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1. Introduction.

Consider the $diagram_{C}(c^{*}\cdot P)$ : $oo\underline{0}P-0$ .
Here, the symbol o–o stands for the circle geometry with 4 points and

$o^{P}-o$ for the geometry of the Petersen graph. We will determine all simply
connected geometries $=G$ with this diagram and flag-transitive automorphism
group. It will turn out that there are exactly five simply connected ones. One
of them is related to the alternating group of degree 6, two of them are related
to the Mathieu groups $M_{11}$ and $M_{12}$ , all these three are finite.

One is related to the symmetric group of degree 9 and to the sporadic
group $He$ , and one to the group $SO_{5}(5)$ , and we do not know, whether they are
finite or infinite.

TO be precise, we will prove the following theorem.

THEOREM. Let $\mathcal{G}$ be a connected, simply connected geometry with diagram
$(c^{*}\cdot P)$ and flag-transitive automorphism group G. Then $\mathcal{G}$ is one of the geom-
etries $G_{5}$

8’
$Q_{9},$ $\mathcal{G}_{11}$ or $g_{12}$ defined in the next section, and $G$ is isomorphic to one

of the groups $G_{6a},$ $G_{6b}$ (if $Q$ is $Q_{6}$), or $G_{11}$ (if $\mathcal{G}$ is $G_{11}$), or $G_{12a},$ $G_{12b},$ $G_{12C},$ $G_{12d}$ ,
$G_{12e}$ (if $\mathcal{G}$ is $\mathcal{G}_{12}$), or $G_{9}.,$ $G_{9b}$ (if $Q$ is $\mathcal{G}_{9}$), or $G_{5\alpha},$ $G_{5b}$ (if $Q$ is $\mathcal{G}_{5}$ ), all defined in
the last section, respectively.

Here, $G_{11}$ is a geometry with 66 points and automorphism group $G_{11}=M_{11}$ ,
$\underline{G}_{12}$ is a geometry with 4752 points and automorphism group $G_{12d}$ (resp. $G_{12e}$) $=$

$(A_{4}xM_{12})2$ and projects onto a geometry for $M_{12},$ $=G_{6}$ is a geometry with 6480
points and automorphism group $G_{6b}=3(A_{6}xA_{6})2$ , while we do not know, whether
the geometries $\underline{G}_{5}$ and $\underline{G}_{9}$ are finite or infinite. They project onto finite geom-
etries for $SO_{5}(5)$ and $\Sigma_{9}$ respectively and have automorphism groups $G_{5b}$ and $G_{9b}$

respectively.
The remark on the automorphism groups of the examples is almost trivial:

the pairs $(\underline{G}, Aut(=G))$ have to appear in the list, hence one has only to check in
every case, which of the groups acting on the same geometry $\approx G$ is the “biggest
one .
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Presentations for the groups mentioned are glven in a table at the end of
the paper.

This theorem is part of an attempt to classify flag-transitive diagram geom-
etries that have as rank 2 residues only generalized polygons defined over the
field with two elements or “affine parts” (the part “outside” some hyperplane)

of these, such as the affine plane of order 2 (the circle geometry on four points)

or some affine part of the generalized quadrangle for $Sp_{4}(2)$ (the Petersen graph).

Many interesting geometries and groups will have to be characterized in this
program; it is somehow amazing that so many (small) sporadic simple groups
often involve such geometries.

Note that the canonical examples of $(c^{*}\cdot P)$ geometries are truncations of
geometries of type $(c^{2}\cdot P)$ , as the circle geometry is in fact a truncation of the
thin $A_{3}$-geometry, and these were investigated among others in [IS]. There,
one also finds the corresponding examples for $M_{11},$ $A_{9},$ $\Omega_{\overline{0}}(5)$ and $He$ .

We hope that all notation is standard. For instance we use ATLAS-notation
for involutions in the automorphism groups of finite simple groups (see [At]).

By $\Sigma_{n}$ , we denote the symmetric group on $n$ letters, by $A_{n}$ its subgroup of
even permutations. By $M_{11}$ (resp. $M_{12}$ ) we denote the sharply 4-transitive (resp.
5-transitive) permutation groups on 11 (resp. 12) letters called the little Mathieu
groups.

The Petersen graph $P$ is the following graph on 10 vertices: to each 2-set
$\{i, ]\}$ of the set {1, 2, 3, 4, 5} there corresponds a unique vertex $v_{ij}$ of $P$. Vertices

$v_{ij}$ and $v_{kl}$ are adjacent (on an edge), if $\{i, j\}\cap\{k, 1\}$ is empty. The geometry
of the Petersen graph has as points the vertices of $P$, as lines the edges of $P$

and the natural incidence between vertices and edges. In an analogous way the
circle geometry on 4 points is obtained from the complete graph on 4 letters.

If $G$ is a group of automorphisms of some geometry $arrow G$ and $y$ is some vertex
of this geometry, we denote by $res(y)$ the residue of $y$ in 9 by $G_{y}$ the stabilizer
of $y$ in $G$, which of course acts on $res(y)$ , and by $K_{y}$ the kernel of the action
of $G_{y}$ on $res(y)$ . $lfy,$ $z$ are two vertices of $\mathcal{G}$ we denote the elementwise
stabilizer of $y$ and $z$ by $G_{yz}$ . The (elementwise) stabilizer of a given chamber
(maximal flag) is denoted by $B$ .

The organization of the paper is as follows. $ln$ section 2, we describe the
(finite) examples. In section 3, we show that any chamber-transitive automor-
phism group of a simply 2-connected chamber system of type $(c^{*}\cdot P)$ has one of
twelve explicitly given presentations. Moreover, it is shown that there are
precisely five (non-isomorphic) simply 2-connected chamber-transitive chamber
systems with this diagram.

Let us describe the way, in which the classification is achieved.
Assume $=G$ is a connected rank-3-geometry with diagram $(c^{*}\cdot P)$ (in fact, for
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the following facts to hold, a string diagram is already sufficient), and let $G$ be
a flag-transitive group of automorphisms of $\underline{G}$ . The vertices of $\mathcal{G}$ are called
points (resp. lines, resp. planes), if their types correspond to the left (resp.

middle, resp. right) node of the diagram.
Let $tP,$ $l,$ $x$ } be a chamber of $\underline{G}$ . Then $G=\langle G_{lx}, G_{px}, G_{pl}\rangle$ , and $\mathcal{G}$ is

isomorphic to the coset geometry $\Gamma(G;G_{p}, G_{\iota}, G_{x})$ in $G$ , and $\underline{G}$ is also canon-
ically isomorphic to the geometry $\Gamma(C)$ of the chamber system $C=$

$C(G;B;G_{lx}, G_{px}, G_{pl})$ .
The universal cover of $\underline{G}$ is canonically isomorphic to the coset geometry

$\Gamma(G^{0} ; G_{p}, G_{\iota}, G_{x})$ where $G^{0}$ is the universal completion of the amalgam of the
subgroups $G_{p},$ $G_{l},$ $G_{x}$ in $G$ . This group is also isomorphic to the inductive limit
(amalgamated sum) of the “assemblage” $(B;G_{\iota x}, G_{px}, G_{pl} ; G_{p}, G_{l}, G_{x})$ as it arises
in $G$ (see [T], section 1), and the chamber system $C^{0}=C(G^{0} ; B ; G_{\iota x}, G_{px}, G_{pl})$

is the universal 2-cover of $C$ .
Hence to obtain the universal cover of $\underline{G}$ we can apply the following well-

known procedure. Choose appropriate generators $x_{1},$
$\cdots$ , $x_{n}$ of the subgroups

$G_{\iota x},$ $G_{px},$ $G_{pl}$ and a set of relations $R$ between the $x_{i}$ that hold in $G$ and are
necessary and sufficient for the chamber system $C^{1}=C(G^{1} ; B;G_{\iota x}, G_{px}, G_{pl})$ to
have diagram $(c^{*}\cdot P)$ , where $G^{1}=\langle$

$x_{1},$ $\cdots,$ $x_{n}$ : $r=1$ for $r\in R\rangle$ . Then $G^{1}=G^{0}$ ;
and the universal cover of $\underline{G}$ is isomorphic to the geometry $\Gamma(C^{1})$ (see for
instance [P1] $)$ .

Of course, this method can also be used “abstractly” : if one is given some
diagram (say of rank 3) and wants to determine all possible (simply 2-connected,
chamber-transitive) chamber systems with this diagram, one takes a hypothetical
chamber system $C$ with this diagram and chamber-transitive group, picks some
chamber $c$ in $C$ and determines the structure of the stabilizers $B,$ $X_{1},$ $X_{2},$ $X_{3}$ ,
$X_{12},$ $X_{13},$ $X_{23}$ of the chamber $c$ , the three rank-l-residues and the three rank-2-
cells on $c$ , and the way they are amalgamated (the “assemblage” ( $B;X_{1},$ $X_{2},$ $X_{3}$ ;
$X_{12},$ $X_{13},$ $X_{23}))$ . This can be done in a quite abstract way without having an
example. Subsequently, one determines a presentation for the inductive limit
of this assemblage: this is obtained by finding generators for the groups
$X_{12},$ $X_{13},$ $X_{28}$ , and relations which force the pairwise intersections to be $X_{1},$ $X_{2},$ $X_{3}$

and the intersection of $X_{1},$ $X_{2},$ $X_{3}$ to be $B$–and which are necessary and sufficient
for the rank-2-chamber-systems $C(X_{ij} ; B;X_{i}, X_{j})$ to be isomorphic to the corre-
sponding Prescribed rank-2-ce11s. Then the group $G^{0}$ with generators the union
of the generators of the groups $X_{\iota j}$ and relations the union of the relations in
the presentations for the groups $X_{\iota j},$ $i=1,2,3$ is the direct limit of the assem-
blage $(B ; X_{1}, X_{2}, X_{3} ; X_{12}, X_{13}, X_{23})$ . In $G^{0}$ , the subgroups $X_{ij}^{0}$ (resp. $X_{j}^{0}$ , resp.
$B^{0})$ generated by the generators coming from $X_{ij}$ (resp. $X_{j}$ , resp. $B$ ) is isomorphic
to some quotient of $X_{ij}$ (resp. $X_{j}$ , resp. $B$ ). If the corresponding chamber
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systems $C(X_{ij}^{0} ; B^{0} ; X_{t}^{0}, X_{f}^{0})$ , are isomorphic to the chamber systems $C(X_{ij}$ ; $B$ ;
$X_{i},$ $X_{j})$ , the chamber system $C(G^{0} ; B^{0} ; X_{1}^{0}, X_{2}^{0}, X_{3}^{0})$ will be a simply 2-connected
chamber system of the given type with chamber-transitive group of automor-
pbisms $G^{0}$ (compare [P1], Lemma 5).

If the group $G^{0}$ “collapses”–it may be equal to 1; it may also happen that
$G^{0}$ is a big group, but the chamber systems $C(X_{ij}^{0} ; B^{0} ; X_{i}^{0}, X_{j}^{0})$ are not isomor-
phic to the chamber systems $C(X_{ij} ; B;X_{i}, X_{j})$ , one derives that the corresponding
assemblage $(B;X_{1}, X_{2}, X_{3} ; X_{12}, X_{13}, X_{23})$ is not possible for a chamber-transitive
group on a chamber system of the given type.

By coset enumeration, one can try to determine the order (and structure)

of $G^{0}$ . Of course, if the order of $G^{0}$ equals 1, this means “collapsing”. If coset
enumeration does not finish, one is led to suspect that $G^{0}$ is infinite (and in
particular does not collapse), but has not proved this. By finding some finite
quotient of $G^{0}$ , which does not “collapse”, one can prove at least that the
corresponding assemblage $(B;X_{1}, X_{2}, X_{3} ; X_{12}, X_{1\S}, X_{23})$ exists in a chamber-
transitive group on a chamber system of the given type.

NOW, the discussion above applies, and we have the corresponding results on
the universal (2-) covers of all flag-transitive geometries with diagram $(c^{*}\cdot P)$ .

This (well-known) method is used in section 3.

2. The geometries.

(1) A geometry $G_{6}’$ on 6 points.
Let $\Omega$ be the set {1, 2, 3, 4, 5, 6}, $G=A_{6}$ acting in the natural way on $\Omega$ .
The geometry $\approx G_{6}’$ is defined as follows.
The points are the 6 letters of $\Omega$ , the lines are the 3-sets of $\Omega$ , and the

planes are the 15 partitions of type 2/2/2 (synthemes) of $\Omega$ . The incidence
between points and lines and between points and planes is defined as follows:
All points $P$ and all planes $x$ are incident (i.e., $\approx G_{6}’$ is flat), and the point $P$ is
incident to the line $l$ if and only if $P$ is contained in 1.

The incidence between lines $l$ and planes $x$ , however, is defined using the
action of $G$ as follows:

It is easily seen that $\Sigma_{6}$ is transitive on the set of pairs $(l, x)$ with the
property that $l$ “cuts” $x$ , by which we mean that the partition consisting of 1
and its complement, which is of type 3/3, refines $x$ to a partition of type
1/1/1/1/1/1. But $G=A_{6}$ has two orbits on these pairs (interchanged by $\Sigma_{6}$).

Take one of these two orbits to be the set of incident line-plane-pairs.

LEMMA 1. (i) The geometry $Q_{6}’$ has the diagram $(c^{*}\cdot P)$ ,
gg is connected and has 6 points,

(ii) $G$ is flag-transitive $mG_{6}’$ .
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PROOF. Almost by definition, $G=A_{6}$ is flag-transitive on $\underline{G}_{6}’$ and the residue
of a line is a generalized digon.

Since there are exactly eight 3-sets of $\Omega$ cutting a given syntheme (plane)
$x$ , four of them are lines in $res(x)$ . By transitivity of $G_{x}=\Sigma_{4}$ on the six
letters, the pairwise intersections of the four 3-sets of letters corresponding to
lines in $res(x)$ are singletons, and hence the six points in $res(x)$ are each
incident to exactly two lines in $res(x)$ . Moreover, every two lines in $res(x)$

have a unique point in common. Hence $res(x)$ is isomorphic to the dual affine
plane on 6 points as stated.

In the residue of $x$ , every point $p$ is incident to exactly two lines. There-
fore, $res(p)$ is in fact a graph on the 10 lines incident to $p$ , which correspond
to the 2-sets of $\Omega-\{p\}$ , and a double count yields that this is a 3-valent graph.

Since $G_{p}$ is isomorphic to $A_{5}$ , this graph is uniquely determined (the 10-point
representation of $A_{5}$ has permutation rank 3), and is isomorphic to the Petersen
graph. Clearly, $\underline{G}_{6}’$ has 6 points and is connected.

We denote by $\underline{G}_{6}$ the universal cover of $\approx G_{6}’$ . It will turn out in the next
section that $G_{6}arrow$ is finite but not flat any more. $\underline{G}_{0}$ will be seen to have 6480
points and automorphism group isomorphic to $3(A_{6}\cross A_{6})2$ .

(2) A geometry $G_{12}’$ for $M_{12}$ .
Let $G=M_{12}$ act in the natural way on the 12 point set $\Omega$ .
Before describing the geometry $Q_{12}’$ itself, we have to point out some facts

about the subgroups and conjugacy classes of $G$ .
LEMMA 2. The following hold in $G=M_{12}$ .
(i) $G$ has exactly two $cla$sses of involutions:

$-2A$ with $C(2A)=2\cross\Sigma_{5}$

$-2B$ with $C(2B)=2^{1+4}\Sigma_{3}$ .
(ii) Involutions of type $2A$ are fixed Pmnt free on $\Omega$ .
(iii) Each involution of type $2B$ has 4 fixed points on $\Omega$ .
(iv) $G$ has exactly two classes of fours grouPs $V$ containing involutions of

type $2A$ :
$V=(2A)^{2}$ with $N(V)=A_{4}\cross\Sigma_{3}$

$V=(2A_{2}2B)$ with $V$ contained in $O_{2}(C(2B))$ .
(v) Let $U$ be elementary abelian of order 8 which contains a $2A$-pure fours

group.
Then $U$ is of type $2A_{6}2B$ and lies in $O_{2}(C(2B))$ .

PROOF. The first three statements can be verified by a look at the character
table and the information given on $G$ in the ATLAS.

Let $t$ be some $2A$ involution in $G$ . The action of $C(t)$ on the 6 orbits of
$\langle t\rangle$ on $\Omega$ is the transitive 6-point action of $\Sigma_{6}$ . There, transpositions are fixed
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point free, and hence from transpositions in $\Sigma_{5}$ , we get a class of $(2A)^{2}$ fours
groups $V$ . Assume we already know this class is unique. Thep a double count
gives $|N(V)|=2^{3}3^{2}$ , and in $C(2A)$ we see $N(V)\cap C(2A)=2\cross 2x\Sigma_{3}$ . Clearly, this
is precisely $C(V)$ , and the involutions in $V$ are conjugate under $N(V)$ . This
yields the structure of $N(V)$ .

The elements of order 4 in $G$ do not have orbit structure 4+4+4 on $\Omega$ ,

since $G$ is perfect. Therefore those involutions of $G$, that are squares, have
fixed points on $\Omega$ , and therefore are $2B$-involutions. This implies that involutions
$s$ in $C(t)’$ are $2B$ and so there is exactly one class of $2A$-pure fours groups,
and there is exactly one more class of fours groups $V$ containing a $2A$-involution
in $G$, and $V$ contains a $2B$ involution. Moreover, there are no $2A$-Pure eights
groups in $G$ .

The third involution in $V=\langle s, t\rangle$ is of type $2A$ :
TO see this consider the centralizer of $s$ . It acts on the four fixed points

of $s$ on $\Omega$ and on the four nontrivial orbits of $\langle s\rangle$ as a $\Sigma_{4}$ .
The kernel $K$ of the action on nontrivial orbits is elementary abelian of

order 8 and the involutions in $K-\langle s\rangle$ are all conjugate. Since they must have
fixed points on $\Omega$ , they are $2B$ , and therefore $K$ is a $2B$-pure eights group.

This implies that $2A$ involutions in $C(s)$ act nontrivially on the nontrivial
$\langle s\rangle$-orbits.

Since they induce fixed point free involutions on the fixed point set of $s$ ,

they lie in the commutator subgroup of $C(s)$ , and so induce also fixed point free
involutions on the four nontrivial $\langle s\rangle$-orbits. This implies that also $st$ is $2A$ .

(v) immediately follows from (iv).

We will construct some rank 3 geometry $G_{12}’$ consisting of subgroups of $G$ ,

with incidence given by inclusion.
Consider the geometry $=G_{12}’$ of points, lines and planes where:
The points are the subgroups of order 2 of $G$ containing $2A$-involutions, the

lines are the $2A$-pure fours groups in $G$ , and the planes are the elementary
abelian subgroups of order 8 of $G$ containing $2A$-pure fours groups.

LEMMA 3. (i) $\xi_{12}’$ has diagram $(c^{*}\cdot P)$ ,
$g\text{\’{i}}_{2}$ is cmnected and has 396 points,

(ii) $G=M_{12}$ is flag-transrtive on $\mathcal{G}_{12}’$ , but also $Aut(M_{12})$ acts on $\xi_{12}’$ .
PROOF. Let $W$ be a plane and $V$ a line on $W$ . Then $W\in Syl_{2}(C(V))$ , so

$N(V)$ permutes transitively the planes on $V$ , and hence there is only one class
of planes in $G$ . Moreover, the normalizer of $W$ in $G$ contains a subgroup
$A_{4}\cross Z_{2}$ from the normalizer of $V$ , and hence contains an element of order 3
which acts nontrivially on $W$ . Since by the above, $N(W)$ is transitive on the
four $2A$-pure fours groups contained in $W$ , at least the alternating group $A_{4}$ is
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induced by $N(W)$ on these. Now, $G$ is flag-transitive on $\underline{G}_{12}’$ . A double count
gives $|N(W)|=2^{6}3$ . This implies $N(W)=C(2B)’$ .

The isomorphism type of $res(W)$ is now as desired, and clearly, the residue
of a line is a generalized digon.

Let $P$ be a point in $\underline{G}_{12}’$ . Then the stabilizer in $G$ of $P$ is isomorphic to
$Z_{2}\cross\Sigma_{5}$ , and lines in $res(p)$ are the $2A$-Pure fours groups in $G_{p}$ , which are in a
one-to-one correspondence with the transpositions in $G_{p}/Z(G_{p})=\Sigma_{6}$ , and therefore
to ten 2-sets of some 5-set. A double count gives that there are exactly 3
planes on each line, and also exactly 2 lines on each plane in $res(p)$ . Now, $G_{p}$

acts flag-transitively on $res(p)$ , which is a 3-valent graph on the 10 lines in
$res(p)$ . This graph is uniquely determined and is in fact the Petersen graph.
Since $G$ acts primitively on its 396 $2A$-involutions, the result follows.

Let $\underline{G}_{18}$ denote the universal cover of $\underline{G}_{12}’$ . It will turn out in the next
section that $\underline{G}_{12}$ is a 12-fold cover of $\underline{G}_{12}’$ .

We point out, that truncations of $\mathcal{G}_{12}’$ already appear in [B], namely the
geometries (21) and (22). There the geometry of all 2-sets, 3-sets and 4-sets of
$\Omega$ is discussed (geometry (6)), of which $\underline{G}_{11}$ (defined in (3) below) is a sub-
geometry.

The geometry $\approx G_{11}$ is the truncation of a rank 4-geometry with diagram
$(c^{2}\cdot P)$ , described and shown to be simply connected in [IS], Theorem (6.1).

We give some details for the convenience of the reader.

(3) A geometry $G_{11}$ for the Mathieu group $M_{11}$ .
Let $G=M_{11}$ act in its 3-transitive representation on a set $\Omega$ of 12 letters.
Then clearly, $G$ is transitive on 2-sets and 3-sets of $\Omega$ . But $G$ has two

orbits on 4-sets of $\Omega$ , one of size 330, and one orbit $X$ of size 165 with stabilizer
$2\Sigma_{4}$ . (The stabilizer of a 4-set in $X$ is plain to see, and the fact that $G$ has
exactly 2 orbits on 4-sets can be verified comparing the permutation characters
of $M_{12}$ on cosets of “transitive” subgroups $M_{11}$ and on 4-sets of $\Omega.$ )

Define the geometry $\underline{G}_{11}$ as follows:
The points are the 2-sets of $\Omega$ , the lines are the 3-sets of $\Omega$ , the planes

are the 4-sets of $\Omega$ in $X$ . Incidence is defined by inclusion.

LEMMA 4. (i) $\mathcal{G}_{11}$ has diagram $(c^{*}\cdot P)$ ,
$\mathcal{G}_{11}$ is cmnected and has 66 points,

(ii) $G=M_{11}$ is flag-transitive on $G_{11}$ .

PROOF. Since the stabilizer in $G$ of a plane $x$ acts as $\Sigma_{4}$ on the four letters
contained in $x$ , we get flag-transitivity of $G$ . A double count gives that each
line is on exactly three planes. And clearly, in the residue of a point, a plane
is incident to exactly two lines.



474 T. MEIXNER

The residue of a plane (and a line) has obviously the desired isomorphism
type. Let $p$ be a point of $\approx G_{11}$ . Then the stabilizer of $p$ in $G$ is isomorphic to
$\Sigma_{5}$ , and acts flag-transitively on $res(p)$ , which is a 3-valent graph on the 10
lines in $res(p)$ . This graph is uniquely determined and is in fact the Petersen
graph. Since $\Omega$ has 662-sets, and all 2-sets and 3-sets of $\Omega$ appear in $\approx G_{11}$ , the
result follows.

It will turn out in the next section that $\underline{G}_{11}$ is simply connected.

(4) Graphs for $3^{7}-A_{9}$ , He and $SO_{5}(5)$ .
The remaining examples are–just like $G_{11}$–truncations of rank 4 geometries

with diagram
$o0arrowarrow\underline{c}cP$

$(c^{2}\cdot P)$ .

All of these are geometries, whose vertices are cliques in certain graphs $\Gamma$,

incidence defined by inclusion, and so the same holds for the truncations. Hence
we describe just the graphs $\Gamma$ . We show the following.

CLAIM. The geometries $Q(\Gamma)$ of all cliques of $\Gamma$, $i$-cliques having type
$i\in\{1,2,3,4\}$ , incidence defined by inclusion, are flag-transrtive and have the
diagram $(c^{2}\cdot P)$ .

The first example was given in [IS], p. $949f$ in a slightly different setting.
The following description is implicit in [BCN], p. 36 remarks (iii); it is due to
Wilbrink, see the reference to [BL] there.

Let $V_{n}$ be an $n$-dimensional vector space over the field $GF(5)$ . Let $(\cdot, \cdot)$ be
a non-degenerate symmetric bilinear form on $V_{n}$ with discriminant 2. Call
$(+)$-points in $V_{n}$ the 1-dimensional subspaces $\langle v\rangle$ of $V_{n}$ satisfying $(v, v)\in\{1, -1\}$ .

Then $\Gamma$ has as vertex set the $(+)$-points of $V_{5}$ , and two vertices are adjacent,
if and only if they are perpendicular with respect to $(\cdot, \cdot)$ .

Clearly maximal cliques in $\Gamma$ are 4-cliques and the group $O(V_{5})$ acts flag-
transitively on the geometry $Q(\Gamma)$ . In order to verify that $arrow G(\Gamma)$ has the given
diagram, it suffices to consider the residue of some 2-clique, and hence to show
that the corresponding graph $\Gamma_{3}$ on the space $V_{3}$ is isomorphic to the Petersen
graph.

But $\Gamma_{3}$ has 10 vertices and valency 3 and admits $O_{3}(5)=A_{5}$ : such graph is
unique and isomorphic to the Petersen graph.

It is clear, that $SO_{5}(5)$ acts flag-transitively on the geometry of 2-cliques,
3-cliques and 4-cliques, of $\Gamma$, which will be denoted by $\underline{G}(\Omega_{5}(5))$ . Its universal
cover is denoted $\underline{G}_{5}$ .

The next example is the commuting graph $\Gamma$ on transpositions in $\Sigma_{9}$ . It
has maximal cliques of size 4, and the geometry $\underline{G}(\Gamma)$ is flag-transitive with
diagram $(c^{2}\cdot P)$ . It is described in [IS]. Its truncation to 2-cliques, 3-cliques
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and 4-cliques will be denoted by $\ovalbox{\tt\small REJECT}(A_{9})$ . Let the universal cover of $\zeta(A_{9})$ be
denoted by $=G_{9}$ .

The geometry $=G(A_{9})$ is not simply connected, as the following example
shows.

For this example a certain group $\Sigma$ will play the dominant role. It has
the properties:

$-O_{3}(\Sigma)\cong Z_{3}$ ,
$-\Sigma/O_{3}(\Sigma)\cong\Sigma_{7}$ ,
$-\Sigma’\cong 3\cdot A_{7}$ nonsplit.

The group $\Sigma$ is unique up to isomorphism by these properties, and will be
denoted $3\Sigma_{7}$ (just as in [At]). Involutions in $3\Sigma_{7}$ that correspond to transposi-
tions in $3\Sigma_{7}/O_{3}(3\Sigma_{7})$ are again called transpositions in $3\Sigma_{7}$ . The commuting
graph on transpositions in $3\Sigma_{7}$ is one of the four locally Petersen graphs $([Ha])$ .

Let us consider a nonsplit extension $G$ of an elementary abelian normal
subgroup $N$ of order $3^{7}$ with $\Sigma_{9}$ . Using [KP], one could derive the existence
of such group abstractly, we prefer to have a concrete example, however. It
lives inside the nonsplit extension $3^{7}\Omega_{7}(3)=:X$ , which itself is a subgroup of
the big Fischer group $Fi_{24}’$ (to be precise, there are two classes of them conjugate
under the action of Fi24).

TO see this, we investigate $X$ as a subgroup of Fi24 a bit more closely. It
is the normalizer of a certain 3-group of order $3^{7}$ , which we again call $N$ . For
the following, we use information from [At], pp. 200-207.

Note that elements of order 3 in $N$ are conjugate to their inverses, and
hence subgroups of order 3 of $N$ can be named after the two 3-elements they
contain.

They split into conjugacy classes under Fi24 as follows: $3A_{378}3B_{364}3C_{351}$ .
Clearly, $N$ is just the natural modulo for $X/N=\Omega_{7}(3)$ (with, say, bilinear

form $(\cdot, \cdot)$ on $N$ , which has discriminant 1), and nontrivial elements $x$ of $N$ are
in the class $3A$ (resp. $3B$ , resp. $3C$ ) if $(x, x)=2$ (resp. $0$ , resp. 1).

It is well-known that $\Omega_{7}(3)$ has (two classes of) subgroups isomorphic to $\Sigma_{9}$ .
Let $G$ be a subgroup of $X$ containing $N$ such that $G/N=\Sigma_{9}$ . Let $t$ be an
involution of $G$ mapping onto a transposition modulo $N$ . Then $C_{G}(t)$ maps onto
a group of type $Z_{2}x\Sigma_{7}$ modulo $N$ , hence $C_{N}(t)$ has order 1, 3, $3^{6}$ or $3^{7}$ , as
$C_{N}(t)$ is certainly $C_{G}(i)$-invariant. But as $X$ is perfect, the eigenvalue $-1$ of $t$

must have an even multiplicity, and therefore $C_{N}(t)$ has precisely 3 elements.
Let $C_{N}(t)=\langle x\rangle$ . We have to determine $C_{G}(t)$ in some detail.

Clearly, as $P\Omega_{6}^{+}(3)$ does not have subgroups isomorphic to $A_{7}$ (see [At],

p. 69), $x$ is a $3C$ -element. The centralizer of $\chi$ in $Fi_{24}’$ equals $C_{X}(x)$ , and is
isomorphic to $3^{7}2\cdot\Omega_{6}^{-}(3)$ . By a look at centralizers of 6-elements in $Fi_{24}’$ one
sees that $t$ is of class $2B$ in $Fi_{24}’$ . And its centralizer in $Fi_{24}’$ looks like:
$N(t)=2^{1+12}3\Omega_{6}^{-}(3)\cdot 2_{2}$ . Moreover, the centralizer of $t$ in Fi24 is of type
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$2^{1+12}3\Omega_{6}^{-}(3)\cdot(2^{2})_{122}$ .
Assume $C_{G}(t)$ is isomorphic to $(Z_{6}\cross A_{7}):2$, whence it has a subgroup

isomorphic to $Z_{2}\cross\Sigma_{7}$ . Consider now the group $U=3\Sigma_{7}\cross Z_{2}$ of He: 2, which is
a subgroup of $Fi_{24}’$ . The involution in $Z(U)$ is of class $2B$ , as $Fi_{22}$ does not
contain subgroups isomorphic $3A_{7}$ nonsplit.

We conclude that $N(t)/O_{2}(N(t))$ contains subgroups $\Sigma_{7}$ and groups of type
$3\Sigma_{7}$ . AS there are just two classes of subgroups $\Sigma_{7}$ in the group $\Omega_{6}^{-}(3)\cdot 2_{2}$ , and
these are fused in $\Omega_{6}^{-}(3)\cdot(2^{2})_{122}$ , this is impossible.

Hence $C_{G}(t)=Z_{2}\cross 3\Sigma_{7}$ .
Assume now that $G’$ has a subgroup $A$ isomorphic to $A_{9}$ . Then $N_{G}(A)$ is

a subgroup isomorphic $\Sigma_{9}$ , and contains subgroups $Z_{2}\cross\Sigma_{7}$ . This contradicts
the argument above.

Hence $G$ is “nonsplit” as claimed above.
NOW it follows easily that the commuting involutions graph $\Gamma$ on $t^{G}$ has

maximal cliques of size 4, and 2-cliques (resp. 3-cliques, resp. 4-cliques) of $\Gamma$

containing $t$ correspond to 1-cliques (resp. 2-cliques, resp. 3-cliques) of the
commuting graph on transpositions in $3\Sigma_{7}$ .

Moreover, the group $G$ acts $flag- transitive_{C}1y$ on the $P(connected)$ geometry
$\underline{G}(\Gamma)$ . The diagram of $\underline{G}(\Gamma)$ has diagram $c-0\underline{c}$o–o.

Of course, the geometry $G(\Gamma)$ is a 2-cover of the geometry $\underline{G}(A_{9})$ of [IS].

And the truncation to rank 3 is a 2-cover of $G(A_{9})$ .
Just like the previous example, the next one is a graph on $2B$-elements in

$Fi_{24}’$ . The automorphism group is the subgroup He:2 of $Fi_{24}’$ mentioned above.
This example also appears in [IS], but is constructed as a group geometry
there. To present it in our graph theoretical way, we need some information
on Aut(He)$=He:2$, which we take from [At], p. $104f$ . We use the names for
the conjugacy classes in He:2 chosen in [At].

Put in the following $H=He$ , the simple group named after $D$ . Held, and
$G=Aut(H)$ , such tbat $H=G’$ , and $G/H=Z_{2}$ .

LEMMA 5. (i) There are precisely two classes of involutions in $H,$ $2A$ and
$2B$ , and for an involution $t\in H$ we have: 5 divides the order of $C_{H}(t)$ ,

if and only if $t\in 2A$ . (Clearly, the two classes are not fused under the
action of $G.$ )

(ii) There are precisely two classes of elements of order 3 in $H$, $3A$ and
$3B$ , and for a 3-element $d\in H$ we have: $d$ is of class $3A$ , if and $mly$

if $N_{H}(\langle d\rangle)$ is isomorphic to $3\Sigma_{7}$ (nonsplit, this is the group $\Sigma$ defined
above).

(iii) There are precisely two classes of elements of order 6 in $H,$ $6A$ and
$6B$ , and proper powers of $6A$-elements (resp. $6B$-elements) are of class
$2A$ and $3A$ (resp. $2B$ and $3B$ ).
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(iv) There is precrsely one class of involutions in $G-H,$ $2C$ , and for $t\in 2C$

we have $C_{G}(t)$ is isomorphic to $Z_{2}\cross 3\Sigma_{7}$ .

PROOF. See [At], p. $104f$ .

LEMMA 6. Let $t$ be a $2C$ -involution in $G$ , and let a, $b,$ $c$ be three pairwis $e$

commuting transpositions in $C_{H}(t)=3\Sigma_{7}$ . The following holds:
(i) $a$ and ab are of class $2A$ in $H$,
(ii) $abc$ is of class $2B$ in $H$ .

PROOF. We use the information of lemma 5 without explicit mentioning.
AS 5 divides the order of $C_{H}(a),$ $a$ is of class $2A$ .

AS $O_{3}(C_{H}(t))=\langle d\rangle$ for some $3A$-element $d\in H$, ab is of class $2A$ . This
proves (i).

AS $C_{H}(t)$ contains some Sylow 3-subgroup $S$ of $H$, there is some $3B$-element
$e$ in $C_{H}(t)$ . It is obvious that $e$ centralizes some involution $s$ of $C_{H}(t)$ modulo
$\langle d\rangle$ , and so $s$ centralizes some 3-element in $\langle d, e\rangle-\langle d\rangle$ . These are all
$3B$-elements, as can be seen in the nonabelian group $S$ , and hence there is
some $2B$-involution in $C_{H}(t)$ . Now (ii) follows from (i).

We are now able to describe the graph $\Gamma$ for the desired example.
Vertices of $\Gamma$ are $2C$-involutions in $G$ . Two vertices $t,$ $s$ are adjacent, if

$[s, t]=1$ and 5 divides the order of $C_{H}(\langle s, t\rangle)$ .
Right from the definition it is clear that $G$ induces a group of automorphisms

on $\Gamma$, which is vertex-transitive. Moreover, $\{s, t\}$ is an edge in $\Gamma$, if and only
if $st$ is a transposition in $C_{H}(_{\backslash }t)$ (and also in $C_{H}(s)$).

LEMMA 7. (i) Maximal cliques in $\Gamma$ are 4-cliques, and $G$ acts transitively
on the set of 4-cliques of $\Gamma$,

(ii) If $t\in\Gamma$, then the 2-cliques (resp. 3-cliques, resp. 4-cliques) of $\Gamma$ on $t$

correspond to the 1-cliques (resp. -cliques, resp. 3-cliques) of the com-
muting graph on transposrtions of $3\Sigma_{7}$ ,

(iii)
$Gactsflag- tran\alpha tivelyRccP-0$

.
on $\zeta(\Gamma)$ , and $\zeta(\Gamma)$ has diagram

PROOF. Let $t\in\Gamma$. Then if $s\in\Gamma$ is adjacent to $t$ , the involution $st\in H$ is
a transposition in $C_{H}(t)=3\Sigma_{7}$ , and hence there are no $i$-cliques in $\Gamma$ for $i>4$ .

Let $u,$ $v,$ $w\in\Gamma$ be three vertices of $\Gamma$ adjacent to $t$ , such that they commute
pairwise. Then the involutions tu, $tv$ and $tw$ are pairwise commuting trans-
positions in $3\Sigma_{7}$ and the group $\langle$ $t$ , tu, $tv,$ $tw\rangle$ is elementary abelian of order 16.
By lemma 2(i), the elements of $\langle$ tu, $tv,$ $tw\rangle$ $-\langle tuvw\rangle$ are $2A$-involutions. More-
over, there is an element $d$ of order 3 in $C_{H}(t)$ permuting transitively the
elements $u,$ $v,$ $w$ .
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Claim: $\{t, u, v, w\}$ is a 4-clique in $\Gamma$.
Assume the contrary, then $\{u, v, w\}$ is a co-clique in $\Gamma$ . Now, in $C_{H}(u)$ ,

the element $tu$ is a transposition, while the elements $uv$ and $uw$ are not.
Therefore $uv$ and $uw$ are double transpositions in $C_{H}(u)$ . But since $tuv$ and $tuw$

are $2A$-involutions, we may identify {tu, $uv,$ $uw$ } in $C_{H}(u)/O_{3}(C_{H}(u))=\Sigma_{7}$ with
$\{(12),$(12)(34)$,$(12)(56) $\}$ . Therefore $C=C_{H}(\langle u, v, w\rangle)$ is a {2, 3}-group with
$O_{3}(C)=O_{3}(C_{H}(u))$ , as can be seen in $C_{H}(u)$ . And $d$ is contained in $N_{H}(O_{3}(C))$

$=C_{H}(u)$ . This is clearly a contradiction.
We may conclude that vertices $u,$ $v$ adjacent to $t$ form an edge, if and only

if the transpositions $tu$ and $tv$ in $C_{H}(t)=3\Sigma_{7}$ commute. Now (ii) follows. As $G$

(and also $H$) is transitive on pairs $\{t, F\}$ of vertices $t\in\Gamma$ and 4-cliques $F$

containing $t$ of $\Gamma,$ $G$ (resp. $H$ ) is transitive on 4-cliques of $\Gamma$, and the stabilizer
$G_{F}$ (resp. $H_{F}$) of a 4-clique $F$ is transitive on vertices in $F$. But, given a pair
$\{t, F\}$ as above, $C_{H}(t)$ induces a group $\Sigma_{3}$ on the 2-cliques of $F$ containing $t$ ,

hence $G_{F}$ (resp. $H_{F}$) induces $\Sigma_{4}$ on vertices of $F$, and $G$ (resp. $H$) acts flag-
transitively on $arrow G(\Gamma)$ . Together with (ii), this implies the rest of (iii).

The truncation of $Q(\Gamma)$ to 2-cliques, 3-cliques and 4-cliques will be denoted
by $G(He)$ . It will later on turn out, that its universal cover is $=G_{9}$ .

3. The proof of the theorem.

Let $\underline{G}$ be a connected geometry with diagram $(c^{*}\cdot P)$ and flag-transitive
group of automorphisms $G$ . Let $\{p, 1, x\}$ be some chamber of $\underline{G}$, where $p$ is
a point, $l$ is a line and $x$ is a plane.

(1) $G_{p}/K_{p}=A_{\overline{0}}$ or $\Sigma_{5}$ .
In the first case, $G_{lp}/K_{p}=\Sigma_{3},$ $G_{xp}/K_{p}=Z_{2}\cross Z_{2},$ $B/K_{p}=Z_{2}$ .
In the second case, $G_{\iota p}/K_{p}=Z_{2}\cross\Sigma_{3},$ $G_{xp}/K_{p}=D_{8},$ $B/K_{p}=Z_{2}\cross Z_{2}$ .
In the first case, $B/K_{p}$ does not contain a nontrivial subgroup invariant

under $G_{lp}$ , in the second case, there is a unique nontrivial subgroup of $B/K_{p}$

invariant under $G_{lp}$ , its order is 2.

PROOF. The automorphism group of the Petersen graph is $\Sigma_{5}$ , and has
only $A_{5}$ as a proper flag-transitive subgroup. The further statements can be
verified on the Petersen graph.

(2) $G_{x}/K_{x}=A_{4}$ or $\Sigma_{4}$ .
In the first case, $G_{lx}/K_{x}=Z_{3},$ $G_{xp}/K_{x}=Z_{2},$ $B=K_{x}$ .
In the second case, $G_{\iota x}/K_{x}=\Sigma_{3},$ $G_{xp}/K_{x}=Z_{2}\cross Z_{2},$ $B/K_{p}=Z_{2}$ .
$ln$ any case, $B/K_{x}$ does not contain a nontrivial subgroup invariant under

$G_{lx}$ .
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PROOF. The automorphism group on the circle geometry on 4 points is $\Sigma_{4}$

and only $A_{4}$ is a proper flag-transitive subgroup. The further statements are
obvious.

Note that there is no nontrivial normal subgroup of $G$ contained in $B$ , as
$G$ acts faithfully on the set of chambers of $\underline{G}$ . But $\mathcal{G}$ is connected, hence
$G=\langle G\cdot, G_{j}\rangle$ for $\{i, j, k\}=\{p, 1, x\}$ , and even $G=\langle G_{i}, G_{jk}\rangle$ , and therefore, if $K$

is some nontrivial normal subgroup of $G_{i}$ contained in $B$ , then $K$ is not invariant
under $G_{jk}$ . In particular, if we can prove $K_{l}=K_{x}$ or $K_{p}K_{l}=K_{x}$ , we already
know $K_{x}=1$ .

By (1) and (2), $G_{pl}=\langle B, d\rangle$ for some element $d$ not in $B$ satisfying $d^{3}\in B$ ,
$G_{px}=\langle B, a\rangle$ for some element $a$ not in $B$ satisfying $a^{2}\in B$ , and $G_{lx}=\langle B, e\rangle$

for some element $e$ not in $B$ satisfying $e^{3}\in B$ . By connectedness of $\underline{G}$,
$G=\langle B, d, a, e\rangle$ . We will use the elements $a$ and $e$ right from tbe beginning
and prove early statements (for instance in (3)) for all possible choices; later
on, we pick specific elements $d,$ $a$ and $e$ subject to further conditions. Then
we can, of course, still use these early results.

(3) $K_{l}\leqq K_{x}$ , and $K_{p}\cap K_{x}\leqq K_{\iota}$ ; either $K_{x}=K_{l}=1$ , or $K_{x}$ : $K_{l}|=2$ .
Further, $K_{\iota}\cap(K_{l})^{a}=K_{p}\cap K_{x}$ is $G_{p}$ -invariant

and $K_{l}\cap(K_{l})^{\alpha}\cap(K_{l})^{ae}\cap(K_{l})^{aee}=1$ .
In particular, $K_{x}$ is an elementary abelian 2-group of order

at most 16.

PROOF. By (2), $K_{\iota}K_{x}/K_{x}=1$ and we get $K_{l}\leqq K_{x}$ . Since res(l) is a general-
ized digon, $K_{p}\cap K_{x}\leqq K_{l}$ . And since $G_{l}/K_{\iota}$ is isomorphic to a subgroup of
$\Sigma_{3}\cross\Sigma_{3},$ $|K_{x}$ : $K_{l}|\leqq 2$ holds.

In case $K_{l}=1$ , there is nothing to show.
Assume for the rest of (3) that $K_{l}>1$ . Then $K_{l}$ is not $G_{x}$ -invariant, but

is invariant under $G_{lx}$ , hence has precisely the four $G_{x}$-conjugates $K_{\iota},$ $(K_{l})^{a}$ ,
$(K_{l})^{ae}$ and $(K_{l})^{aee}$ (which are all contained in $K_{x}$ ). Moreover, $K_{p}\cap K_{x}$ is a
proper subgroup of $K_{l}$ .

The intersection $M_{x}$ of all $G_{x}$ -conjugates of $K_{\iota}$ has index at most 16 in $K_{x}$ ,

and $K_{x}/M_{x}$ is an elementary abelian 2-group. We have to show that $M_{x}=1$ .
It is clear, by (1), tbat $K_{l}/K_{p}\cap K_{\iota}=K_{l}K_{p}/K_{p}$ has at most two elements.
Assume $K_{l}$ is contained in $K_{p}$ . Then $K_{l}=K_{l}\cap K_{p}=K_{p}\cap K_{x}$ , contradicting

the above.
Therefore $K_{l}/K_{p}\cap K_{l}$ has precisely 2 elements, and so $K_{p}\cap K_{l}\leqq K_{p}\cap K_{x}<K_{l}$

which implies $K_{p}\cap K_{l}=K_{p}\cap K$. ; in particular, $K_{p}\cap K_{\iota}$ is $G_{p}$ -invariant.
Hence $K_{p}\cap K_{\iota}$ is contained in the group $K_{l}\cap(K_{l})^{a}$ . But as the group

$K_{l}\cap(K_{l})^{a}$ is a proper subgroup of $K_{l}$ , equality holds. Now the conjugates
$K_{\iota}\cap(K_{l})^{a}$ , $K_{\iota}\cap(K_{\iota})^{ae}$ and $K_{\iota}\cap(K_{l})^{aee}$ are nothing but the conjugates of
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$K_{l}\cap(K_{l})^{a}=K_{p}\cap K_{l}$ under the action of $G_{lx}$ . In fact, they equal the intersections
of $K_{\iota}$ with $K_{q}$ for the three points $q$ incident to $l$ . Clearly, the whole of $G_{\iota}$ acts
on this set, whence normalizes the intersection $M_{x}$ .

NOW, $M_{x}$ is normalized by $G_{x}$ and $G_{l}$ , whence $M_{x}=1$ .

We discuss the possible structures of $G_{p}/K_{p}$ and $G_{x}/K_{x}$ in the following.
By (1) and (2), we consider the cases (4), (5) and (6).

(4) Assume $G_{x}/K_{x}=A_{4}$ . Then $|K_{x}|=2$ and $G_{p}=A_{6}$ , or $K_{x}|=8$

and $G_{p}=Z_{2}\cross\Sigma_{6}$ .
PROOF. We have $K_{p}\leqq K_{x}=B$ by (2) and therefore $B=K_{x}$I $K_{\iota}\geqq K_{p}$ by (3). If

$K_{l}=1$ , we get $|B|=2$ , and the first possibility occurs. Assume $K_{l}$ is different
from 1, whence $K_{x}>K_{\iota}>K_{p}$ and $|B/K_{p}|=4$ . Then $K_{l}$ is not $G_{x}$-invariant and
there are four $G_{x}$-conjugates of $K_{l}$ in $K_{x}$ . This clearly implies $K_{p}>1$ . More-
over by (1), we know $K_{\iota}$ is not contained in $G_{p}’K_{p}$ , and $G_{p}/K_{p}=\Sigma_{5}$ .

NOW $G_{p}$ is generated by $G_{p}$ -conjugates of $K_{l}$ and the subgroup $K_{p}$ , there-
fore it centralizes $K_{p}$ . Recall that $K_{p}=K_{p}\cap K_{x}=K_{\iota}\cap(K_{\iota})^{a}$ , by (3). And take
some element $e’\in G_{x}$ of order 3 that permutes the groups $K_{l},$ $(K_{l})^{\alpha}$ and $(K_{l})^{ae}$

among themselves. Clearly, $G_{x}=\langle G_{px}, e’\rangle$ . Hence the group $K_{\iota}\cap(K_{l})^{a}\cap(K_{l})^{ae}$

is normal in $G$ , and therefore it is equal to 1. Now $K_{l}$ has at most 4 elements
and $K_{x}|=8$ follows.

We showed $|K_{p}|=2$ ; since $K_{x}$ is elementary abelian, $G_{p}=Z_{2}\cross X_{5}$ .

(5) Assume $G_{x}/K_{x}=\Sigma_{4}$ and $G_{p}/K_{p}=A_{6}$ .
Then $K_{p}=K_{x}=1$ , or $|K_{p}|=|K_{x}|=2,$ $G_{p}=Z_{2}\cross A_{5}$ .

PROOF. We have $|B/K_{p}|=|B/K_{x}|=2$ by (1) and (2), and $K_{l}\leqq K_{x}$ with
$|K_{x}$ : $K_{l}|\leqq 2$ by (3). Moreover, $K_{p}\cap K_{x}$ is contained in $K_{l}$ by (3). Hence either
$K_{p}=K_{x}=1$ , or $K_{p}K_{x}=B$ and $K_{p}\cap K_{x}=K_{\iota}=1$ . Then $|K_{p}|=|K_{x}|=2$ . Since $B$

contains more than one involution, the last statement holds.

(6) Assume $G_{x}/K_{x}=\Sigma_{4}$ and $G_{p}/K_{p}=\Sigma_{6}$ .
Then $|B:K_{x}|=2$ and $G_{\iota}/K_{\iota}=\Sigma_{3}\chi\Sigma_{3}$ . Moreover, $G_{p}’’=A_{6}$ .

PROOF. The grouP $B/K_{x}$ has Precisely 2 elements by (2). Hence $B/K_{l}$ has
4 elements by (3), and as $G_{l}/K_{l}$ is a flag-transitive subgroup of $\Sigma_{3}\cross\Sigma_{3}$ , we get
$G_{l}/K_{\iota}=\Sigma_{3}\cross\Sigma_{3}$ . The group $G_{px}/K_{x}$ is a fours group by (2), and so $G_{px}$ has
exponent at most 4. Clearly, $K_{p}$ is a 2-group of order at most 8, hence central-
ized by $G_{p}’’$ , and therefore $G\prime p$ , which is a perfect central extension of $A_{5}$ , is
isomorphic to $A_{5}$ or to $SL_{2}(5)$ . Assume the second case occurs. Then some
involution $t$ from $G,-G_{p}$ normalizes some Sylow 2-subgroup $S$ of $G_{p}’’=SL_{2}(5)$ ,

which is quaternion. By the structure of $G_{p}/K_{p},$ $t$ does not centralize $S/Z(S)$ .
But then it is easily verified that $S\langle t\rangle\leqq G_{p}$ contains elements of order 8. As
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$G_{px}$ contains a Sylow 2-subgroup of $G_{p}$ , this contradicts $\exp(G_{px})=4$ .
For the convenience of the reader, we once more describe the procedure for

the identification of $G$ and $\approx G$ .
We start with the flag-transitive group $G$ on the simply 2-connected geom-

etry $=G$. Then $G$ also acts transitively on the chamber system $C=C(\approx G)$ , wbich
is simply connected. Assume $B$ (resp. $X_{1},$ $X_{2},$ $X_{3}$) are the stabilizers of some
chamber $c$ (resp. the rank 1 residues containing $c$ ) of $C$ (the parabolics of $G$ ).

Then $C$ is isomorphic to $C(G ; B ; X_{1}, X_{2}, X_{3})$ by the transitive action of $G$ .
We choose a “canonical” generator set $\{x_{i} : i\in I\}$ of $G$ from the local structure
of $G$, and derive a set $R$ of relations between these generators. We do this in
a way that the parabolics of $G$ are generated by subsets of the generator set
and relations live only inside the parabolics.

Assume that for each parabolic $X$ , the generators contained in $X$ and the
relations between these generators derived from a presentation of this parabolic.
Then consider the group $G^{0}$ , for which our generators and relations form a
presentation. Then the corresponding subsets of generators of $G^{0}$ generate sub-
groups $B^{0},$ $X_{1}^{0},$ $X_{2}^{0}$ and $X_{3}^{0}$ , again called parabolics, of $G^{0}$ .

Then there is a natural projection $\pi$ from $G^{0}$ onto $G$ , where parabolics are
mapped onto parabolics.

Assume we know that $\pi$ induces a bijection on each parabolic of $G^{0}$ .
Then clearly $\pi$ induces a 2-cover from $C^{0}=C(G^{0} ; B^{0} ; X_{1}^{0}, X_{2}^{0}, X_{3}^{0})$ onto $C=$

$C(G;B;X_{1}, X_{2}, X_{3})$ , which must be an isomorphism, as $C$ is simply connected.
This implies that $\pi$ is an isomorphism of groups, and we derived a presentation
for $G$ . Moreover, as in our case the diagram is a string and some “fundamental
condition” is satisfied, we may apply [MT] to see that $Q$ is isomorphic to
$\underline{G}(C)=\underline{G}(C^{0})$ .

The mentioned knowledge that rank 2 residues of $C^{0}$ have tbe desired
isomorphism type must be taken from some quotient, where it can be verified
explicitly.

NOW to the presentations. We give generators and relations for the group
$G$ . We thereby frequently use well-known presentations for $A_{4},$ $\Sigma_{4},$ $A_{5}$ and $\Sigma_{6}$ .

For instance, if $d,$ $t$ are elements in $A_{6}$ of order 3 and 2 respectively, and
$t$ inverts $d$ , and $s$ is some other involution in $A_{5}$ commuting with $t$ , then the
elements $ds$ and $dst$ have both order 5. Conversely, $\langle d,$ $t,$ $s:d^{3}=t^{2}=s^{2}=[s, t]$

$=(dt)^{2}=(ds)^{5}=(dst)^{5}=1\rangle$ is isomorphic to the group $A_{5}$ .
It is also well-known that $\langle a, e:a^{2}=e^{3}=(ea)^{4}=1\rangle$ is isomorphic to $\Sigma_{4}$ .

The verification that tbe presentations given below indeed define the groups
stated, was done by coset enumeration using CAYLEY. We summarize the
presentations in table at the end of the paper.
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A natural division into three cases is given by the structure of $G_{x}/K_{x}$ and
$G_{p}/K_{p}$ (see (4), (5) and (6) above).

We investigate the situation of (4) (resp. (5), resp. (6)) in sections (7) (resp.

(8), resp. (9) $)$ .

(7) Let $G_{x}/K_{x}=A_{4}$ . Then $G=G_{12a}\cong Z_{3}xM_{12}$ or $G=G_{12b}\cong A_{4}\cross M_{12}$ .
(a) Assume $K_{p}=1$ .
Then by (4), $G_{p}=A_{5}$ , and it is easily seen that $G_{px}=Z_{2}\cross Z_{2},$ $G_{x}=Z_{2}\cross A_{4}$ ,

$G_{lx}=Z_{6},$ $G_{pl}=\Sigma_{3},$ $G_{l}=Z_{3}\cross\Sigma_{3}$ .
Pick $d\in G_{pl}$ of order 3, $e\in G_{xl}$ of order 3, $s\in G_{xl}$ of order 2, $a\in G_{px}\cap G_{x}’$ ,

not in $B$ , of order 2. Then $B=\langle s\rangle,$ $G_{pl}=\langle s, d\rangle,$ $G_{px}=\langle B, a\rangle$ and $G_{lx}=\langle B, e\rangle$ ,

and the relations $[d, e]=(ds)^{2}=(da)^{5}=(dsa)^{5}=[e, s]=(ae)^{3}=1$ hold.
The group $G_{12a}=\langle a,$ $d,$ $e,$ $s:$ a $=d^{3}=e^{3}=s^{2}=[a, s]=[d, e]=[e, s]=(ds)^{2}=$

$(da)^{5}=(dsa)^{5}=(ae)^{3}=1\rangle$ is isomorphic to $Z_{3}\cross M_{12}$ .
(b) Assume next $G_{x}/K_{x}=A_{4},$ $|K_{p}|>1$ .
Then by (1), $G_{p}=Z_{2}\cross\Sigma_{5},$ $G_{px}=Z_{2}\cross D_{8},$ $G_{pl}=Z_{2}\cross Z_{2}\cross\Sigma_{3},$ $K_{x}=(Z_{2}\cross Z_{2}\cross Z_{2})$ ,

$G_{l}=A_{4}\cross\Sigma_{3},$ $G_{lx}=A_{4}\cross Z_{2}$ .
Moreover, $1<K_{p}<K_{l}<B=K_{x}$ , and so we may pick elements $t$ in $K_{p}$ of order

2, $d\in G_{pl}$ of order 3, $e\in G.l$ of order 3, $u$ in $K_{l}$ with $u=t^{e},$ $s\in Z(G.l)$ of order
2, $a\in G_{px}\cap G_{p}’$ , not in $B$ , of order 2.

Then $B=\langle t, u, s\rangle,$ $G_{pl}=\langle B, d\rangle,$ $G_{xl}=\langle B, e\rangle,$ $G_{px}=\langle B, a\rangle$ and $G_{px}\cap G_{p}’=$

$\langle s, a\rangle$ , and the relations $[t, u]=[t, s]=[t, d]=[t, a]=t^{e}u=u^{e}ut=[u, s]=[u, a]s$

$=[u, d]=[d, e]=(ds)^{2}=(da)^{5}=(dsa)^{5}=[e, s]=1$ hold. Moreover $(ae)^{3}\in B$ .
The possible relations $(ae)^{3}=u,$ $t,$ $ut$ , us, $st,$ $uts$ make the presented group

collapse to a group witb at most 3 elements, the relations $(ae)^{3}=1$ and $(ae)^{3}=s$

are equivalent (replace $a$ by as).

The group $G_{12b}=\langle a,$ $d,$ $e,$ $s,$ $t,$ $u:$ a $=d^{3}=e^{3}=s^{2}=t^{2}=u^{2}=[t, u]=[s, t]=[d, t]$

$=[a, t]=t^{e}u=u^{e}ut=[s, u]=[a, u]s=[d, u]=[a, s]=[e, s]=[d, e]=(ds)^{2}=(da)^{5}$

$=(dsa)^{5}=(ae)^{3}=1\rangle$ is isomorphic to $A_{4}xM_{12}$ .

(8) Let $G_{x}/K_{x}=\Sigma_{4}$ and $G_{p}/K_{p}=A_{5}$ . Then $G=G_{6a}\cong 3(A_{6}\cross A_{6})$

or $G=G_{6b}\cong Z_{3}(A_{6}\cross A_{6})Z_{2}$ or $G=G_{12C}\cong(Z_{3}\cross M_{12})Z_{2}$ .
(a) Assume $K_{p}=K_{x}=1$ .
Then $G_{p}=A_{5},$ $G_{pl}=\Sigma_{3},$ $G_{px}=Z_{2}\cross Z_{2},$ $B=Z_{2},$ $G_{l}=(Z_{3}\cross Z_{3})Z_{2}$ .
Hence we may pick elements $a,$ $b,$ $d,$ $e$ in the following way:
$s$ is the involution in $B,$ $d$ is an element of order 3 in $G_{pl},$ $e$ is an element

of order 3 in $G_{xl}$ , and $a$ is the involution in $G_{px}\cap G_{x}’$ .
Then the relations $[a, s]=(ds)^{2}=(es)^{2}=[d, e]=(ae)^{3}=1$ , and $(ad)^{5}=(asd)^{5}=1$

hold in $G$ .
The group $G_{6a}=\langle a,$ $d,$ $e,$ $s:$ a $=d^{3}=e^{3}=s^{2}=[a, s]=(ds)^{2}=(es)^{2}=[d, e]=(da)^{5}$

$=(dsa)^{5}=(ae)^{3}=1\rangle$ is isomorphic to the central product of two perfect central
extenstons $Z_{3}A_{6}$ .
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(b) Assume $|K_{p}|=|K_{x}|=2$ .
Then $B=K_{p}K_{x}$ is elementary abelian of order 4, and $G_{p}=Z_{2}\cross A_{5}$ .
NOW $G_{pl}=Z_{2}\cross\Sigma_{3}$ , $G_{px}=Z_{2}\cross Z_{2}\cross Z_{2}$ and $G_{x}=Z_{2}\cross\Sigma_{4}$ . Moreover, $K_{\iota}=$

$K_{x}\cap K_{p}=1$ and hence $G_{l}=\Sigma_{3}\cross\Sigma_{3}$ .
Pick elements $k$ in $K_{p}$ of order 2, $s$ in $K_{x}$ of order 2, $d$ in $G_{pl}$ of order 3

and $e$ in $G_{lx}$ of order 3. Moreover, take the involution $a$ in $(G_{px}\cap G_{x}’)-B$ .
Then $B=\langle k, s\rangle,$ $G_{pl}=\langle B, d\rangle,$ $G_{px}=\langle B, a\rangle,$ $G_{lx}=\langle B, e\rangle$ , and, if $\langle u, v\rangle=$

$G_{px}\cap G_{p}’$ , where $u$ inverts $d$ , the following relations hold:
$[k, s]=[k, d]=[k, a]=[e, s]=[a, s]=[d, e]=(ke)^{2}=(sd)^{2}=(dv)^{5}=(dvu)^{5}=1$ ,

and $(ae)^{3}=1$ .
AS possibilities for $\langle u, v\rangle$ we get all fours groups in $G_{px}$ that do not

contain the element $k$ . The two possibilities $\langle u, v\rangle=\langle s, ka\rangle,$ $\langle sk, ak\rangle$ give a
collapsing of the corresponding group, whereas the choices $\langle u, v\rangle=\langle sk, a\rangle$ ,
$\langle s, a\rangle$ do not force the group to collapse. So we end up with the following
groups:

$G_{6b}=\langle a,$ $d,$ $e,$ $k,$ $s:a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[a, s]=[k, s]=[d, k]=[e, s]$

$=[d, e]=(ds)^{2}=(ek)^{2}=(da)^{5}=(dska)^{5}=(ae)^{3}=1\rangle$ , which is isomorphic to a group
$Z_{3}(A_{6}\cross A_{6})Z_{2},$ $G_{12C}=\langle a,$ $d,$ $e,$ $k,$ $s:a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[d, k]=[e, s]=$

$[k, s]=[a, s]=[d, e]=(ds)^{2}=(ke)^{2}=(da)^{5}=(dsa)^{5}=(ae)^{3}=1\rangle$ , which is isomorphic
to a group $(Z_{3}\cross M_{12})Z_{2}$ .

(9) Let $G_{x}/K_{x}=\Sigma_{4}$ and $G_{p}/K_{p}=\Sigma_{5}$ . Then $G=G_{11}\cong M_{11}$ or $G=G_{12d}$

(resp. $G_{12e}$ ) $\cong(A_{4}\cross M_{12})Z_{2}$ or $G=G_{5a}$ or $G_{5b}$ or $G=G_{9a}$ or $G_{9b}$ ,
in which cases we do not know the isomorphism type.

Recall that $K_{l}\leqq K_{x}$ ; and as res(l) is a digon, $K_{x}\cap K_{p}\leqq K_{l}$ .
(a) $K_{x}>1$ .
Assume $K_{x}=1$ . Then $|B|=2$ , which contradicts $|B/K_{x}|=4$ .
(b) Assume $|K_{x}|=2$ . Then $G=G_{11}$ .
We have $|B|=4$ , and $K_{p}=1$ . Then $G_{p}=\Sigma_{5}$ , and $G_{px}=D_{8}$ , $G_{pL}=Z_{2}\cross\Sigma_{3}$ .

NOW $|B|=Z_{2}\cross Z_{2}$ , and $G_{l}=\Sigma_{3}\cross\Sigma_{3}$ . Clearly, $G_{lx}=Z_{2}\cross\Sigma_{3}$ , and $K_{x}=Z(G_{\iota x})=$

$Z(G_{x})$ . Pick an element $z$ in $K_{x}$ of order 2, and an element $t$ in $Z(G_{pl})$ of
order 2, an element $d$ in $G_{pl}$ of order 3, and an element $e$ in $G_{lx}$ of order 3.
Pick further an involution $a$ in $G_{px}\cap G_{p}’-B$ . Then $B=\langle z, t\rangle,$ $G_{pl}=\langle B, d\rangle$ ,
$G_{px}=\langle B, a\rangle$ and $G_{lx}=\langle B, e\rangle$ . As $G_{l}$ is 3-closed, the elements $d$ and $e$ com-
mute. $K_{x}$ centralizes $G_{x}$ , hence $G_{px}$ , and hence $z$ is contained in $G_{px}’$ .

This implies $K_{x}\leqq G_{p}’$ and so $G_{px}\cap G_{p}’=\langle a, z\rangle$ , and the relations $[z, t]=$

$[z, e]=[z, a]=(zd)^{2}=[t, d]=(te)^{2}=[t, a]z=(da)^{5}=(dza)^{5}=1$ hold. Moreover, as
$G_{px}=D_{8},$ $z$ lies in the commutator subgroup of Sylow 2-subgroups of $G_{x}$ ,

whence $O_{2}(G_{x})=Q_{8}$ . Now the involution $a$ is not contained in $O_{2}(G_{x})$ , but the
4-element $ta$ is. Hence (ate)3 is contained in $K_{x}$ . Up to replacing $a$ by $az$ ,

this gives a unique presentation $G_{11}=\langle a,$ $d,$ $e,$ $z,$ $t:$ $a^{2}=d^{3}=e^{3}=z^{2}=t^{2}=[e, z]=$
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$[a, z]=[z, t]=(dz)^{2}=[d, t]=(et)^{2}=[a, t]z=(da)^{5}=(dza)^{5}=(ate)^{3}=1\rangle$ .
A coset enumeration shows that $G_{11}$ is isomorphic to $M_{11}$ .

REMARK. The identification could be achieved also as follows. Consider
the chamber system $C=C(G;K_{x} ; B, \langle K_{x}, te\rangle, \langle K_{x}, a\rangle, \langle K_{x}, d\rangle)$ . Then $C$ has
diagram $(c^{2}\cdot P)$ , and by [MT], the corresponding geometry $\Gamma(C)$ has the same
diagram and flag-transitive group of automorphisms $G$ . As the stabilizer of a
point-line-flag $F$ in $G$ induces only $A_{6}$ on $F$, which has type $P$, by [IS],

Theorem 6.1, we get $\Gamma(C)=G_{11}\Rightarrow$ and $G=M_{11}$ .

(c) The case $K.=Z_{2}\cross Z_{2}$ does not occur.
Assume $K_{x}=Z_{2}xZ_{2}$ . Then $|K_{\iota}|=|K_{p}|=2$ . As $K_{x}$ can not contain four

different conjugates of $K_{l}$ , but $G_{lx}$ normalizes $K_{l}$ , the whole of $G_{x}$ leaves
invariant $K_{l}$ , a contradiction.

(d) Assume $K.=Z_{2}\cross Z_{2}\cross Z_{2}$ . Then $G_{12a},$ $G_{12e},$ $G_{9a}$ or $G_{6a}$ .
Then $K_{\iota}=Z_{2}\cross Z_{2}$ , and $K_{l}$ is contained in $K_{x}$ ; $|K_{p}|=4$ , and $K_{p}$ is not

contained in $K_{x}$ , as it is not equal to $K_{l}$ ; furthermore $K_{\iota}$ is not $G_{x}$-invariant
and hence has precisely four $G_{x}$-conjugates in $K_{x}$ . This is only possible, if
these are precisely the four 2-spaces in $K_{x}$ missing a certain 1-space $Z_{x}$ , which
of course equals $Z(G_{x})$ .

Again $B=K_{x}K_{p}$ , and $K_{p}$ acts nontrivially on $K_{x}$ . Hence $[K_{x}, K_{p}]=K_{x}\cap K_{p}$

$=K_{\iota}\cap K_{p}$ . AS $K_{p}\leqq G_{x}$ centralizes $Z_{x}$ , we get $[K_{\iota}, K_{p}]=K_{\iota}\cap K_{p}$ .
Recall that $G_{x}/K_{x}=\Sigma_{4}$ acts faithfully on $K_{x}$ . Hence $[G_{px}, K_{x}]=(K_{l}\cap K_{p})\cdot Z_{x}$ .

Therefore, $(K_{\iota}\cap K_{p})\cdot Z_{x}$ is contained in $G_{px}’$ .
NOW $G_{p}=(K_{p}\cross G_{p}’’):2$ , witb $K_{p}=Z_{2}\cross Z_{2}$ or $Z_{4}$ ; moreover, $K_{\iota}$ is not contained

in $(K_{p}\cross G\prime p’)$ , and $\langle K_{p}, K_{\iota}\rangle=D_{8}$ , whence $K_{p}$ is not central in $G_{p}$ , and $Z(G_{p})=$

$[K_{p}, K_{l}]$ .
We get $G_{pl}=D_{8}\cross\Sigma_{3}$ , and $G_{\iota}=\Sigma_{4}\cross\Sigma_{3}$ .
NOW we may pick elements $k$ in $Z(G_{p})$ of order 2, $d$ in $G_{pl}$ of order 3, $m$

in $K_{p}-\langle k\rangle$ with $m^{2}=k$ or 1, $u$ in $K_{\iota}-\langle k\rangle$ of order 2, $e$ in $G_{t}$ . of order 3 such
that $\langle e\rangle$ is inverted by some element $t$ in the coset $K_{x}m$ , and $z\in Z(G_{x})$ of order
2, $a\in G_{px}\cap G_{p}’’$ , not in $B$ , of order 2. As $G_{p}’’$ centralizes $K_{p}$ , we get $[a, m]=$

$[a, k]=1$ . AS $a$ is contained in $G_{px}$ , we get $[a, z]=1$ .
The element $t$ must be an involution, since $k$ is the only nontrivial square

in $\langle K_{x}, m\rangle$ , but does not centralize $e$ . Involutions in $K_{x}m$ are the elements $m$ ,
$mk,$ $mz,$ $mkz$ if $m^{2}=1$ , and the elements $mu,$ $muk,$ $muz$ , mukz if $m^{2}=k$ . Hence
up to replacing $m$ by $mk$ , we may assume $t=m$ in the first case, and $t=mu$ in
the second case.

This gives the relations

$(^{*})$ $m^{2}=1$ and $(em)^{2}=1$ , or $m^{2}=k$ and $(emu)^{2}=1$ .
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Then $K_{p}=\langle m, k\rangle,$ $K_{l}=\langle k, u\rangle,$ $K_{x}=\langle k, u, z\rangle,$ $B=\langle m, k, u, z\rangle,$ $G_{lx}=\langle B, e\rangle,$ $G_{px}$

$=\langle B, a\rangle,$ $G_{pl}=\langle B, d\rangle$ .
NOW, the element $a$ does not normalize $K_{l}$ , but centralizes $k$ and $z$ , hence

maps $K_{\iota}$ onto some conjugate of $K_{l}$ different from $K_{\iota}$ , containing $k$ and not
containing $z$ . Thus $K_{l}^{a}=\langle k, uz\rangle$ , and we get

$(^{**})$ $[u, a]=z$ or $kz$ .
In the first case, $a$ induces a fixed point free involution on the four conjugates
of $K_{\iota}$ in $K_{x}$ , while in the second case, $a$ fixes the conjugates $\langle u, kz\rangle$ and
$\langle uk, kz\rangle$ . AS $m$ has two fixed points $\langle K_{l}\rangle$ and $\langle k, uz\rangle$ , am induces a fixed point
free involution in this case.

But $e$ acts fixed point freely on $O_{2}(G_{x})/Z_{x}$ , hence elements of $K_{x}$ central-
ized by an element of order 3 in $G_{x}$ are contained in $Z_{x}$ , and we get the
relations

$(^{***})$ $(ae)^{3}=1$ or $z$ , or $(ame)^{3}=1$ or $z$ .

Moreover, there are the trivial relations $[k, m]=[k, u]=[k, z]=[k, d]=[k, a]$

$=[u, m]k=[u, z]=[u, k]=[u, d]=[m, z]=[m, d]=[e, z]=[e, d]=1$ , and $(zd)^{2}$

$=(da)^{5}=1$ . Up to replacing $u$ by $ku$ , we may assume $k^{e}u=u^{e}ku=1$ .
NOW checking (using again CAYLEY) the group generated by $k,$ $u,$ $z,$ $a,$ $d,$ $e$

and one set of the relations indicated, we get a contradiction, (the parabolic
subgroups of $G$ are smaller than we assumed) as soon as the resulting group has
fewer than 60 elements. This happens, whenever the relation $m^{2}=k$ holds.

Hence we know that always $m^{2}=1$ .
NOW the relations $[u, a]=z$ and $(ae)^{3}=1$ or $z$ give a presentation for the

group $(A_{4}\cross M_{12})Z_{2}$ . The so presented groups are named $G_{12f}$
( and $G_{12e}$ ; it can

be checked that factoring out the normal subgroup $A_{4}$ yields a projection of
chamber systems, hence geometries, onto $\underline{G}_{12}’$ . Hence we get $G=\underline{G}_{12}$ in both
cases.

The relations $[u, a]=kz$ and $(ame)^{3}=1$ and $[u, a]=kz$ and $(ame)^{3}=z$ do not
force the respective groups (named $G_{9a}$ and $G_{5a}$ ) to collapse either; in contrast,
it can be verified, by letting act $G_{9a}$ on cosets of a subgroup of index 126 or
$G_{6a}$ on cosets of a subgroup of index 300, that $A_{9}$ is a quotient of $G_{9a}$ and
$\Omega_{6}(5)$ is a quotient of $G_{5a}$ , and that the projection maps are injective on parabolic
subgroups of the chamber systems. This can most effectively be achieved using
the cosact homomorphism implemented in CAYLEY. Now $Q$ is the universal
2-cover of $\underline{G}(A_{9})$ respectively the universal 2-cover of $G(\Omega_{6}(5))$ in the two cases.

Let us summarize the result of case (d):

The group $G$ is hence generated by elements $k,$ $u,$ $z,$ $m,$ $d,$ $e,$ $a$ and satisfies
the relations $k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=l$ , $[k, m]=[k, u]=[k, z]=[k, d]=$

$[k, a]=[u, m]k=[u, z]=[u, k]=[u, d]=[m, z]=[m, d]=[e, z]=[e, d]=1$ ,
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$k^{e}u=u^{e}ku=1$ , $(em)^{2}=1$ , $(zd)^{2}=(da)^{5}=1$ , and further relations $[u, a]=z$ , and
$(ae)^{3}=1$ or $z$ , or $[u, a]=kz$ , and $(ame)^{3}=1$ or $z$ .

AS already stated, these are presentations for $G$ in the four respective case.
What about the universal 2-cover of $=G(He)$ ? It must appear in case (d) by

the structure of its parabolic subgroups. Certainly, it is not covered by the
geometry $G_{12}$ , but which of $G_{5}$ and $Q_{9}$ is the universal 2-cover of $\approx\approx G=G(He)$ ?

Analogously as in the remark at the end of case (b), we can switch to the
chamber system $C(G ; K_{x} ; B, \langle K_{x}, me\rangle, \langle K_{x}, a\rangle, \langle K_{x}, d\rangle)$ which has diagram
$(c^{2}\cdot P)$ and to the geometry $\Gamma(C)$ . By ([P2], Theorem 1), the universal 2-cover
of $\underline{G}$ is the appropriate truncation of the universal 2-cover of $\Gamma(C)$ , and by
([P2], Lemma 4), all rank 3 residues in the universal 2-cover of $\mathcal{G}$ (viewed as
a rank 4 geometry) and in $\Gamma(C)$ are isomorphic. The same holds also for the
geometries $\mathcal{G}(A_{9})$ and $=G(\Omega_{5}(5))$ and their universal 2-covers respectively.

NOW point residues in the rank 4 geometries $\underline{G}(A_{9})$ and $\underline{G}(He)$ are isomor-
phic to the $(c\cdot P)$-geometry for the group $3\Sigma_{7}$ , point residues in the rank 4
geometry $=G(\Omega_{5}(5))$ are isomorphic to the $(c\cdot P)$-geometry for the group $\Omega_{4}^{-}(5)$ in
the other case.

Hence the universal 2-covers for the Held group example and the universal
2-cover for $\underline{G}(A_{9})$ are isomorphic, but are not isomorphic to the universal
2-cover of $\approx G(\Omega_{5}(5))$ .

(e) Assume $K_{x}=Z_{2}\cross Z_{2}\cross Z_{2}\cross Z_{2}$ . Then $G=G_{5b}$ or $G=G_{9b}$ .
We will see that $G$ has a flag-transitive subgroup with $K_{x}|=8$ in this

case, whence the geometry must already occur in case (d). The flag-transitive
subgroup can be identified to be $G_{5a}$ (resp. $G_{9a}$ ).

NOW, $K_{\iota}=Z_{2}\cross Z_{2}\cross Z_{2}\leqq K_{x}$ , and we claim that $K_{x}$ is the (dual) permutation
module for $G_{x}/K_{x}=\Sigma_{4}$ . To see this, assume by way of contradiction, that the
four $G_{x}$-conjugates of $K_{l}$ in $K_{x}$ intersect in a 1-space $Z$ . Then $Z$ is certainly
contained in $K_{p}\cap K_{l}=K_{l}\cap(K_{l})^{a}$ and therefore centralized by $G_{p}’$ . But then, as
$G$ is generated by $G_{x}$ and $G_{p}’$ , $Z$ is $G$ -invariant, whicb is a contradiction.
Hence the intersection of the four $G_{x}$ -conjugates of $K_{l}$ in $K_{x}$ is 1, and the
claim is proved.

NOW $G_{x}$ fixes precisely one 1-space $Z_{x}$ , no 2-space and precisely one 3-space
$H_{x}$ in $K_{x}$ and $Z_{x}$ is contained in $H_{x}$ , but not in $K_{\iota}$ .

Hence $Z_{x}$ equals $Z(G_{x})$ and is a complement to $K_{l}$ in $K_{x}$ . As $K_{p}K_{x}=B$ ,
$K_{p}$ acts nontrivially on $K_{x}$ , and as $K_{p}$ normalizes $K_{l}$ and $Z_{x}$ , we get $[K_{x}, K_{p}]$

$=[K_{i}, K_{p}]$ is a group of order 2 in $K_{l}\cap K_{p}$ , which itself is a fours group.
By (3), $K_{l}\cap K_{p}=K_{p}\cap K_{x}$ is $G_{p}$ -invariant, and hence not invariant under $G_{l}$ .

Therefore, there are three conjugates of $K_{l}\cap K_{p}$ in $K_{\iota}$ under $G_{xl}$ .
Assume by way of contradiction that they intersect in a group $Z$ of order

2. Then $Z$ is central under $G_{xl}$ , and contained in $K_{p}$ . But $K_{p}$ is centralized
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by $G_{p}’$ , and $G_{p}=G_{p}’\cdot B$ ; hence $Z$ is centralized by $G_{p}$ and is $G$ -invariant, which
is a contradiction (the same contradiction proof was performed ten lines above).

Therefore, $K_{l}$ is the dual permutation module for the group $\Sigma_{3}=G_{lx}/K_{x}$ . But
clearly also $G_{l}$ induces $\Sigma_{3}$ on $K_{l}$ . This implies that there is a $G_{l}$ -invariant
2-space $M_{xl}$ and a $G_{l}$ -invariant 1-space $Z_{l}$ in $K_{\iota}$ , such that $Z_{l}$ is a complement
to $M_{xl}$ and to $K_{\iota}\cap K_{p}$ and $G_{lx}/K_{x}$ acts faithfully on $M_{xl}$ . Clearly, $H_{x}=Z_{x}M_{xl}$ .

AS $K_{p}$ acts nontrivially on $K_{x}$ , it has to act nontrivially on $K_{\iota}\cap K_{p}$ and $K_{p}$

(being nonabelian of order 8 and containing the fours group $K_{p}\cap K_{x}$ ) is dihedral
of order 8.

By (6), $G_{p}=(D_{8}\cross A_{5})2$ . But $Z_{l}$ is not contained in $K_{p}$ , it is not even con-
tained in $K_{p}G_{p}’$ by (1), and it centralizes $K_{p}$ . Hence, $G_{p}=D_{8}\cross\Sigma_{5}$ . In particular,
$G_{px}=D_{8}\cross D_{8}$ . Moreover, $G_{px}’=Z(G_{px})=Z_{2}\cross Z_{2}$ . And this group is contained
in $K_{x}$ , as $G_{px}/K_{x}$ is abelian.

The action of $G_{x}$ on the permutation module $K_{x}$ shows that $Z_{x}$ is contained
in $G_{px}’$ . Hence, $G_{px}’=[K_{x}, G_{px}]=Z_{x}[K_{p}, K_{x}]$ .

Let $\langle k\rangle=Z(K_{p}),$ $\langle z\rangle=Z_{x},$ $\langle l\rangle=Z_{l}$ . Clearly, these tbree involutions commute.
TO generate $B$ , we pick an element $r\in K_{p}\cap K_{\iota}-\langle k\rangle$ and a further involution $m$

in $K_{p}-K_{x}$ . Then $[m, z]=[m, l]=[m, k]=[r, k]=[r, z]=[r, l]=1$ , and $[m, r]$

$=k$ .
For the convenience of the reader, we list some consequences. $K_{p}\cap K_{\iota}=$

$\langle k, r\rangle,$ $K_{l}=\langle k, r, l\rangle,$ $K_{x}=\langle k, z, 1, r\rangle$ and $B=\langle K_{x}, m\rangle$ . Moreover, $K_{p}=\langle k, r, m\rangle$ .
The group $G_{p}’’-A_{5}$ acts still flag-transitively on $res(p)$ , whence $G_{p}’’\cap B=Z_{2}$

is properly contained in $G_{p}’’\cap G_{px}=Z_{2}\cross Z_{2}$ .
Hence, we may pick an involution $a\in G_{px}-B$ such that $a$ is contained in

$G_{p}’’$ , and hence centralizes $K_{p}$ . This gives relations $[a, z]=[a, m]=[a, k]=$

$[r, a]=1$ , and $[a, l]$ is contained in $Z(G_{px})=\langle k, z\rangle$ . Assume $[a, l]$ is contained
in $\langle k\rangle$ . Then $K_{l}$ is normalized by the element $a$ , hence invariant under $G_{px}=$

$\langle B, a\rangle$ and $G_{l}$ , and therefore $G$ -invariant, a contradiction. Hence we get
$[a, l]=z$ or $kz$ .

Assume $[a, l]=z$ . Then $a$ induces some transvection with center $Z_{x}$ on
$K_{x}$ , which contradicts the action of $G_{x}/K_{x}=\Sigma_{4}$ on $K_{x}$ . Hence
$(^{*})$ $[a, l]=kz$ .
In particular, $K_{\iota^{a}}=\langle k, r, lz\rangle$ . Moreover, $a$ induces a transposition on the four
$G_{x}$ -conjugates of $K_{l}$ . Let these be denoted by $K_{l},$ $K_{\iota^{a}},$ $Q$ and $R$ . Clearly,
$K_{l}\cap K_{\iota^{a}}=\langle r, k\rangle$ is centralized by $a$ , and $\langle k, r, z\rangle$ , the centralizer of $a$ in $K_{x}$ ,

is the sum of $K_{\iota}\cap K_{\iota^{a}}$ and $[K_{x}, a]=\langle kz\rangle$ .
Also the element $m$ acts as a transvection on $K_{x}$ , hence as a transposition

on $\{K_{l}, K_{\iota^{a}}, Q, R\}$ . As $[m, a]=1,$ $m$ fixes $K_{\iota}$ and $K_{\iota^{a}}$ , and interchanges $Q$ and
$R$ . Therefore, $Q\cap R$ is centralized by $m$ , hence lies in $\langle k, 1, z\rangle$ . By tbe above
argument, $Q\cap R$ is a complement to $\langle k\rangle=[K_{x}, m]$ in $\langle k, l, z\rangle$ .
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Moreover, a centralizes $K_{x}/Q$ and $K_{x}/R$ , hence $Q\cap R$ contains $[a, K_{x}]=\langle kz\rangle$ .
NOW, $Q\cap R=\langle kz, 1\rangle$ or $\langle kz, lk\rangle$ .
Therefore, $Q\cap R\cap K_{\iota}=\langle l\rangle$ or $\langle lk\rangle$ . This implies $Q\cap R\cap(K_{\iota^{a}})=\langle lkz\rangle$ or $\langle lz\rangle$ .

AS this group is invariant under the action of $G_{\iota x}$ , which centralizes $\langle 1, z\rangle$ but
not $k$ , we get $Q\cap R\cap(K_{l})^{a}=\langle lz\rangle,$ $Q\cap R\cap K_{l}=\langle lk\rangle$ , and $Q\cap R=\langle lz, lk\rangle$ .

NOW consider $K_{l}\cap(K_{\iota})^{a}\cap Q$ and $K_{\iota}\cap(K_{\iota})^{a}\cap R$ . These 1-spaces of $K_{x}$ are
interchanged by the element $m$ . Hence they equal $\langle r\rangle$ and $\langle rk\rangle$ , and we found
a “canonical” basis of the 4-space $K_{x}$ in the vectors

$lz,$ $lk,$ $r,$ $rk$ ,

which are permuted “naturally” via conjugation by $G_{x}/K_{x}=\Sigma_{4}$ . Note that
$H_{x}=\langle k, rl, z\rangle$ is the unique $G_{x}$-invariant 3-space in $K_{x}$ , and $M_{xl}=K_{l}\cap H_{x}=$

$\langle k, rl\rangle$ is the unique $G_{xl}$-irreducible 2-space in $K_{x}$ .
We go on with the presentation for $G$ .
Clearly, $G_{pl}$ is 3-closed and we take $\langle d\rangle=O_{3}(G_{pl})$ .
Then $[d, k]=[d, m]=[d, r]=[d, 1]=1$ , and so $d$ is inverted by $z$ , as

$G_{pl}/K_{p}=Z_{2}\cross\Sigma_{3}$ . In $G_{p}’’$ we see $(da)^{5}=1$ . It is easily seen that $\langle d\rangle=O_{3}(G_{l})$ , as
the centralizer of $K_{\iota}$ in $G_{l}$ is 3-closed.

Consider the group $G_{lx}$ . We know $G_{lx}/K_{x}=\Sigma_{3}$ , and $\langle Z_{x}, Z_{\iota}\rangle\leqq K_{x}$ is central
in $G_{\iota x}$ . Therefore, the four Sylow 3-subgroups of $G_{\iota x}$ are permuted transitively
by the fours group $K_{x}/\langle Z_{x}, Z_{\iota}\rangle$ and $G_{xl}/\langle Z_{x}, Z_{\iota}\rangle$ induces $\Sigma_{4}$ on $Sy1_{3}(G_{xl})$ . The
involution $m$ in $B-K_{x}$ must therefore induce a transposition there. Let $\langle e\rangle$ be
a Sylow 3-subgroup of $G_{lx}$ , which is normalized by $m$ . Up to replacing $e$ by
its inverse, we get

$(lz)^{e}=lz,$ $(lk)^{e}=r,$ $r^{e}=rk,$ $(rk)^{e}=lk$ .

NOW, the element $ema$ acts as an element of order 3 on $K_{x}$ , with centralizer
$\langle r, z\rangle$ . Hence we get the condition

$(^{**})$ $(ema)^{3}\in\langle r, z\rangle$ .

The element $ea$ induces a 4-cycle on $\{1z, lk, r, rk\}$ , hence $\langle e, a\rangle K_{x}=G_{x}$ .
Assume $(ema)^{3}$ is not contained in $\langle z\rangle$ . Then $H_{x}$ is contained in $\langle e, m, a\rangle$ ,

and since the involution $m$ normalizes $\langle e, a\rangle$ , also $\langle e, a\rangle$ contains $H_{x}$ . But $(ea)^{4}$

is contained in $\langle z\rangle$ , as it is centralized by $ea$ . Therefore, $\langle e, a, z\rangle/\langle z\rangle$ is
generated by an element of order 3 and an involution, such that their product

is of order 4; such a group is isomorphic to $\Sigma_{4}$ , a contradiction.
Hence $(ema)^{8}=1$ or $z$ .
Together with all other relations derived so far, in particular $[d, e]=1$ , the

first relation defines a group $G_{6b}$ , the second a group $G_{9b}$ , and we find again
subgroups of indices 126 (resp. 300), such that in the permutation groups induced
on the cosets of these subgroups no residue collapses. Let $K_{x}^{1}=\langle k, z, rl\rangle,$ $B^{1}=$
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$\langle K_{x}^{1}, m\rangle$ ; then the group $G^{1}=\langle k, z, rl, e, a, d\rangle$ is obviously a flag-transitive
subgroup of $G$ . The chamber system $C(G^{1}$ ; $K_{x}^{1}$ ; $\langle K_{x}^{1}, m\rangle,$ $\langle K_{x}^{1}, em\rangle,$ $\langle K_{x}^{1}, a\rangle$ ,
$\langle K_{x}^{1}, d\rangle)$ has diagram $(c^{2}\cdot P)$ , the chamber system $C(G^{1}$ ; $B^{1}$ ; $\langle b^{1}, em\rangle,$ $\langle B^{1}, a\rangle$ ,
$\langle B^{1}, d\rangle)$ has diagram $(c^{*}\cdot P)$ . Hence we are back in case (d) and the result
follows.

We omit the identification of the group $G^{1}$ as $G_{6a}$ respectively $G_{9a}$ in the
two cases.

AS we already know that there must occur the two non-isomorphic geom-
etries $\mathcal{G}_{5}$ and $\underline{G}_{9}$ in case (e), this follows anyway.

TABLE OF PRESENTATIONS.

$G_{6a}=\langle a,$ $d,$ $e,$ $s:a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=(ds)^{2}=(es)^{2}$

$=[d, e]=(da)^{5}=(dsa)^{5}=(ae)^{3}=1\rangle$

$\cong Z_{3}(A_{6}\cross A_{6})$ .

$G_{6b}=\langle a,$ $d,$ $e,$ $k,$ $s:a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[a, s]=[k, s]$

$=[d, k]=[e, s]=[d, e]=(ds)^{2}=(ek)^{2}=(da)^{5}=(dska)^{5}=(ae)^{3}=1\rangle$

$\cong Z_{3}(A_{6}\cross A_{6})Z_{2}$ .

$G_{11}=\langle a,$ $d,$ $e,$ $z,$ $t:a^{2}=d^{3}=e^{3}=z^{2}=t^{2}=[e, z]=[a, z]=[z, t]=(dz)^{2}$

$=[d, t]=(et)^{2}=[d, e]=[a, t]z=(da)^{5}=(dza)^{5}=(ate)^{3}=1\rangle$

$\cong M_{11}$ .

$G_{12a}=\langle a,$ $d,$ $e,$ $s:a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=[d, e]=[e, s]$

$=(ds)^{2}=(da)^{5}=(dsa)^{5}=(ae)^{3}=1\rangle$

$\cong Z_{3}\cross M_{12}$ .
$G_{12b}=\langle a,$ $d,$ $e,$ $s,$ $t,$ $u:a^{2}=d^{3}=e^{3}=s^{2}=t^{2}=u^{2}=[t, u]=[s, t]$

$=[d, t]=[a, t]=t^{e}u=u^{e}ut=[s, u]=[a, u]s=[d, u]$

$=[a, s]=[e, s]=[d, e]=(ds)^{2}=(da)^{5}=(dsa)^{5}=(ae)^{3}=1\rangle$

$\cong A_{4}\cross M_{12}$ .

$G_{12C}=\langle a,$ $d,$ $e,$ $k,$ $s$ : $a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[d, k]=[e, s]=[k, s]$

$=[a, s]=[d, e]=(ds)^{2}=(ke)^{2}=(da)^{6}=(dsa)^{6}=(ae)^{3}=1\rangle$

$c(Z_{3}\cross M_{12})Z_{2}$ .

$G_{12d}=\langle k,$ $u,$ $z,$ $m,$ $d,$ $e,$ $a:k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]$

$=[k, u]=[k, z]=[k, d]=[k, a]=[u, m]k=[u, z]=[u, d]$

$=[m, z]=[m, d]=[e, z]=[e, d]=k^{e}u=u^{e}ku=[m, a]$

$=[z, a]=(em)^{2}=(zd)^{2}=(da)^{6}=1,$ $[u, a]=z,$ $(ae)^{3}=1\rangle$

$\cong(A_{4}\cross M_{12})Z_{2}$ .
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$G_{12e}=\langle k,$ $u,$ $z,$ $m,$ $d,$ $e,$ $a:k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]$

$=[k, u]=[k, z]=[k, d]=[k, a]=[u, m]k=[u, z]=[u, d]$

$=[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e}u$

$=u^{e}ku=(em)^{2}=(zd)^{2}=(da)^{5}=1,$ $[u, a]=z,$ $(ae)^{3}=z\rangle$

$\cong(A_{4}\cross M_{12})Z_{2}$ .

$G_{5a}=\langle k,$ $u,$ $z,$ $m,$ $d,$ $e,$ $a$ : $k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]$

$=[k, u]=[k, z]=[k, d]=[k, a]=[u, m]k=[u, z]=[u, d]$

$=[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e}u=u^{e}ku$

$=(em)^{2}=(zd)^{2}=(da)^{5}=1,$ $[u, a]=kz,$ $(ame)^{3}=z\rangle$ .

$G_{sb}=\langle k,$ $z,$ $1,$ $r,$ $m,$ $a,$ $d,$ $e:k^{2}=z^{2}=l^{2}=r^{2}=m^{2}=a^{2}=d^{3}=e^{3}$

$=(dz)^{2}=(da)^{5}=[k, z]=[k, 1]=[l, z]=[m, z]=[m, 1]$

$=[m, k]=[r, k]=[r, z]=[r, l]=[m, r]k=(em)^{2}=[d, e]$

$=[l, e]=[z, e]=k^{e}rl=r^{e}rk=[a, z]=[a, m]=[a, k]$

$=[r, a]=[a, l]kz=[d, k]=[d, r]=[d, l]=(ema)^{3}=1\rangle$ .

$G_{9a}=\langle k,$ $u,$ $z,$ $m,$ $d,$ $e,$ $a:k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]$

$=[k, u]=[k, z]=[k, d]=[k, a]=[u, m]k=[u, z]=[u, d]$

$=[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e}u$

$=u^{e}ku=(em)^{2}=(zd)^{2}=(da)^{6}=1,$ $[u, a]=kz,$ $(ame)^{3}=1\rangle$ .

$G_{9b}=\langle k,$ $z,$ $l,$ $r,$ $m,$ $a,$ $d,$ $e:k^{2}=z^{2}=l^{2}=r^{2}=m^{2}=a^{2}=d^{3}=e^{3}=(dz)^{2}$

$=(da)^{6}=[k, z]=[k, 1]=[l, z]=[m, z]=[m, l]=[m, k]$

$=[r, k]=[r, z]=[r, l]=[m, r]k=(em)^{2}=[d, e]=[l, e]$

$=[z, e]=k^{e}rl=r^{e}rk=[a, z]=[a, m]=[a, k]=[r, a]$

$=[a, l]kz=[d, k]=[d, r]=[d, l]=(ema)^{3}z=1\rangle$ .
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