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§0. Introduction.

Let X be a compact connected CR manifold of real dimension 2n—1. One
of the most important invariants in C R-geometry is the Kohn-Rossi cohomology
H24X) introduced by Kohn and Rossi in 1965 [Ko-Ro]. Throughout this paper
we shall assume that n>=3 and X is strongly pseudoconvex. As a consequence
of Kohn’s solution to the d-Neumann problem, Kohn-Rossi showed that H%AX)
is finite dimensional if 1<g¢<n—2. In 1974, Boutet de Monvel [Bo] (see also
Kohn [Ko;]) proved that X is CR-embeddable in some C¥. There are two
fundamental questions raised by the theorem of Boutet de Monvel. The first
one is the complex Plateau problem. Specifically the problem asks whether such
X is a boundary of complex submanifold in C¥. The celebrated theorem of
Harvey and Lawson in 1975 asserts that X is the boundary of a sub-
variety V in CV. In [Ya], the second named author related the Kohn-Rossi
cohomology to the local cohomology at the singularities of the subvariety. In
case N=n+1, the Kohn-Rossi cohomology was computed explicitly. This allows
him to conclude that X is the boundary of a complex submanifold in C¥ if and
only if HRAX)=0 for 1=<¢g<n—2. The second fundamental question is to find
the minimal embedding dimension. The key contribution of [Ke,] is the study
of a pseudo-differential operator on functions in X=0dV which is the transfer,
via the Dirichlet problem, of the operator of the form 3 a;d/0%, normal to dV.
As was pointed out by Kohn [Ko,], there are indications that the study of this
operator will provide us with obstructions to embedding in a space of given
dimension. The only example of such obstructions is in the second named
author’s previous work which in particular implies that for n>3, certain
(2n—1)-dimensional CR manifolds which are embedded in C"*!, cannot be em-
bedded in C". In fact, as shown in there are obstructions for em-
bedding (2n—1)-dimensional CR manifolds in C"*' as well, by the work of

[Ya].

In this paper we shall consider a strongly pseudoconvex CR manifold X
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which admits a transversal holomorphic S' action in the sense of Lawson-Yau
[La-Ya]. Following Tanaka [Ta], this S'-action defines naturally a differential
operator N which acts on the Kohn-Rossi cohomology. Denote by H 24(X) those
parts of H%AX) on which N acts trivially. The purpose of this paper is to
show the following result.

THEOREM A. Let X be a strongly pseudoconvex compact CR manifold of
dimension 2n—1, n=3, which admits a transversal holomorphic S'-action. Suppose
that X is CR-embeddable in C~. Then the invariant Kohn-Rossi cohomology
H28X)=0 for all 1< p+q<2n—N—1.

COROLLARY B. Let X be a strongly pseudoconvex CR manifold of dimension
2n—1 with a transversal holomorphic S'-action. Suppose that ﬁ‘,’g,‘%(X)#—O for some
(p, q) such that 1<p+q<2n—N—1. Then X is not CR-embeddable in C".

REMARK. The above Corollary gives obstructions to embedding a strongly
pseudoconvex C R-manifold of dimension 2n—1 with a transversal holomorphic
St.action in CV where N<2n—2.

We would like to thank L. Saper for some helpful discussion.

In §1 we shall recall the definition of the invariant Kohn-Rossi cohomology
A 24 X) on a CR-manifold with a transversal holomorphic S*-action. In §2, we
shall recall Kohn’s beautiful harmonic theory and Tanaka’s differential geo-
metric study on a strongly pseudoconvex CR manifold. We follow Tanaka’s
approach (cf. [Ta]). It is included here partly for the sake of clarity of the
paper and partly for the sake of convenience to the readers because it seems
to us that the beautiful work of Tanaka is not easily accessible to many
mathematicians. In §3, we prove Theorem A.

§ 1. Invariant Kohn-Rossi cohomology.

In [Ko,], Kohn considered the 4, complex intrinsically on a compact CR
manifold of real dimension 2rn—1. Unfortunately, his definition of the 4, com-
plex is different from Kohn-Rossi’s ¢, complex which was originally considered

by Kohn-Rossi in [Ko-Ro]. Following Tanaka [Ta], we reformulate the 4,
complex in a way independent of the interior manifold.

DEFINITION 1.1. Let X be a connected real manifold of dimension 2n—1
and S be an (n—1)-dimensional subbundle S of CTX such that

(1) SNS={0}

(2) If L, L’ are local sections of S, then so is [L, L’].
The manifold X, together with the structure S, is called a CR manifold.
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REMARK 1.2. There exists a unique subbundle % of T(X) such that C 4=
S@®S. Furthermore, there exists a unique homomorphism J: 4—.4 such that
Ji=—identity and S={W—+/—1JW:We&4}. The pair (4, J) is called the
real expression of S.

There is a natural filtration of the De Rham complex of X, as follows:
Let A*(X)=A¥CT(X))*. Denote by A”%X) the subbundle of A?*4X) consist-
ing of all = A?*%X) such that (Y, -, Y ,_,, 71, o, Zq)=0 for all Y, -,
Y,..€CT(X), and Z,, -+, Z¢,,€S,, x being the origin of ¢. Let A¥X)=
'(A¥X)) and AP YX)=I"(A?%X)). Then A¥*X)=A>*X)DA"*'X)D--D
A*%(X)D0 and d AP Y X)C AP 2*(X), giving a filtration of the De Rham complex
{A¥X), d}.

DEFINITION 1.3. Let CPYX)=AP4X)/AP** Y X) and C?UX)=]"(C?YX)).
The exterior differentiation d induces an operator d”: C?4X)—C? % YX). The
cohomology groups of the resulting complex {C?”%X), d”} will be denoted by
HEHX).

REMARK 1.4. Consider the case where X is the boundary of a complex
manifold M. The complex {C?”%X), d”} in the sheaf category, associated with
the complex {C?%4X), d”}, coincides with the boundary complex {879 d,} intro-
duced by Kohn-Rossi (cf. [Ko-Ro], p. 465). As a consequence, H%A(X) is called
the Kohn-Rossi cohomology group of type (p, ¢).

Let L,, .-, L,_y be a local frame of S. Choose a purely imaginary local

section N of CT(X) such that L,, ---, Ln,_,, Ly, -+, Ln_,, N span CT(X). Then
the matrix (¢;;) defined by

(L Lj]=3a%L+3b5Ly+ci;N

is Hermitian, and is called the Levi form. The number of non-zero eigenvalues
and the absolute value of the signature of (¢;;) at each point are independent
of the choice of L,, -+, L,_;, N.

DEFINITION 1.5. X is said to be strongly pseudoconvex if the Levi form
is definite at each point of X.

DErINITION 1.6, (Cf. [La-Ya] p. 558.) A smooth S'-action on X is said
to be holomorphic if it preserves the subbundle #CT(X) and commutes with J.
[t is said to be transversal if, in addition, the vector field V which generates
the action, is transversal to 4 at all points of X.

The condition of being holomorphic can be written in terms of the Lie
derivation Ly as: Ly(I'(4)CT'(4) and .£y(J)=0, or equivalently as: .L,(I(S))
cr'(S).
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DEFINITION 1.7. Let X be a strongly pseudoconvex CR manifold with
transversal holomorphic S'-action. Let V be the generating vector field. Fol-
lowing Tanaka [Ta], we define, for every k&, a differential operator N:  A*(X)
—A*(X) by Ngozx/rfi’ygp, peAH(X).

The operator N leaves invariant the spaces A?%X) and C?%X), and com-
mutes with the operators d, d”. It follows that the operator N acts on the
cohomology groups H%AX).

DeErFINITION 1.8. Let X be a strongly pseudoconvex CR manifold with
transversal holomorphic S'-action. The invariant Kohn-Rossi cohomology
N}'}',%(X) is defined to be ﬁ%(X):{ceH%,%(X): Nc¢=0}, where N is the operator
in Definition 1.7.

§2. Kohn’s harmonic theory and Tanaka’s differential geometric study
on strongly pseudoconvex CR manifolds.

In this section, we shall follow Tanaka’s treatment of Kohn’s harmonic
theory and the Kohn-Rossi cohomology H%A(X).

DEFINITION 2.1. Let X be a CR manifold with structure S. A complex
vector bundle E over X is said to be holomorphic if there is a differential
operator oz : I'(E)—I(EXS*) satisfying the conditions:

(1) L(fw=(L.Hu+f(Lu)

(2 [L,, L,u=L,Lou—L,L,u,
where uel'(E), f is a complex valued function on X, L,, L,el'(S) and (dzu)(Z)
is denoted by Zu for Z<[I'(S).

For a holomorphic vector bundle E over X, set
CYX, E) = EQAS*, CYX, E)=T(CYX, E)).
The differential operators 0% : C4X, E)—C?*(X, E) defined by
@3N Ly, L) = S~V Llp(Ly, o, Lo o, L)
+ %(-D”@([L_i, L_j],‘.[:‘l, ey ii, ey fj, ooy Loyy)
for all p=C4X, E) and L,, ---, Lo, 1'(S), satisfy 9% -0%=0.

DEFINITION 2.2. The cohomology groups of the complex {C4X, E), 6%} will
be denoted by HYX, E).

In case X is compact, strongly pseudoconvex and E is equipped with a
Hermitian inner product ¢, >, a Laplacian operator of 6z can be defined as fol-
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lows: Let (%, /) be the real expression of S. Then there exists a nowhere
vanishing 1-form <" (T(X)*) such that at each x&X, 6 annihilates 4, and
—di(JY,Y) Y4, is a positive definite Hermitian form. Corresponding to
#, there exists a unique vector field &' (T(X)) such that [& I'(4)JCI'(4),
#(&)=1 and & 1d6=0. In the following, we fix one such §. Extend J to a
tensor field of type (1, 1) by setting /=0 and define a tensor field g of type
, 2) by gV, Yy)=—d8(JY,, Y,). Then g induces a Hermitian inner product
on S which, together with <,> on E, induces a Hermitian inner product on
CYX, E) in the usual way. Integration with respect to the volume element
dv=0N(d@)""! provides C%YX, E) with a Hermitian inner product (,). Let 9z
be the formal adjoint operator of 6z with respect to (,).

DEFINITION 2.3. DE;8E5E+3519E is called the Laplacian of dr with respect
to  and {,). The space of harmonic forms {p&C¥X, E): Ogp=0} will be
denoted by 4UX, E).

Tanaka [Ta] defined canonical connections on X and in £ with respect to
6 and <, ) to describe (Jr and prove the subelliptic 1/2-estimate of [Jz. Work-
ing through Kohn’s harmonic theory in this differential geometric setting yields
in particular:

THEOREM 2.4. (Cf. Kohn [Ke,].) Assume n=3. Every cohomology class in
HYX, E) is represented by a unique harmonic form. Hence HY (X, E)= 44X, E).

Theorem 2.4 can be applied to the Kohn-Rossi cohomology H%4(X) by identi-
fying C?9X) with C%X, E?) for a holomorphic vector bundle E? as follows:

DEFINITION 2.5. Let & be the Riemannian metric on X defined by h=g+ 6%
Denote by <,> Hermitian inner product on A*(X) induced by % in the usual

way. For ¢, gcA*(X), set (¢, sb):SX(% drdv.

Let .4’ be the subbundle of 7T'(X) spanned by the vector field & By the
decomposition CT(X)=C4’'DSDS, C?%X) can be identified with the subbundle
AP(C I PS)*QNS* of AP*(X).

DEFINITION 2.6. With ¢?%(X) identified as a subspace of A?*(X), let 6” be
the formal adjoint operator of d” with respect to (,) in Definition 2.5 and A”=
0”d”+d”0” be the corresponding Laplacian. The harmonic space {¢p&C?%X):
A”¢=0} will be denoted by HZAX).

Let EP=AP(CH'PS)*. For o= (E?), YES, Z,, -+, Z,&'(CIH'DS), de-
ﬁne (35‘1’@)(7):7? by (}7§0>(ZI’ ) Zp>:-}7(¢(Zly Ty Zp))“‘Z(“l)l(P(w[Y; Zz]y
Zy s Loy s Z,), where w denotes the projection of CT(X) onto C4’PS.
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Then E? is holomorphic with respect to dz». Furthermore, with C?%X) identi-
fied as C%X, E?), d”=(—1)P6gr. Hence, H%AX) may be identified with
H%X, E?), On the other hand, E? as a subbundle of A?(X) can also be equipped
with the Hermitian inner product ¢, ) induced by ~A. Then 9gp=(—1)?¢", Ogr
=A” and 44X, E?) coincides with #%&X). Thus, yields:

THEOREM 2.7. (Kohn [Ko,].) HZRAX)= 424 X).

REMARK 2.8. The * operator with respect to & and the orientation by dv
defines a duality between A*(X) and A" '"*(X). Putting #p=>5%p, pc= A*X),
defines an anti-isomorphism #: C?%X)—C" P " '"%X) for p+g=k. Then &"=
(—D?*"#d”# on CP4X) and #A”=A"#. Hence # AL X)=H%F " 1"4(X).

From now on, we shall assume that X is a strongly pseudoconvex compact
CR manifold with transversal holomorphic S' action (cf. Definition 1.6). We
choose # such that the corresponding £ is the vector field V which generates
the action.

DEFINITION 2.9. Let B?%X)= APS*QAS*C AP*¢(X) and 87 9YX)=
I'(B?%X)). For ¢=3”%X), define dp=B?*4X) and asp= B8P *'(X) by the
decomposition dp=0¢p+d¢ (mod 8).

By the holomorphic condition satisfied by the generating vector field, 9?=0
and o°=0. can again be applied to the cohomology groups of the
resulting complexes. For our purpose, we consider the following operators:

DEFINITION 2.10. Let [J be the Laplacian of & with respect to the Her-
mitian inner product (,) in Definition 2.5. Let L: B?%X)—B?*"?*}(X) be the
operator defined by Lo=—d0A¢ and A be the adjoint of L with respect to
the Hermitian inner product <, > induced by h.

The operator N=+/—1.C: introduced in Definition 1.7 leaves invariant the
subspaces C?%X) and #74X) of A?*(X). N commutes not only with d, d’,
0, but also their formal adjoint operators with respect to (,), because £:h=0.
In particular, it operates on J%4X).

DEFINITION 2.11. The invariant harmonic space {p= 4R4(X): No=0} will
be denoted by H%4X).

REMARK 2.12.  Since N# = —#N, Remark 2.8 implies #H#Z4X)=
Ik XD,
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§3. Proof of Theorem A.

We are now ready to prove [Theorem Al Let us first recall some termino-
logy. Suppose that Y is a complex analytic space, and let ©y denote the sheaf
of germs of holomorphic functions on Y. Denote by ©¥ the sheaf of germs of
weakly holomorphic functions on Y, that is, the sheaf of germs of bounded
functions which are holomorphic on the regular set of Y (cf. [Gu-Ro]). Of
course we have ©yC 0¥, and the space Y is called normal if Oy=0%.

DEFINITION 3.1. Let ¢, be a continuous action of S' on a complex analytic
space Y, and suppose it preserves the set of regular points of Y. Then this
action is called holomorphic if

0fOy =0y  for all &
It is called weakly holomorphic if
POy = o for all ¢.

Suppose that X is a strongly pseudoconvex CR manifold of dimension 2n—1
with a transversal holomorphic S'-action. In order to prove Theorem A, we
are going to prove that if X is C R-embeddable in C¥, then the invariant Kohn-
Rossi cohomology group ﬁ‘,’g,%(X‘)zO forall 1£p+g=<2n—N—1. In what follows
we shall assume that X is already in C¥. By the theorem of Harvey and
Lawson [Ha-La], X forms the boundary of a compact complex analytic subvariety
Y with boundary in C¥. In view of the results of Lawson-Yau [La-Ya], the
transversal holomorphic S'-action on X extends to a weakly holomorphic action
on Y. In fact the extended action on Y has exactly one fixed point. This
point, say p, may be a singular point of Y. However Y —{p} is a smooth
manifold with boundary. Let A*={zeC:0<|z|<1} be the punctured disk.
Then Theorem 1.17 of states that the transversal holomorphic action
of S' on X extends to a weakly holomorphic representation of the analytic
semigroup A* as a semi-group of analytic embeddings of Y into itself, which
we shall denote by @:A*xY—Y. This action has a single fixed-point, and
given any neighborhood U of p in Y, there is an ¢>0 so that @(z, Y)C U for
all z with |z|<e. It follows that X is homeomorphic to the link of ¥ at p
(i.e., intersection of ¥ with sufficiently small sphere in CV centered at p). By
the result of Hamm [Ha], 7.(X)=0 for all 1<k<2n—N—1. In particular we
have H*(X)=0 for all 1<k<2n—N—1 in view of Hurewicz theorem.

Consider the Laplacian of d with respect to the Hermitian inner product
(,) in Let 4*(X) be the corresponding space of harmonic k-
forms. For £<n—1, Tanaka proved that for any a= A*(X), a= 4*(X) if
and only if a=@,. = B74YX), OJa=0, Na=0 and Aa=0, while for any ¢<
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CPUX), p=dRHX) if and only if o= 87 9(X), Ja=0, Na=0 and Aa=0. This
yields H*(X)=PBpig=r AZHX) for k<n—1. By the dualities #4*X)=
g R(X) and #ARAX)=HAEE " UX), HE(X)=Dpiq=r HA%AX) holds for k=n
as well. Now 4 *X)=0 for all 1<k<2n—N—1. Hence HZ4X)=0 for all 1<
p+g<2n—N-—1. Since HZYX)=A%4X) we have HZIX)=0 for 1< p+g<
2n—N—1.
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