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1.

Given a coherent family of virtual representations of a complex semisimple
Lie algebra we associate a coherent family of virtual representations of the
corresponding quantum group at roots of unity. The latter family depends on
the given family in a precise fashion described below.

Let $\mathfrak{g}$ be a finite dimensional complex semisimple Lie algebra and let $U$ be
its universal enveloping algebra. Lusztig considered a certain $C[v, v^{-1}]$ algebra
$U_{A},$ $\{\mathcal{A}=C[v, v^{-1}]\}$ which is an $\mathcal{A}$ -form of the ’quantum group’ $U_{\mathcal{A}’},$ $\{\mathcal{A}’=C(v)$ ,

the field of fractions of $\mathcal{A}$ } ; the latter are some Hopf-algebra deformations of
$U$ , defined by Drinfeld and Jimbo generalizing the case of @I2.

Let $\lambda\in C^{*}$ and suppose that $\lambda$ is a primitive l-th root of unity where 1, $(\geqq 3)$ ,

is an odd positive integer (not divisible by 3 if $G_{2}$ is a factor of g).

Let $\varphi_{\lambda}$ : $\mathcal{A}arrow C$ be the $C$-algebra homomorphism obtained by sending $v$ to $\lambda$ .
The algebras $U_{\lambda}$ $:=U_{A}\llcorner\otimes_{A}C$, (scalar multiplication by $u\in \mathcal{A}$ in the first factor
corresponds to scalar multiplication by $\varphi_{\lambda}(u)$ in the second factor) are called
’quantum groups at roots of unity’ ; these are different from those considered
by Kac, Processi and De-Concini. The algebras $U_{\lambda}$ are also Hopf algebras.

In [Ll, Prop. 7.5(a) and L2, 8.16] Lusztig defines a ‘Frobenius’ morphism
$\psi:U_{\lambda}arrow U;\psi$ is a surjection and respects the Hopf-algebra structure.

2. Coherent family of virtual representations of $U,$ $U_{\lambda}$ .
Let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ . Let $\Delta$ be the set of roots of $\mathfrak{g}$ with

respect to $\mathfrak{h}$ and $\Delta^{+}$ a system of positive roots. Let $S=\{\alpha_{1}, \alpha_{2}, \cdot , \alpha_{n}\}$ be the
set of simple roots in $\Delta^{+}$ . Let $\Lambda\subseteqq \mathfrak{h}^{*}(=Hom_{C}(\mathfrak{h}, C))$ be the integral lattice
defined by

$\nu\in\Lambda\Leftrightarrow 2(\nu, \alpha)/(\alpha, \alpha)\in Z$, $\forall\alpha\in\Delta$

where the pairing is induced by the Killing form in the usual way.
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DEFINITION. A family of virtual (not necessarily finite dimensional) repre-
sentations $\{\pi(\nu)\}_{\nu\in\Lambda}$ of $U$ is called a coherent family if for every finite dimen-
sional module $F$ of $U$ (in the Grothendieck group)

$\pi(\nu)\otimes F=\sum_{\mu\in\Delta_{(}F)}m(\mu, F)\pi(\nu+\mu)$

where the summation is over the weights $\Delta(F)$ of $F$ and for $\mu\in\Delta(F),$ $m(\mu, F)$

denotes the multiplicity of $\mu$ as a weight of $F$.

REMARK. The Grothendieck group is formed in the usual way from any
subcategory of modules with finite composition series, stable under tensor prod-
ucts with finite dimensional modules. Depending upon the context, (see for
$e$ . $g.$ , [BV, Definition 2.2] $)$ one often assumes extra information about the co-
herent family, $e$ . $g.$ , that $\pi(\nu)$ has an infinitesimal character parametrized by
the orbit of $\nu$ and also an irreducibility property for $\pi(\nu)$ , when $\nu$ satisfies posi-
tivity conditions.

Interesting examples of coherent families arise by considering Harish-Chandra
modules (generally infinite-dimensional) for a real form of $\mathfrak{g}$ . Given any such
irreducible Harish-Chandra module there is a coherent family it belongs to (see

[Vo, Theorem 7.2.7] $)$ .
Finite dimensional representations of $U$ have been quantized by Lusztig at

all $U_{\lambda}$ . Their ’weights’ can be defined as elements of $\Lambda$ (see [Ll, 5.2]); they
admit a weight space decomposition (see [APW, 9.12] and [A]). If $F$ is an
irreducible finite dimensional module for $U$ , its quantization $F’$ for $U_{\lambda}$ is called
a Weyl module; for $\mu\in\Lambda,$

$\mu$ is a weight of $F’$ if and only if it is a weight of $F$

and then the multiplicity $m(\mu, F’)$ equals $m(\mu, F)$ . This allows us to define a
coherent family $\{\overline{\pi}(v)\}_{\nu\in\Lambda}$ of virtual representations of $U_{\lambda}$ exactly as in the case
of $U$ . We will assume throughout this article, without further mention, that
the $U_{\lambda}$ modules considered are all of type 1 [Ll, 4.6].

Let $\rho=1/2\sum_{\alpha\in\Delta^{+}}\alpha$ (half the sum of the positive roots). Recall that $\lambda$ is a
primitive l-th root of 1. If $\nu\in\Lambda$ is dominant integral $(i.e.,$ $2(v, \alpha)/(\alpha, \alpha)\in Z^{+}$ ,
$\forall\alpha\in\Delta^{+})$ , let F. denote the irreducible finite dimensional representation of $U$

with highest weight $\nu$ . We have then a representation $U_{\lambda}arrow End(F_{\nu}’)$ of the
quantum group $U_{\lambda}$ on the corresponding Weyl module $F_{\nu}’$ . Recall that if $\nu=$

$(l-1)\rho$ , the Weyl module $F_{\langle l-1)}’p$ is called the ‘Steinberg module’ ; it is irre-
ducible (see [AW, 2.2] and [A]). We let $St$ denote the Steinberg module.

If $\pi:Uarrow End(V)$ is a representation of $U$ , we define a representation
$\tilde{\pi}:U_{\lambda}arrow End(V)$ by $\tilde{\pi}=\pi 0\psi$ where $\psi:U_{\lambda}arrow U$ is the Frobenius morphism defined
by Lusztig [Ll, 7.5 and L2, 8.16].

Given any $v\in\Lambda$ , we can uniquely write $\nu=\nu’+l\nu’’$ where i) $\nu’,$ $\nu’’\in\Lambda$ and
ii) $2(\nu’, \alpha)/(\alpha, \alpha)\in\{0,1, \cdots , l-1\}$ for every simple root $\alpha$ in $\Delta^{+}$ .
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Given a coherent family $\{\pi(\nu)\}_{\nu\in\Lambda}$ of virtual representations of $U$ we pro-
ceed to construct a coherent family $\{\overline{\pi}(\nu)\}_{\nu\in\Lambda}$ of virtual representations of $U_{\lambda}$

such that for any $\nu’’\in\Lambda$

$\overline{\pi}(l\nu’)=\tilde{\pi}(\nu’’)\otimes St$

where $St$ is the Steinberg representation of $U_{\lambda}$ .
For this we introduce some notation mainly following [V] and [H].

Let $\delta_{1},$ $\delta_{2},$ $\cdots$ , $\delta_{n}$ be the fundamental weights; $i.e.,$ $2(\delta_{i}, \alpha_{j})/(\alpha_{j}, \alpha_{j})=\delta_{ij}$

(Kronecker delta) where $S=\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{n}\}$ is the set of simple roots. Let $W$

be the Weyl group, $W\subset Aut(\mathfrak{h}^{*})$ , generated by the Coxeter generators $s_{i}(i=1$ ,
$\ldots$ $n)$ defined by $s_{i}(\nu)=\nu-[2(\nu, \alpha_{i})/(\alpha_{t}, \alpha_{i})]\alpha_{i}$ . For $\sigma\in W$ , let $I_{\sigma}=\{i|1\leqq i\leqq n$ ,
$l(\sigma s_{i})<l(\sigma)\}$ . Here $l()$ denotes the length function on $W$ with respect to the
Coxeter generators $s_{1},$ $s_{2},$

$\cdots$ , $s_{n}$ . Put $\delta_{\sigma}=\Sigma_{i\in I_{\sigma}}\delta_{i}$ and define $\epsilon_{\sigma}=\sigma(\delta_{\sigma})$ . Let $R$

be the ring of formal integral combinations $\Sigma_{\eta\in A}m_{\eta}e^{\eta}$ . Since the action of $W$

on $\mathfrak{y}*$ leaves $\Lambda$ stable, $W$ obviously acts as automorphisms of the ring $R$ . We
let $R^{W}$ denote the subring of invariants. We now summari $ze$ some key obser-
vations of Hulsurkar in [H] which were reinforced by Verma [V].

PROPOSITION ([H], [V]). (i) For $\sigma\in W,$ $-\epsilon_{\sigma\sigma_{0}}+\epsilon_{\sigma}=\sigma\rho$ , where $\sigma_{0}$ is the
umque element of $W$ of maximum length. If $m\geqq 2$ and $\tau_{1},$

$\cdots$ , $\tau_{m}$ are distinct
elements of $W$ , then at least one of the elements $-\epsilon_{\tau_{1}\sigma_{0}}+\epsilon_{\tau_{2}},$ $-\epsilon_{\tau_{2}\sigma_{0}}+\epsilon_{\tau_{3}},$

$\cdots$ ,
$-\epsilon_{\tau_{m-1}\sigma_{0}}+\epsilon_{\tau_{m}},$ $-\epsilon_{\tau_{m}\sigma_{0}}+\epsilon_{\tau_{1}}$ is singular. ( $\nu$ is non-srngularo $(\nu, \alpha)\neq 0$ for any $\alpha\in$

$\Delta\Leftrightarrow w\in W,$ $w\nu=\nu\Rightarrow w=1’)$ .
(ii) For any $\nu\in\Lambda$ , there exist unique $W$-invanant elements $\chi_{\nu}$

, ., $(\tau\in W),$ $\in R^{W}$

such that
$e^{\nu}= \sum_{\tau\in W}\chi_{\nu,\tau}.e^{\epsilon_{\tau}}$ .

(iii) For any $\nu\in\Lambda$ , there exist unique $W$-invanant elements $\eta_{v,\tau},$ $(\tau\in W)$ ,
$\in R^{W}$ such that

$e^{\nu} \cdot\chi(St)=\sum_{\tau\in W}\eta_{\nu,\tau}\cdot e^{l\epsilon_{\tau}}$ ,

$\eta_{0.w}=\{$

$\chi(St)$ if $w=1$

$0$ otherwise.

(Here $\chi(St)$ , which lies in $\Re^{W}$ denotes the character of the Steinberg rePresenta-
tion.) The statement (i) is the Main Lemma of [H]. For statement (ii) see also
[$J$ , Satz 1].

INDICATION OF PROOF (following [H] and [V]) OF (ii). Define an operator
$c:Rarrow R$ by

$c(e^{\eta})= \frac{\Sigma_{\tau\in W}(-1)^{l(\tau)}e^{\tau\eta}}{\Sigma_{\tau\in W}(-1)^{l(\tau)}e^{\tau\rho}}$
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The operator $c$ is $R^{W}$-linear.
The main idea of the proof by Hulsurkar and Verma is to solve the system

of linear equations by inverting a $|W|\cross|W|$ matrix $(a_{\sigma.\tau})$ where $a_{\sigma}$ ,
$,=c(e^{-\epsilon_{\sigma\sigma_{0^{+}}}\epsilon_{\tau}})$

[which is essentially guaranteed to be ’upper triangular’ unipotent by $(i)$].

TO find $(\chi_{\nu.\tau})_{\tau\in W}$ which solves

$e^{\nu}= \sum_{\tau}\chi_{v,\tau}.e^{\epsilon_{\tau}}$

multiply both sides by $e^{-\epsilon_{\sigma\sigma_{0}}}$ to get

$e^{\nu-\epsilon_{\sigma\sigma_{0}}}= \sum_{\tau}\chi_{\nu,\tau}.e^{-\epsilon_{\sigma\sigma_{0^{+\epsilon_{\tau}}}}}$ .

Applying $c$ to both sides

$c(e^{\nu-s_{\sigma\sigma_{0}}})= \sum_{\tau}x_{\nu},{}_{\tau}C(e^{-\epsilon_{\sigma\sigma_{0}+^{g}\tau}})$
$(\sigma\in W)$ .

The left side of this system of equations is a column vector (whose $|W|$ entries
belong to the ring $R^{W}$ ). Multiply this column vector on the left by the $|W|$

$\cross|W|$ matrix $(\beta_{\sigma}$ , . $)$ (whose entries are in the same ring) which is the inverse
of the matrix $(a_{\sigma}, ,)$ where $a_{\sigma.\tau}=c(e^{-\epsilon_{\sigma\sigma_{0}}+\epsilon_{\tau}})$ to solve for the unknown column
vector $(\chi_{v,\tau})_{\tau\in W}$ .

The proof of (iii) is similar. In fact one can see the following:–
Let $\Phi$ : $Rarrow R$ be the ring homomorphism defined by $\Phi(e^{\theta})=e^{\iota\theta}$ . Observe

that
$(\Phi\circ c(e^{\eta}))\chi(St)=c\circ\Phi(e^{\eta})$ $\forall\eta\in\Lambda$ .

Define a $|W|\cross|W|$ matrix $(\beta_{\sigma.\tau}’)$ by $\beta_{\sigma.\tau}’=\Phi(\beta_{\sigma,\tau})$ , where $\beta_{\sigma.\tau}$ are as above.
Then the column vector $(\eta_{\nu.\tau})_{\tau\in W}$ required in (iii) is obtained by multiplying the
column vector $(c(e^{\nu-l\epsilon_{\sigma\sigma_{0}}}))_{\sigma\in W}$ on the left by the matrix $(\beta_{\sigma}’, ,)$., $z\in W$ .

REMARK 1. Let $\mu\in\Lambda$ . Applying Proposition (iii) to $\nu+l\mu$ in place of $\nu$

we find that $\exists\eta_{\nu+l\mu}$ . $.\in R^{W},$ $(\tau\in W)$ , such that

$e^{\nu+l\mu} \cdot\chi(St)=\sum_{\tau}\eta_{v+^{\iota_{\mu.\tau}}}\cdot e^{l\epsilon_{\tau}}$ .

Therefore
$e^{v} \cdot\chi(S0=\sum_{\tau}\eta_{v}$ , , $\cdot$ $e$

$l\epsilon_{\tau}$

$= \sum_{\tau}\eta_{\nu+l\mu.\tau}\cdot e^{l\epsilon_{\tau-}l\mu}$

We denote by $\mathscr{F}$ the Grothendieck group of formal integral combinations of
finite dimensional representations of $U$ . If $\omega\in \mathscr{F}$ , the cbaracter $\chi(\omega)\in R^{W}$ has
an obvious meaning and $x:\mathscr{F}arrow\Re^{W}$ is an isomorphism. We also have to intro-
duce the corresponding Grothendieck group $\mathscr{F}’$ for $U_{\lambda}$ -modules. Again if $\omega\in \mathscr{F}’$ ,

the character $\chi(\omega)\in\Re^{W}$ has an obvious meaning and $x:\mathscr{F}’arrow R^{W}$ is an isomor-
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phism. Sometimes, if convenient, we use the same symbol to denote an ele-
ment of $\mathscr{F}’$ and its character in $R^{W}$ .

THEOREM. Suppose a coherent family $\{\pi(\nu)\}_{\nu\in\Lambda}$ of vzrtual representations of
$U$ is gzven. Given $\nu\in\Lambda$ , write $\nu=\nu’+l\nu’$ where $\nu’\in\Lambda$ and $2(\nu’, \alpha)/(\alpha, \alpha)\in$

$\{0,1$ , $\cdot$ .. , 1–1 $\}$ for each szmple root $\alpha$ . Let $e^{\nu’} \cdot St=\sum\eta_{v’,\tau}\cdot e^{t\in_{\tau}}$ in the notatim
of Proposztion (iii). Choose $\rho(\nu’, \tau)\in \mathscr{F}’$ whose character is $\eta_{\nu’.\tau}$ Set

$\overline{\pi}(\nu)=\sum_{r}\rho(\nu’, \tau)\otimes\tilde{\pi}(\nu’+\epsilon_{\tau})$

(in the Grothendieck group of representations of $U_{\lambda}$ ). Then $\{\overline{\pi}(\nu)\}_{\nu\in\Lambda}$ is a co-
herent family of representations of $U_{\lambda}$ with $\overline{\pi}(t\nu’)=\tilde{\pi}(\nu’)\otimes St$ .

PROOF. We have $\eta_{\nu’.\tau}\in R^{W}$ and

$e^{\nu’}\cdot St=\Sigma\eta_{\nu’,p}\cdot e^{\iota\epsilon_{\tau}}$ .

REMARK 2. By Remark 1, for any $\mu\in\Lambda$ , we can also write (uniquely)

$e^{\nu’} \cdot St=\sum_{\tau}\eta_{v’+l\mu},$
$fe^{-l\mu+l\epsilon_{\tau}}$

where $\eta_{\nu’+l\mu}$ ,
$.\in\Re^{W}$ . In the course of the proof, it will be established that in

the statement of the Theorem, the rightside of fi(v), $i.e.,$ $\Sigma_{\tau}\rho(\nu’, \tau)\otimes\tilde{\pi}(\nu’’+\epsilon_{\tau})$

equals
$\Sigma\rho(\nu’+l\mu, \tau)\otimes\tilde{\pi}(\nu’-\mu+\epsilon_{\tau})$

where $\rho(v’+l\mu, \tau),$ $(\in \mathscr{F}’)$ , is chosen so as to have character $\eta_{\nu’+}\iota_{\mu}$ , ,. The main
ingredient in the proof of the theorem is the following lemma.

LEMMA. Suppose
$\Sigma\chi_{i}e^{\iota\beta_{i}}=\Sigma\psi_{j}e^{l\gamma_{j}}$

where $\chi_{i}$ $(i=1, \cdots , m)$ , and $\psi_{j},$ $(]=1, \cdots , n),$ $\in R^{W}$ and $\beta_{i},$ $\gamma_{j}\in\Lambda$ . Assume, $as$

in the Theorem, that $\{\pi(\nu)\}_{\nu\in\Lambda}$ is a coherent family of representations of $U$ .
Let $\rho_{t},$

$\tau_{j}\in \mathscr{F}’$ such that $\chi(\rho_{i})=x_{i}$ and $\chi(\tau_{j})=\psi_{j}$ . Then,

$\Sigma p\otimes\tilde{\pi}(\beta_{i})=\Sigma\tau_{j}\otimes\tilde{\pi}(\gamma_{j})$ .
(Both stdes lie in the Grothendieck group obtained from $U_{2}$ -modules.)

PROOF OF LEMMA. Write
$(*)$

$e^{\beta t}= \sum_{t\in W}\theta_{i.t}e^{\epsilon_{t}}$

and
$e^{\gamma_{j}}= \sum_{s\in W}\kappa_{j.s}e^{\epsilon_{S}}$

as in Proposition ii). By abuse of notation, we also let $\theta_{i,t}$ and $\kappa_{j.S}$ denote ele-
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ments of $\mathscr{F}$ , having character $\theta_{i.t}$ and $\kappa_{j.*}$ respectively. Lifting by the Fro-
benius map, $\theta_{i,t}$ and $\tilde{\kappa}_{j.*}$ denote elements of $\mathscr{F}’$ . It is clear that if $\theta_{i.i}$ has
character $\sum_{v\in\Lambda}p_{\nu}e^{\nu}$, then $\tilde{\theta}_{i.t}$ has character $\sum_{\nu\in\Lambda}p_{\nu}e^{l\nu}$ . A similar statement
holds for $\tilde{\kappa}_{j}$ . ,.

We have, from $(*)$ ,

$e^{\iota\beta t}= \sum_{t}\theta_{t,t}e^{t\epsilon_{t}}$

and
$e^{\iota\gamma_{j}}= \sum_{*}\tilde{\kappa}_{j,s}e^{l\epsilon_{S}}$

Since $\{\pi(\nu)\}_{\nu\in\Lambda}$ is a coherent family, we have

$\tilde{\pi}(\beta_{i})=\sum_{t}\theta_{i.t}\otimes\tilde{\pi}(\epsilon_{t})$

and
$\tilde{\pi}(\gamma_{j})=\sum_{s}\tilde{\kappa}_{f,s}\otimes\tilde{\pi}(e_{s})$ .

By the assumption in the lemma,

$\sum\chi_{i}e^{\iota\beta\ell}=\sum\psi_{j}e^{l\gamma_{j}}$ .
Therefore, (in $R$ )

$\sum_{i}\chi_{i}\sum_{t}\tilde{\theta}_{i.t}e^{l\epsilon_{i}}$

$= \sum_{f}\psi_{j}\sum_{l}\tilde{\kappa}_{j,s}e^{l\epsilon_{S}}$

from which follows

(b) $\sum_{:}x_{i}\tilde{\theta}_{i.t}=\sum_{j}\psi_{j}\tilde{\kappa}_{t,j}$

$(\forall t\in W)$ . For the validity of the assertion in the lemma, observe that

$\sum_{i}x_{i}\otimes\tilde{\pi}(\beta_{i})=\sum_{i}x_{i}\otimes(\sum_{t}\theta_{i,t}\otimes\tilde{\pi}(\epsilon_{t}))$

$= \sum_{\iota}\sum_{i}x_{t}\otimes\theta_{i,t}\otimes\tilde{\pi}(\epsilon_{t})$

while
$\sum_{j}\psi_{j}\otimes\tilde{\pi}(\gamma_{J})=\sum_{j}\psi_{j}\otimes(\sum_{l}\tilde{\kappa}_{\epsilon.i}\otimes\tilde{\pi}(\epsilon_{s}))$

$= \sum_{*}\sum_{j}\psi_{j}\otimes\tilde{\kappa}_{j.s}\otimes\tilde{\pi}(\epsilon_{s})$ .

The lemma follows from $( \int)$ .
TO continue with the proof of the theorem, we remark that it is an im-

mediate consequence of the lemma that if

$e^{\nu}St- \sum_{j}\psi_{j}e^{\iota_{\gamma j}}$ ,
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where $\psi_{j}\in R^{W}$ , then $\overline{\pi}(\nu)$ defined in the theorem also equals $\Sigma_{j}\tau_{j}\otimes\tilde{\pi}(\gamma_{j})$ , where
$\tau_{j}\in \mathscr{F}’$ has character $\psi_{j}$ .

Let $F’$ be a finite dimensional $U_{\lambda}$ -module. For $\mu\in\Lambda$ , let $m(\mu, F’)$ be the
multiplicity of $\mu$ as a weight of $F’$ . We have to show that for any $\nu\in\Lambda$

$(\dagger)$

$F’ \otimes\overline{\pi}(\nu)=\sum_{\mu}m(\mu, F’)\overline{\pi}(\mu+\nu)$

(in the Grothendieck group). Writing as in the statement of the theorem

$e^{\nu’}\cdot St=\Sigma\eta_{v’.z}\cdot e^{l\epsilon_{\tau}}$

multiply both sides by $\chi(F’)\cdot e^{l\nu’’}$ . We obtain,

$\sum_{\mu}m(\mu, F’)e^{\nu+\mu}\cdot St=\sum_{\tau\in W}\chi(F’)\cdot\eta_{\nu’}$ , . $e^{l(\nu^{\alpha}+\epsilon_{\tau})}$ .

By the remark we made following the proof of the lemma, the right side of
the above equality can be used to get $\sum_{\mu}m(\mu, F’)\overline{\pi}(\nu+\mu)$ , namely,

$\sum_{\mu}m(\mu, F’)\overline{\pi}(\nu+\mu)=\sum_{\tau\in W}(F’\otimes\rho(\nu’, \tau))\otimes\tilde{\pi}(\nu’’+\epsilon_{\tau})$ .

But the right side equals $F’\otimes\{\Sigma_{\tau\in W}\rho(\nu’, \tau)\otimes\tilde{\pi}(\nu’+\epsilon_{\tau})\}$ which is nothing but
$F’\otimes\overline{\pi}(v)$ . This completes the proof of the theorem.

Suppose the coherent family $\pi(\nu)_{\nu\in\Lambda}$ has the property (see [BV, Definition
2.2]) that

i) $\pi(\nu)$ has infinitesimal character parametrized by the $W$-orbit of $\nu$

ii) $\pi(\nu)$ is zero or irreducible when $\nu$ is dominant with respect to a fixed
positive system, and $\pi(\nu)\neq 0$ if $\nu$ is dominant regular.

Then it can be expected that it(v) for dominant $\nu$ (with respect to the positive
system in ii) above) is represented in the Grothendieck group by a Ua-module
(as opposed to an arbitrary element of the Grothendieck group, which in general
is a virtual module, $i$ . $e.$ , a difference of two modules). The author has verified
this (see [P1]) for $A_{2}$ and $B_{2}$ , using Lusztig’s formula for the multiplicity of
irreducibles in Weyl modules of quantum groups at roots of unity. More gen-
erally, we can also relax the conditions i) and ii) above to allow families $\pi(\nu)_{\nu\in\Lambda}$

which do not necessarily have integral infinitesimal characters. For $G_{2}$ , there
is enough evidence though the verification is still incomplete.

If in the theorem we take Verma modules for the coherent family $\pi(\nu)_{v\in\Lambda}$

then the expression for $\overline{\pi}(\nu)$ given in the theorem can be used to deduce the
multiplicities of the irreducible subquotients occuring in a composition series for
the quantized Verma modules at roots of unity. The formula so obtained, of
course, involves

i) the multiplicities of the irreducibles occuring in $\pi(\nu)$ for various $\nu$ and
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ii) the nultiplicities of irreducibles occuring in the Weyl modules for $U_{\lambda}$ .
In addition the formula involves the knowledge of the coefficients $\eta_{v\tau}$ ; the
explicit determination of $\eta_{v.\tau}$ was indicated in the proof of Proposition (iii).
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