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Many number theorists have taken up the problem of determining the exact
conductor C{* of the Jacobi sum Hecke character a— J{¥(a) since Weil
raised its interesting problem in 1952. Recently, Coleman-McCallum [2] deter-
mined the exact conductor C${¥ when m is a power of any odd prime number
[, using the arithmetic geometry of Fermat curves, and Miki [12], [13],
gave a purely number theoretic proof to their results. But the case [=2 is still
an unsolved more difficult open problem, and it seems that Coleman-McCallum’s
method is not applicable to the case [=2, though Coleman [3], §6 (with
G. Anderson) gave a partial result by using Ihara-Anderson’s theory.

The purpose of the present paper is to give the complete determination of
the conductor f,.(g, h, s) of the character a—(a, 25(14+4)*(—1)%), with geZ,
heZ, and s€Z/2Z for n=2 (see in §1), and the conductor C{®
of the Jacobi sum Hecke character a— J{%’(a) for the power 2" (see [Corollary] to
in §2), by the methods of [13], [14]. Here, Z and Z, are the rings
of rational and 2-adic integers respectively, and (, ), denotes the Hilbert norm
residue symbol in @,({;») for the power 2", where @, is the field of 2-adic
numbers and &,; is a fixed primitive 2:-th root of unity satisfying (i+1=C: for
all /=1 (for the exact definition, see [14], §1).

Since 0 (a) is well-defined mod 2! (not mod 2") when [=2 (see
in §2), we can determine i{?’(a) mod 2"' in the same way as (see Theo-
rem 8 in §2). In (see also its Remark) in §2, we will determine
i{®(a) mod 2" for a=Q(lsn), @=1 (mod 73), by using and certain
congruences for Jacobi sums (see Theorems [2, 03, and [4 in §3). Note that
(and its Remark) contains Coleman [3], Theorem (6.4) as a special
case. combined with gives the complete determination
of the conductor C.3> (see [Corollary] to [Theorem 9).

&) This paper contains the details of part of my talk at the Number Theory Seminar
(Goldfeld), Columbia Univ., March 21, 1988 (see [1Z]).
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§1. Conductor of the character a—(a, 25(1+4)"(—1)%),.

In this section, we retain all the notations in putting (=2, and assume
n=2. For example, T, is the trace from Q,(Cn) to Q,, 7,=1—C», and

o ﬂ.'% i
o = exp(~ 2 { P, !
2k

) for a>2""1,

where exp is the 2-adic exponential function.
LEMMA 1. If az=1, then

T.(alpnmé™) =0 (mod2*"?),

PRrROOF. Since

(0 if 2071 44,
2 if 207 |
and
~1y,,
aConms™ = alon 2 (—D( " )hn
— — v ¢\t
= — 3 (=D( ] ke,
we have

Tolalonms™ = =2 53 k(.5 )= D

0san-1.pzq 2" TR

= 0 (mod 2°*"7%).

LEMMA 2. If a>2""", then the following (i), (ii) and (iii) hold.

(i) O0x(6)=— :21 alonmi™t (mod Dy), where D,=(2""") is the different of
QZ(CWl)/QZ- (2=1

(ii) T n(0.(€2))=0 (mod 22"~2) for a>2""".

(iii) If a=1 (mod 2) and a=Q,(Lsn), then T ,(0,(a))=0 (mod 22"2),

PrOOF. (i) The proof is almost the same as that of [14], (i).
In fact, we can replace (2), (5), and (6) in the proof by the following (2)’, (5),
and (6)’, respectively :

(2) f(m,)=B—1 and f(T)=T" (mod T°*).
(5) u(r,) =0 (mod 2).
(6 3u(B) =~ i (mod D).

Hence we have the assertion.
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(ii) Since T,(D,)=0 (mod 22*7%), by (i) we have

%Tn((az')cgnn%i"l) (mod 22772).

T, =~ 2

(i,2)=1

Hence, by we have the assertion.
(iii) If a=1 (mod 2) and a=@Q,({,n), then we can write

a= TI &i+ with A, € Z,

azgn—1
where &n-1=1—2=-—1. Since J,(—1)=0 (mod D,), by (ii) and Iwasawa [7],
i) we have the assertion.

THEOREM 1.
(i) for 07 n—2,

/40, 2%, 0) :{
(1) for i = n—1.

PRrOOF. Since Iwasawa [7], is valid for [=2 by Kudo [9], we
have

1

(1) Cat, 144, = — o Tu(B:(@) log(1+4) (mod 27)
= log(HOT,(3u(@) (mod 27)

for a=Qy({:n)*. Since log(l+4)=4 (mod 8), by Lemma 2, (iii) we see that
(2) [a, 14+4], =0 (mod 2*) if e« =1 (mod 2).
Next, we will show
(3) [1+273% 14+4], £ 0 (mod 27).
If o(+1)eGal(Qx(Len)/Qx(Con-1)), then Lfn=—lm=C3%"" and a5 '=—1+277'=
14275 (mod 2). Hence by (2),
(14273, 1+4), = (=57, 14+4),
= (T, 14+
= (n, 1+4)7,

where (,), denotes the quadratic Hilbert symbol in @,(%n). Since

Qo(Ln)(V14+4)/Q4(Lon) is unramified of degree 2, by local class field theory we
have
(o, 14+4)n # 1,

hence we have (3). (Alternatively, (7., 14+4),=(N.(7,), 14+4),=(2, 1+4),#1 by
e.g., Serre [16], Chap. XIV, §4). By (2) and (3), f.(0, 1, 0)=(x,)=(2). Hence,
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by [14], we have f,(0, 2¢, 0)=(m;,,) for 0<i<n—2. Since T n(Z:[{en])
=0 (mod 2"°!), we see by (1) that [a, 1+4],=0 (mod 2) if a=1 (7,). Hence
f2(0, 2¢, 0)=(1) for i=n—1.

REMARK. The direct calculation using the above (1) shows also [7,, 14+4],
#£0 (mod 2).

For positive integers ¢ and 7 such that n>:+1, put

. c
B(e) = )k e Z1E].
RO = 5 (g, )b S 200

LEMMA 3. Under the above notation and assumptions, the following (i)~(v)
hold.

(i) If n=i+1, then r,(2c)=r{(c) (mod 4).

(i) If n=i+1, then ri(c)=ri(c—1) (mod 4) for any odd c¢=3.
(iii) r(2)=0, r{*(3)=2 (mod 4), and r»(5)=nr% (mod 4).

0 (mod4) for 2" '<c<C277142"77

2 (mod2) for 2°"'4-2" 2L c<2",

(v) If n=3, then rP(c)=rn} (mod4) for c=2""142""%—1,

(iv) If n=2, then rﬁf’(c)z{

PROOF. (i) By Artin-Hasse [1], Hilfssatz 2,

<2n+216-i13> = (Zn(jik) (mod 4),

since n=:+1. By this we immediately have the assertion.
(ii) Since n=7+1 and ¢ is odd,

(gpei-ag) = omgresy (gronsg) = (grony) (mod )

On the other hand, 0<2"*'"*k<¢ if and only if 0<2"*'"*k<c—1. This gives
the assertion.

(iii) r§P(3)=1—3=-2, and »{®(5)=—4+10{,==3 (mod 4).

(iv) We will prove it by induction on n. If n=2, then ¢=2, 3, so the

assertion follows from (iii). Now assume n=3. Write c=c,+2¢, with ¢,, ¢,€Z,
0<¢,<2. Then the inequalities of the assumption imply

2n—-2 g ¢, < 2n—-2+2n—3
and
2n—2+2n—3 g C1 < zn—ly

respectively. By (i) and (ii), we have

rd(c) = rP(c—co) = rP2ey) = rfi(c;) (mod 4).
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Hence the assertion follows from the induction hypothesis.
(v) We can prove it in the same way as the proof of (iv).

LEMMA 4. The following (i) and (ii) hold.

0 (mod4) if 2" '<c<2n 142772,

o .
(1) ‘27—TT”<”"):{2<mod4) if oot e m,

(ii) "Qﬁl'fz“Tn,g(rf%)Err% (mod 4) if c¢=2""142""*—1.
PROOF. (i) By (%) in the proof of Lemma 1, we have easily T.(7%)=
27 1p(¢). Hence the assertion follows from (iv).

(ii) This follows from (v) in the same way as the proof of (i).

THEOREM 2.
2771 (mod 2") if 2"T14-2nTP<a <27
(i) [€q, 22]n= or if a=2""'+2"?*—1 and n=3,
0 (mod2") if a=2"
. 2 (mod2r) if 2420 t<a<2n,
(i) e, —1]"”{ 0 (mod2) if 207'<a<2 42" or if a=2n.

PROOF. (i) If a=2", then the proof of [14], is valid for (=2,
since [14], (i) (iii) are valid for (=2. If 2"7'+2"2<a<2", then the
equality (3) (for i=1) in the proof of [14], is valid for (=2 by using
(i) in place of [14], (ii). Hence

(o) 2%)n = (exp(—4), 211
= (1_4, 2)1
for 2" '4-2"?<a<2". Hence (&,, 2°),=—1. This gives the first congruence.

If a=2""'42"""—1 and n=3, then the equality (3) in the proof of [14], Theo-

rem 2 holds for /=2 by using (ii) in place of [14], (ii).
Hence

(§a, 290 = (exp(—273), 2),
= (exp(—273), Lo)o(exp(—273), m,)3,
since 2={,7}. By Artin-Hasse’s explicit formula [1],
(exp(—273), L) =1 and (exp(—2m}), mo) = —1,

since T,(n3)=0. So (&4 2°),=—1. This gives the first congruence.
(ii) Assume a=2""'. By Artin-Hasse’s explicit formula [T1],
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[Ea; ’_1]71 - _'ZIPIECZﬂ; Sa]n
= —271(14+2""HT ,(log &,) (mod 2";

=27,( 5 ) (moa2n.
(1,2)=1
Hence by [14], (iii),
[0, —11n = 27T a(nz) (mod 2™),
since ai=2" for i=2. Hence by (i), we have the assertion.

COROLLARY.
(1) fa(2, 0, 0)=£.(0, 0, D=(4).

142 ] z i
i) fu2, 0 D={ (1™ Y2

ANOTHER Proor. (i) Cf. The proof of [Corollary] to [Theorem 3

(ii) Since —2*=nr3, we have Qy(Lun)®"V—20)=Qy(%n)*" *v/7,). The case
n=2 is trivial, so we assume n=3. By the following the last
upper ramification number of Q(&yn)(*" v/ —22)/Q,(Csn) is 3-272—1. Hence by the
conductor-ramification theorem, f,(2, 0, 1)=(a32" ") =(ad)=(m,7,).

We will determine the conductor f,(2¢, 0, 0) for /=2 by using ramification
theory. (For the proof using (ii) of the above corollary and [14],
see another proof of Corollary| to [Theorem 3.)

THEOREM 3. Put k,=Qy(l:n). Let m be any prime element of ks, Then
ka(®"N ) /Ry s a fully ramified cyclic extension of degree 2" with upper rami-
fication numbers r; (1=:i<n):

ri =201420—-1=23.2'—1 for 1<i<n—2,

ooy = 27427721 = 5_2n~2_l,
and
Vo =204270" 14202 _1=7.27"2_.1,

PROOF. Put K,=k,(*" V' x), L,=k,*" vV 7) for 0€m=<n, K=K,,and L=L,.
(Take *™+/m so that *"+/7m)=2""'/7 for 1<m<n.) We define the Hasse
function ¢g,/x by

Sme/K = ¢’Km/1<m_1° °¢K2/K1°¢K1/K,
where ¢k, 1k, , is the Hasse function of K;/K;_,. Then we see easily

( 1 ) SbLm/Km"Sme/K - SbLm/L°</’L/K



Jacobi sums and the Hilbert symbol for a power of two 373

by using induction on m and the transitivity of the Hasse function. As is
well-known, the ramification numbers of L/K are (2¢*'—1) with /=1, 2, ---, n—2,
so the set of upper ramification numbers of L/K is

T,={2+1|:=1,2, -, n—2}.

K./K,_ is a fully ramified cyclic extension of degree 2 and *™+/7 is a prime
element of K,,. Since "+ 7 )'=—1=1-2 for (- 1)eGal(K/K_,), the rami-
fication number of K,/K,_, is 2™*'. Hence the set of x-coordinates of points
where the graph of y=¢x_,x(x) bends is

T,=1{2%+2|:i=1,2, -, n}.

By (1) we see that the graph y=¢; ,.(x) bends at any point with x-coordinate
in ¢ x(T,). Thus L,/L is a fully ramified cyclic extension of degree 2" with
upper ramification numbers ¢, x(2:42) with i=1, 2, ---, n. For 1<i<n—2,
Grix(2i+2) = ¢rx(2i+1)+2°

=21t —14-2¢

=3-2'—1.
For i=n~—1, n,

Grix(2i+2) = ¢ x(@n—3)+2"*{2(1—n)+5}
= 2" —142""%{2(;—n)+5}.

Thus we have the assertion.

REMARK. The above situation is a special case where Maus’ general theory
can be applied, but in the above proof we gave a direct proof using only
classical ramification theory found in e.g., Serre [16], Chap. IV.

COROLLARY.

(8) for i =0,
(4) for i = 17
i —
fn(z » 0, 0) - (zini+1) for 2 é 7 g n_2,
) for izn—1, i # L

Proor. The first case follows from the second one, since the second-power
homomorphism of U{™ to U{™*2"™" is the isomorphism for m>2""! (e.g., Serre
[16], Chap. X1V, §4, Proposition 9). First, suppose 2</<n—2. By the
conductor-ramification theorem (e.g., Serre [16], Chap. XV, §2, to
Theorem 1)),

fa(2%, 0, 0) = (™),

where 7 is the last upper ramification number of 2,(3"°+/2)/k,. Since
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2 =0 n3,
we have
o™ ' 2) = B ("W).
Hence by

r =g g = 20201
)
(ma™) = (mimiyn).

Now we deal with the case /=1. By [Corollary| to [Theorem 2, we have already
determined f,(2, 0, 0), but we will give another proof using here.
First, assume n=2. Then ky=Fk,(~/2), and the ramification number of k,/k, is
3, so by the conductor-ramification theorem, f,(2, 0, 0)=(x4)=(4). Next, assume
n=3. Put M=k,C"Vr)=k,("°V2), M=k, ,(*"°V2), My=Fk,(*" V1),
and M,;=k,*"'v/2). Then M, M, and M, are three different extensions of
M of degree 2, and M,CM,M,. Since the set of upper ramification numbers of
k(" 2)/k, is disjoint from that of k,,,/k,, in the same way as in the proof
of we see that the ramification number ¢, of M,/M is ¢y, (2" —1).
By

Taog =3:2"°—1<2"~1,

SO

(1) t = Parr,(Tas) F2" 20— 1=, y).

On the other hand, the ramification number ¢, of M,/M is
(2) Doty (Tn2) = Parrn (Frg)F27 3 (rn_s—7n_s).

By
281>y, =3.2072—1,

so by (1) and (2), t,>1,. Hence by the following the ramification
number of M,;/M is i, so by (1) we see that the last upper ramification number
of M,/k, is 2—1. Thus the conductor of M,/k, is (z%")=(4) by the conductor-
ramification theorem. This settles the case ;=1. Since 2*'==3"*' for i=n—1,

i#1, we have f,(2% 0, 0)=(1) for i=n—1, i#1.

ANOTHER PROOF OF COROLLARY TO THEOREM 3. If 2<i<n—2, then (a, 2%,
=(a, —2%%"'. By (ii) of [Corollary] to [Theorem 2, f.(2, 0, 1)=(z7;*) with ¢,=
2n-14-277%  Since 1<c¢,<2*, by [14], we have f,(2¢ 0, 0)=(m;7ws, ).

LEMMA 5. Let [ be any prime number. Let M be a finite extension of Q;
and let M;/M be a fully ramified cyclic extension of degree | with ramification
number t; for i=1, 2. Assume t,>t,. Let My/M be any subextension of M,M,/M
of degree | such that M,+M,. Then the ramification number of M;/M is t,.
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PROOF. Put L=M,M,. By the transitivity of the Hasse function,

¢L/M = ¢L/M1°¢M1/M = ¢L/M2°¢M2/M .

Hence the graph of y=¢;,4(x) bends at x=t,, f,. Since t,#1,, the upper rami-
fication numbers of L/M are t,, ¢, i.e., the ramification groups of L/M are

Ga(L/ M) =G =+--=G*? 2G"*" = ... = G 2 G4 = {1}.
By Herbrand’s theorem,
(G/Hy)® = GV Hy/H,,
where H,=Gal(L/M,). Since the ramification number of M,/M is t,,
(G/Hy)%2* =1, so GV & H,.
Hence H,=G“*Y=G“Y. Put Hy=Gal(L/M,). Then
(G/H)"Y = GV Hy/H,s
= H,H,/H,
+= {1},
since H,#H,. On the other hand,
(G/H3)"*) = GOV Hy/Hy = {1}.
Thus we have the assertion.
In the same way of the proof of we have the following

THEOREM 4. Let | be any odd prime number and put k=@, ({in) for m=1.
Let © be any prime element of k. Then k,(*"~ 7)/k, is a fully ramified cyclic
extension of degree ™ with upper ramification numbers r; (1=i<m):

{ 200—1 for 1 <4< m—1,
Vi =
(m(mr—1 for i =m.
As a corollary, taking 7=!"'+/—/, we have the following special case of
Coleman-McCallum [2], Theorem 6.1. (For i=1, Rohrlich [15], Proposition 4.)
COROLLARY. If [ is an odd prime number and m=1, then

(Iz}) = (=1*Y)  for i =0,
fm(li: O: 0) = (7"3) fOT’ 1 § Zv é m_]-’
(D for i = m.

By and Corollaries to Theorems 2 and 3, we have directly the
following complete determination of f,(g, h, s):
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THEOREM 5.

(8) if v(g)=0 (d.e., 7=0),

4 if v(g)=1 and s=0 or
if w(g)=2 and s=1,

(7;) if 1<7=<n—2, v(g)>v(h)+1, and s=0 or
if v(g)=zv(h)+1=n—1, v(g)#1, and s=0 or

falg, h, s) = if 1=v(g)=v(h)+1, s=1, and n=2,

(mimi00) if 2275n—2, v(@)<v(h)+1, and s=0 or
if v(g)=1, s=1, and n=3,

(1) if j=zn and s=0 or if n—1=p(g)<v(h)+1, n=3,
and s=0 or
if 1=u(g)<v(h)+1, s=1, and n=2,

where j=min(y(g), v(h)+1) and v is the normalized additive valuation of Z,.

§2. Conductor of the Jacobi sum Hecke character for a power of two.

In this section, we will show how we have to modify the arguments in
[137, to obtain the complete determination of the conductor C{% for the Jacobi
sum Hecke character (see [Corollary| to [I'heorem 9).

We assume n=>2, and retain all the notations in [13] putting [=2. We
recall the definition of ¢ :

—1 d
5(7")(6!) = ~2~1;——-1‘TrKn/K(C2na‘l d: )

= ‘QT:TTrKn/K<5"(a))

for acU%. Here, K is any fixed finite unramified extension of Q,, K,=K({:n),
and U is the group of principal units in K,.
We modify [13], as follows:

LEMMA 6. Let the notation and assumptions be as above. Then 6™ is a
well-defined homomorphism of UL to Ox/2" 'Ok satisfying the following prop-
erties (i)~ (v) for acUSP :

(i) 0™(a’)=ad"™(a) (mod 2" '0x) for a=Zj3.

(ii) 0M(ln)=1 (mod 2" 'Ok).

(iii) o™ (a@)=—c[1+4, al, (mod 2" '0g) if asUPNQy(ln), where c=

(—;—10g(1-|—4)>~162‘1(1+2Z2) and log is the 2-adic logarithm.

(iv) 0(a)=0 (mod 2""'0x) if a=1 (mod2) and a=Q:({:n).
(v) 0" (a)=0"(Npir, o)) (mod 277 '0k), where o’ €U and Nyyyn 1S
the norm of Kn.i to K.
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PROOF. Since the different of K,/K is (2"7"), Trg,/x(Dn)=2*""?0x. Hence
by Iwasawa [7], Lemmas 3 and 4, (i), 6 is a well-defined homomorphism.

(i) This follows directly from Iwasawa [7], Lemma 4, (ii).

(ii) This follows directly from the definition of ™.

(iii) Iwasawa’s formula ([7], Theorem 2) is valid even if (=2 by Kudo [9],
so the property (iii) follows directly from this.

(iv) This follows directly from Lemma 2, (iii).

(v) This follows directly from Iwasawa [7], Lemma 5. (Note that the proof
is valid for /=2 with slight modification.)

Because of the above modification of [13], Lemma 1, (iii) we have to modify
[13], Theorem 1 as follows:

THEOREM 6. If a=(a,, -+, a,)#(0, -+, 0) (mod 2™),
oM (Ji(m) =<2, ayg  (mod 2"7),

i.e.,

(L4, J@(@s = — 5 log(1+4)-<2, bg  (mod 27),

where g=Xpv(a)a;. Here v(0)-0=c0-0=0.

PRrROOF. Since [13], Lemmas 2 and 3 are valid even if [=2, using Lemma 6
in place of [13], Lemma 1 we have the assertion in the same way as the proof
of [13], Theorem 1.

We modify [13], Lemma 4 as follows:
LEMMA 7 (Iwasawa [8], p. 82, line 2). If a=Z, (a, 2)=1, then

(@) = logca>  (mod2”)

where {a) is a unique element in Zj5 such that {ay=1 (mod4) and a/{a>==+1.

PrOOF. In Iwasawa’s calculation (line 13, p. 81 through line 2, p. 82 of [8]),

by using a formula
2

log(l4+x) = x~—~)—;~ (mod x?)
for x=2Z,, in place of a formula
log(l4+x)= x (mod x?)
for xelZ, and odd [, we can get the desired congruence. (If we use a formula
log(l+x)=x (mod27'x?%

for x2Z,, then we obtain a congruence mod 2*%.)
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We modify [13], as follows:

LEMMA 8. For any integer m=1 and any c=Z, we have the following (i)
and (ii):
(i) If ¢=1, then

0 (mod 2™**) if ¢=3 is odd and m=3,
2"§1 e | —2™ ' (mod 2™*Y) if ¢=2 and m=2 or if ¢c=1 and m=2,
j-—-l] | 2™t (mod 2™*Y) if ¢=4 is even and m=2 or if m=1,

2m (mod 2™*Y) if ¢=3 is odd and m=2.

0 (mod 2™*Y) if ¢ is odd and m=3,

0 j§<3 7¢={ 2™ (mod 2™**) if ¢ is even and m=2 or if m=1,
< m
j,2)=1 2m (m0d2m+1) if ¢ is odd and m=2.

PrROOF. (i) If m=1 or if ¢=1, then it is trivial, so we may assume that
m=2 and ¢=2. First, assume that ¢ is odd. Since

(2 ___] ¢ = _]'c+2mcj'c-—1 (mod 2m+1)’

by pairing ;¢ and 2™—j ) for j€Z, 0<7<2™7! in the sum, we get

2 ]'C = zmc 2 ]'c—1+(2m.—1)c (mod 2m+1)
j=0 osjcem—1
{ 2™ (mod 2™*Y) if m =2,
0 (mod2™*Y) if m=3,
since
- 1 (mod 2) if m =2,
0gj<em -1 -

0 (mod2) if m = 3.

This gives the desired congruences for odd ¢=3. Next, assume that ¢ is even.
Since 2B;=Z, for all /=0 by the von Staudt-Clausen (cf. e.g., [17], Theorem
5.10), using a well-known identity (cf. e.g., [17], Proposition 4.1)

o= e Bemn ()

we have easily a congruence

Be= im 22”2 (/°+¢Byje™-2™) (mod 2™7)

m

1 o
=g 2 s Zf Y (mod 2™7Y)
2™ =1

1 am
= 2/ (mod2™),
2™ 51
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c
where B.(X)= Eo ?)BiX“" and B, is the 7-th Bernoulli number. Hence
=
2m
(1) EI]C =2"B. (mod2™*"),
=

Using (1) for m=2, we have

B, = E 24] 7¢ (mod 2)
4 i=1
= %(1+2”+3”) (mod 2).
Since
3 =(—1+4) =1—4¢ (mod 16),

we have

—%— (mod 2Z,) if ¢ =2,
(2) B, = )

5 (mod 2Z,) if ¢ =4.

By (1) and (2), we have the desired congruences for even c.

(i) This follows from (i) in the same way as the proof of [13], Lemma
5, (ii).

We modify [13], as follows:

LEMMA 9. For 0€m<n—1, put

A= <t n<{72"{m}*2m{2i"}>(ut>ﬂl € 2.

,2)=1

~o
o~

Then

207t (mod2®) if m=n—-22=1,
2" (mod2") if m=n—12=2,
—2"% (mod2™) if m=n—1=1,
0 (mod 2™) otherwise.

s
N

PrROOF. In the same way as the proof of [13], Lemma 6, using
in place of [13], Lemma 5, we have

— -1 _ ~2 2\, 9n—-m n
A= (°§¢£1<222)"_‘1mt1 )(Ostgzamtz) (;1;:1 )(gtz) 27-m  (mod 27).
1B
By this and [Lemma 8 we have the assertion.

By using in place of [13], Lemma 6, in the same way as the
proof of [13], we obtain the following
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LEMMA 10. Let a=Z be of the form a=2™a’ with a’, meZ, (a’, 2)=1,
and 0<m<n—1. Then

2" ,(a")+2a (mod 2%) if m=n—2= 1,
szn(a')Jr-‘Zi (mod 2™ if m=n—1=2,

W.la) =
2mWn<a')—-g— (mod2") if m=n—1=1,

2™W .(a’) (mod 27) otherwise.

By Lemmas 7 and 10, we have the following

THEOREM 7. For any acsZ, we have

—;—log<a>“+2a (mod 2™) if v(a)=n—22=1,

%log<a>“+% (mod 2" if w(a)=n—1=2 or if v(a)=n,
Wa(a) =

%log(a)ﬂ—% (mod 2") if v(a)=n—1=1,

—;—log<a>“ (mod 2™) otherwise.

Here, {a) is a unique integer satisfying <{a)=1 (mod4) and a’/{a)={t]1} if
a=a’-2™ with m=0, 2} a’, and <0>=1.

PROOF. If u(a)=n, then clearly

W(a) = (mod 27)

a
2
and

log<a>* =0 (mod 2"7*%).

This gives the assertion when y(a)=n. The other cases follow from Lemmas
7 and 10.

COROLLARY.
51 = log( T Cap™)+T+2 (mod2®),
2 i=0
where
retael =
T T 2uesEear

OsisTr

and
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t=t,=

{#{Ogigrlu(ai):n—Z or n} if n=3,
20 i<rivia;)=n—1or n} if n=2.
In the same way as the proof of [13], using Theo-

rem 6, and [Corollary] to [Theorem 7] in place of [13], Lemma I, [Theorem 1],
and [Corollary] to [Theorem 2 respectively, we obtain the following

THEOREM 8. Assume a=(a,, -, a,)#(0, ---, 0) (mod 2"). Then
() = g[2, al,+h[1+4, al, (mod2"7)
E[ T ag, a] 1277144, a], (mod 21
0 n

i=

for a=Q(sn), a=1 (mod x,), where
g :ié)U(ai)aiy ay = —é‘i a;,
h=csw( = 1og(;110<ai>at)/1og<1+4>+2~l7‘ (mod 2"79)),

(1 Tt o-q
c= (71og<1+4)) & 27(1+22,),

(a)y — S mgfi. —1) ! Y,
Si “%?}g(%{ g )0 e 2,
and
. 1
T = Fn-l = Z a;.
2 vad=n-1

OsisT

Here, v(0)-0=c0-0=0 and 0°=1.

Note that A[1+4, @], is well-defined modulo 2*°' if we determine &
mod 272, since [1+4, a],=0 (mod 2) for «a=1 (mod =,). (Cf. The end of the
proof of [Theorem 1.)

In the following, we will determine 7{3’(«) mod 2" for a=Q({:») such that
a=1 (mod #%) in terms of Hilbert norm residue symbols (see [Theorem 9 below).
For the purpose we need several lemmas.

For any b= Z, put
bt t B .
= 3 (8} -o{ = 50,0
(t,2)=1
where G,=Gal(Q,({:»)/Q,). The restriction homomorphism from G,,, to G,
induces a homomorphism from Z[G,..] to Z[G,]. Let %,..(b) denote the

image of 7,..(b) by the homomorphism. For the relation between %z..(b) and
7a(b), we have the following
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LEMMA 11. Let the notation be as above and write b=2™-b" with m, b’ Z,
m=0, and (b’, 2)=1. Then

1-b

vn(b)+~7~ N, if m=0,
nn(b)~a_b,9n,m+(lv%)Nn fl<m<n—1,
Nna1(b) =
7 <b>+(1—3)zv if m=n
n 2 n ‘ s
b L
77n(b)_'_2'1vn Zf m = 7’l+1,
where
N.= 3 a0, Z[G,]
(OO
and
Q.n= X o7t Z[G.].
oLtlem
(L,2)=1
ot Len—-m

Here t is a unique integer satisfying t'=t (mod 2"~ ™*') and 01’ <2~ ™*1,
PROOF. Put
o =3 (2ot e QI6.]
and

oy ty

7n(b) = %gﬁb{ 5w 197t € QLG.].
Then 9.(b)=7.(b)—7.(b). Let 7r.:(b) and #7,:(b) denote the images of 7,..(b)
and #,,.(b) by the restriction homomorphism from Q[G.,;] to Q[G,] respec-

tively. Then 9n.1(b)=7%7.1(b)—F2..(b), so
(1) N0 —=7u(b) = (F7:1(b)—72(0)— (241 (b)— (D).

Since {bt/2™} depends only on ¢ mod 27,

7ub)= X {ﬁi}a:i

te(z/2®z)* PA
_ X oy
temnpx (20T
Putting b’t=t, and writing ¢; as { again,
_ ¢ 1
(2) Tn(b) = 0y 3 {‘?‘:;}'U—c-

0Lt<2T
(t,2)=1

Hence
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= t _ .
(3) i) =002 {simrfosi € QLG
o<tc2n+1 2

(t,2)=1

If we write ¢ in (3) as t=t"+2"c with ¢=0, 1, 0<¢”<2"* and (¢”, 2)=1 then

(4)

First, assume m=0.

so by (2) we have

(5)

Next, assume m=1.

Hence
(6)

if m=1, where

t” c .
; } B ‘2n—+1‘+§ it m= 0,

{fﬁém} if mz 1.
Then by (3) and (4) we have

c l«//
Thor) = 000 3 (S 5y )oh

1 t
= §0b'Nn+Ua' tZ "2";,’0':}",

771/2+1(b)_"ﬁn<b) = %Nn if m=0.

Then by (3) and (4),

4

Tnea(b) = 04 55 {’gmf}":%”

R34

t”
= 20'1,1 2 {W}o:%ﬂ .

t”

TrerlD)—7ab) = 0_y X _adn, m)ay!
55

aln, m) = 2{"2;{-%:1 } - {‘ﬁt-m} .

If m=n+1, then a.n, m)=0, so we can assume 1<m=<n. We can write ¢

then

383

in
(6) as t=2"""*d+¢’ with 0<t/<2» ™" (t', 2)=1, and 0<d<2™7', If p<2n-m
2t t’
adn, m) = 5~ gamm = 0.
If 20~ m<t'<2* ™*! then
agfn, m)=1.
In fact, a«n, m)=x—{x}, where x=¢'/2""™, Then 1<x<2 and 0<{x} <1, so

0<x—{x}<2 and x—{x} =Z, hence x— {x}=1. Hence by (6),
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77,n+1<b)”‘77n(b> =0_y 2 (7?1
ot<en
(L, 2)=1
t'>2n—m

= a—b'(Nn—Qn,m>;
SO
Nop—0_p82, n if 1 <m<n,
if m=>=n+1,

where 2, ,=0. In the same way as the proof of (5),
, . b

for any m=0. By (1), 6), (7), and (8), we have the assertion.

LEMMA 12. Assume 1=<m<n-—1 and let Q, . be as in Lemma 11. Then

tgan—m
t,2)=1

Q0 m= (0<( > UZI)Nn,n_mH in G,.

Proor. By definition

(1) Qn,m: > 2 :

0. n— .
2 m+1d+t’
0sd<2M~1 o<t <gN~m

(t',2)=1

If we fix ¢/, then

(2) 2 0‘2_7'11«—m+1d+‘; - UZ’I'Nn,n—m+l in G,.
osd<em—1

In fact, each term of the left side is equal to 7' on Qy({,»-m+1) and different
from each other on @Q.({:»). By (1) and (2) we have the assertion.

LEMMA 13. Assume 2=<t<n—2, and put d=2', ¢=0,.4, and w=mn,. Let i
be any integer such that 1=2. Then the following (1), (ii), and (iii) hold.

(i) If i is even, then

(14797 = 1+x* (mod x'*%).
In particular,
(14797 =1 (mod x**?%) for ¢ = d.
(i) If i is odd, then
(1+xi)l+o' = 1+n2i+ni+d—l+”i+d (mod ﬂi+d+l).

In particular,

(1+7l'i)1+a = 1+7ri+d—1+ﬂ.i+d (mOd 77‘.1:+<i+1> f07’ 7 g d+1
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(iili) If 7 is odd, then
(1478 9-s = 14z (mod 7i+?),
Proor. Put {={:. Since w=1-¢,

n’—n ={1-0%

= (1—m)z* (mod 2).
Hence

(1) 7’ = n(l4+7%"'4+xn%) (mod 2).
(i) By (1), we can write
w7 = 14Ax¢!
with some A= Z,[{]. Taking the /-th power of both sides,

(78)° "' = 1+4Ax?"' (mod n?)
=1 (mod z%),
since 7 is even. Hence
(2) (m%)? = x* (mod 7**?),
)
(l_+_n.i>1+(7 = <l+ﬂ1)2 (mod n.i+d)

= 1+7% (mod n**?),

385

since t<n—1 implies 2z*=0 (mod #***¢). Hence we have the first congruence.

The second one follows from the first one.
(ii) Taking the i-th power of both sides of (1),

(%)’ = ¥ (14-in¢ ' +in?) (mod m+22-2),
since {<n—2 implies 27 '=0 (mod x**?¢~?). Hence
(3) (7’ = mpit+att e 4zt (mod mtt2e-?),
since 7 is odd. So

(1+7ri>1+0 = <1+ﬂi)(l+ﬂi+ﬂi+d—l+ﬂ,‘i+d) (mod n.z'+2d—2>.

Expanding the right side, we have the first congruence, since the inequalities

t=2, i=2, and t<n—2 imply
i+d+1<14+2d-2,
i+d+1 £ 2+d—1,
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and 27'=0 (mod n**?¢~%), respectively. The second one follows from the first
one.

(iii) In the similar way as the proof of (1), we have

no-1"' = 147 (mod =?),
)
(ni)-1 = g+t (mod xt*?).
Hence
(14— = (1+a)(1+xi 47" (mod mt*2).

Expanding the right side and using the congruences

72 = 27t = 0 (mod =**?),

we have the assertion.

LEMMA 14, For any integer m=1, put
Q= Ao ) I (140100 = (1401400 - (L4 01sam).

Then the following (i), (ii), and (iii) hold.

(i) If 2sm<n—2 and j=a, n, then

o —1 (mod2x,) if m=2and j = a, u,
(Imf)om-1 = {
1 (mod 2x,) otherwise,
where @, n=3+@2" 242774 ... £2™),
(i) If n=4 and j=3+2"?, then
o —1(mod2x,) if n=4 and j=3+2"7%
(14m5)%ns =
1 (mod 2x,) otherwise.
(ili) If n=3, then
—1 (mod 2x,) if i=3,

(I4-75)%n-2 = {
1 (mod 2z,) if i = 4.

PRrROOF. For simplicity, put r=mx,.
(i) We will prove it by induction on m. If m=2, then a, ,=2""'—1 and
'=1+0_,. Hence the assertion follows from (iii) of Now assume
m=3 and put d=2™"'. By (i) and (ii) of we can write
(1) (1477 71e = 11 (1477%) (mod 2)

where j,<j,< -+ <Js, and
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J1Z7+d if 7 is even,
{ ji=j+d—1and j, = j,+1 if j is odd.
Put A,=(1+n’e)m-2  If ¢=3, then
Ja> i4+d Z an me1,

so by the induction assumption,

A, =1 (mod27) for a = 3.
Hence by making £27,_, operator on both sides of (1), we have
(2) (14 77)%m-1 = A, A, (mod 27),
since x=1 (mod 2) implies x®m-2=1 (mod2x). If j is even, then j>a, n, SO

NHZ7+d> anntd=anni,
i.e., ji>a, n_1, hence by the induction hypothesis,

Ae =1 (mod2x) for a=1, 2,

so by (2) we have the assertion. Now assume that ; is odd. Then we can
write j,=2j1 with ji€Z. Since

ji= (G=1)/242m70 = 1@ - 427 )H2 2 e,

we have
>

4
J1Z Qnot,m-15

where the equality holds if and only if j=a, , and m=3. Since n’=r,_,
(mod 2), we have
A, = (14xiL ¥¥m-2 (mod 2r).

Since j;=j+d=a, ».: and since the equality holds if and only if j=a, ., by
the induction hypothesis we have
{ —1 (mod2z) if m=3 and j=a, n,
A=A =
1 (mod 2x) otherwise,

so A,A,=1 (mod 2x). Hence by (2) we have the assertion.

(ii) This is a special case m=n—2 of (i).

(iiiy We will prove it by induction on #n. If n=3, then the assertion
follows from (iii) of so we may assume n=4. First, assume that 7
is even. By (i) of Lemma I3, we can write

(3) (L+a9 7 rns = (I75_) IT (147%%) (mod 2),
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where {+2" <, </, < -+- <Js. Since =4, by (ii) we have
(14 r7a)?m-3 = 1 (mod 2r)
for a=1. On the other hand, by the induction hypothesis,
(1+7xk_ )% - =1 (mod 27).
Hence by making £7_, operate on both side of (3),
(14+74H2n-2 = 1 (mod 2x).
(Alternatively, ni=ni_, (mod 2) with /=27, so
(14 7xH%%m-2 = (14-74_)?-2 (mod 27).
Since the right side is equal to N,_,(1+z%_)), it is 1 (mod 4) as is well-known.)
Now assume that 7 is odd. By (ii) of we can write
(4) (L4729 sors = (Lt mh_)(I+ahy) TT (%) (mod2),

where /=(—1)/24-2""% and 42" *=7,<j,< --- <j,. By (ii) we have
o —1 (mod 2x) if a=1, /=3, and n=4,
(5) (14 i) =
1 (mod 27) otherwise.
By making £,_, operate on both sides of (4), we have
(6) (Lat)n-2 = (14+xh_)%r-s(1+xh_)?-3(1+7x71)2n-s (mod 27).

If /=3 and n=4, then /=3, so by the proof in the case n=3, each term of the
right side of (6) is —1 (mod 2x), so we have the assertion in this case. Other-
wise, 7’>=4, so by the induction hypothesis,

(7) (14+78_ )% -3 =1 (mod 27).
By (5), (6), and (7),

(14 7H)2n-2 = (1471 _,)% -3 (mod 27).
Hence by the induction hypothesis we have the assertion.

LEMMA 15. Assume n=3 and put

Qn—zz 2 IO-ZIGZ[Gn]-

Let x=Q(Lsn) be such that x=1 (mod 7%). Then

x9n-2 = x%-2 (mod 27,),
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where 8%_, is as in
PROOF. Put
U™ = {x € Qx(Len) | x =1 (mod n7)}

for m=1. In the same way as the proof of (2) and (3) in the proof of
13, we have

(%)’ = z* (mod 2x,)
if 6=0,,,n— and 71=2. Hence
x% = x (mod 2x,),

since x=1+X7.,A47y with A;Z. This implies that the Galois group
G(Qs(&:n)/Q(Len—1)) acts trivially on the group

M=U@/Uug+*"",
Thus M becomes G,_,-module naturally. Hence

Fn-2 = N,_(%)

— N
= X 722’

where ¥=x mod U$**"™>. This gives the assertion.

By Lemmas [1, 02, [4, and [[5, we will calculate x®r+1®-92@) mod 27, for
x=Qy(Cn) such that x=1 (mod x2).

LEMMA 16. Let x€Qy({on) be such that x=(1+=x%) (mod n%) with j€Z.
Then the following (i) and (ii) hold.
(i)
{ (—~1Y (mod2x,) if 1<m< n—2,
rIn 1 - ) =

1 (mod2x,) otherwise,

where ,(b) is as in Lemma 11 and m=y(b).
(i) If a=(ay, -, a)EZ", then

x@n+1@-on@) = (1) (mod 27,).
Here r'=rp=4{0<isr|l=<v(e)=n—2}, and ay=—221- a..

PrOOF. (i) Since N,(x)=1 (mod4) as is well-known, by [Lemma 11 we
have directly the assertion unless 1<m=<n—1. If m=n—1, then £, ,=N,., so

x¥%n.m =1 (mod x3)

by Hasse [4] (see also Serre [16], Chap. V, §3), hence we have assertion in
this case by CLemma 11. So we may assume l1<m=<n—2. By
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(l) x‘Qn,m: x’gn—m——l,

where x' =N, pome(x) and @n_noi= 3 o7l Since n—m-+1=3, by Hasse

we have
x'= (1+7C%-—m+l)j (mOd ﬂ;l—m+1)~

So by [Lemma 15,

(2) x/Cn-m-1 = x'%n-m-1 (mod 27 ,_ s 1)

By (1) and (2),

xnm = x'9-m-1 (mod 27,).

Hence by Lemma 11 and (iii) of we have the assertion.
(ii) By definition,

w,(a) = l_go'y]n(ai)“]\]n;
so we have directly the assertion by (i).

By Lemma 16 and [Theorem 12 in §3, we will prove the following
17, which is a key to the proof of

LEMMA 17. Let BE€Q(Len+1) be such that B=(1-+=3,,) (mod 4,,) with j&Z.
Assume that a=(a,, -, a)€Z" and a==(0, ---, 0) (mod 2*). Then

ign’ (N1, n(B)) = i3nk(B)+ 77"+ 2" (mod 27),
where r'=ry is as in Lemma 16.
ProOoOr. Recall that
(1) Ji((x) = GEP xon@ with i(x) =i (x) € Z/2"Z,

for any x&Q({:») such that x=1 (mod z,,). By taking N,.. . of both sides
of (1) (replacing n by n+1 and putting x=8), we have

(2) Jih((a) = (—Gon)" P a/onn®,

where a’=N,,;: x(f) and '(8)=:i{7%(8). On the other hand, putting x=a’ in (1),
(3) Jiw (@) = e alen@,

By in §3,

(4) Jinh((a@) = J 2 (a") (mod 27,).

By (2), (3), and (4), we have

(=en)"" Pra0ns1® = e q'@n® (mod 27,),
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ie.,
(5) ;'gla')—(lw”—l)i'(ﬂ) = a'n+1 (D90 (@ (mod 27,).
By Hasse [4],

{ (I4+#3) (modxs) if n=3,

a =
1 (mod n3,) if n=2.

By
(6) a’¢n+1(®-on @ = (—1Y7" (mod 27,).

(Note that »'=0 if n=2.) By (5) and (6),
Cg%a')—(l—rzn—l)ir(ﬁ) = Cg;:—ljr' (mod 27rn):

so #(a’)—(142""1'(B)=2"""jr" (mod 2"). Since [1+4, ],.1=0 (mod4) by Theo-
rem 1, we have /(8)=0 (mod 2) by Hence we obtain the assertion.

By [Theorem &, Lemma 17, and in §3, we will give a formula
on P (@) mod2* for ac=Q(l:m) such that a=1 (modz}) in terms of Hilbert
norm residue symbols :

THEOREM 9. Assume a=(a,, ---, a,)(0, ---, 0) (mod 2™). Then
(@) = g[2, al.+h'[1+4, al,+s[—1, a], (mod 2")
=| ML ate, a| +277'[1+4, al, (mod 2"
for a=QLsn), a=1 (mod ©3), where
g= irgou(ai)ai, Qy=— 1:21 a;,
h' = ¢S +2" 7%
= log( I <a>%) /log(144)+2" ' (mod 29,
s=#{0<i<r]|a; =1 (mod4)} (mod2)
=r"4g/2 (mod 2),

¢ =27 log(1+4)™" € 27Y(1+2Z,),

r'=r;, =0 or 1 according as the number of i (0Zi<r)
such that 1<v(a;)<n—2 is even or odd, and

r"=34{0=71=<r | (a; 2)=1}/2.
Here, y(0):0=c0-0=0 and 0°=1.
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ProoOr. By (or Weil [18]), 1% (x)=0 (mod 2*) if x=1 (mod =7)
for a sufficiently large m, so we can extend the domain where {3’ is defined, to

UL = {x € Q(fen) | x =1 (mod 7,)},

by continuity. Thus (%> is a homomorphism from U to Z/2"Z. Put n=1+=i.
Then, as is well known, we can write

(1) a=yn"a

with meZ,, a’'cU such that a’=1 (mod n%) and N,(a’)=1. We can write

a'=Ny,1,(8) with some BEQ,({en+1), =1 (mod x3,,). Then by Lemma I7 and
[I'heorem 8§

i () = i9(8)+ 77271 (mod 27)

= g[2, BlasiFh[1+4, Blasi-H77" 277" (mod 2,
SO

(2) s (@) = g[2, a'lo+h[1+4, @'ln+jr"-2"7" (mod 27),

where h=cS{%, and B=(1+7x%,,) (mod m%,,) with j&€Z. Next, we will show
(3) g¥’ 277t =273 /[144, a’], (mod 2").

If n=2, then »'=0, so we may assume n=3. Then by Hasse [4],

o’ = (1+7#3) (mod nt).
By [Theorem 1,
2" 144, 14737, = [A+4)"7, 14731,

= 27! (mod 2"),
and
(4) 2"3[1+4, x], =0 (mod 2™)
for x=Qy(&n), x=1 (mod z%). This gives (3). By Artin-Hasse [1],
[~ T, =[G, a'ls

= 2", a'la

= 271 (1+2»127*T ,(log a’) (mod 2%),
S

(5) [—1 a’], =0 (mod 2"),

since T ,(log a’)=log N,(a’)=0. Hence by (2), (3), and (5), the first desired
formula holds for a=a’. Thus it suffices to prove the formula when a=y,
because of (1). Since
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(2% ) = (2, )n
= (2, N, n—1(7]))n—1
= (2, Uz)n-l

= (22, ﬁ)n—\
for n=3, we have

(22; 7])n — (22, 77)21

where (, )7 is the Hilbert norm residue symbol in @.({,») for the power 2"
In the same way,
(22, ). = (2, No(p))r = —1,

since Ny(np)=1-+4 (mod8). Hence

(6) (2% 5], = 2" (mod 2").
By [Theorem 1,
(7) [1+4, 5], = 0 (mod 27).

In the same way as the proof of (ii) of Theorem 2,
(8) [—1, p], = 2" (mod 2").

By (6), (7), and (8), the right side of the desired first formula for a=7 is equal
to (s+g/2)-2*7% i.e., 77-2"' (mod 2®). In fact, since a;v(a;)=0 (mod4) for
v(a)+#1, we have

(9) g= 3 a; (mod4).

v(ag)=1
0stgT

Since DI, a;=0, we have

(10) > a; =0 (mod4).
v(ay)=0,1
0sisT
Since
> a;=s—(2r"—s) (mod4)
e

= 2(s—r”) (mod 4),
by (9) and [10)] we have
s+g/2 =" (mod 2).

On the other hand, by in § 3,
i () =¢”-2""1 (mod 27).

Thus we have the first formula in [Theorem 9 Since by we have
[1+4, a],=0 (mod 2?) for a=Q:(s») such that a=1 (mod #n}), h'[1+4, al, is
well-defined mod 2" if we determine A’ mod2®% By the first formula and
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(Corollary] to [I'heorem 7,

(@) = g[2, ala-+(log( I <a*+) /log(1+4)+2" )[1+4, a1,
+s[—1, al, (mod2")
= [g’(zwaixa,-»ai, a]n+2"“3r’[l+4, a1,
+s[—1, al, (mod2™)
= [(—1)“"-81_@0 ad, a]n+2"‘3r’[1+4, ],
+s[—1, a], (mod 2™)

= [IiIo at, a] +2"%*'[1+4, a], (mod 2™).

Hence we have the second formula.

REMARK.

(1) We can omit the term 2 3%'[1+4, a], in the formula of
when a=1 (mod %), since »’=0 when n=2 and since (4) in the proof of
holds when n=3.

(2) The formula in holds for any asQsm) such that a=l1
(mod &,) if and only if I,=0 (mod 2"), where I, is as in the corollary below.
In fact, since (n=1+r, (modx2) and ((.=1+z% (mod x}), it suffices to get
the condition for the formula to hold for a={;». By Artin-Hasse [1], we have

[2, Lenda =0 (mod 27),

[—1, Lenln = 0 (mod 27),
and
[14+4, Lonln = —c™* (mod 27).

(For the first one, see Rohrlich [157, line 3, page 105.) Hence the right side
of the formula is equal to —h’c™?, so —S{’—1, (mod2") by (1) in the proof
of the corollary below. On the other hand, by definition we have easily

12 (Con) = — S (mod 27).

This gives the assertion.

(3) with the above remark (2) generalizes Coleman [3], Theo-
rem (6.4) (with G. Anderson). They deal with the (a, - a,, 2)=1 and N.(a)=1
(mod 2™*?) in a different method.
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COROLLARY.
4) if v(g)=1 and s=0 or if v(g)=2 and s=1,
(7;0) if 1<7<n—2, v(g)>v(h')+1, and s=0,

or if v(@)=y(h)+1=n—1, v(g@)#1, s=0, and v(I,)=n,
or if j=n, s=0, and v(I,)=n—1,
or if n—1=vy(g)<v(h")+1, s=0, n=3, and v(I,)=n—1,
or if 1=y(g)=y(h")+1, s=1, n=2, and v(I,)=n,
or if 1=y(@)<v(h)+1, s=1, n=2, and v(I,)=n—1,
(mymyyy) if 2575n—-2, v(@)=v(h")+1, and s=0,
Clw = or if v(g)=1, s=1, and n=3,
or if v(g)2v(h)+1=n—1, wg)+#1, s=0, and v(Il,)=n—2,
or if j=zn, s=0, and v(I,)=n—2,
or if n—1=v(g@)<v(h")+1, s=0, n=3, and v(I,)=n—2,
or if v(g)=1, s=1, n=2, and v(I,)=n—2,
(D if v(@)zv(h)+1=n—1, v(g)#1, s=0, and v(I,)=n—1,
or if 7=n, s=0, and v(I,)=n,
or if n—1=u(g)<v(h)+1, s=0, n=3, and v(I,)=n,
or if 1=v(@)=uv(h")+1, s=1, n=2, and v([,)=n—1,
or if 1=y(@)<v(h)+1, s=1, n=2, and v(I,)=n,

where
In = —Tn_1—2n_27’;1+2n~1t;7. >

) $0=i=rlv@)=n-2 if nz=3

t":{ $0<i<riva)=nl} if n=2

J = min(u(g), »(h")+1), j" = min(j, n—1),
T .., is as in Corollary to Theorem 7, and g, ', s, and v}, are as in Theorem 9.

PrROOF. Since ¢ '=—2 (mod8), we have
cth! = Sk 2 ey
= S{%—2""%" (mod 2").

Hence by [Corollary]| to [I'heorem 7],
(1) c*h’ = S 41, (mod 27).

Put m=y(S{3’) and m'=y(l,) for simplicity. By definition, m'=n—2. Put
falg, h', s)=(xg). 1f d=4, then C{P=fa(g, b, s) by So we may
assume d<3. Then y(h’)=zn—2 by [Theorem 8 If y(h')=n—2, then m=n,
m=n—1, or m=n—2 according as m'=n—1, m'=n, or m'=n—2. If v(h")=n—1,



396 H. Mik1

then we have the same conditions according as m’'=n, m’=n—1, or m'=n—2.
Hence by Theorems 5 and 9, C{¥=(1), (7}) (=(7a-1), or (73) (=(Tro17n))
according as m=n, m=n—1, or m=n—2, if v(g)=v(h')+1=n—1, v(g)#1, and
s=0, or if j=n and s=0, or if n—1=u(g)<v(h’)+1, s=0, and n=3, or if
v(g)=1, s=1, and n=2, since

I8 (Len) = —S& (mod 27).

Hence we have the assertion.

§ 3. Certain congruences for Gauss sums and Jacobi sums.

The purpose of this section is to prove certain congruences for Jacobi sums
(see Theorems 12, 13, and 14). We used Theorem 12 for the proof of Lemma
17 in §2, and we will use Theorem 14 to determine i{3’(()) mod 2" for
7EQAL), n=1+x3 (mod n$) (see Theorem 15), which we used for the proof of
Theorem 9 in § 2.

In this section, let [ be any prime number and assume n=2 if [=2. Put
g=! or 4, and f=f,=1 or 142! according as [ is odd or 2.

THEOREM 10. Let p,,, be any prime ideal of Q(l;n+1) which is prime to [,
let p, be the prime ideal of Q({in) lying below p,.., and let p be the prime
number contained in p,. Let M be the decomposition field of p,., with respect
to Q(Lin+1)/Q(Ly). Assume MCQ(L;n) (i.e., pn does not decompose in Q(Lin+1)/Q(L;r)),
and put [*=[Q(;n): M]. Then for any a=Z, we have

—af
gin(Pa, af) (mod (T Z[{pin-a]).

n

For simplicity, put X'=X2 ., X=X, k'=Z[{in+1]/Pns1, R=Z[C1n]/90, ko=
Z[Lin-a]/pNM, ¢'(x)=C5'<" for x'ek’, and ¢(x)=C5* for xck, where
T’:Trkr,pp and T:Trk/pp are the traces from %’ and k to F, respectively.

For our proof of Theorem 10, we need the following Lemmas 18, 19, and 20.

LEMMA 18. Under the above notation and assumptions, the following (i) and
(ii) hold for any xc<k:

(1) ¢'(x) = ¢(lx).
(i) X'(x) =% (x).

ProoOF. (i) Since k’'/k is a cyclic extension of degree [,

Trk'/Fp(x> = Trk/Fp(Trk'lk(x»
= Trk/Fp(lx>-
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Hence by definition we have the assertion.

(ii) Since
Ky () = 2RI (mod )

and

Xy(6) = %1 (mod p,),
we have

Xy er(X) =%, ()" (mod Po.y),
so
(1) Xy, e () = Xy (27,
where f'=(Npn.1—1)/(Np,—1)l. Next we will show
(2) f" = f (mod 7).
Since anH:(NPn)l, we haVe
(3) f7 = {A4+Np+ - +(Np) /L.

Since {;» modp,=k and {;n+1 mod p,,, &k, we can write Np,=14A/" with
AeZ, 2#0 (mod [). Hence

(Np,)* = 1444 (mod [**?)
for /1=1. So by (3),

fr= (1+Z i;zil)[n)/l (mod [™),

hence we have (2), since 3¥zi/ is 0 or 1 mod ! according as [#2 or [=2. By
(1) and (2), we have the assertion.

LEMMA 19. Let k,, k, and k' be as just before Lemma 18. Then the Galois
group Gal(k'/k,) acts on (R"—Fk) faithfully.

ProOOF. Let x be any element of 2'—Fk. Then A =k(x). In fact, since
k'/k, is a cyclic extension of degree [?"!, we see that if ky(x)Sk’, then ky(x)Sk,
so x<k; this is a contradiction. Hence the set

{x9o € Gal(k'/k,)}
consists of [¢*! different elements. This gives the assertion.
LemMmA 20. Put

B= 2 V(x)(x).

ek’ -k

Then
B =1 5 1(x0)¢(x),
res’

where S is a complete representative system of (k'—k)/Gal(k’'/k,), and
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S'={xeS|¥x e M)
—{xe S| X" =1}.

PROOF. By
(1) B= 3(ZrE9:n),

where G=Gal(k'/k,). Identify G and Gal(Q({;n+1)/M) canonically. Then
O'(x°)=¢'(x) and X' (x%)=A'(x)’

=)
Dost 1 P51 et

B = IgsTrQ(Cln-H)/M(x/(x))¢,(x) .

for oG, since

Prs1 = Prsa and (
Hence by (1),

Since
(290 (x) if X'(x) e M,

Trow,n X' (x)) :{
Q)M 0 otherwise,

we have the assertion.
ProoF orF THEOREM 10. Put
A= —2JX(x)'(x).
xck
Then
(1) gln+1<pn+l, a) = A'_B)
where B is as in Lemma 20l By [Lemma 1§,
A=— 3 V(i)
zek>

SO

(2) A =X gin(pa, af).
By (1), (2), and we have the assertion.

Next, we will prove the following [['heorem 11, which is a refinement of
Theorem 10| when [=2 and 4=0.

THEOREM 11. Let the notation and assumptions be as in Theorem 10, and
assume [=2. Then

goripans &) = (22 " gunlon, ) (mod 27,0 Z[Gon,).

2N
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We can write
k' = G{xX G} (direct product)
and
k* = G, X G, (direct product),

where G, G4, G,, and G, are subgroups of order g’, 2", g, and 2" respectively,

g = (Npn,1—1)/2"*' %0 (mod 2)
and
g = (Np,—1)/2" £ 0 (mod 2).

Note that G;DG; for i=1, 2, since k’* and k* are cyclic groups. Put e=
[Gi:G]=g'/g. Then
e=f, (mod2*) and e>1

(cf. the proof of (ii)).
For our proof of we need the following

LEMMA 21. Assume (=2, and let the notation and assumptions be as above.
Furthermore, put
T'={xck'—k|Xx? =1}
and

C= ZJ').

zeT!

Then

0 if a is even,
C =

1—e if a is odd.
Proor. If a is even, then T'=k’—Fk, so by (i) of
C= BYO-ZH
= x§’¢ (x)—%}kgb(Zx),

hence
C =0,
since

xezk]' ¢'(X) - %‘,kgb(Zx) - zze}kgb(X) =0.

Next, assume a is odd. Then X’ is a surjective homomorphism from £’* onto
{fen+1> (the group generated by (on+1), so X'(G))={1} and X’|s, is an isomor-
phism from G, onto ({,»+1>. Hence X'(x)*"=1 if and only if *r&G,XG, This
gives

(1) T' = (Gi—G)XG,.
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Let
Gi= \UgG: (@ =1

be a coset decomposition of Gi{ with respect to G,. By (1),

(2) T,:i\;giclxcz

= ngikx (disjoint union).

Put z;=Tr,.(g;) for 2<i<e. Then
(3) 220 for2<i<e.

In fact, if we put {={»+1 mod p,.,, then we can write g,=A+p{ with 4, p<k.
If 2=0, then g;=pleG X(G;—G,); this contradicts g;G,. Hence A0 and
z;=22%0. Since Trkr,«Fp(giy):Trk/pp(z,-y) for yek*, by (2) we have

C = Ze) D grk/i‘p(lim,
i=2 yek*
so by (3),
C=(e—1) 5 gly)=1—e.
yER
This completes the proof.

PrROOF OF THEOREM 11. If d=1, then n=3, so (—1)*""°=1, hence the
assertion follows from Hence we may assume d=0, ie., M=

Q(Ln). For simplicity, put [=27,Z[{m,]. By
B = ZxESIX’(x)gb’(x)
= ng;glgb’(x) (mod I),

SO
B = C (mod 1),

since k’—k=SUS’ (disjoint union) and ¢'(x?)=¢’'(x) for a generator ¢ of
Gal(k’/k). Hence by (1) in the proof of [I'heorem 10, we have

(1) Gon+1(Prsr, a)—A = —C (mod I).
If a is even, then
122 \ o
(C) =1 and € =0
I

by Lemma 21, so (1) gives the assertion. Now assume a is odd. Then by (1)
we have
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0 (mod ) if n=3,
(2) Zont1(Pnyy, A)—A = .
2 (modl) if n=2,
since by Lemma 21,
0 (mod4) if n=3,
C=1l—e=
2 (mod4) if n=2.

Since A=1 (mod 7, Z[{n,]), we have 2(A+1)=0 (mod I), so A+2=—A (mod I).
Hence (2) implies
A (modI) if n=3,
Zon+1(Pry1, @) = .
—A (modI) if n=2.

Since (—1/9,)sn=-—1 and af is odd, this gives the assertion.

LEMMA 22. For any prime number [, three congruences (i)~(iii) in Lemma
3 of [13] and the following congruence (iv) hold mod (x,.
(iv) JiR@'=J%»(a) (mod Ix,) if a=(a,, ---, a,)%(0, ---, 0) (mod [™).

PROOF. Since the congruences (ii)~(iv) follow directly from (i) and (1) of
[13], §1, it suffices to prove (i) for ;=1 by induction on j. By definition,

gun(p, @) = — B Xy (x)Py(x),
so putting A=—3,,, Xg(x)—1)¢y(x), we have
(1) gin(p, a) =14+A.
By taking the /-th power of both sides of (1),

-1/ i
gy, @) = 1441+ 2 ()45,
S0
(2) gin(p, a)' = 1+ A (mod I7,),
since (f-)EO (mod (), X$(x)—1=0 (mod 7,), and A=0 (mod=x,). By putting
X=X (x)—D¢y(x) in the identity as polynomials
l
(2x.) = xX2+17X)
Z#0 T#0
with some f(X)eZ[X] without constant term, we have
(3) Al = (1) 3@ (x)—Diy(x) (mod [x,).

Z#0

Since
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(X—1)' = X4 (— 1)+ g(z’.)Xi(—l)l-t
and

(f) = (—1)*"'/i (mod [2),

we have the congruence in the polynomial ring Z[X]:

-1

(X—=Dl = Xt (=D 2 XY/ (mod PZ[X]).

i=1

Putting X=X2(x) and using Xj(x)=1 (mod z,), we have

Ae(x)—1) = xg‘<x>+<—1>l+z<—1>l-1:z_§—§— (mod [7,)

= L)+ (=D I(—1) 10 (mod (7,),
where 0=0 or 1 according as [#2 or [=2. Using this and (3),

Al = (=D gun(p, al)—14-10 (mod (7,),
since

gogb,,(lx) =—1
and
I%X;”(x)gbp(lx) = =X () *gn(p, al).
Hence by (2),

gin(p, a)t = (=D AFHD T gun(p, al)+16 (mod (7).
If {2, then this implies the desired congruence. If /=2, then this implies

gin(p, @)t = =AD" gia(p, al)+2 (mod (7,,)

= X D7 gin(p, al) (mod (x,),
since

2 =208 gun(y, al) (mod [x,).
This completes the proof.

LEMMA 23. For any prime number | and any fractional ideal a of Q({in+1)
which is prime to [, the following (i) and (ii) hold.

(i) gin+i(a, a)=gin(Nn.1,2(a), @) for any a<Z.

(i) JiaR(@=J{R N, (@) if a=(ay, -, a)Z(0, -+, 0) (mod [*).

ProOOF. By a well-known relation between Gauss sums and Jacobi sums
(cf. e.g., (1) in [13], § 1), it suffices to prove only (i) when a=p,,, is a prime
ideal of Q(Un+1). Put Fi=Z[il/p: for i=n, n+1, where po=p, Q). If
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'pn decomposes iIl Q(Cl"‘“)/Q(Cl")y then Nn+1,n(pn+l):pn} Fn+1:l;’n; and x£n+1:xpn:
so by the definition of Gauss sums we have (i). Now assume that p, does not
decompose in Q({in+1)/Q({;n). Since Np,,,=(Np,)', we have

(I4+Nput -+ +NPEDIND—1)/1* = (Npny—1D/1,
SO
x VPpp1~DH/I" — Neg 1/ F (x)(NPn‘I)/l"‘,

i.e.,

xll’nﬂ(x) = XpnoNFnﬂ/Fn(x)

for x&F,,,. Hence by a relation of Davenport-Hasse (cf. e.g., [17], Exercise
6.4),

gln+1(pn+l’ al) = gln(pn) a)l-

This gives the assertion.
THEOREM 12. Assume [=2 and a=(ay, ---, a,)F£(0, ---, 0) (mod 2*). Then
(@) = J 2 (a) (mod 27,,)
for any fractional ideal a of Q({in) prime to 2.

ProOOF. Since J&h(a)’=]%(a%)=]%4(a) for the generator ¢ of
Gal(Q(Lon+1)/Q(Csn)), we have Jinhi(a)=Q(Lyn). Hence it suffices to prove the
congruence mod 27,,,. We may assume that a=p, is a prime ideal of Q({;n).

Let ... be a prime ideal of Q({;n+1) lying above p,. By Hasse’s congruence

([5], p- 61; see also [11], [Theorem 2),

é%ll(%u) =1 (mod n%,,),
SO

( 1 ) ];%ll(pIHI)o = ]é%il(pnu) (mOd 27rn+1);

since .
(77:21.+1)0 = 7[.'%+1 (mOd 27rn+l>

for 7=2. First, assume that p, decomposes in Q({,n+1)/Q(Len). Then N,y w(Pni1)
=p,. Hence by (1),

é%il(pn) = é%%(bnn'b’ﬁu)
= ]é%ll(bnu) '];%Zk1<pn+1>a

= Jwh(Prsr)” (mod 270,
so by Lemma 22

Ji@a(pn) = J35%(Pasr) (mod 27,,,),
hence by (ii) of we have the assertion. Now assume that p, does
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not decompose in Q({sn+1)/Q({yn). By and a well-known relation

between Gauss sums and Jacobi sums,

(2) Js#a(Pnsn) = J527(ps) (mod 27,,,4).

Since the right side is equal to Ji{3’(p.)°7, by (1) (replacing n+1 by n) we have
anri(Pnsr) = J32'(pn) (mod 275,,1).

This completes the proof.

REMARK. (1) In the above proof, we used Lemma 23 when p, decomposes
in Q(&yn+1)/Q(Cyn), so we did not use the Davenport-Hasse relation for our proof
of [Theorem 12

(2) In the above proof, we can use and (iii) of in
place of [Theorem I1. In fact, by

Gont1(Ppy1) = Xpn<2)—fg2"<pn)of (mod 2).
Making w in (iii) of operate on both sides,
Zan+1(Pr 1) = (gon(Pa)?®)’s (mod 27, 4),

since (14+2)?=(—1)*=1 (mod4). By (iii) of Lemma 22 and (ii) of Lemma 18 we
have (2) in the proof of

THEOREM 13. Assume [=2 and a=(a,, ---, a,)=0, ---, 0) (mod 2"). Let a
be a fractional ideal of Q(Len) prime to 2, and let v” be a half of the number
of 1 (0=:=<r) such that a;0 (mod 2), where ay,=—>}-,a;. Then

Na- Ji@(a) = 14#742, adennl (mod 73)

= 1+r”-»@°§"1 7% (mod 73)
l+r”-'(@§:fl— (mod8) if n=1,

= 1+r”-—N7“2’—ﬁlf (mod 73) if n =2,
1 (mod %) if n=S3.

PROOF. We may assume that a=p is a prime ideal of Q({;»). Put X,=X,
¢py=¢, and A(x)=<x, py,» for simplicity. Then by definition,

Koo = L = (1—7,)
for xe(Z[{:n]/p)*. Hence for b=Z,
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gan(p, b)=— 3 X(x)(x)

2EZLC,nl/Y

= — gﬁ)o(l—ﬂ:n)'2 @)

= 1+berm,+dnd (mod nd),

where

¢ = xgol(x)gb(x) s

¢ = — B AP),
and

d=-3

Z#0

= (b*¢’+bc)/2.

}iﬁ?@%é?@!?: Dotx)

Since >, a,;=0,

r r
> ai = —22 aa;.
=0 <Jj

Hence
Np-J@ () = 1T gunp, @)
¢z
= 1+<c2 > aa;+ 5 2] a%)n?, (mod 73)
i<J =0
— 2 At Y oo )72
= 1+(c*—c¢ )(% ala,>7rn (mod 7).
Since
> aa; =r” (mod 2)
1<J
and

c®—¢ = A(2) (mod 2)
by [11], we have the first congruence. Since
(2, aden = {2, Na),
= (Na®—-1)/8 (mod 2),
we have the second one. If n=2, then Na=1 (mod4), so
(Na®*—1)/8 = (Na—1)/4 (mod 2).
If n=3, then Na=1 (mod 8). This gives the assertion.

REMARK. The above is a generalization of Thara [6],
to (he deals with the case »=2 and (a,, a,, a,, 2)=1 by a different
method).
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THEOREM 14. Assume [=2 and a=(a,, ---, a,)%(0, ---, 0) (mod 2"). Let
nEQ(L)” be such that vy(n—1)=3, where v, is the normalized additive valuation

of QxL). Then
Ji2((m) = (=1 (mod 2z,),

where r” is as in Theorem 13.
Proor. By [Theorem 12, we may suppose n=2. Since v,(yp—1)=3 and Q(,)

is totally imaginary,

N((9)) = Ny(n) = 1+4 (mod 8),
so by

J& () = 142r” (mod 27,,)

=(—1)"" (mod 2x,,).

This completes the proof.

THEOREM 15. Let the notation and assumptions be as in Theorem 14, Then

1% (n) = 2" 'r” (mod 27).

Proor. By Weil [18],
I () = Gppen@  with i(y) =P () € Z/2"Z
(see the formula (*) just before of [13]). Since n=1 (mod 2x,),

JR((n) = P (mod 27,),
so by
g =&~ (mod 2x,,).

This gives the assertion.
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