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1. Introduction.

Mordell-Weil lattices of type E;, E, and E; are closely related to del Pezzo
surfaces of degree 1, 2 and 3 respectively ([S2], [S3]). In this paper, we study
the relation between Mordell-Weil lattices of type Ds ([U]) and del Pezzo
surfaces of degree 4.

Let f:S—P* be a rational elliptic surface which has a section (O) and
only one reducible singular fibre, of type I,: f~'(t,)=0,U60,\U6,\UB,. Then
the (narrow) Mordell-Weil lattice of this surface is the root lattice Dy ([O-S]).
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Figure 1.

Using surface theory, we can blow down (0), ©, and @, in this order, and
we get a smooth del Pezzo surface of degree 3, which we call S;. By blowing
down one more rational curve 6, we get a smooth del Pezzo surface of degree
4, which we call S,. In this situation, lines (exceptional curves of the first
kind) on S; and S, are obtained from sections of f:S—P".

The contents of this paper are as follows. In section 2, starting from the
elliptic curve which we have considered in [U] and [S-U] (“the excellent family
of type Ds”), we describe the elliptic surface S explicitly, namely we represent
S by gluing smooth surfaces defined by explicit equations. In section 3, we
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realize S; as a smooth cubic surface in P3 and S, as a complete intersection
of two quadrics in P* by writing down the defining equations for them. Finally
in section 4, we give the equations of 27 lines on S; and 16 lines on S,.

2. Description of the Kodaira-Néron model.
We consider the elliptic curve
E : v2psxy = 234 putxiH(psti+ pot®)x 4 pett+1°

defined over K=Fk(f), where k is the algebraic closure of Q(A)=Q(ps, D4, Ds, De, Ds)-
Let
f:S— P!

denote the associated elliptic surface (the Kodaira-Néron model) of E/K. The
theory of Mordell-Weil lattices says that the Mordell-Weil group E(K) has a
lattice structure ([S1]).

We assume the following two conditions on the parameter A=(p,, -:-, Ds):

(8) ps # 0 and pips—p§ + 0.
(#) f:S—P' has no reducible singular fibres other than f~'(0).

Then f has only one reducible singular fibre, at =0, which is of type I,.
In this case we have E(K)°=D; and E(K)=D¥ as lattices ([U, Theorem 1]).

We describe the surface S explicitly. Let 7° T*' and 7* be the surfaces
defined as follows:

T°= {(x0:Y0:20, ) E P2X A yiz,+ PsSX0Y020

= X3+ pasxizo+(PeSi+ pos) X025+ (Des®+ )28}
T'= {(x,:y1:2, 1) € P2XAY|yiz,+ psx1v12,

= txi+ patxiziH(pot+ pot®)x 23+ (pet®+ 1328, (%11 y1:25, 1) # (0:0: 1, 0)}
T?= {(x2: 9012, 1, ) € P*X A% uz, = tx5, y3+PsxeYs

= tuxi+ paxi+(ps+ pat)Xo2zo+(pet+1)23} .

Let S be the surface obtained by gluing 7, T and T°® according to the follow-
ing rules:

1
(X1: 9102, 8) = (sxo: Yo : $%2,, —s—> when s # 0 and ¢ # 0,

1 x
(Xg: Y91 29, t, u) = <sx0: Yo i SZ, o —S--°—) when sz, # 0 and ¢ # 0,

2y

(Xg: Yo: 2y, t, u) = (x, t oy iz, —?) when z, = 0 and (¢, u) # (0, 0).
1
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We define f:S—P! by
(Xo: Yo: 2o, 8)—>(1:5),
(X1t 112, 8) —> (t: 1),

(X2: 92125, 8, u) —>(£: 1),

PROPOSITION 1. f:S8—P! is the Kodaira-Néron model of E/K.

PROOF. By the uniqueness of the Kodaira-Néron model, we have only to
show that S is a nonsingular projective surface with generic fibre £ and that
no fibre has exceptional curves of the first kind. Since T° is obtained from F
by letting (x, y, H)=(x0/$%20, ¥o/s%2, 1/s), the generic fibre of f is E.

Let S be the surface in P2x A' defined by the equation

Y2Z+pXY Z = X34 pt X2 Z +(pst®+ patHNX 22+ (Pt +-1°) Z°.

S is obtained from E by letting (x, v)=(X/Z, Y /Z).

It is known that the only singularities of the surface obtained by gluing S
and T° are rational double points, and that S is the minimal resolution of the
surface (cf. [K]). So the condition (#) implies that S—f~'(0)=7T°. Then T° is
nonsingular and when t#0, 77%(#) has no exceptional curves of the first kind.

To show that S is nonsingular, we have only to show that 7 and 7% are
nonsingular at the points satisfying ¢=0.

First we show that T is nonsingular at the points satisfying ¢=0. Let

g(xy, Y, 21, 1) = yizitpsxiy12i—(Exi4 patxizi+(pst+ pat®) X123+ (pet®-+1%)23) .

If (x,:y,:2,0&T! is a singular point, then we have

ag

0xy li=o Psvizr =0 ()
0

,a% t=o:2)’121+1)5x121 :O (2)
ag

a‘z—l— im0 fond y%-f-;bsx,yl = O (3)
0 | _ e o 4
ot =0 —X1—puXizZi— Pex,21 = 0. (4)

If z,=0, then x,=0 by (4), and y,=0 by (3). If z,#0, then y,=0 by (1)
and (4), and x,=0 by (2) and (§). But (x,:y,:2, $)=(0:0:1, 0) is not a point
on T'. So T! is nonsingular.

Next we show that 72 is nonsingular at the points satisfying ¢=0. Let
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h(Xa, Vo, 2o, t, U) = UZy—1LX,,
ho(Xa, Yo, 2o, 1, ) = Y3+ PsXaYo—(tuxi+ patxi-+(ps+ Pat) Xo2o+(pe+1)23).

Then the Jacobian matrix is

ahl 5/12

336; t=0 ;a}; t=0 0 DsY2— Ds22

oh, oh,

?3; t=0 }9372 t=0 0 2Ys+ psxe

oh oh

azzl t=0 32: t=0 R — PsXa—2pezs

oh oh

datl t=0 ati t=0 —Xy —UXF— PuXE— PaXsZr—2}
,aﬁLl Oh, 0

0u lt=o Ou li=o Z

When z,=0, we have x,%0 by h,=0. If (0h,/0x,)i=e=0, we have y,=0 by
(1), then (0h,/0y,)i—,#0. Since (0h,/0t),-y=—x,%0, the rank of the Jocobian
matrix is 2.

When z,#0, if (0hy/0%2)1=0=(0h,/0y:)1—o=0, then we have

oh, _ —2
a?{ t=0 b f)snyz—Zpszz
—2 b
= —Ds The "5‘;22—21)622

Il

2
'*ﬁ'g(i)g — DEbe)zs.

This is not equal to 0 by (§). Since (0h,/0u);—y=2,#0, the rank of the Jacobian
matrix is 2. So T? is nonsingular.
Lastly we show that 7 !(0) has no exceptional curves of the first kind. We
have
F0) = 0,U6,00,U86,,

where @, is the rational curve {z,=0}, @, is the rational curve obtained by
gluing {y,=0, x,#0} and {z,=y,=0} by u=x,/z,, O, is the rational curve
{u=0, yi+ psx:ys=PsXx22o+ pezi}, O, is the rational curve obtained by gluing
{y1+psx:=0, x,#0} and {z,=y,+ psx.=0} by u==x,/z,. If F~*0) has an ex-
ceptional curve of the first kind, then we can blow it down and get a smooth
model whose number of components of the fibre at t=0 is less than 4. On the
other hand we know that the Kodaira-Néron model has a reducible singular
fibre of type I, at t=0. So 7~'(0) has no exceptional curves of the first kind,
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and 7:S8—P' is the Kodaira-Néron model of E/K. gq.e.d.

REMARK. The surface 7 is obtained from E by letting (x, y)=(tx,/z,, ty./z,)
and removing the point (0:0:1,0). The surface T? is obtained from E by
letting (x, y)=(t*x:/2,, t*y,/2,) and introducing u such that uz,—tx, (cf. [BLR,
§ 1.5]).

From now on, we identify f:S—P! with f:S5—pP1,

3. Del Pezzo surfaces obtained from S.

First we define two surfaces S; and S,. The surface S, is obtained from
S by blowing down the zero section (0), 0, and @,. The surface S, is obtained
from S by blowing down (0), @, @; and 6,. To be exact, S; and S, are
obtained as follows.

The zero section (0), which is (xo:ye:20, §)=(0:1:0,s) in T° and
(Xy: 9,02, H=(0:1:0,1) in T*, is an exceptional curve of the first kind ([SI,
Theorem 2.8]). When we blow it down, we have a birational morphism
7.: S—S.. Since (P})=-—2 and (O,-(0))=1, 7,(O,) is an exceptional curve of
the first kind on S,. Next we blow down m,(®,). Then we have a birational
morphism 7,: S,—S,, under which z,(@;) is mapped to an exceptional curve of
the first kind on S,. Then we blow down m,°7(@;) and we have a birational
morphism 73: S;—S;. Under this morphism m;o7,(6,) is mapped to an excep-
tional curve of the first kind. By blowing it down, we obtain a birational
morphism 7, : S;—S,.

The surfaces S, and S, are described explicitly as follows.

THEOREM 2. Let S; be the surface obtained from S by blowing down (O),
O, and O, as above. Then S, is a smooth del Pezzo surface of degree 3 and it
is isomorphic to the cubic surface S, in P® defined by

S, Ye:Z+pWXY = X+ p WX+ p W2 X+ pWXZ+ pWEZ+W Z2,
THEOREM 3. Let S, be the surface obtained from S by blowing down (O),

6, O; and O, as above. Then S, is a smooth del Pezzo surface of degree 4
and it is isomorphic to the (2, 2)-type complete intersection S, in P* defined by

N { V'X = le__pGW/z_W/Z/
Ss:
4 V/ZI —_ X/2+p4WlX/+p8W/2+pZW/Z/_pEW/Y/.
PROOF OF THEOREM 2. S is a smooth rational surface ([S1, (10.14)]) and
S, is obtained from S by a sequence of blowing-down of exceptional curves of

the first kind, so S; is a smooth rational surface. Let F be a fibre of f. The
canonical divisor of S is —F ([S1, Theorem 2.8]). Let Fi=m,(F), Fo=m(F))
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(0) 0)
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N

T
Ss !

—
F blow down
9%3) s 9;2)

7, | blow down 6§®

o 6’ is the image of 6, on S;
s, F is a fibre of f
i F; is the image of F on S,
4

Figure 2.

and Fy=my(F,). The canonical divisor of S; is —F; and (F3)=3. If C is an
irreducible curve on S,;, then we have (C-F;)=0 (we may assume that F; is an
irreducible curve). Now we assume (C-F;)=0. Then C,=z¥C is an irreducible
curve on S, and (C,-F;)=0, so C,=n¥C, is an irreducible curve on S; and
(C,-F,)=0, hence C,==z¥C, is an irreducible curve on S and (C,-F)=0. So C,
is an irreducible component of a fibre of f:S—P'. Since C is a curve, C,#6,
and C,#6,. If C,=F then (C:F,)=3, if C,=6, then (C-F;)=2, and if C,=6,
then (C-F;)=1. This contradicts the assumption that (C-:F;)=0, so we have
(C-F3)>0. This shows that the anti-canonical divisor F; on S, is an ample
divisor, so S, is a del Pezzo surface of degree 3 ((F3)=3).
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Next we define a morphism ¢ : S—3, as follows.
Qlro:(Xg: Y0120, ) —>W:X:Y 1 Z) =(s20: %4 Yo' 2),
el (xyiviiz, ) —>W:X:Y 1 Z)=(tz, 1 tx,: 9, %2)),
Qlrat (Xe:y2: 20, L, u) —> W XY 1 Z) = (221 tx,: y51 124).

This definition is compatible with the gluing, so the morphism is well-defined.
Under this morphism, (0), ©, and @, are mapped to one point Py=(0:0:1:0).
Let us show the isomorphism S’ :=S—((0)UBO,\UO,)=8,— {P,}. By the defining
equation of S,, for the point of S,— {Py}, we have W0 or Z+#0. When Z+#0,
let a,: {Z+#0}—T°—(0) be the morphism defined by

. . W
(Xo: Vo: 29, $)= (X: Y:Z, Z>
The morphism ¢-a, is the identity morphism on {Z=0}. When W0, let a,:
{W 0} —-T?*—6, be the morphism defined by

z X

YZ
(Xe: Yot 2o, t, ) = (X: W Z, W W)

When X=272=0, (X: Z)=Y*—pW?: pW*—p;WY). By the condition (4), we
have (Y*—pV?, pWV2—pWY)#(0,0), so a, is a well-defined morphism on
{W=0}. The morphism ¢-a, is the identity morphism on {W=0}. We can
check that ay=a, on {W+#0}N\{Z=+0}, so by gluing them we get a morphism
a:§3—{P0}—>S’. The morphism a-¢p|s is the identity morphism on S’, so
<p|s,:S’—>§3~{Po} is the isomorphism. This shows the isomorphism
Sy— {73o oo T (00O, O} =8, — (P} . If we let

mW,X,Y, Z)

=Y Z+pWXY —( X+ p W X2+ pW X+ p WX Z 4 p W2 Z+W Z?),

then

om
37 |r, = 0.
This shows the non-singularity of S, at P,, and we get S;=S,. g.e.d.

In T2, the curve O, is {(x2:y5:2,, ¢ u)=(1:0:0,0, w)}. By the defining
equation of 72, we have

Y2 Yo
Xe 22

Ve

+pet = Ut pat pe pat+ (et
2y X

When (x;: y5: 2, ¢, u)=(1:0:0, 0, u), we have
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Dot = U+ pout pe.
<2
Since

oy - o ety e 1., ..
P(Xat Vo1 2y, t, U) = (221 8X51 Yyt t2y) = (1. u.—z»z—.t>,
the image of O, is in the curve {p;WY =X+ p WX+ pW?, Z=0}. When W0,
a; is the inverse morphism of ¢. When W=0, the curve {p:WY =X+ p WX+
psW?, Z=0} has only one point P,=(0:0:1:0), and this is the image of the point
0,—6,N\T?% So O, is mapped to the curve {psWY =X+ p WX+ p W2, Z=0}.
The curve O, is {yi+ psxsys= Ps¥eza+ pezl, t=u=0}. Since

O(xXe: Y2 2a, t, U) = (20 tXa 1 Ve t20),

the image is in the curve {X=Z2=0}. When W=+0, a, is the inverse morphism
of ¢. When W=0, the curve {X=Z=0} has only one point P,=(0:0:1:0),
and this is the image of the point (1: —p;:0, 0, 0). So O, is mapped to the
curve {X=Z=0}.

PROOF OF THEOREM 3. In the same way as in the proof of Theorem 2,
we can show that the surface S, is a smooth del Pezzo surface of degree 4.
We define a morphism ¢: §s—>§, by

V' W XY Z)=Y2—pW—WZ : WX : X2 XY : XZ).

When X=0, by the defining equation of S,, we have Ye2—pW2—WZ)Z=0. If
Z+0 then
Y2 pW*—WZ . WX: X?*: XY : XZ)

= X2+ p WX+ p W24 pWZ—pWY WZ:XZ:YZ:Z%.
If X=7=0, by the condition (§), we have
(V2= pW?—WZ, X2+ p WX+ psW?+ pWZ — psWY) = (0, 0),

so the line {X=Z=0} is mapped to the point Q,=(1:0:0:0:0). When
VW XY Z)#Qy,, W XY :Z)=(W:X":Y’:Z’) defines the inverse
morphism of ¢|3,_x=z-0, 50 S3— {X=Z=0} ~8,—1{Q,}. Since {(X=Z=0} =¢(0,),
we have the isomorphism S,— {m,o73c 7,07, ((0)UO, OO, =8,— {Q,}. If we
let

n,(V’, W/, X’, Y', Z/) — V’X’—(Y’”—peW'Z—W’Z’) ,

ng(V’, WI, XI’ Y/, ZI) — VIZI_(XI2+p‘WIX/+psW12+pZWIZI__pSW/YI)'

then the Jacobian matrix at Q, is
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g;i(l’ Q 2;(27 | Lo
2{}1’ @ gTr/l’i’ Q 090
aa% @ 68%2’ @ 01

This shows the non-singularity of §4 at Q,, and we have S,=S,. g.e.d.

4. Lines on S; and S..

There are 27 lines on a del Pezzo surface of degree 3, and they are
exceptional curves of the first kind. A section of f:S—P' is an exceptional
curve of the first kind on S ([S1]). If a section (P) does not meet (O), @, nor
@,, by msem,em,, (P) is mapped to an exceptional curve of the first kind on S,.
Such a section is one of the following two types:

i) (P) such that ((P)-(0))=0 and ((P)-0,)=1. It is of the form

x = gt*
{ y = ht*+ct* g, h, c € k.
ii) (P) such that ((P)-(0))=0 and ((P)-©®,)=1. It is of the form
x = gt*+at
{y:hz‘s—i—ct2 g,a, h,cek, a+0.

There are 10 sections of type i) and 16 sections of type ii) ([U]).
The curve 0, is also mapped to an exceptional curve of the first kind on
S;. So a line on S, is one of the following three types:

i) @((P)) for (P) of type i)
ii) ¢@((P)) for (P) of type ii)
i) @(6,).

If the section (P) of type i) is

{ x = gt*
y = ht*+ct* g, h, c ek,
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then ¢((P)) is the line
X=gZ
{ Y =hZ+cW.
If the section (P) of type ii) is
x = gt*+at
{ y = ht*+ct* g, a, h,cE k,

then ¢((P)) is the line

{ X=gZ+aW
Y =hZ+cW.
©(0,) is the line
{ X=0
Z =0

There are 16 lines on a del Pezzo surface of degree 4, and they are
exceptional curves of the first kind. If (P)is a section of type ii), by 7 oo mzom,,
(P) is mapped to an exceptional curve of the first kind on S,. So a line on S,
is ¢e((P)) for a section (P) of type ii).

If (P) is

x = gt*+at
{ y = ht*+ct* g, a, h,c<k,

then ¢e((P)) is the line

X =gZ'4+aW’
Y'=hZ'+cW’
V'=g'Z'+(2ag+pug+pa—psR)W".

Now we obtain the following corollary by [U, Theorem 4].

COROLLARY 4. Take u,, --+, us+0 such that u%, ---, ui are mutually distinct
and for any choice of signs,

+uyt o Fus#0.
Let
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) 11
be = Zss+—2”pzf74

1 1
Ps = —Zsﬁ—zﬁ
Ds = U UsUsUUs .

Here &y, is the v-th elementary symmetric function of uj, ---, ut.
Then 27 lines on the cubic surface

Sy V2Z+psWXY = X4+ p WX+ psW2 XA+ pWXZ+ psW2Z+W 22
are given as follows:
i) b5 lines
X=u*Z
{ Y=uiZ+ceW (=123 4,05),
where
¢ = %(mu?‘%-muﬁ—u%—psu?)-
5 lines
X =ui*Z
{ Y = —ui*Z—(psui*+coW (@ =1,2,3,4,5),
where

1
Ci = ”Z“(ﬁ4u?l+p2ui+u%_paut~2) .

ii) 16 lines
{ X=uzZ+aW

Y =uZ+cW.

Here u=a(u,), a=a(a,), c=a(c,) are the transforms of u,, a,, ¢, below
under the sign change ¢ of even number of u;, -, us.

1
Uy = _2“(u1+ e 4 ug),
5
a, = uo“ll:Il(ui—uo),

1
Co = ?(3doub_l+p4u6_l+p2u0+ug_p5u‘-’_2> :

iii) 1 line
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COROLLARY 5. Under the same assumption as Corollary 4, 16 lines on the
del Pezzo surface of degree 4
§ { V/XI — )flz_pGW/Z_W!Z/
4
V'Z' = X2+ p W X'+ pW'P+p W Z'— ps W'Y’
are given as follows:
X =uZ'+aW’
Y'=u3Z"+cW’
Vi=uZ'+Qau+ pu "+ py— psu W',

where u, a and ¢ are the same as in Corollary 4.

If we take u,, -+, u;=@Q, then we get a del Pezzo surface of degree 3 and
27 lines on it defined over @, and a del Pezzo surface of degree 4 and 16 lines
on it defined over Q.

ExaMPLE 1. If we take (ui, -, us)=(1, 2, 3, 4, 5), then S, and the 27 lines
on it are as follows:

1067 210375 2475

Se: YEZAH120WXY = X3+_...8 WX o6 WzX_;, WXZ—{———-—-»—WZZ—i—IVZ?
X=12, YV = 11%§W-|—£
x=lz  y= Byl
X= %2, Y = —}1%5-W+7277 z
X= g2, V=W Z
X= '21?{2’ V= Ig ST 125 z
X=2, Y = lilf W—Z
X=17, v=-"2w 2z
X:%Z, Y:—?TZW -2171
X:EIEZ’ V= lsisw 614‘2

~ 1z y =y 1,

80 125



X=-2Bw+ 22,
x=-30wizz,
x=-30wiaz,
X= T84z,
x="2wiaz,
x=-"Pwizz,
X= _713(1%5w+_1§9 2
X = —‘%5-W+ Z,
X JgWt s 7,
x="2wy 841 z,
X = 1785 Wt o 2
X= Wt g2,
X:—%W+%Z
X=o,

ExampLE 2. If we take (u,, -,

as follows:

Movdell-Weil lattices of type D5 and del Pezzo surfaces

Y = §25_ W ;7 P
N 7 I

2
v = twsz
v =Pwisz
T 429_W+ 12’5’
r=- 1§§25 W= 21897"Z
Y = "l>é5~W + 5 87_‘ 7
T 1209 W 125 z
Y = Jg,zim 383
T 42%1825 W_’13§31 ’
V=W g7
Yo W g
Y= gy
re —% W”'lgs'z
Z=0

us)=(1, 2, 3, 4, 5), S, and 16 lines on it are



364

X =
X =
X =
X =
X/
X =

XI

Il

X =

H. Usul
yix =yr A wn g
2

vz = g 1 s 0TS, 55
e W g 7 V= g W g 2
BBtz vi=2w-Sz,
OBy gy, oy = BBy gz,

16 2
oWz, v =wtsz,
w4z v ="Pwisz,
B sz, v=-Byy Sz,
:%?W%%Zﬁ Yu_%aw+;zg

“Rw sz, v=-"Dwy b
L R o 2

-2—W

V’

V/

Vv’

V/

Vl

Z'—120W'Y”’

16
50625
821 16
== V't
3143

2~~W +16Z2

ZI

Zl

= " t162

w162/

607, 16,
= g WtgZ

1583, , 16 ,,
20 Wt en?

625
119219, 16
~asos "V ogs6i?

28561

257 .16,
=gV te

783

.16
“50 Ve

14369, 16 ,,
“ 6 ! Taa0r?

61573, 16
2662 14641

10661 . 16
~ags " Tase1”

6561
9349

_ 16,
=186 " 1 2
8801

6561
686

16
49 16

ZI

Wit 2!

W'+ zZ’

2401
= 50" Te257



[BLR]
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(S1]
[s2]
(s3]

(s-U]

tu]
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