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1. Introduction.

Let $M^{n+1}$ be a complete Riemannian manifold with boundary $\partial M=:B\neq\emptyset$ which
is a union of smooth hypersurfaces. We can see the precise definition of manifolds with
boundary as billiard tables in [17]. Let $q\in B$ be an arbitrary point at which $B$ is
smooth and $Q_{q}$ the symmetry with respect to $T_{q}B$ , i.e.,

$Q_{q}(w)=w-2\langle w, N(q)\rangle N(q)$

for any $w\in T_{q}M$ , where $\langle\cdot, \cdot\rangle$ is the Riemannian metric in $M$ and $N$ is the unit normal
vector field to $B$ pointing inward. We say that $\gamma$ : $[a, b]arrow M$ is a reflecting geodesic or
briefly a geodesic if there exists the partition $a=a_{0}<a_{1}<\cdots<a_{m}=b$ such that

(1.1) $\gamma(a_{i})\in B,$ $B$ is smooth at $\gamma(a_{i})$ and $\dot{\gamma}(a_{i}-0)\not\in T_{\gamma(a_{i})}B$ for $i=1,2,$
$\ldots,$

$m-1$ .

(1.2) $\gamma_{i}=\gamma|[a_{i-l}, a_{i}]$ is a geodesic in $M$ in the usual sense for $i=1,2,$
$\ldots,$

$m$ .

(1.3) $Q(\dot{\gamma}(a_{i}-0))=\dot{\gamma}(a_{i}+0)$ for $i=1,2,$
$\ldots,$

$m-1$ .

Throughout the paper the term “geodesic” means both usual one and reflecting
one. We assume that geodesics are parametrized by arclength. As usual a variation of
a geodesic $\gamma$ through geodesics yields a Jacobi vector field $Y$ along $\gamma$ which satisfies the
following properties at the boundary (see Section 2):

(1.4) $Q(Y(a_{i}-0))=Y(a_{i}+0)$

(1.5) $Q(V_{\gamma(a_{i}-0)}Y)-V_{\gamma(a_{l}+0)}Y=A(\dot{\gamma}(a_{i}+0))(Y^{\perp}(a_{i}+0))$

where $A(\dot{\gamma}(a_{i}+0))$ is a symmetric endomorphism of $n$-dimensional subspace ab $(a_{i}+0)^{\perp}$

of $T_{\gamma(a_{i})}M$ which is perpendicular to $\dot{\gamma}(a_{i}+0)$ and $V$ is the Levi-Civita connection. We
say that $\gamma(t_{1}),$ $t_{0}\neq t_{1}\in[a, b]$ , is a conjugate point to $\gamma(t_{0}),$ $t_{0}\in[a, b]$ , if there exists a
nontrivial Jacobi vector field $Y$ along $\gamma$ with $Y(t_{0})=Y(t_{1})=0$ .

Let $T_{1}M$ be the unit tangent bundle of $M$ . For a $v\in T_{1}M$ let $\gamma_{v}$ be the geodesic
with $\dot{\gamma}_{v}(0)=v$ . If $\pi(v)\in B$ where $\pi$ : $T_{1}Marrow M$ is the natural projection, then $\dot{\gamma}_{v}(0)$ is
considered either $\dot{\gamma}_{v}(+0)$ or $\dot{\gamma}_{v}(-0)$ . The geodesics $\gamma_{v}$ are defined on the whole real line
$(-\infty, \infty)$ for almost all $v\in T_{1}M$ . We denote the set of all such vectors by $SM$ . Let

$f^{t}$ : $SMarrow SM$ be a flow given by $f^{t}v=\dot{\gamma}_{v}(t)$ for any $v\in SM$ . We denote the set of all
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vectors $v\in SM$ with $q=\pi(v)\in B$ and $\langle v, N(q)\rangle>0$ by $\partial SM$ . Let $T$ be the ceiling
function on $\partial SM$ , i.e., $T(v)$ is the first parameter such that $\gamma_{v}(T(v))\in B,$ $T(v)>0$

(possibly +00). Let $F:\partial SMarrow\partial SM$ be a map given by $F(v)=\dot{\gamma}_{v}(T(v)+0)$ for any
$v\in\partial SM$ .

The purpose of the present paper is to study the properties defined below and give
necessary conditions.

$(P_{1})$ We say that $M$ is without conjugate points if all geodesics have no conjugate
points.

$(P_{2})$ We say that $M$ is with boundary isolated by conjugate points if there exist
positive measurable functions $\alpha$ and $\beta$ on $\partial SM$ such that $\gamma_{v}(\alpha(v))$ is the first conjugate
point to $\gamma_{v}(-\beta(v))$ along $\gamma_{v}$ and $T(v)\geq\alpha(v)+\beta(F(v))$ for any $v\in\partial SM$ .

In order to state our results we need a few terminologies more. Let $dM$ and $dB$ be
the volume formes on $M$ and $B$ (resp.) induced from the Riemannian metric and let $S$

be the second fundamental form of $B$ at differentiable points with respect to $N$ .

THEOREM A. Let $M^{n+1}$ be a compact manifold with boundary $B\neq\emptyset$ . If $M$ is
without conjugate points, then

$\int_{B}$ tr $SdB+ \frac{1}{n+1}\int_{M}ScdM\leq 0$

and the equality sign is true only if $M$ is flat and $B$ consists of totally geodesic
hypersurfaces, where Sc is the scalar curvature of $M$.

It should be noted that $S\leq 0$ is a conclusion of nonconjugacy hypothesis (see

Corollary 5.2). Moreover, by using the Gauss-Bonnet theorem (cf. [16]), Theorem A is
altered to the following.

COROLLARY B. Let $M$ be a 2-dimensional compact manifold with boundary $B\neq\emptyset$

and without conjugate points. Then, $2 \pi\chi(M)-\sum_{i=1}^{n}\alpha_{i}\leq 0$ and the equality sign is true
only if $M\dot{i}$ flat and $B$ consists of geodesic arcs, where $\chi(M)$ is the Euler characteristic of
$M$ and $\alpha_{i}$ are the outer angles at vertices $p_{1},$ $\ldots,p_{n}\in B$ .

Let $E=\{q\in B|S_{q}\neq 0\}$ and $I_{b}= \inf${ $T(v)|v\in\partial SM$ with $\pi(v)\in E$}. Let $dco$ be the
Liouville volume on $SM$ .

COROLLARY C. Let $M^{n+1}$ be a compact nonpositively curved manifold with boundary
whose second fundamental form $S$ is nonpositive. If $I_{b}>0$, then

$- \int_{SM}\sum_{i=1}^{k}\chi_{i}(v)d\omega\leq volS^{n}(1)\sqrt{nvol(M)}\sqrt{-(\int_{B}}$tr $SdB+ \frac{1}{n+1}\int_{M}$ Sc $dM)$

where $\chi_{i}(v)=\chi(v, \xi_{i})$ are the Lyapunov characteristic numbers for a normal basis
$\xi_{1},$

$\ldots,$
$\xi_{2n+1}$ in the sense of Oceledec ([18]) with $\chi_{i}(v)\leq\chi_{i+1}(v)$ and $\chi_{k}(v)\leq 0$ and

$\chi_{k+1}(v)>0$ , and the equality sign is true only if $M$ is a space of constant curvature and
the boundary is totally geodesic. If the dimension of $M\dot{i}$ two, then the inequality is
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altered to

$- \int_{SM}\chi(v)d\omega\leq 2\pi\sqrt{vol(M)}\sqrt{\sum_{i--1}^{n}\alpha_{i}-2\pi\chi(M)}$

where $\alpha_{i}$ are the outer angles at vertices $p_{1},$ $\ldots,p_{n}\in B$ .

Let $\lambda_{S}$ denote the maximal eigenvalue function of $S$ , i.e., $\lambda_{S}(q)$ is the maximal
eigenvalue of $S$ at $q\in B$ . Conceming the condition $(P_{2})$ we prove the following
theorem.

THEOREM D. If $M^{n+1}$ is compact, of nonpositive curvature and with boundary
isolated by conjugate points, then

$\int_{B}\lambda_{S}dB\geq\frac{vo1(B)^{2}}{(n+1)vo1(M)}$

and the equality sign is true only if $M$ is a spherical domain with flat metric of radius
$\lambda_{S}^{-1}$ , where $\lambda_{S}$ is constant.

If $M$ is a simply connected domain in the 2-dimensional Euclidean space $E^{2}$ , then
the right hand side is greater than or equal to $2\pi$ because of the isoperimetric inequality
(cf. [22]). Therefore, we get the following.

COROLLARY E. Suppose $M\subset E^{2}$ is simply connected and the sum of outer angles are
nonnegative. Then, $M$ is with boundary isolated by conjugate points only if $M$ is a
circular domain in $E^{2}$ .

M. Bialy ([3]) proved Corollary $E$ in the case that $M$ is a domain surrounded by a
smooth convex curve in $E^{2}$ under a certain condition which is equivalent to ours (see

Section 10), and he partially answers the Birkhoff conjecture conceming the integrability
of billiard ball maps. In Subsections 6.4 and 6.5 we give examples of domains with
boundary isolated by conjugate points other than circular domains. Corollary $E$ states
that smooth simple plane curves are convex scattering if and only if they are cir-
cles. Taking Example 6.4 into consideration we see in [14] and [15] some remarks on
the inequality in Theorem $D$ as a pinching sphere theorem of new type.

In Section 2 we provide some facts conceming Jacobi vector fields along reflecting
geodesics. In Section 3 we quote some comparison theorems for Jacobi vector fields
along reflecting geodesics and the existence of limit solutions without proof, because they
are proved in the same way as seen in [4]. In Section 4 we give the mirror equation
which is a key lemma for the proof of Theorem $D$ and make the relation between the
second fundamental form and the reflection endomorphism clear. In Section 5 we show
a local condition on the boundary which is necessary for nonconjugacy property. In
Section 6 some examples of systems without conjugate points and related to our
theorems will be given. In Section 7 we give the proof of Theorem A. In the proof we
are free from the discussion of summability of the traces of minimal symmetric solutions
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$U$ of Riccati equation along reflecting geodesics which correspond, roughly speaking, to
the second fundamental forms of horospheres. In Section 8 we prove Corollary $C$

under the assumption $I_{b}>0$ with which we establish the summability of tr $U$ . The
significance of Theorem $C$ is due to Pesin ([20], [21]), namely, he proved the negative
integral of the sum of negative Lyapunov characteristic numbers of the geodesic flows
on Riemannian manifolds without boundary and without conjugate points to be the
measure theoretic entropy with respect to the normalized Liouville measure. In Section
9 Theorem $D$ will be proved and we show in Section 10 that the property $(P_{2})$ on the
boundary here is equivalent to one as discrete dynamical systems which is seen in [3].

The integral inequalities due to L. Green ([6]) and Ossermann and Sarnak ([19]),
etc., can be proved even if the solutions of the differential equation of Jacobi type does
not arise in Riemannian manifold without boundary, but is defined over flows preserving
volume. From the point of view it is important to find such differential equations
because they are candidates on which we establish those integral inequalities. In [9],
[10], [11], [12] and [13] we see such examples. In the present paper we deal with billiard
ball systems as an application of the differential equation of Jacobi type.

This work was done while the author was an Alexander von Humboldt Research
Fellow at University Bonn. The author would like to express his hearty thanks to
Professor W. Ballmann for his hospitality and good suggestion, and also to Professor
V. Bangert in Freiburg for his timely discussion.

2. Variation vector fields.

Let $M$ be a Riemannian manifold with boundary $B\neq\emptyset$ and let $q\in B$ be a point at
which $B$ is differentiable. Let $\gamma$ : $[a, b]arrow M$ be a geodesic with $\gamma(t_{0})=q$ and making
the angle $\theta$ with the tangent space $T_{q}B$ to $B$ at $q$ . We write $X_{1}(t)=\dot{\gamma}(t)$ for $a\leq t$

$\leq t_{0}-0$ and $X_{2}(t)=\dot{\gamma}(t)$ for $t_{0}+0\leq t\leq b$ . We define a map $P_{i}$ : $X_{i}(t_{0})^{\perp}arrow T_{q}B$ by

$P_{i}(v)=v- \frac{\langle v,N\rangle}{\langle X_{i}(t_{0}),N\rangle}X_{i}(t_{0})$

for each $i=1,2$ , where $X_{i}^{\perp}=\{w\in T_{q}M|\langle w, X_{i}\rangle=0\}$ . Let $S$ be the second funda-
mental form with respect to the unit normal vector field $N$ of $B$ pointing inward which
satisfies by definition

$V_{Z}N=-S_{q}(Z)$

for any $Z\in T_{q}B$, where $S_{q}(Z)\in T_{q}B$ . We define a map

$A(X_{2}(t_{0}))(v)=2(\langle X_{2}(t_{0}), N\rangle(S\circ P_{2})(v)-\langle X_{2}(t_{0}), S\circ P_{2}(v)\rangle N)$

for any $v\in X_{2}(t_{0})^{\perp}$ . Then, $A(X_{2}(t_{0}))$ is symmetric. We shall see the reason why A is
defined in such a way as above.

Consider a variation $\varphi:[a, b]\cross(-\epsilon,\epsilon)arrow M$ such that $\varphi(t, 0)=\gamma(t)$ and $\varphi_{s}=\varphi(\cdot,s)$

is a geodesic for each $s$ and the parameters $t_{0}(s)$ at which the geodesics reflect is smooth
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for $s$ . Let 1 $(f)$ be the variation vector field for $a\leq t\leq t_{0}-0$ and $Y_{2}(t)$ for $t_{0}+0$

$\leq t\leq b$ . Then, we prove the following.

LEMMA 2.1.

(2.1) $V_{X_{i}}V_{X_{i}}Y_{i}+R(Y_{i}, X_{i})X_{i}=0$ ,

(2.2) $Q(Y_{1}(t_{0}))=Y_{2}(t_{0})$ ,

(2.3) $Q(V_{X_{1}}Y_{1}(t_{0}))-V_{X_{2}}Y_{2}(t_{0})=A(X_{2}(t_{0}))(Y_{2^{\perp}}(t_{0}))$ ,

where $R$ is the Riemannian curvature tensor and $Y_{2^{\perp}}is$ the component perpendicular to
$X_{2}$ . Further, if $\langle Y_{1}(a), X_{1}(a)\rangle=0$ , then

$X_{i}\perp Y_{i}$ for $i=1,2$ .

PROOF. (1): Since $\varphi$ is a variation through geodesics, $Y_{i}$ is a Jacobi vector field
along $\gamma$ , and, hence, satisfies (1).

(2): Differentiating both sides of $\varphi(t_{0}(s)-0, s)=\varphi(t_{0}(s)+0, s)$ at $s=0$ , we have

$t_{0}’(0)X_{1}(t_{0})+Y_{1}(t_{0})=t_{0}’(0)X_{2}(t_{0})+Y_{2}(t_{0})$ ,

and, hence,

$Y_{2}(t_{0})=Y_{1}(t_{0})+t_{0}’(0)(X_{1}(t_{0})-X_{2}(t_{0}))$

$=Y_{1}(t_{0})+2t_{0}’(0)\langle X_{1}(t_{0}), N\rangle N$ ,

since $\varphi_{s}$ are reflecting geodesics for all $s$ . We also have

$t_{0}’(0)=- \frac{\langle Y_{1}(t_{0}),N\rangle}{\langle X_{1}(t_{0}),N\rangle}$ ,

since $t_{0}’(0)X_{1}(t_{0})+Y_{1}(t_{0})\in T_{\gamma(t_{0})}B$ . Therefore, we get

$Y_{2}(t_{0})=Y_{1}(t_{0})-2\langle Y_{1}(t_{0}), N\rangle N=Q(Y_{1}(t_{0}))$ .

(3): Let $\psi$ : $[a, b]\cross(-\epsilon,\epsilon)arrow M$ be a reparametrization of $\varphi$ such that $\psi(\overline{t}(t, s),s)=$

$\varphi(t,s),\overline{t}(t_{0}(s), s)=t_{0}$ and $||\overline{X}_{1}(t_{0},s)||=||\overline{X}_{2}(t0,s)||$ where $\overline{X}_{i}(\overline{t},s)=(\partial\psi/\partial\overline{t})(\overline{t},s)$ for
$a\leq\overline{t}\leq t_{0}-0$ if $i=1$ and $t_{0}+0\leq\overline{t}\leq b$ if $i=2$ as before. Let $\overline{Y}_{i}(\overline{t},s)=(\partial\psi/\partial s)(\overline{t}, s)$

be the variation vector field for $i=1,2$ as before. Then, $\overline{Y}_{1}(t_{0}, s)=\overline{Y}_{2}$ (to, $s$) for all
$s$ . Since $X_{1}-X_{2}=2\langle X_{1}, N\rangle N$ at $\overline{t}=t_{0}$ , we see that

$(V_{\overline{X}_{2}}\overline{Y}_{2})(t_{0})=(V_{\overline{Y}_{2}}\overline{X}_{2})(t_{0})=V_{\overline{Y}_{1}}(\overline{X}_{1}-2\langle\overline{X}_{1},N\rangle N)$

$=Q(V_{\overline{X}_{1}}\overline{Y}_{1}(t_{0}))+2(\langle\overline{X}_{2}, S(\overline{Y}_{2})\rangle N-\langle\overline{X}_{2},N\rangle S(\overline{Y}_{2}))$ .

It should be noted that

$2(\langle\overline{X}_{2}, S(\overline{Y}_{2})\rangle N-\langle\overline{X}_{2}, N\rangle S(\overline{Y}_{2}))\in X_{2}(t_{0})^{\perp}$

and $\overline{X}_{i}$ can change to $X_{i}$ because of the linear property of $V$ . The image of $\varphi$ has
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dimension 2, so that

$Y_{i}^{\perp}:=Y_{i}-\langle Y_{i}, X_{i}\rangle X_{i}=\overline{Y}_{i}-\langle\overline{Y}_{i}, X_{i}\rangle X_{i}$

for $i=1,2$ . Since $\varphi$ is the variation through unit speed geodesics, we can see that
$\langle Y_{i}, X_{i}\rangle=const.$ , and, hence, $V_{X_{i}}Y_{i}=V_{X_{i}}Y_{i}^{\perp}$ . Moreover, we have

$V_{X_{2}}Y_{2^{\perp}}=V_{X_{2}}(\overline{Y}_{2}-\langle\overline{Y}_{2}, X_{2}\rangle X_{2})$

$=Q(V_{X_{1}}\overline{Y}_{1})+2(\langle X_{2}, S(\overline{Y}_{2})\rangle N-\langle X_{2},N\rangle S(\overline{Y}_{2}))-\langle Q(V_{X_{1}}\overline{Y}_{1}), X_{2}\rangle X_{2}$ .

Since $P_{2}(Y_{2}^{\perp}(t_{0}))=\overline{Y}_{2}(t_{0})$ and $Q(X_{1})=X_{2}$ , we see that

$V_{X_{2}}Y_{2}^{\perp}=Q(V_{X_{1}}Y_{1}^{\perp})-A(X_{2}(t_{0}))(Y_{2^{\perp}}(t_{0}))$

and, therefore, (2.3) is proved.
(4): Since $\varphi$ is a variation through unit speed geodesics, the length of each

geodesic is

$t-a= \int_{a}^{t}||X(t, s)||dt$

$= \int_{a}^{t_{0}(s)}||X_{1}(t, s)||dt+\int_{t_{0}(S)}^{t}||X_{2}(t, s)||dt$

for any $t\in[a, b]$ . Differentiating at $s=0$ , we have

$0=\langle Y_{1}(t), X_{1}(t)\rangle-\langle Y_{1}(a), X_{1}(a)\rangle$

if $a\leq t\leq t_{0}-0$ , and

$0=\langle Y_{1}(t_{0}), X_{1}(t_{0})\rangle-\langle Y_{1}(a), X_{1}(a)\rangle$

$+\langle Y_{2}(t), X_{2}(t)\rangle-\langle Y_{2}(t_{0}), X_{2}(t_{0})\rangle$

$+t_{0}’(0)(||X_{1}(t_{0})||-||X_{2}(t_{0})||)$

if $t_{0}+0\leq t\leq b$ . It holds from the first equation and the assumption
$\langle Y_{1}(a), X_{1}(a)\rangle=0$ that $\langle Y_{1}(t), X_{1}(t)\rangle=0$ for $a\leq t\leq t_{0}-0$ . Since $Y_{2}(t_{0})=Q(Y_{1}(t_{0}))$ ,
$X_{2}(t_{0})=Q(X_{1}(t_{0}))$ and $||X_{1}(t_{0})||=||X_{2}(t_{0})||=1$ , we also have that $\langle Y_{2}(t), X_{2}(t)\rangle=0$

for $t_{0}+0\leq t\leq b$ . This completes the proof of the lemma.
The property (2.3) is written with different expression in [24]. We can show many

properties for perpendicular Jacobi vector fields along a reflecting geodesic in the same
way as proved for ordinary ones.

3. Comparison theorems and limit solutions.

Let $\gamma$ : $(-\infty, \infty)arrow M$ be a geodesic with $\gamma(a_{i})\in B$ for $--<a_{-1}<a_{0}<$

$a_{1}<\cdots$ Let $e_{1},$
$\ldots,$

$e_{n+1}=\dot{\gamma}(0)$ be an orthonormal basis at $\gamma(0)$ and $e_{1}(t),$
$\ldots,$

$e_{n+1}(t)$

the parallel vector fields along $\gamma$ such that $e_{j}(0)=e_{j},$ $Q(e_{j}(a_{i}-0))=e_{j}(a_{i}+0)$ for
$j=1,$

$\ldots,$
$n+1$ . Let $R(t)$ be the matrix representation of $R(\cdot,\dot{\gamma}(t))\dot{\gamma}(t)$ with respect to
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the basis $\{e_{j}(t)\}$ and $A_{i}$ the one of $A(\dot{\gamma}(a_{i}+0))$ . If $Y(t)=\sum_{j=1}^{n}Y_{j}(t)e_{j}(t)$ is a per-
pendicular variation vector field through geodesics, then we see from Lemma 2.1 that

(3.1) $Y’’(t)+R(t)Y(t)=0$ for $t\neq a_{i}$ $(J_{R})$ ,

(3.2) $Y(t)$ is continuous,

(3.3) $Y’(a_{i}-0)-Y’(a_{i}+0)=A_{i}(Y(a_{i}))$ .

These properties motivate us to study the solutions of the differential equation (3.1) of
Jacobi type (called $(J_{R})$ ) satisfying the condition (3.2) and (3.3). In this paper we need
the following comparison theorems and the existence theorem of limit solutions. The
lemmas can be proved in the same way as the well-known theorems corresponding to
them, so we omit the proof. However, we note that in the course of the proof given in
[4] we should use the index form replaced for our case by

$I(Y, W)=- \sum_{i=1}^{k-1}\langle A_{i}(Y), W\rangle(a_{i})+\int_{a}^{b}(\langle Y’, W’\rangle-\langle RY, W\rangle)dt$

for piecewise smooth vector-valued functions $Y,$ $W$ on $[a, b]$ , where we assume that $Y,$ $Z$

are not differentiable possibly at $a<a_{1}<\cdots<a_{k-1}<b$ .

LEMMA 3.1. Let $R_{1}(t)$ and $R_{2}(t)$ be symmetric $(n, n)$ -matrix valued functions on
$[a, b]$ which are possibly discontinuous at $a<a_{1}<\cdots<a_{k-1}<b$ and let $A_{i}$ and $B_{i}$ be
symmetric $(n, n)$ -matrices for $i=1,$

$\ldots,$
$k-1$ . Suppose $R_{1}(t)\leq R_{2}(t)$ and $A_{i}\leq B_{i}$ for

any $t\in[a, b]$ and $i=1,$
$\ldots,$

$k-1$ . If $(J_{R_{2}})$ is without conjugate points on $[a, b]$ , then
so is $(J_{R_{1}})$ in $[a, b]$ .

LEMMA 3.2. Let $R_{1}(t)$ and $R_{2}(t)$ be symmetric $(n, n)$ -matrix valued functions on
$[a, b]$ which are possibly discontinuous at $a<a_{1}<\cdots<a_{k-1}<b$ and let $A_{i}$ and $B_{\iota}$ be
symmetric $(n, n)$ -matrices for $i=1,$

$\ldots,$
$k-1$ . Suppose $\langle R_{1}(t)x, x\rangle\leq\langle R_{2}(t)y,y\rangle$ and

$\langle A_{i}x, x\rangle\leq\langle B_{i}y,y\rangle$ for any $t\in[a, b],$ $i=1,$
$\ldots,$

$k-1$ and any $x,y\in R^{n}$ with $||x||=||y||$ .
Suppose $(J_{R_{2}})$ is without conjugate points on $[a, b]$ . If $Y_{1}(t)$ and $Y_{2}(t)$ are solutions of
$(J_{R_{1}})$ and $(J_{R_{2}})$ satisfying the above conditions (3.2) and (3.3) with $Y_{1}(a)=Y_{2}(a)=0$ ,
$||Y_{1}’(a)||=||Y_{2}’(a)||$ , respectively, then I $Y_{1}(t)||\geq||Y_{2}(t)||$ for any $t\in[a, b]$ .

We consider $(J_{R})$ the $(n, n)$ -matrix valued equation. Let $D_{s}(t)$ be the solution of
$(J_{R})$ satisfying (3.2) and (3.3) with $D_{s}(s)=0$ and $D_{s}’(s)=I$ , and set $U_{s}(t)=$

$D_{s}’(t)D_{s}(t)^{-1}$ in the interval $t\in I$ with $\det D_{s}(t)\neq 0$ for each $s$ . By using $U_{s}$ as usual we
can prove the following.

LEMMA 3.3 (The conjugate points separation property). Suppose $(J_{R})$ is considered
in the interval $[a, b]$ and $t_{1}$ is conjugate to $t_{0}$ . Then, any $t\not\in[t_{0}, t_{1}]$ has an $s$ in $(t_{0}, t_{1})$

which is conjugate to $t$ .

LEMMA 3.4. If $(J_{R})$ is without conjugate points on $(-\infty, \infty)$ , then $U(t)=$

$\lim_{sarrow\infty}U_{s}(t)$ exists and satisfies that
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(3.4) $U’(t)+U(t)^{2}+R(t)=0$ for $t\neq a_{i}$ ,

(3.5) $U(a_{i}-0)-U(a_{i}+0)=A_{i}$ ,

$U(t)$ is the minimal symmetric matrix-valuedfunction satisfying (3.4) and (3.5) defined on
$(-\infty, \infty),$ $i.e.$ , if a symmetric matrix-valued function $V(t)$ defined on $(-\infty, \infty)$ satisfies
(3.4) and (3.5), then $U(t)\leq V(t)$ for any $t\in(-\infty, \infty)$ .

4. The mirror equation.

In this section we prove the mirror equation and make the relation of $S$ and $A$

clear. As before, let $\lambda_{S}$ and $\lambda_{A(X)}$ be functions given by the maximal eigenvalues of $S$

and $A(X)$ , respectively, at any point.

LEMMA 4.1 (The mirror equation). Let $B$ be a hypersurface in Euclidean space $E^{n+1}$

and $q\in B$ . Let $\gamma$ : $[0, t_{0}]arrow E^{n+1}$ be a geodesic reflecting at only one point $\gamma(a)=q$ with
$X:=\dot{\gamma}(a+0)$ such that the angle between $a(a)$ and $T_{q}B$ is $\theta$ and $\gamma(t_{0})$ is the first
conjugate point to $\gamma(0)$ along $\gamma$ . Let $b=t_{0}-a$ . Then,

$\frac{2\lambda_{S}}{\sin\theta}\geq\lambda_{A(X)}=\frac{1}{a}+\frac{1}{b}$ .

The equality sign is true in the first inequality if and only if there are the eigenvectors of
$A(X)$ and $S$ with eigenvalues $\lambda_{A(X)}$ and $\lambda_{S}$ in the subspace spanned by $\{N, X\}$ . In
particular, the equality sign is always true if $n=1$ .

PROOF. Let $P(w)=w-(\langle w, N\rangle/\langle X, N\rangle)X$ for any $w\in X^{\perp}$ . Then,

$\langle A(X)(w), w\rangle=2\langle X, N\rangle\langle S\circ P(w), P(w)\rangle$

$\leq\frac{2}{\sin\theta}||w||^{2}\langle S(\frac{P(w)}{||P(w)||}),\frac{P(w)}{||P(w)||}\rangle$

for any $w\in\chi\perp$ since

$||P(w)|| \leq\frac{1}{\sin\theta}||w||$ .

This proves the first inequality. In $E^{n+1}$ the matrix Jacobi field $D$ along $\gamma$ with
$D(O)=0$ and $D’(0)=I$ is written

$D(t)=(t-a)(I-aA(X))+aI$

for $t\in[a, t_{0}]$ . Hence, $D(t)$ is symmetric, and $D(t_{0})\geq 0$ since $\gamma(t_{0})$ is the first conjugate
point to $\gamma(0)$ . We see that

$A(X) \leq(\frac{1}{a}+\frac{1}{b})I$
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and
$\lambda_{A(X)}=\frac{1}{a}+\frac{1}{b}$ .

This completes the proof.
We use the following lemma in the next section which is a straightforward

modification of Lemma 4.1.

LEMMA 4.2. If the Euclidean space is replaced by the hyperbolic space $H(-k^{2})$ of
constant curvature $-k^{2}(k>0)$ in Lemma 4.1, then the $a$ and $b$ in Lemma 4.1 change to
$(1/k)\tanh ka$ and $(1/k)\tanh kb$ , respectively.

We conclude this section by showing the relation between $S_{q}$ and $A(X)$ .

LEMMA 4.3. The following are true.
(4.1) If the dimension of $M$ is two, then $A(X)=2\kappa/\sin\theta$, where $\kappa$ is the geodesic

curvature of $B$ at $q$ .

(4.2) $S_{q}=0$ if and only if $A(X)=0$ .

(4.3) If $S_{q}\leq 0$ , then $A(X)\leq 0$ and tr $A(X)\geq(2/\sin\theta)$ tr $S_{q}$ .

(4.4) If $S_{q}\geq 0$ , then $A(X)\geq 0$ and tr $A(X)\leq(2/\sin\theta)$ tr $S_{q}$ .

(4.5) If $S_{q}=\lambda I$ , then tr $A(X)=(2\lambda/\sin\theta)(1+(n-1)\sin^{2}\theta)$ .

Here tr $S$ is by definition the trace of $S$ .

PROOF. Let $w_{1},$
$w_{2}\in X^{\perp}$ . We have that

$\langle A(X)(w_{1}), w_{2}\rangle=2\langle X, N\rangle\langle S\circ P(w_{1}), P(w_{2})\rangle$

Since $P$ is surjective, the statement (4.2) and the first parts of (4.3) and (4.4) are clear.
In order to prove others we extend $S,$ $A(X)$ and $P$ linearly on $T_{q}M$ by putting

$S(N)=0,$ $A(X)(X)=0$ and $P(X)=0$ . The traces of $S$ and $A(X)$ do not change.
Take an orthonormal basis $\{e_{k}\}$ such that $e_{1},$

$\ldots,$
$e_{n}\in T_{q}B$ are eigenvectors of $S$ with

eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{n}$ , respectively, and $e_{n+1}=N$ . Then, we get

tr $A(X)= \sum_{k=1}^{n+1}\langle A(X)(e_{k}), e_{k}\rangle=2\langle X, N\rangle\sum_{k=1}^{n+1}\langle S\circ P(e_{k}), P(e_{k})\rangle$

$=2 \langle X, N\rangle\{\sum_{k=1}^{n}\langle S(e_{k}), e_{k}\rangle-\frac{1}{\langle X,N\rangle}\langle S(X),$ $N- \frac{X}{\langle X,N\rangle}\rangle\}$

$=2 \sin\theta\{\sum_{k=1}^{n}\lambda_{k}+\frac{1}{\sin^{2}\theta}\langle S(X), X\rangle\}$ .

Since $S(X)= \sum_{k=1}^{n}\lambda_{k}\langle X, e_{k}\rangle e_{k}$ , we have that

tr $A(X)= \frac{2}{\sin\theta}\sum_{k=1}^{n}\lambda_{k}(\sin^{2}\theta+\langle X, e_{k}\rangle^{2})$ .
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Since $\sin\theta=\langle X, e_{n+1}\rangle$ , we see that $\sin^{2}\theta+\langle X, e_{k}\rangle^{2}\leq 1$ for each $k$ , and equality is true
if $n=1$ . This completes the proof of (4.1), and

tr $A(X) \geq\frac{2}{\sin\theta}$ tr $S$ if $S\leq 0$ ,

tr $A(X) \leq\frac{2}{\sin\theta}$ tr $S$ if $S\geq 0$ ,

and

tr $A(X)= \frac{2\lambda}{\sin\theta}(1+(n-1)\sin^{2}\theta)$ if $S=\lambda I$ .

5. Conjugacy property near the boundary.

This section is devoted to the proof of the following theorem which gives locally a
necessary condition for nonconjugacy property.

THEOREM 5.1. If $\lambda_{S}>0$ at some point $q$ of the boundary, then there is a geodesic
reflecting at $q$ with conjugate points.

PROOF. Let $w\in T_{q}B$ be a unit eigenvector of $S$ with eigenvalue $\lambda_{S}(q)>0$ and
$W\subset T_{q}B$ the subspace spanned by $N(q)$ and $w$ . Let $Z=\exp_{q}W$ , namely $Z$ is a
surface given by geodesics emanating from $q$ and tangent to $W$ at $q$ , and let $s$ be the
distance from $q$ to the point $q(s)$ in $Z\cap B$ . We first estimate the length of geodesics
reflecting at $q$ as $sarrow 0$ , and secondly show the existence of conjugate points on those
geodesic arcs.

Let $\theta(s)$ be the angle between the geodesic from $q(s)$ to $q$ and $w$ . Then, the
geodesic curvature of the curve $Z\cap B$ is $\lambda_{S}(q)$ at $q$ and

$\lim_{sarrow 0}\frac{\theta(s)}{s}=\frac{\lambda_{S}(q)}{2}$ .

From this we see that any geodesic reflecting at $q$ from $q(s)$ is defined on $[0,3s/2]$ if $s$ is
sufficiently small positive. In order to prove this we define $s_{1}=s_{1}(s)$ so that $\theta(s_{1})=$

$\theta(s)$ . If $s_{1}arrow 0$ (as $sarrow 0$ ) is not true, we have nothing to prove. Otherwise,

$\lim_{sarrow 0}\frac{s_{1}(s)}{s}=\lim_{sarrow 0}\frac{\theta(s)}{s}\frac{s_{1}}{\theta(s_{1})}=1$ .

Hence, $s_{1}(s)=s+o(s)$ . Thus, the upper bound of the interval of reflecting geodesics is
$2s$ as $sarrow 0$ .

Suppose the sectional curvature of $M$ around $q\in B$ is greater than $-k^{2}$

$(k>0)$ . Take a hypersurface $\overline{B}$ in the space form $H(-k^{2})$ of sectional curvature $-k^{2}$

such that $\overline{q}\in\overline{B}$ and $S_{\overline{q}}=S_{q}$ . Let $\overline{w}$ be the unit eigenvector of $S_{\overline{q}}$ with eigenvalue
$\lambda_{S}(q)$ . For the geodesic $\gamma$ from $q(s)$ to $q$ we take the geodesic $\overline{\gamma}$ in $H(-k^{2})$ such that
$\overline{\gamma}(s)=\overline{q},$ $\overline{\gamma}(s)$ belongs to the linear span $\{\overline{N}(\overline{q}),\overline{w}\}$ and $\langle\overline{\gamma}(s),\overline{w}\rangle=\langle\dot{\gamma}(s), w\rangle=$
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$\cos\theta(s)$ . The time comparison theorem (Lemma 3.1) states that the time of the first
conjugate point $t$ along $\overline{\gamma}$ is not less than the one along $\gamma$ . Hence we have only to show
that the first conjugate point to 7(0) along 7 appears within $[0,3s/2]$ . The equation with
unknown variable $t$ is from Lemma 4.2

$\frac{2\lambda_{S}(q)}{\sin\theta(s)}=k(\coth ks+\coth k(t-s))$ .

There is a solution of this equation in $[0,3s/2]$ . This completes the proof.
A simple application of the theorem is the following.

COROLLARY 5.2. Let $M$ be a complete manifold with boundary $B\neq\emptyset$ . If $M$ is
without conjugate points, then the second fundamental form $S$ of $M$ is nonpositive.

6. Examples.

In this section we give some examples of geodesics without conjugate points,
domains without conjugate points and with boundary isolated by conjugate points.

6.1. Let $M$ be a compact simply connected domain with boundary $B\neq\emptyset$ in the 2-
dimensional hyperbolic space form $H(-1)$ and let $\gamma$ : $[0, l]arrow M$ be a geodesic segment
whose endpoints are on $B$ and which are perpendicular to $B$ . Extend $\gamma$ as a reflecting
geodesic defined on $(-\infty, \infty)$ . If the geodesic curvatures $\kappa$ of $B$ at the intersection
points satisfy that $0<\kappa<(1/2)\tanh l$, then the geodesic $\gamma$ defined on $(-\infty, \infty)$ is
without conjugate points.

6.2. Let $M$ be a domain in the unit 2-sphere satisfying the following con-
ditions: (1) the diameter $d$ is less than $\pi/2$ . (2) $B$ is the union of arcs of circles with
center points outside of $M$ and radii $r$ with $\cot r>(1/2)\tan d$ . The condition (1)

implies that all geodesic segments in the interior are minimizing. And, (2) implies that
the geodesic curvature of boundary curves satisfies $\kappa=-\cot r$ , i.e., $-\kappa>(1/2)\tan d$ . It
follows from these properties that all geodesics in $M$ are without conjugate points.

6.3. Let $M$ be a complete Riemannian manifold of nonpositive curvature with
boundary $B\neq\emptyset$ whose second fundamental form is nonpositive. Then, $M$ is without
conjugate points. This follows from Lemma 3.1 or 3.2.

The following examples are for “boundary isolated by conjugate points”.

6.4. Let $M$ be a complete flat manifold which is the union of balls. Then, $M$ is
with boundary isolated by conjugate points. If $v$ is a point in $SM$ with $\pi(v)$ belonging
to a sphere of radius $r$ , then $\alpha(v)=\beta(v)=r\sin\theta(v)$ where $\theta(v)$ is the angle between $v$

and the tangent space to the boundary at $\pi(v)$ . It should be noted that $\alpha(v)$ is half the
length of chord. The mirror equation (Lemma 4.1) implies that $\gamma_{v}(\alpha(v))$ is the con-
jugate point to $\gamma_{v}(-\beta(v))$ . We have to prove that $T(v)\geq\alpha(v)+\beta(F(v))$ . Suppose
for indirect proof that $T(v)<\alpha(v)+\beta(F(v))$ . Then, $\alpha(v)>(T(v)/2)$ or $\beta(F(v))>$
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$(T(v)/2)$ . If the former is true, then $\gamma_{v}(T(v))$ is not in the boundary of $M$ , a con-
tradiction. By the same reason the latter does not happen.

6.5. In [23] we see the definition of “convex scattering”. We say that a smooth
curve $\Gamma$ in the Euclidean plane $E^{2}$ is convex scattering if for every segment
$[\Gamma(s_{0}), \Gamma(s_{1})],$ $\Gamma(s_{0})\neq\Gamma(s_{1})$ , such that the arc of $\Gamma$ between $\Gamma(s_{0})$ and $\Gamma(s_{1})$ lies entirely
on one side of the straight line passing through $\Gamma(s_{0})$ and $\Gamma(s_{1})$ , we have that

$D_{2}(s_{0})\cap D_{2}(s_{1})\cap[\Gamma(s_{0}), \Gamma(s_{1})]$

contains at most one point, where $D_{2}(s)$ is the closed disk tangent to $\Gamma$ at $\Gamma(s)$ with
radius half the radius of curvature and lying on the same side of $\Gamma$ as the circle of
curvature. M. Wojtkowski ([23]) gives some examples of curves isolated by conjugate
points as the union of convex scattering curves. He designs those examples to show the
existence of curves in which almost all trajectories of geodesic flow have nonvanishing
Lyapunov characteristic numbers.

7. Proof of Theorem A.

In this section we give the proof of Theorem A. Put $SM_{0}=\{v\in SM|\gamma_{v}(t)\not\in B$

for any $t\in(-\infty, \infty)\}$ and $SM_{1}=SM-SM_{0}$ . Let $\Omega$ be the set of all uniformly
recurrent vectors (see [2] for the definition). It is noticed that $SM_{0},$ $SM_{1},$ $\Omega$ are

$f^{t}$-invariant. By the same argument as in [6], we get

$\int_{SM_{0}}Ricd\omega\leq 0$

and the equality sign is true only if $R(\cdot, v)v=0$ for any $v\in SM_{0}$ , where $Ric$ denotes the
Ricci curvature.

Let $v\in\Omega\cap SM_{1}$ . Then, there exists the sequence $\{t_{j}\}$ such that $t_{j}arrow\pm\infty$ and
$\gamma_{v}(t_{j})\in B$ . The special flow $g^{t}$ of $\bigcup_{w\in\partial SM}\{w\}\cross[0,$ $T(w))$ is measure theoretically
isometric to the geodesic fiow of $\Omega\cap SM_{1}$ with the Liouville volume dru $=\sin\theta dBd\Theta dt$

at $v\in\Omega\cap SM_{1}$ , where $\theta$ is the angle between $\gamma_{v}$ and $B$ at the last time $t_{0}\leq 0$ with
$\gamma(t_{0})\in B,$ $d\Theta$ is the natural volume form of the unit sphere with dimension $n$ and $dt$ is
the dual to the vector field tangential to the flow. Put

$G(w)= \int_{0}^{T(w)}$ tr $R(\cdot,f^{t}w)f^{t}wdt$

for any $w\in\partial SM\cap\Omega$ . By Lemma 3.4, we get

tr $U(f^{T(w)-0}w)$ –tr $U(w)+ \int_{0}^{T(w)}$ tr $U(f^{t}w)^{2}dt+G(w)=0$

for any $w\in\partial SM\cap\Omega$ , and, hence,

tr $A(F(w))+ trU(F(w))-trU(w)+\int_{0}^{T(w)}$ tr $U(f^{t}w)^{2}dt+G(w)=0$ .
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By the same way as above for $F(w),$
$\ldots,$

$F^{n}(w),n=1,2,$ $\ldots$ , we have

$\sum_{i=1}^{n}$ tr $A(F^{i}(w))+trU(F^{n}(w))$ –tr $U(w)+ \int_{0}^{T^{n}(w)}$ tr $U(f^{t}w)^{2}dt+ \sum_{i=1}^{n-1}G(F^{i}(w))=0$

for every $n=1,2,$ $\ldots$ , where $T^{n}(w)=T(w)+\cdots+T(F^{n-1}(w))$ . By Corollary 5.2 and
Lemma 4.3, it follows that

$\sum_{i=1}^{n}\frac{2}{\sin\theta(F^{i}(w))}$ tr $S(\gamma_{w}(T^{i}(w)))+trU(F^{n}(w))-trU(w)$

$+ \int_{0}^{T^{n}(w)}$ tr $U(f^{t}w)^{2}dt+ \sum_{i=1}^{n-1}G(F^{i}(w))\leq 0$ .

We know that $(2/\sin\theta)trS$ and $G$ are summable on the set $\partial SM$ with respect to the
measure $d\omega_{1}=\sin\theta dBd\Theta$ which is $F$-invariant (cf. [5]). Since $w$ is a recurrent vector,
there exists a subsequence $\{m\}$ of $\{n\}$ such that $F^{m}(w)arrow w$ as $marrow\infty$ . We can see
that $U$ is locally bounded because of the construction, and, hence,

$\frac{1}{m}$ tr $U(F^{m}(w))arrow 0$ and $\frac{1}{m}$ tr $U(w)arrow 0$

as $marrow 0$ . Consequently, by the Birkhoff ergodic theorem (cf. [1], [5]), we get

( $\frac{2}{\sin\theta}$ tr $S$) $(w)+G^{*}(w)\leq 0$

for almost all $w\in\partial SM$ , where $H^{*}(w)= \lim_{narrow\infty}(1/n)\sum_{i=1}^{n-1}H(F^{i}(w))$ for any integrable
function $H$ on $\partial SM$ . Integrate the inequality on $\partial SM$ , and we have

$\int_{\partial SM}\frac{2}{\sin\theta}$ tr $S \sin\theta dBd\Theta+\int_{\partial SM}G(w)\sin\theta dBd\Theta\leq 0$ ,

and, hence, combining it with the integral over $SM_{0}$ ,

$vol(S^{n}(1))\int_{B}$ tr $SdB+ \frac{vol(S^{n}(1))}{n+1}\int_{M}$ Sc $dM\leq 0$ ,

where $vol(S^{n}(1))$ is the volume of the unit sphere with dimension $n$ . Then, we complete
the proof of the inequality.

Suppose the equality sign is true. Then, for almost all $w\in\partial SM$ there exists a
sequence $\{m\}$ such that

$\lim_{marrow\infty}\frac{1}{m}\int_{0}^{T^{m}(w)}$ tr $U(f^{t}w)^{2}dt=0$ ,

and $F^{m}(w)arrow w$ as $marrow\infty$ . From this we can take a sequence $\{k\}$ of $\{m\}$ such that

$\int_{T^{k}(w)}^{T^{k+l}(w)}$ tr $U(f^{t}w)^{2}dtarrow 0$ as $karrow\infty$ (cf. [8])
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and, hence, tr $U(f^{t}F^{k}(w))arrow 0$ as $karrow\infty$ for almost all $t,$ $0\leq t\leq T^{k+1}(w)-T^{k}(w)=$

$T(F^{k-1}(w))$ . Since

tr $U(f^{a}w)- trU(f^{b}w)+\int_{b}^{a}$ tr $U(f^{t}w)^{2}dt+ \int_{b}^{a}Ric(f^{t}w)dt=0$

for any $a,$
$b$ with $T^{k}(w)\leq b<a\leq T^{k+1}(w)$ , we can see that $Ric(f^{t}w)=0$ for any

$t,$ $0\leq t\leq T(w)$ , because $Ric$ is continuous although we do not know whether so is tr $U$

or not. Hence, the integral of the scalar curvature over $M$ is zero, and the boundary
consists of totally geodesic hypersurfaces because $S\leq 0$ . Again, integrating the Riccati
equation, we can show that $U(v)=0$ for all $v\in SM$ . This implies that the sectional
curvature is zero identically. This completes the proof.

8. Proof of Corollary C.

AS before, $M$ denotes a manifold with boundary $B\neq\emptyset$ . We need three lemmas for
the proof of Corollary C.

LEMMA 8.1. Let $M^{n+1}$ be a compact mamfold with $B\neq\emptyset$ . Suppose $M$ is without
conjugate points. If $I_{b}>0$ , then tr $U$ and tr $U^{2}$ are summable on $SM$, where $U\dot{i}$ the
minimal symmetric solution of the Riccati equation along $\gamma_{v},$ $v\in SM$ , as seen in Lemma 3.3.

PROOF. First of all we notice that $S\leq 0$ because of Corollary 5.2. We use the
notation $SM_{0}$ and $SM_{1}$ as in Section 7. Since $I_{b}>0$ , we can have a positive $\epsilon$ such
that $T(v)>2\epsilon$ for any $v\in\partial SM$ with $\pi(v)\in E$ . It follows from this that there exists a
positive $a>0$ depending on $\epsilon$ and the sectional curvature of $M$ such that

$U(f^{T(v)+0}v)\geq-aI$ and $U(f^{T(v)-0}v)\leq aI$ .

By Lemmas 3.4 and 4.3, we see

$-na\leq trU(f^{T(v)+0}v)\leq na+|trA(f^{T(v)+0}v)|$

$\leq na-\frac{2}{\sin\theta}$ tr $S$ .

This implies that tr $U$ is summable on $\partial SM$ with respect to $dco_{1}=\sin\theta dBd\Theta$ . Since $U$

satisfies the Riccati equation, we get

tr $U(f^{T(v)-0}v)- trU(v)+\int_{0}^{T(v)}$ tr $U(f^{t}v)^{2}dt+ \int_{0}^{T(v)}Ric(f^{t}v)dt=0$

for any $v\in\partial SM$ , and, hence,

tr $A(F(v))+ trU(F(v))-trU(v)+\int_{0}^{T(v)}Ric(f^{t}v)dt=-\int_{0}^{T(v)}$ tr $U(f^{t}v)^{2}dt$

Since $0\geq trA\geq(2/\sin\theta)$ tr $S$ , the left hand side is summable on $\partial SM$ . Hence,
tr $U^{2}$ is summable on $SM_{1}$ . The summability of tr $U^{2}$ on $SM_{0}$ is proved similarly.
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Therefore, tr $U^{2}$ is summable on $SM$ . Since the measure of $SM$ is finite, tr $U$ is
summable on $SM$ also. This completes the proof.

From the lemma the solutions of the differential equation $D’=UD$ with initial
condition $D(O, v)=I$ define a multiplicative cocycle satisfying the condition given in
[18]. Therefore, we can use the Oceledec multiplicative ergodic theorem for the
multiplicative cocycle $D(t, v)$ .

LEMMA 8.2. $(1/t)$ tr $U(f^{t}v)^{2}arrow 0$ as $tarrow\infty$ for almost all $v\in\partial SM$ .

PROOF. This follows from the facts that for any $\epsilon>0$ ,

$\omega(\{v\in SM|trU(f^{t}v)^{2}>t\epsilon\})=\omega(\{v\in SM|trU(v)^{2}>t\epsilon\})$

is monotone nonincreasing for $t$ and

$\int_{0}^{\infty}\omega(\{v\in SM|trU(v)^{2}>t\epsilon\})dt=\frac{1}{\epsilon}\int_{SM}$ tr $U^{2}$ dru.

This completes the proof.
Let $Y(t)$ be a perpendicular Jacobi vector field along $\gamma_{v}$ satisfying $(2.1)-(2.3)$ such

that $Y’(t)=U(f^{t}v)Y(t)$ . Then, we can find a unique $\xi\in T_{v}T_{1}M$ such that $Y(t)=$

$\pi_{*}f_{*}^{t}\xi$ . We write it $Y_{\xi}(t)$ .

LEMMA 8.3. For almost $v\in SM$ the following are true. If $Y_{\xi}(t)=\pi_{*}f_{*}^{t}\xi$ is given as
above, then we see that

$\lim_{tarrow}\sup_{\infty}\frac{1}{t}\log||f_{*}^{t}\xi||=\lim_{tarrow}\sup_{\infty}\frac{1}{t}\log||Y_{\xi}(t)||$

and

$\lim_{tarrow}\inf_{\infty}\frac{1}{t}\log||f_{*}^{t}\xi||=\lim_{tarrow}\inf_{\infty}\frac{1}{t}\log||Y_{\xi}(t)||$ .

PROOF. Notice that $\langle UY_{\xi}, UY_{\xi}\rangle\leq trU^{2}\langle Y_{\xi}, \xi\rangle$ . Since we use the natural metric
on $T_{1}M$ for the estimates and

$|IY_{\xi}(t)||^{2}\leq||f_{*}^{t}\xi||^{2}=$ I $Y_{\xi}(t)||^{2}+||Y_{\xi}’(t)||^{2}$ .

we have

$\frac{1}{t}\log||Y_{\xi}(t)||\leq\frac{1}{t}\log||f_{*}^{t}\xi||\leq\frac{1}{2t}$ (tr $U(f^{t}v)^{2}+1$ ) $+ \frac{1}{t}\log||Y_{\xi}(t)||$ .

The statement follows from Lemma 8.2.

PROOF OF COROLLARY C. From Lemma 8.3 and Lemma 3.4 we see that $Y_{\xi}(t)$ is
constructed as above if $\chi(v, \xi)<0$ . It follows from the Oceledec multiplicative ergodic
theorem ([18]) that $\chi(v, \xi):=\lim\sup_{tarrow\infty}(1/t)\log||f_{*}^{t}\xi||=\lim_{tarrow\infty}(1/t)\log||f_{*}^{t}\xi||$ for
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almost all $v\in SM$ , and

$- \sum_{i=1}^{k}\chi(v, \xi_{i})=-\sum_{i=1}^{n}\chi(v, \xi_{i})=-\lim_{tarrow\infty}\frac{1}{t}\log|\det D(t, v)|$

$=- \lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}$ tr $U(f^{t}v)dt$

for a subset $\xi_{1},$

$\ldots,$
$\xi_{k}$ of a normal basis. By estimating the integral of tr $U^{2}$ as in the

proof of Theorem $A$ , we have

$- \int_{SM}\sum_{i=1}^{k}\chi_{i}(v)$ dto $=- \int_{SM}$ tr $U$ dto $\leq(nvol(SM))^{1/2}(\int_{SM}$ tr $U^{2}d\omega)^{1/2}$

$\leq(nvol(SM))^{1/2}(volS^{n}(1))^{1/2}(-(\int_{B}$ tr $SdB+ \frac{1}{n+1}\int_{M}$ Sc $dM))^{1/2}$

If the equality sign is true, then $U=aI$ for some constant $a$ . Thus, $A=0$ and
$R(\cdot, f^{t}v)f^{t}v=-a^{2}I$ . This implies that $M$ is a space of constant curvature and the
boundary is totally geodesic. This completes the proof.

9. Proof of Theorem D.

In this section we prove Theorem D. We first of all notice that $\lambda_{S}>0$ because of
Lemma 4.1. Let $\Omega$ be the set of all recurrent vectors in $\partial SM$ and let $v\in\Omega$ with
$\pi(v)=p$ . We take a small hypersurface $H$ in $E^{n+1}$ such that $\overline{p}\in H$ and the second
fundamental form $\overline{S}$ of $H$ at $\overline{p}$ is $S_{p}$ under some identification by isometry $\Phi$ from $T_{p}M$

to $T_{\overline{p}}E^{n+1}$ . Let $\gamma$ : $(-\infty, \infty)arrow E^{n+1}$ be a geodesic reflecting at only one point $\overline{p}=\gamma(0)$

such that $\dot{\gamma}(+0)=\Phi(v)$ . If $\gamma(a)$ is the first conjugate point to $\gamma(-\beta(v))$ , then it follows
from Lemma 4.1 that

$\frac{2\lambda_{S}(\pi(v))}{\sin\theta(v)}\geq\frac{1}{a}+\frac{1}{\beta(v)}\geq\frac{4}{a+\beta(v)}$

and, hence, by Lemma 3.1, we have that

$\frac{\sin\theta(v)}{\lambda_{S}(\pi(v))}\leq\frac{a+\beta(v)}{2}\leq\frac{\alpha(v)+\beta(v)}{2}$

from any $v\in\Omega$ . Integrate it as follows:

$\int_{0\leq\theta\leq\pi/2}\sin^{2}\theta d\Theta\int\frac{1}{\lambda_{S}}dB=\int_{\partial SM}\frac{\sin\theta}{\lambda_{S}}d\omega_{1}$

$\leq\int_{\partial SM}\frac{\alpha(v)+\beta(v)}{2}d\omega_{1}=\int_{\partial SM}\frac{\alpha(v)+\beta(F(v))}{2}d\omega_{1}$

$\leq\int_{\partial}M^{\frac{T}{2}d\omega_{1}}\leq\frac{1}{2}\int_{SM}d\omega=\frac{1}{2}vol(S^{n}(1))vol(M)$ .
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On one hand, we have

$vol(B)^{2}=(\int_{B}dB)^{2}\leq\int_{B}\frac{1}{\lambda_{S}}dB\int_{B}\lambda_{S}dB$

and

$\int_{S^{n}(1)}\sin^{2}\theta d\Theta=\frac{1}{n+1}volS^{n}(1)$ .

Therefore, we get

$\int_{B}\lambda_{S}dB\geq\frac{vo1(B)^{2}}{(n+1)vo1(M)}$

Assume that the equality sign is true. It follows that $\lambda_{S}$ is constant, say $1/r$ . By
Lemma 4.1, one of eigenvectors of $S$ with eigenvalue $1/r$ is in the subspace spanned by
$\{N, v\}$ for $\pi(v)=p$ at which $B$ is smooth. Since $v$ moves in $T_{p}M$ , the boundary is
totally umbilical. Furthermore, $\alpha(v)=\beta(v)$ , and, hence, $\alpha(v)=r\sin\theta(v)$ if $v$ and $T_{p}B$

make the angle $\theta(v)$ . In addition, $T(v)=\alpha(v)+\beta(F(v))$ for almost all $v\in\partial SM$ .
From these facts we have to conclude that $M$ is a spherical domain with flat metric.
Let $p\in B$ be a point at which $B$ is smooth and $W$ a neighborhood of $p$ where $B$

is smooth. Let $\varphi(q, t)=\exp_{q}tN(q)$ for $q\in W$ . Then, $\varphi(W, [0, r])\subset M$ since $r=$

$\alpha(N(q))<T(N(q))$ . Since conjugate points are continuous at $N(q)$ , we see that
$\varphi(W, r)$ is a single point $p_{0}$ which is the focal point of $W$ . The comparison theorem of
geodesic spheres implies that $\varphi(W, [0, t])$ is a flat cone sector. Suppose for indirect
proof that $B$ is not a sphere, namely the union of pieces of spheres $K_{1},$ $K_{2},$

$\ldots$ ,
$K_{m},$

$\ldots,$
$IntK_{i}\cap$ Int $K_{j}=\emptyset$ where $IntK_{i}$ is the interior of $K_{i}$ as a submanifold. First we

observe that $\varphi(IntK_{i}, [0, r])\cap\varphi(IntK_{j}, [0, r])=\emptyset$ if $K_{i}\cap K_{j}\neq\emptyset$ . In fact, otherwise, we
get a contradiction to $T(v)=\alpha(v)+\beta(F(v))$ . Hence, we can find out a $v\in\partial SM$ such
that $\pi(v)\in IntK_{1},$ $\pi(F(v))\in IntK_{j},$ $j\neq 1$ and $\gamma_{v}$ passes through $\partial K_{1}$ (the boundary of
$K_{1}$ as a submanifold). If $\theta$ is the angle between $v$ and $K_{1}$ , then $\alpha(v)=r\sin\theta$ and
$\beta(F(v))<T(v)-2r\sin\theta$ . Therefore, we can find a $w\in\partial SM$ near $v$ such that
$T(w)>\alpha(v)+\beta(F(v))$ , a contradiction. This completes the proof.

10. Nonconjugacy hypothesis as discrete dynamical systems.

The definition of nonconjugacy property in the study of billiards is given as discrete
dynamical systems ([3]). In this section we show its equivalence to ours. The tangent
space $T_{v}T_{1}M$ is identified with $T_{p}M\oplus v^{\perp}$ by the map $\xiarrow(\pi_{*}\xi, K(\xi))$ where $p\in\pi(v),$ $v^{\perp}$

is the subspace of $T_{p}M$ orthogonal to $v$ and $K$ is the connection map. Let $c(s)$ be a
curve in $\partial SM$ with $c(O)=v,\dot{c}(0)=\xi=(\xi_{1}, \xi_{2})$ . Then,

$F^{n}(C(s))=f^{T^{n}(c(s))-0_{C(s)-2\langle f^{T^{n}(c(s))-0_{C(s),N\rangle N}}}}$ .

Differentiate it at $s=0$ , and we get

$F_{*}^{n}\xi=(Y_{\xi}^{\perp}(T^{n}(v)-0)+\langle\pi_{*}F_{*}^{n}\xi,f^{T^{n}(v)-0}v\rangle f^{T^{n}(v)-0_{v,V_{F^{n}(v)}Y_{\xi}^{\perp})}}$ ,
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where $Y_{\xi}(t)=\pi_{*}f_{*}^{t}\xi=Y_{\xi}^{\perp}(t)+\langle\xi_{1}, v\rangle f^{t}v$ is a Jacobi vector field along $\gamma_{v}$ . Since
$\dot{\gamma}_{v}(T^{n}(v)-0)=f^{T^{n}(v)-0}v\not\in T_{\pi F^{n}(v)}B$, and $\pi_{*}F_{*}^{n}\xi\in T_{\pi F^{n}(v)}B$, we have the following.

LEMMA 10.1. There is a $0\neq\xi\in T_{\pi(v)}\partial SM$ with $\pi_{*}\xi=0$ such that $\pi_{*}F_{*}^{n}\xi=0$ if and
only if $\pi F^{n}(v)$ is a conjugate point to $\pi(v)$ along $\gamma_{v}$ .

The former condition is adopted as the definition of conjugate points in dealing with
billiards as discrete dynamical systems ([3]).

We consider the relation further for the case of $\dim M=2$ . Let $\Gamma(u),$ $0\leq u\leq l$ ,
be a simple $C^{\infty}$ convex closed curve in $E^{2}$ which is parametrized by arclength and $M$

the domain surrounded by $\Gamma$ . We use the coordinates $(u, \theta)$ for $\partial SM$, namely $v\in\partial SM$

has the coordinates $(u, \theta)$ if $\pi(v)=\Gamma(u)$ and the angle between $v$ and $\Gamma$ is $\theta$ . Assume
that any geodesic $\gamma$ in $M$ with $\gamma(0)\in\Gamma$ has no conjugate points on $\Gamma$, namely any
conjugate point to $\gamma(0)$ along $\gamma$ is in the interior of $M$ if exists. Let a geodesic
$\gamma_{v}$ : $(-\infty, \infty)arrow M$ be such that $\gamma(a_{i})\in\Gamma$ for $--<a_{-1}<a_{0}=0<a_{1}<\cdots$ Let
$\xi\in T_{v}\partial SM$ with $\xi=(0,1)$ . It follows from Lemma 10.1 that $\pi_{*}F_{*}^{n}\xi\neq 0$ for all
$n\neq 0$ . Since $\pi_{*}F_{*}^{n}\xi$ is continuous for the variable $\theta$, we see that $\pi_{*}F_{*}^{n}\xi>0$ . In fact,
$u’(0)\geq\overline{u}’(0)=(1/\kappa(u))$ if $u(\theta)=\pi F^{n}(u, \theta)$ and $\overline{u}(\theta)=\pi F(u, \theta)$ . This fact, $\pi_{*}F_{*}^{n}\xi>0$ ,

implies that any perpendicular Jacobi vector field $Y^{\perp}$ along $\gamma_{v}$ with $Y^{\perp}(0)=0$ has
exactly one zero in each chord connecting $\pi F^{n}(v)$ and $\pi F^{n+1}(v)$ for $n\neq 0,$ $-1$ .

Conversely, this property implies that $\pi_{*}F_{*}^{n}\xi>0$ for $n\neq 0$ if $\xi=(0,1)$ because of
the separation property of conjugate points (Lemma 3.3). From these arguments we get
a straightforward modification of a theorem due to Bialy ([3]).

THEOREM 10.2. Let $\Gamma(s),$ $0\leq s\leq l$ , be a simple $C^{\infty}$ convex closed curve in $E^{2}$ with
positive geodesic curvature surrounding $M$ and let $F:\Gamma\cross(0, \pi)arrow\Gamma\cross(0, \pi)$ be a billiard
ball map. If $\Gamma\cross(0, \pi)$ is foliated by $F$-invariant curves which are locally graphs over
pieces of $\Gamma$ , then $M$ is with boundary isolated by conjugate points, and, therefore, $\Gamma\dot{i}a$

circle.
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