the notations above, a homotopy class of a bundle
map [ :Cy — Cp over f determines the unique homotopy class of a bundle map
G :ny — np over f such that tpo (f @ g)o (ty)~" is homotopic to the bundle map

(fa iQk)'
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Proor. By considering the induced bundles f*&p and f*7p, it is enough to
consider the case where N = P and f is the identity of N. But we use the given
notations except for f. Since &y and &p are equivalent, there is an isomorphism
of 7y into #7p, say b. So we have the isomorphism p o (f @ b) o ty', which we
identify with «: N — GL(2k) as above. Then we consider the isomorphism

b® (o) iy @ OF — 1, ® 05"

Let us denote by iy, the identity of H]%,k or Hiz,k . Then by the dimensional reason,
there exists a unique homotopy class of a bundle map ¢g:#y — #p such that
b® (a!) ~ @ ix.

We shall show that g is the required bundle map. We have

(tpo (/@) oty") ®in = (tp @in) o (f @ FDin)o (1y' ®in)
~ (@ in) o (f@®b® (x7)) o (ty' ®in)
—(tpo(f@®b) oty ) Do
=o@ao !
~ ig.

Therefore, it follows from (i) that g satisfies the first required property.

Next we show the uniqueness of g. Let ¢y :ny @&y — szvk (resp. 15 :
np ® Ep — 03%) denote the trivialization defined by ) (v ® vg) = ty(vy @ vy)
(resp. th(w1 @ wo) = tp(wo @ w1)), where vy € &y and vy €y (resp. wp € &p and
wi €np). Then it follows that 750 (§@f) o il =tpo (f@®§)o ty'. In fact, if
tN(vo @ vr) =ty(v1 Dvg) =x @y with x,ye€ R* then we have

po(G@®f) oty (x®y) =tp0 (GOf)(01 @ vo)
=150 (§(v1) ® f(w))
= 1p(f (v0) ® §(01))
=1po (f®§)(vo ®v1)
=tpo(f@g) oty (xDy).

Suppose that there exists another bundle map ¢’ :#y — 7, such that fpo

(f@§)oty' ~iy. Since f@G~f®j, we have jOfDi~j®f D'
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On the other hand, we have

(p®@i) o (@®f D)oty ®ir)=(ro (@) oty") D
= (o (f@®§)oty) ®g
~iy®g and

(p@i) o (@S @) oty ®ir) = (o (@) oty ) ®F
= (o (f@®G) oty ) @G
~in®g'.

Consequently, we have iy @ § ~ iy @ g'. Therefore we obtain g ~ g'. O]

ExampLE 3.4. If TN@® Oy and TP @ Op are trivial bundles with fixed
trivializations, then the bundle map f: TN ® 0y — TP ® 0p in the proof of

induces a map M(f): N — SO(n+1). However, in order for the
map M(f) to inherit the intuitive geometric properties of f, we must select the
trivializations very naturally, even though they do not exist on the whole spaces
of N and P. Otherwise M(f) can often be homotopic to a constant map. This
actually occurs in the case where P = R”, N is the unit sphere of R"*! and TS” ®
0s: = TR"™|,, with canonical trivialization and f is the canonical projection of
S" into R" x 0= R".

We shall give two examples of M(f). Let R(x) denote the matrix

cosX —sinx

<sinx COS X )

(1) Let S! be parametrized by x +— e™ (0 < x < 27) inducing the trivial-
ization of T(S'). Then the folding map f:S' — R' defined by f(x)=cosx
induces the map M(f) = R(x +n/2).

(2) Let S!x S! be parametrized by (x,y) — (e™,e?) (0 <x,y <2x) inducing
the trivialization of T(S' x S'). Consider the folding map f:S'xS! —
R? defined by (f,(x,¥),/(x,y)) = ((3+cosy)cosx, (3 +cosy)sinx). Then
M(f) is homotopic to the map IT:S'x S!' — SO(3) defined by IT(x,y) =
(1) + R(»))(R(x) +(1)). We give a sketch of the proof.

The Jacobian matrix J(x,y) of f is equal to

J(x,y):<

—(34+cosy)sinx —sinycosx
( y Y
3+cosy)cosx —sinysinx

y

= R(x + 7/2)A4(3 4 cos y,sin y)
= R(x+7/2)4(3 + cosy,siny)'R(x + n/2)R(x + 7/2).
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Here recall the definition of i,(M) in §2 and Remark 2.1. Set s, =
'(—cosx,—sinx), a=(1 —sin2y/2)1/2 and b =siny for 4(d,) and define J':
S' x S — Hom(R* R*) by J'(x,y) = R(x +n/2)A(d ) 'R(x + 1/2)R(x + 7/2).
The Hessians H(f;) and H(f,) are equal to

H(f)(x,y) = <_(3+°°Sy)C°Sx sin y sin x >

sin y sin x —CO0S y COS X

H(f)(x,y) = <_(3 + cosy)sinx —Sinycosx)

—sin y cos x —Cos ysin x

respectively. We  define H:S'x S! — Hom(S?R*,R*) by H(x,y)=
(H\(f)(x,»), H2(f)(x,»)). We obtain the two maps (J,H) and (J',H) of
S x 8! to 2'°(2,2)( < Hom(R? R*) ® Hom(S?R?, R?)), which are homotopic
to each other.

We note that (J'(x,y),H(x,y)) is a fold jet when siny=0 and
cosy = +1. At these folding singularities, Ker(J'(x,y)) is generated by e, and
Cok(J'(x,y)) is generated by s,. Furthermore, H(f})(x,y)(e2,e) = —cosycosx
and H(f,)(x,y)(es,ey) = —cosysinx. Hence the quadratic form ¢ of S’K
to @ induced from H(x,y) has the property ¢(e;,e;) =cosys,. We shall
construct M(f) from (J',H) by using these observations and the defintion
of i, with the notation i,(M)= (a(M),f(M)) given in §2. First we take
J'(x,y) as a(M). Then we have R(x+mn/2) as U(M) for siny >0 and
I G(sy)R(x+n/2) as U(M)' for siny <0. Then by Remark 2.1, we need to
consider the vector x(x,y)='(—cosxcosy,—sinxcosy,siny) and obtain the
matrices M. (x,y) =r(x(x,y))(R(x+n/2) + (1)) for siny >0 and M_(x,y) =

7(x(x,))(G(sy)R(x +/2) + (—1)) for siny <0, where by the formulas in §2,
r(x(x,y)) or F(x(x,y)) is equal to the matrix
1 —cos?x(1 —édsiny) —sinxcosx(l —dsiny) —dcosxcosy
—sinxcosx(l —dsiny) 1 —sin’x(l —dsiny) —dsinxcosy
0 COS X COS ) 0 SIn X oS y osiny

Here ¢ is equal to 1 for M,(x,y) and equal to —1 for M_(x,y) respec-
tively. Then it is elementary to prove that we can take the map M : S! x S! —
SO(3) defined by M(x,y) = M, (x,y) for siny>0 and M(x,y) = M_(x,y)
for siny <0 for M(f). We note that M(37/2,y) = (1) 4+ R(y —n/2) and
M(x,7/2) = R(x+m/2) +(1). Define the new map I :S'x S' - S0(3)
by II'(x,y)=M(3n/2,y)M(x,n/2). Since II'(3n/2,y)= M(37/2,y) and

'(x,n/2) = M(x,n/2), M coincides with IT' on (37/2) x S'US' x (n/2).
Since 75(SO(3)) ~ {0}, it follows that M is homotopic to /I’. Thus the as-
sertion follows from the fact that I7 is homotopic to IT'.
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§4. Map of Qg q(P) to [P,SG].

First we shall recall the results about spherical fibre spaces (see, for example,
[B1], [B2], and [W2]). In the rest of the paper sphere bundles associated
with oriented vector bundles ¢ of dimension k > n+ 2 over manifolds X of
dimension n will be denoted by S(&). A fibre map /: S(&) — S(¢) is called an
automorphism 1if h is a homotopy equivalence, that is, if it gives a homotopy
equivalence on each fibre. In this paper an automorphism of an oriented
spherical fibre space is always assumed to be an orientation preserving one.

Let End(¢) denote the group of the homotopy classes of automorphisms of
S(¢). Note that & is extended to a self-fibre map of & (denoted by the same
letter /1) by fibrewise cone construction (this is not necessarily fibrewise linear).
Let /' :S(n) — S(y) be an automorphism of another vector bundle # over X.
Then we can define the Whitney sum h+h':E®n — @ n of the fibre maps
h and &’ similarly as in the case of bundle maps between vector bundles and
it yields an automorphism denoted by h+h': S(E@n) — S(E®D#n). There is
an isomorphism of End(¢) to End(¢ @ 07) (0° =04,/ > 1), which maps & to
h+idy,. This is proved by using the following fact. Let Gy and G be the
spaces given in Introduction. Then it is known that 7;(Gy 1, Gi) = {0} for i <
k —2 (see [B2, L4.10 Proposition]). Set &(¢) = lim,_,, End(¢ @ 07). Then it
follows that &(¢) =~ &(E@07). Suppose that ¢ @ is trivial and has its trivi-
alization 7: @y — 0%*. Let a homomorphism E(¢) : End(¢) — End(6%) be
defined by E()(h) = [to (h+id,) o t™"], where the bracket is often abbreviated.
Then it induces an isomorphism (see [B2, p. 22] and [W1, Proof of Theorem 3.5])

E(1) : £(&) — £(0°).

LemMmA 4.1.  The map &(t) does not depend on the choice of a trivialization t.

Proor. Ift': &Py — 0%* is another trivialization, then ' o ¢~!: §%* — 6%
gives a continuous map of X into GL(2k). Then the following is proved by
using the properties (i), (ii) and described just before [Proposition 3.3.

(
(to () 4 idyu) o (E(¢)(h) +idyu)o (¢ ot +idyx)
~ (idgx + 10 (1)) o (E(t')(h )+idozk)o(t/of1+idozk)
(E(t")(h) + o (1 ) Do (ot +idyw)
(E( o (idyu +1' 017"
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In the following &(¢) will be denoted simply by &. Since SG is a homotopy
commutative H-space (Remark 4.6), the set of homotopy classes [X,SG| has a
structure of an abelian group. We obtain a canonical isomorphism of End(6%)
onto [X, SG;] by mapping / : S(6¥) — S(6%) to the continuous map ¢ : X — SG;
defined by ¢(x) =h|x x S¥!. Tt also induces an isomorphism of &(6%) onto
[X,SG]. By composing it with &, we obtain the isomorphism

CsG - g(f) — [X,SG]

Now we take and fix an embedding e of P into R"** for a while. Consider
vp = T(R”*k)|e(P)/T(e(P)) and vp = e*(v}) with bundle map &:vp — v,. Then
the usual metric of R"** induces a splitting of the sequence 0 — T'(P) — 0}3*1‘ —
vp — 0 by orthogonality, which yields a trivialization tp:1p @ vp — 0%* with
dimension of 7p being equal to k. Take an embedding of N into R"*, which
yields a trivialization ty : 1y @ vy — 0% similarly. Given a folding map f :
N — P, there is a bundle map f:ty — tp determined up to homotopy by

Corollary 2. By #p and ty, we obtain a bundle map v(f) : vy — vp determined

up to homotopy by |Proposition 3.2, Let T(v(f)): T(vy) — T(vp) be the
Thom map associated with v(f). Let ¢:S"* — T(v}) be the Pontrjagin-Thom
construction for the fixed embedding e of P. Then we have a homotopy class
oap = [T(e7") o ¢] in m,. k(T (vp)), where [¥] refers to the homotopy class. In the
rest of the paper we also call «p the homotopy class obtained by the Pontrjagin-
Thom construction for the embedding e of P into R"**. Similarly we obtain the
class ay € Tk (T(vw)).

Consider two homotopy classes ap and T(v(f)),(on) of 7,k (T (vp)). Then
it follows from [B2, 1.4.19 Theorem]| that they determine an automorphism A(f) :
S(vp) — S(vp) up to homotopy such that T'(h(f)), (2p) = T(v(f)), (o). Thus
we obtain an element csg(h(f)) of [P,SG]| by applying c¢sg for & = vp.

THEOREM 4.2. There exists a well defined map
 : Qsoa(P) — [P, SG]
such that a fold-cobordism class of f is mapped to csg(h(f)).
For the proof we need the following two lemmas.

Lemma 4.3. Fix the embedding e of P into R"™ . Then the element
csg(h(f)) defined for a folding map f of degree 1 is a fold-cobordism invariant.

Proor. Set I =[0,1]. Let f;: N;— P (i=0,1) be folding maps with fold-
cobordism F: W — P x I as described in Introduction. Take an embedding E
of W into R"** x I by the Whitney embedding theorem (see [G-G, II, §5]) such
that for a sufficiently small positive real number e,
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(i) E(Noxu)cR"™™ xu and E(N, xu)c R xu
for ue[0,e)U (1 —¢, 1],
(i) E[No x [0,6) = (E|No x 0) x idp ,y and
(iii) E|Ny x (1 —¢ 1] = (E|Ny x 1) x id(j_ 1.

We note that y|Ny = 1y, @0}%, Tw N1 = Ty, @0}\,1. Then we obtain a trivi-
alization ty : Tty @ vy — «9%‘“ such that 7| N, =iy, @ id with id denoting the
identity of 0]1\,1, (i=0,1). Since F is a folding map, we have the bundle map

F:ty — tpy; by [Corollary 2. Using ¢, we obtain a bundle map v(F):
vy — vpxr = vp x I from Propositon 3.2 such that v(F)|y =v(f;) xi. By the

Pontrjagin-Thom construction for the embedding E and T(v(F)): T(vw) —
T(vp x I), we obtain a homotopy to prove T(v(fy)),(an,) = T(f)).(on,)-

This yields €(h(f,)) = E(h(f})). 0

By this lemma we can define the map w if the embedding e is fixed.

follows from the following.

Lemma 4.4, The map w does not depend on the choice of an embedding e.

PrOOF. Let ¢y and e; be two embeddings of P into R"**. Then there exists

an embedding E : P x I — R™™* x I such that E(P x u) ¢ R"™* x u for all ue [l
and that E(x,i) = (e;(x),i) (i=0,1). In fact, if ¢x(P)Ne;(P) is not empty, then
there is a smooth isotopy e, (0 <u <1/2) of parallel translations such that
e1p(P)Ner(P) =¢. Next we can take an embedding E’: P x [1/2,1] — R"*
such that E'|P x u=e, for u=1/2 and 1 by the Whitney embedding theorem.
Then we can construct a level preserving embedding of P x I into R"** x I by

E(x,u) = { (eu(x);u),  O<u<1/2

(E'(x,u),u), 1/2<u<l.

Set e,(x)=E(x,u) and let v/ be the normal bundle of the embedded
manifold e,(P). Set v, = e} (v;) with bundle map é, : v, — v, over e¢,. We have
a trivialization ¢, : tp ® v, — ngk . Let v be the normal bundle over P x I to the
embedding E with the property v|p,, = v,. Then there is a bundle map B : vy x
I — v covering idp,; with B|, ., = id,,. Setb, = B| Then t, o (id,, ® b,) ~
to. The composition map

vox0 Vo Xu®

T, T(b,"

u

gives a homotopy between T(e;') o ¢, and T(b7')o T(e;!) o ¢, where ¢, de-
notes the Pontrjagin-Thom construction for e,. Set o, =T(e, "), (ste,(p) =
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[T(e:") 0 ¢, € Mk (T(v,)). Then we have
o = T(8y").(%y(p)
=T(b"), o T(e; ). (sey(p))
= T(b"). ().

Recall the definition of &(h(f)). For the embedding e,, the automorphism
h(f),: S(v) — S(v,) is defined to satisty T(h(f),), (o) = T(v(f),),(oen), where

v(f), : v~ — vy is the bundle map associated with f 7y — p and t,. Since t,0
(id, ® by,) ~ ty, we have tg o (f @ v(f)y) o ty! ~ty o (f @by ov(f)y) oty!, which

is homotopic to (f,idy) by [Proposition 3.2, Hence by the definition of v(f),
we have b, o v(f), ~v(f),. In particular, by o v(f), ~v(f),;. Since T(by),(x)

= oy, we have

Thus by [B2, 1.4.19 Theorem] the following diagram is commutative up to
homotopy.

Ste) 20 S(v) L Sy

bl bl

h(f) v(f)
S(v)) —= S(v1) —— S(vy)

Now &(h(f),) is defined to be the automorphism 7, o (id,, + h(f),) ot,'. Hence
to 0 (idy + h(f)y) o 15"
~ 1 0 (idy, + by) o (idg, + (b7 0 h(f), 0 b)) 0 (idyy + b1) " 0 17!
=110 (idy + h(f);) o 17"

This shows that csg(h(f),) = esg(h(f);). Therefore csq(h(f)) does not depend
on the choice of an embedding of P into R™. ]

The inclusion i : SO — SG induces the map i, : [P, SO] — [P, SG] (see [Ad],
[Q] and [T] concerning the results about the image of 7).
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ProrosiTION 4.5.  Suppose that a diffeomorphism d : P — N of degree 1 is
given. If f: N — P is a folding map homotopic to d=', then w(f) lies in the
image i.([P,SO]).

Proor. Consider the diffeomorphism H : P x (1/3,2/3) — N x (1/3,2/3)
defined by H(x,t) = (d(x),t) and the manifold W constructed by pasting
P x[0,2/3) and N x (1/3,1] by H. It is easy to see that fod and f are
fold-cobordant and so w(f od) = w(f).

For the map f od, we obtain that by definition, i(f od) is equal to the

spherical fibre map induced from v(f od):vp — vp up to homotopy. Since

v(fod) is a bundle map, csg(h(f od)) lies in i.([P,SO)). O]

REMARK 4.6. (i) Since SG is a homotopy commutative H-space, which is
weakly homotopy equivalent to the identity component of the loop space Q* S~
(see, [Sta, Definition 4.1 and Page 65] and [M-M, Corollary 3.8]), [P, SG] has the
structure of an abelian group. Let F denote the space of all self-maps of S k
preserving the base point of degree m. It is known that there is an isomorphism
i [S", SG| — limy_, ., 7,,4(S¥), which is induced from the following (see [Atl,
Lemma 1.3 and (i), (ii) on page 295]).

[S", SGy] = 7,(SGy) = 1,(F) = my(FL) = mpn 1 (S (k>n+2)

(i) Many authors have contributed to the study of the very difficult
structure of the algebras H,(SG;Z/pZ) and H*(SG;Z/pZ), where p is a prime
number (consult [M-M, Chapter 6] and [M, Theorem 6.1 and Conjecture 6.2]).

CorOLLARY 4.7. For an element [f] of Q¢u(P), we have the
homomorphism o(f)* : H*(SG; Z/pZ) — H*(P; Z/pZ). Then for any element a
of H*(SG;Z/pZ), o(f)"(a) of H*(P;Z/pZ) is a fold-cobordism invariant.

It may be reasonable to call all the elements of the form w(f)"(a) the
characteristic classes of [f] associated with . It is natural to ask how w(f)"(a)
is related to the topological structure of S(f) in N and f(S(f)) in P, where S(f)
1s the set of folding singularities of f.

ExampLE 4.8. (1) If P=S!, then it is not difficult to prove that w :
Qroa(S') — [S',8G] ~ Z/2Z is bijective (note that i, : [S',SO] — [S!,SG] is
bijective). Cosider the folding maps f, and f; described in figures (A) and (B)
respectively, which are constructed by projecting the outer circles to the inner
circles along the half-lines with end-point O. By arguments similar to those
given in Example 3.4, we see that w(f,) is a nontrivial element and w(fy) is a
trivial one.
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(A) (B)

Figure 1

(2) We shall give a folding map g : S' x S! — 52 of degree 1 such that w(g)
represents a nontrivial element of [S?, SG] =~ Z/2Z (note that 7,(SO) = {0}).
Let f;:S' x S' — §? the folding map defined by f7(x,y) = f(2x,2y), where f
is the folding map given in Example 3.4 (2), by identifying S?\{a point} with R*.
Delete a very small open disk IntD? from S'x S! which is mapped diffeo-
morphically into S? by f; and paste S?\Int(f;(D,)) instead. Then this con-
struction defines a folding map ¢ through f7|(S' x S'\Int D}) and id(s2 (1, (p2))
by a slight modification near 0D?, which folds on S(f;) and dD?. We can prove
that w(g) is the unique nontrivial element by using an explicit description of the
isomorphism g of Remark 4.6 and [T, Propositions 3.1 and 5.3]. The details will
appear elsewhere.

§5. Surgery theory.

In this section we need to recall the surgery theory due to Kervaire-Milnor
[K-M]), Browder ([B2]), Sullivan ([Su]) and Wall ([W2]). First we give a fold-
cobordism invariant related to surgery obstructions. Let Ln(n;(P)) be the Wall
group for an oriented manifold P of dimension n. If n > 5, then we have the
surgery obstruction @ : [P,G/O| — Ln(n;(P)). In particular, if n =2 (mod4)
and P is simply connected, then the surgery obstruction is the Kervaire invariant
defined in Z/2Z. Let py;: SG — SG/SO = G/O be the canonical projection
and (psg), : [P,SG] — [P, G/O] the induced map.

ProOPOSITION 5.1.  Let P be an oriented manifold of dimension n > 5. Then
the map O o (pgg), 0 ® : Qo1d(P) — Ln(m(P)) gives a fold-cobordism invariant in
Ln(m;(P)).

The author does not know to what extent this invariant does not vanish. If
n=2 (mod4) and P =S", then the surgery obstruction of Kervaire invariant
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vanishes except for the dimensions n # 2/ —2 and it is defined also in the
dimension n = 2. It is known that it is nontrivial in dimensions 2, 6, 14 and 30
(see [B1, Corollary 1]). So the Kervaire invariant seems to be a non-vanishing
fold-cobordism invariant (see Example 4.8 (2)).

Let vy be the normal bundle of an embedded manifold X in S™** as defined
in §4 inducing a trivialization of 7y @ vy. Now we shall recall the results
developped in the surgery theory along and [M-M].

Let # be a vector bundle over P of dimension k. A normal map of degree 1
is defined to be a pair (f,b), where f: N — P is a map of degree 1 and b is
a bundle map (this is not necessarily orientation preserving) of vy into # covering
f ([B2, page 31]). Two normal maps f;: N; — P and b; : vy, — 5, (i=0,1) are
normally cobordant when there exists an oriented manifold W of dimension n + 1
with bundle map B:vy — 5y x I over a map F: W — P x I such that

(1) aW:N()U(—Nl) and vW|Ni:an
(i1) F|Ni:f,~ and

where a:#n; — 5, is a bundle isomorphism (see [M-M, Definition 2.13]). Let
NM(P) denote the set of all normal cobordism classes of normal maps (f,b) of
degree 1 into P. A G/O-bundle structure on S(¢) is a pair (y,h), where ¢ is a
vector bundle of dimension k over P and 4 :S(&) — S() is a fibre homotopy
equivalence, which refers to a fibre map giving a homotopy equivalence. Two
G/O-bundle structures (7;,h;)(i =0,1) on S(&) are equivalent if there is a bundle
map a : 1y — 1, such that hg ~aohy. Let F5/0() denote the set of equivalence
classes of G/O-bundle structures on S(&).

THEOREM 5.2. (i) ([B2, Proof of 11.4.8 Lemma] and [M-M, p. 35]) There
exists a bijection w: NMo(P) — 95/0(vp).

(i) ([Su] and [B2, 11.4.4 Theorem and 11.4.7 Proposition]) There exists a
bijection cgj0 = S610(vp) — [P, G/O].

Here we shall give a sketch of the definition of these maps. Let oy €
Tk (T(vy)) and op € 1,4 (T(vp)) be the elements as in §4. Let (f,b) be an
element of NMo(P). Then ap and T'(b) (o) determine the homotopy class of
a fibre homotopy equivalence % : S(vp) — S(n) such that T(h), (ap) = T(b),(oy)
by [B2, 1.4.19 Theorem|. Since & can be considered as a G/O-bundle structure
on S(vp), the map n is defined by n(f,b) = [7,h]. We see the surjectivity of n
as follows. Let 4 : S(vp) — S() be a G/O-bundle structure. Then we have the
composition of ap and T'(h) : T(vp) — T(n). By deforming T'(h) o ap so that it is
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transverse to the zero section P of 5, we obtain a map f of N = (T'(h) o ap) ™' (P)
into P with b:vy — 5. Then n(f,b) = [n,h].
The map cg/o 1s a little complicated. Consider the following:

s (15"
S610(vp) —— SG/0(tp @ vp) —— yG/O(gf)k),

where 4([n,h]) = [tp @ n,idy, +h) and L (1) ([n', ') = [n',h o tp']. Let us
prove that there exists a bijection ¢ 0" ,%/0(01%") — [P,G/O]. Let 7 (resp. y)
be a universal vector bundle over BO(2k) (resp. a universal spherical fibre space
over BGy). Let p:S(y) — y be a classifying fibre map covering p : BO(2k) —
BGy,. Let ¢: S(@ﬁk) — 9 be a fixed classifying fibre map covering a constant
map ¢: P — BGy. Let h:S(07) — S(y) be a G/O-bundle structure and Cy
n — 7 be a classifying bundle map of # covering ¢, : P — BO(2k). Then there
exists a homotopy between po¢c,oh: S(0F) — S() — S(7) — y and ¢ by the
universality of y. Hence it covers a homotopy ¢, of P x I to BGy; such that
co=pocy, and ¢; =c. By applying the homotopy lifting property of p for c,
and c,, there exists a homotopy (c,), of P x I to BO(2k) with (c,), = ¢, and
po(cy); =c. Hence (c,); gives a map of P into p~!(point) = Gx/O(2k) —
G/O, which is what we want for [, h]. The inverse of ¢ J0 1s given as fol-
lows. Given a map (c,); : P — p~!(point) = Gy /O(2k), set n = (c,){(¥). By
the universality of y, (c,), determines the unique homotopy class of a fibre
homotopy equivalence 4 : S(@ﬁk ) — S(n) which is what we want. The map ¢/
is the composition ¢f;, 0 I(t;") 0.
Next we have a canonical map for any vector bundle ¢

I 6(E) — L6/0(S)

by mapping an automorphism /4 of &(&) to the G/O-bundle structure [£,/4] on
S(&).

ProposITON  5.3. We have the following commutative diagram with
(Psg). © €s6 = €00 S

Elvp) =25 [P, SG]

yJ/ J/(pSG)*

¢G/0

yG/O(VP) B [P, G/O]

Proor. We define the map 44 : &(vp) — E(tp ®vp) by ag(h) =id,, +h.
Then we have the following commutative diagram, where &”(1p)(h) = [tp o ho t5!]
and f/(h) = [‘L’p @ vp, l;l 0 h]
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Ep) — Em@w) T g0 2 [P, SG

o

s S (1)
S610(vp) —— F6/0(tp ® vp) —— yG/O(Q}%k) —, [P,G/O]

Here cg; is the isomorphism which appeared in the definition of ¢g; in §4. The
fact that cg; in the diagram is bijective can also be explained similarly as in the
case of ¢ /0 above by considering the universal fibre space ESG — BSG with
fibre SG. Then the equality (pgg), © €sg = ¢G/0 0 S " follows from the homotopy
commutative diagram

SG —— ESG —— BSG

I

G/O —— BO —— BG. ]

If n>5 and P is simply connected, then we have the following exact
sequence due to D. Sullivan [Su| (see also [B2, 11.4.10] and [M-M|):

Py — S(P) > [P,G/O] = NMo(P) 2 P,

where

0 (n: odd)
P,=<Z (n=0 (mod4))
Z/2Z (n=2 (mod4))

and O is the surgery obstruction of normal maps. O([f,b]) in dimensions n =0
(mod4) is, by definition, (/(N)—1I1(P))/8 with I being the index and it is
represented by the Pontrjagin classes of tangent bundles ([B2, II1.3.11]). Hence
if 7y and 7p are equivalent, then it vanishes. The dotted arrow of hP,,| to ¥(P)
does not refer to a map but refers to the action of »hP,;; on ¥ (P) described in
Introduction.

Here we shall explain the definition of 4. Let f: N — P be a smooth
structure on P. Let f~! be its homotopy inverse and # = (f~!)"(vy). Then
there exists a bundle map b: vy — 5 over f. Hence (f,b) becomes a normal
map of degree 1. As before, T'(h), (xy) and ap give a G/O-bundle structure
h:S(vp) — S(n) with T(h), (ap) =T(b), (o). Then 9(f) is defined to be
co/olln, ) in [P,G/OL.

Let [P, G/O]"" refer to the image (pgg),([P,SG]) in this paper. Then we
have the following.
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COROLLARY 5.4. Let n>5 and P be simply connected. Then the image
(S P)) is contained in [P,G/O]""™.

PrOOF. For a smooth structure f : N — P in ."“"¢(P), we have (f~')"(vy)
~ yp. So there exists an automorphism /:S(vp) — S(vp) such that (f) =
¢gjo o #(h), which is equal to (pgg), o esg(h) by [Proposition 5.3, This proves
the assertion. [l

The following theorem is another formulation of in Introduction.

THEOREM 5.5. Let n>5 and P be simply connected. Consider the map
(Psg), 0@ : Q¢1d(P) — [P,G/O]. Then we have the following.

(1) The image of (psg), o w contains (S “"¢(P)).

(2) If either 1) n=0,1 or 3 (mod4) or (ii)) n=2 (mod4) and O vanishes
for P, then §(S*¢(P)) and the image of (pgg), o @ are equal to [P,G/O]""™.

PrOOF. Let x be any element of [P, G/O]"". Let (f’,b) be the associated
normal map b : vy — vp covering a map f': M — P of degree 1 and i : S(vp) —
S(n) the associated G/O-bundle structure as in [Theorem 5.2 Then [y, /4] is
contained in .#(&(vp)) by [Proposition 5.3. Hence vy must be equivalent to
f*(vp). For dimensions n =0 (mod4), we have @(x) =0, since (M) = I(P).
Therefore we obtain the assertion in (2) that [P, G/O]"" is equal to q(.#'*"¢(P)).
Thus it is enough for (1) and (2) to consider an element x of [P, G/O0]“" such
that there is a smooth structure f : N — P with x = 9(f).

Next we prove, using [E, Theorem 3.10], that the map f above is homotopic
to a folding map ¢g. In fact, if n =7, then it is a direct consequence. If n is
even or n is odd and TN and f*(TP) are equivalent, then take two small disks
D, and D, of radii ¢ and 2¢ respectively in N. Let N; be (N\Int Dy,) U D, and
N, be Dy, \Int D,. Then they satisfy the condition (b) or (c) of [E, Theorem 3.10]
so that we obtain g. If n is odd and TN and f*(TP) are not equivalent, then by
taking a small sphere bounding a disk of N and splitting N into two manifolds,
we can prove the condition (d) of [E, Theorem 3.10] again to obtain g.

Thus 9(f) = 9(g9). By definition, Y(g) is equal to ¢g/0 o .#(h(g)), which is
equal to (pgg), © esg(h(g)) by [Proposition 5.3. By the definition of @ we have
o(g) = esa(h(g)) and so 7(g) = (psg), o @(g). This is what we want.  [J

PrOOF OF THEOREM 3. The assertion follows from and the fact
that if f is a homotopy equivalence and is a folding map of degree 1, then we

have Y(f) = (psg), o o(f). O

ExampLE 5.6. Consider the case of P=S" (n>5). Let 6, denote the

group of the /-cobordism classes of homotopy n-spheres, which is identified with
Fe(§m) = &(S") in this case. Hence, (£""¢(S")) is identified with the well
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kown group 6,/bP,;;, which has been discussed in [K-M, §4 and p. 581].
Therefore, the image (pgg), © @(L25014(S")) contains the group 0,/bP,. | by (1) of

eore g

2.

ReEmMARK 5.7. The results of the present paper suggest that folding maps
are closely related to differentiable structures of manifolds. Another kind of
phenomena in low dimensions can be found in [B-D], [S-S1] and [S-S2] and their
references due to Saeki and Sakuma.

We propose a problem: Find a method to construct an explicit folding map
h: P — P between homotopy equivalent manifolds.
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