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1.

Given a coherent family of virtual representations of a complex semisimple
Lie algebra we associate a coherent family of virtual representations of the
corresponding quantum group at roots of unity. The latter family depends on
the given family in a precise fashion described below.

Let g be a finite dimensional complex semisimple Lie algebra and let U be
its universal enveloping algebra. Lusztig considered a certain C[v, v™'] algebra
U, {A=C[v, v™']} which is an J-form of the ‘quantum group’ U, {A'=C(v),
the field of fractions of i} ; the latter are some Hopf-algebra deformations of
U, defined by Drinfeld and Jimbo generalizing the case of 8l,.

Let A=C* and suppose that A is a primitive /-th root of unity where [, (=3),
is an odd positive integer (not divisible by 3 if G, is a factor of g).

Let ¢;: A—C be the C-algebra homomorphism obtained by sending v to 4.
The algebras U;: =U_ & C, (scalar multiplication by u#< 4 in the first factor
corresponds to scalar multiplication by ¢;(x) in the second factor) are called
‘quantum groups at roots of unity’; these are different from those considered
by Kac, Processi and De-Concini. The algebras UU; are also Hopf algebras.

In [L1, Prop. 7.5(a) and L2, 8.16] Lusztig defines a ‘Frobenius’ morphism
¢:U;—U; ¢ is a surjection and respects the Hopf-algebra structure.

2. Coherent family of virtual representations of U, U;.

Let h be a Cartan subalgebra of g. Let A be the set of roots of g with
respect to ) and A* a system of positive roots. Let S={ay, a,, ---, a,} be the
set of simple roots in A*. Let AZHh* (=Hom¢ (h, C)) be the integral lattice
defined by

y & A= 2y, a)/(a, a) € Z, YacA

where the pairing is induced by the Killing form in the usual way.
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DEFINITION. A family of virtual (not necessarily finite dimensional) repre-
sentations {n(v)},eq of U is called a coherent family if for every finite dimen-
sional module F of U (in the Grothendieck group)

rWQF = 3 m(p, Fla(v+p)
ped (F)

where the summation is over the weights A(F) of F and for peAF), m(y, F)
denotes the multiplicity of g as a weight of F.

REMARK. The Grothendieck group is formed in the usual way from any
subcategory of modules with finite composition series, stable under tensor prod-
ucts with finite dimensional modules. Depending upon the context, (see for
e. g., [BV, Definition 2.2]) one often assumes extra information about the co-
herent family, e.g., that m(v) has an infinitesimal character parametrized by
the orbit of v and also an irreducibility property for z(v), when v satisfies posi-
tivity conditions.

Interesting examples of coherent families arise by considering Harish-Chandra
modules (generally infinite-dimensional) for a real form of g. Given any such
irreducible Harish-Chandra module there is a coherent family it belongs to (see
Vo, Theorem 7.2.7]).

Finite dimensional representations of U have been quantized by Lusztig at
all U,;. Their ‘weights’ can be defined as elements of A (see [Ll1, 5.2]); they
admit a weight space decomposition (see [APW, 9.12] and [A]). If F is an
irreducible finite dimensional module for U, its quantization F’ for U, is called
a Weyl module; for p= 4, p is a weight of F” if and only if it is a weight of F
and then the multiplicity m(y, F’) equals m(y, F). This allows us to define a
coherent family {#(v)}.e4 of virtual representations of U, exactly as in the case
of U. We will assume throughout this article, without further mention, that
the U; modules considered are all of type 1 [L1, 4.67.

Let p=1/2 X ,ea+ @ (half the sum of the positive roots). Recall that 1 is a
primitive /-th root of 1. If ve is dominant integral (i.e., 2(y, @)/(a, a)=Z",
VasA*), let F, denote the irreducible finite dimensional representation of U
with highest weight v. We have then a representation U;—End (F]) of the
quantum group U; on the corresponding Weyl module F). Recall that if v=
({—1)p, the Weyl module F{,_;,, is called the ‘Steinberg module’; it is irre-
ducible (see [AW, 2.2] and [A]). We let St denote the Steinberg module.

If #:U—End(V) is a representation of U, we define a representation
#:U;—End (V) by #=me¢ where ¢: U,—-U is the Frobenius morphism defined
by Lusztig [L1, 7.5 and L2, 8.16].

Given any ve /4, we can uniquely write v=y'+4/v” where i) v/, v’/ and
ii) 20/, @)/(a, a)={0, 1, -+, [—1} for every simple root @ in A*.
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Given a coherent family {7(v)},es of virtual representations of U we pro-
ceed to construct a coherent family {7(v)},es of virtual representations of U,
such that for any v’ 4

7(ly") = 7#(")QSt

where St is the Steinberg representation of U;.

For this we introduce some notation mainly following and [H].

Let 0, 05, -+, 0, be the fundamental weights; i.e., 2(0;, a;)/(a;, a;)=0;;
(Kronecker delta) where S={a,, a,, -, a,} is the set of simple roots. Let W
be the Weyl group, WC Aut (h*), generated by the Coxeter generators s;(i=1,
.-, n) defined by s;(0)=v—[2(v, a;)/(a;, a;)]a;. For e&W, let I,={i|1<i<n,
l(os;)<I(a)}. Here I( ) denotes the length function on W with respect to the
Coxeter generators si, S;, ***, S,. Put 6,=2ics, 0; and define ¢,=0a(d,). Let R
be the ring of formal integral combinations >,c4mye?. Since the action of W
on §* leaves A stable, W obviously acts as automorphisms of the ring ®. We
let ®% denote the subring of invariants. We now summarize some key obser-
vations of Hulsurkar in [H] which were reinforced by Verma [V].

ProposiTiON ([H], [V]. () For o&W, —ep,+e,=0p, where o, is the
unique element of W of maximum length. If m=2 and 7, -, tn are distinct
elements of W, then at least one of the elements —e, ; +8ry —Erpopteey,
—&tprog T Cemy —Ermay ey 1S Singular. (v is non-singular&(v, a)#0 for any ac
As“welW, wy=v=ow=1"),

(ii) For any ve A, there exist unique W-invariant elements X,,., (t€W), € &%
such that

e = 2%, .-er.
TEW

(iii) For any vEA, there exist unique W-invariant elements y,,., (t€W),

e RY such that

e’ X(SH= 3 7],;,1'6[” ,
rEW

uUSH  if w=1
-

0 otherwise.

(Here X(St), which lies in RY denotes the character of the Steinberg representa-

tion.) The statement (i) is the Main Lemma of [H]. For statement (ii) see also
[J, Satz 17.

INDICATION OF PROOF (following [H] and [V]) oF (ii). Define an operator
c: R—R by

Seew (—1 ¢

A= Faw (C1FO
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The operator ¢ is R"-linear.
The main idea of the proof by Hulsurkar and Verma is to solve the system
of linear equations by inverting a |W | X |W | matrix (a, .) where a, .=c(e *770*"7)
[which is essentially guaranteed to be ‘upper triangular’ unipotent by (i)].
To find (X, .).ew which solves
e’ = X, .-e*

T

multiply both sides by e 770 to get
g""s‘“’o — Z X,,,,-e“E”OHT .
T
Applying ¢ to both sides

c(e 70 = DA, c(e70 ) (geW).

The left side of this system of equations is a column vector (whose |W| entries
belong to the ring R¥Y). Multiply this column vector on the left by the [W]
X |W| matrix (B,,.) (whose entries are in the same ring) which is the inverse
of the matrix (a,.) where a,.=c(e *?70*") to solve for the unknown column
vector (X, o).ew.

The proof of (iii) is similar. In fact one can see the following:—

Let @: R—R be the ring homomorphism defined by @(e?)=¢'’. Observe
that

(@oc(e™ASH = c-P(e?) Vped.

Define a |W|X|W| matrix (8;.) by B:.=®(B,.), where B,. are as above.
Then the column vector (7, .).ew required in (iii) is obtained by multiplying the
column vector (c(¢’ '*?70)),c on the left by the matrix (B4, 2)s, cew.

REMARK 1. Let p=/A. Applying Proposition (iii) to v+4/y in place of v
we find that 37,,:, .€RY, (r€W), such that

TS = D g0

Therefore
e’ X(St) = 3 ny,z-e“f

— ? 7]v+l;t.z'elsr_lﬂ .

We denote by & the Grothendieck group of formal integral combinations of
finite dimensional representations of U. If w9, the character X(w)e R" has
an obvious meaning and X: $—®" is an isomorphism. We also have to intro-
duce the corresponding Grothendieck group ¥’ for U;-modules. Again if w=g’,
the character X(w)e ®% has an obvious meaning and X: ¥’—®Y is an isomor-
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phism. Sometimes, if convenient, we use the same symbol to denote an ele-
ment of 9’ and its character in R"Y.

THEOREM. Suppose a coherent family {m(v)},eq of virtual representations of
U is given. Given ve A, write v=y +ly" where v A and 20, a)/(a, a)=
{0, 1, -+, I—1} for each simple root a. Let ¢*'-St=73]} pv,,,-e‘gf in the notation
of Proposition (iii). Choose p(v’, )9’ whose character is 7, .. Set

z(y) = 2 o0, T)RF(V" +¢.)
(in the Grothendieck group of representations of U;). Then {#(v)}.ea is a co-
herent family of representations of U, with z(lv")=7(")QSt.
Proor. We have 7, .=®" and
e St=3 ny',,-e"‘ef.
REMARK 2. By Remark 1, for any p= /4, we can also write (uniquely)

’ ~lp+ls
e’ St = Z’?D'-X-l/l,f.e e
T

where 7., .€®". In the course of the proof, it will be established that in
the statement of the Theorem, the rightside of z(v), i.e., 2. p(v/, DQF(L" +¢:)
equals

2o +lp, TRV — pte.)

where p(v'+Iy, 7), (€9’), is chosen so as to have character %,/,;,,.. 'The main
ingredient in the proof of the theorem is the following lemma.

LEMMA. Suppose
X, etBi = 2¢jel7j
where X;, ¢G=1, -, m), and ¢;, (j=1, -, n), €RY and Bi, y;&A. Assume, as

in the Theorem, that {w(v)}.,eq is a coherent family of representations of U.
Let py, 7,9’ such that X(p;)=X; and X(t;)=¢;. Then,

2 0:RF(Bi) = 2t QF(1 ).
(Both sides lie in the Grothendieck group obtained from U ;-modules.)

PROOF OF LEMMA. Write
() e‘gi = 3] 0i,t€”

tew

and

el = Nk, et
sew

as in Proposition ii). By abuse of notation, we also let #, ., and «; ; denote ele-
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ments of &, having character 6, . and &, ; respectively. Lifting by the Fro-
benius map, &; . and &, denote elements of ¥’. It is clear that if 6, . has
character ,es pve’, then 4, has character S,ey pye!”. A similar statement
holds for %, ,.

We have, from (x),

18 A 1
eﬂzzzﬁi’te £t
t

and
lrs - le
e =SVkj.e .
8

Since {#(v)}.,es is a coherent family, we have
ﬁ(ﬂi) = Zz 0~i, (K7 (ee)

and

ﬁ(Tj) = % £, X7 (es) .
By the assumption in the lemma,

> xiebﬂi = ¢j217j .
Therefore, (in R)
2 X,; EZ] 5,;_ tels‘

= ? $s 2 £jee'
from which follows
(b) ?xiéi.t = %‘:‘ﬁiﬁu
(VteW). For the validity of the assertion in the lemma, observe that
SLRFB) = LRI b (Di(e0)
= 62 12 1,20 Ri(s0)

while

? Q7 (rs) = ? ;& Es £s, Q7 (es))
= Es] ; ¢j®kj. s®ﬁ(ss) .
The lemma follows from (h).

To continue with the proof of the theorem, we remark that it is an im-
mediate consequence of the lemma that if

e’St = ) e’
i



Quantization of a family of representations at roots of unity 193

where ¢, RY, then 7(v) defined in the theorem also equals 33, 7;Q7(y;), where
7;€9’ has character ¢;.

Let F’ be a finite dimensional U;-module. For pe /4, let m(y, F’) be the
multiplicity of ¢ as a weight of F’. We have to show that for any veA

(") Fr@r(y) = ; m(p, F')za(p+v)
(in the Grothendieck group). Writing as in the statement of the theorem
e’ St =37, e

multiply both sides by X(F’)-¢"’. We obtain,

2im(y, F'le*#-St = ZX(F')-n,, e 0,

© TeW
By the remark we made following the proof of the lemma, the right side of
the above equality can be used to get X, m(u, F/)#(v+y), namely,

2m(y, Fl)a(v+p) = ZW(F’®p(V’, T))RQT(V" +e.) .
# €

But the right side equals F/'&{>.ew p(v/, Q7" +e¢.)} which is nothing but
F'@=(v). This completes the proof of the theorem.

Suppose the coherent family n(v),c, has the property (see [BYV, Definition
2.27) that

i) m(y) has infinitesimal character parametrized by the W-orbit of v

i) m(y) is zero or irreducible when v is dominant with respect to a fixed

positive system, and m(v)#0 if v is dominant regular.
Then it can be expected that 7z(v) for dominant v (with respect to the positive
system in ii) above) is represented in the Grothendieck group by a U;-module
(as opposed to an arbitrary element of the Grothendieck group, which in general
is a virtual module, i.e., a difference of two modules). The author has verified
this (see [P1]) for A, and B,, using Lusztig’s formula for the multiplicity of
irreducibles in Weyl modules of quantum groups at roots of unity. More gen-
erally, we can also relax the conditions i) and ii) above to allow families 7(v),c 4
which do not necessarily have integral infinitesimal characters. For G,, there
is enough evidence though the verification is still incomplete.

If in the theorem we take Verma modules for the coherent family n(v),cy
then the expression for #(v) given in the theorem can be used to deduce the
multiplicities of the irreducible subquotients occuring in a composition series for
the quantized Verma modules at roots of unity. The formula so obtained, of
course, involves

i) the multiplicities of the irreducibles occuring in #(y) for various v and
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ii)
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the 11ultiplicities of irreducibles occuring in the Weyl modules for U;.

In addition the formula involves the knowledge of the coefficients 7,,.; the
explicit determination of %,,. was indicated in the proof of Proposition (iii).
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