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\S 1. Introduction.

A homeomorphism is called flowable if there exists a toPological flow whose
time one map is that homeomorphism. An orientation preserving fixed Point
free homeomorphism of $R^{2}$ which is not flowable was constructed by Kerekj\’art\’o
in 1934 ([9]). In order to show the homeomorphism is not flowable, he defined
“singular points”, at which the family $\{f^{n}\}_{n\in Z}$ is not equicontinuous with re-
spect to the elliptic metric.

The set of “singular points” coincides with the following non-Hausdorff set
(see [10], [11]): Let $f$ be an orientation preserving fixed point free homeo-
morphism of $R^{2}$ . Denote by $\pi$ : $R^{2}arrow R^{2}/f$ the quotient map which maps each
orbit of $f$ to a point. Then $R^{2}/f$ is a non-Hausdorff manifold because the non-
wandering set of $f$ is empty ([1], [5] Corollary 2.3). A point $p$ of $R^{2}$ is called
non-Hausdorff if $\pi(p)$ is not “Hausdorff” in $R^{2}/f$ . We call the set of all non-
Hausdorff points the non-Hausdorff set, denoted by $NH(f)$ .

In this paper, we characterize $NH(f)$ by the limit set of continua and
give the dimension of $NH(f)$ .

MAIN THEOREM. Let $f$ be an onentation Preserving fixed $p\alpha nt$ free homeo-
morPhsm of $R^{2}$ . Then $NH(f)$ is one-dimensional unless it is empty.

In the following, we assume that all homeomorphisms of $R^{2}$ are orientation
preserving and without fixed points, and the topology of $R^{2}$ is given by the
Euclidean metric.

In \S 2, we give a precise definition of non-Hausdorff points and characterize
$NH(f)$ by the limit sets of continua (Theorem 1). The main theorem is proved
in \S 3 by using Theorem 2 in \S 2 and Theorem 3 in \S 3.

The author wishes to thank Professor T. Tsuboi, S. Matsumoto, T. Inaba,
L. Guillou and A. Marin for their helpful suggestions and encouragement.
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\S 2. Limit sets of continua.

First we define the non-Hausdorff points precisely. Let $f$ be a homeomor $\cdot$

pbism of $R^{2}$ . Denote by $O_{f}(S)$ the orbit $\bigcup_{n=-\infty}^{\infty}f^{n}(S)$ of a subset $S$ . A point
$P$ of $R^{2}$ is called non-Hausdorff if there is a point $q\not\in O_{f}(\{p\})$ contained in the
closure of $O_{f}(U)$ for any open neighborhood $U$ of $p$ . We call $q$ a pair of $p$ .

If $NH(f)=\emptyset$ , then $R^{2}/f$ is a Hausdorff manifold, and is homeomorphic to
$S^{1}\cross R^{1}$ because the quotient map is a covering map whose covering transforma-
tions are generated by $f$ (i.e., $\pi_{1}(R^{2}/f)$ is isomorphic to $Z$ ). Tbus $f$ is topo-
logically conjugate to the translation.

By definition, $NH(f)$ is invariant under $f$ , and $h\cdot NH(f)=NH(hfh^{-1})$ for
any homeomorphism $h$ of $R^{2}$ . If a homeomorphism $f$ of $R^{2}$ is the time one
map of a flow $\varphi_{t}(t\in R)$ , then $NH(f)$ is invariant under $\varphi_{t}$ for any $r\in R$ . Hence
$NH(f)$ consists of 1-dimensional manifolds. Since the non-Hausdorff set of
Kerekj\’art\’O $s$ homeomorphism has branch points, it is not flowable ([9], [10] and
[11] $)$ .

Tbough the orbit of any point is closed because the non-wandering set of
$f$ is empty, that of a compact set $K$ is not always closed. The difference be-
tween $\overline{O_{f}(K)}$ and $O_{f}(K)$ consists of non-Hausdorff points as follows:

LEMMA 1. For any compact set $K$ of $R^{2}$ , $\overline{O_{f}(K)}-O_{f}(K)$ is contained in
$NH(f)$ .

PROOF. Let $p$ be a point of $\overline{O_{f}(K)}-O_{f}(K)$ . Then there is a point sequence
$\{z_{n}\}_{n=1.2.S},$

$\cdots$ of $O_{f}(K)$ converging to $p$ . For each $n$ , we choose an integer $m_{n}$

such that $z_{n}\in f^{m_{n}}(K)$ . Since $K$ is compact, we can assume that $\{f^{-m_{n}}(z_{n})\}_{n=1.8.3}.\cdots$

converges to a point $q$ of $K$ by taking a subsequence.
Let $U$ and $V$ be any open sets of $R^{2}$ containing $p$ and $q$ , respectively. For

a sufficiently large $n,$ $f^{-m_{n}}(z_{n})\in V$ and $z_{n}\in U$ . Hence $q$ is contained in $\overline{O_{f}(U).}$

Since $q$ is an element of $K,$ $p$ is not contained in $O_{f}(\{q\})(\subset O_{f}(K))$ . Thus
$P$ is a non-Hausdorff point. $\square$

LEMMA 2. Let $\{U_{i}\}_{i=1.2.\}.\cdots bea-$ countable base of $R^{2}$ such that each $\overline{U_{i}}$ is
compact. Then $NH(f)=U_{i=1}^{\infty}(O_{f}(U_{i})-O_{f}(\overline{U_{i}}))$ .

PROOF. Let $p$ be a point of $NH(f)$ , and $q$, a pair of $p$ . Since the com-
plement of $O_{f}(\{p\})$ is an open set containing $q$, there is an open $\epsilon$ -ball $B_{\epsilon}(q)$

with center $q$ disjoint from $O_{f}(\{p\})$ . We choose an open set $U_{i}$ from the
countable base such that $q\in U_{i}\subset B_{\epsilon/2}(q)$ . Then $P$ is not contained in $O_{f}(\overline{U_{i}})$

because $O_{f}(\dagger P\})\cap\overline{U_{i}}\subset O_{f}(\{p\})\cap B_{\epsilon}(q)=\emptyset$ . On the other hand, by the choice of
$P$ and $q,$ $O_{f}(U_{i})$ intersects any open set containing $p$ . Hence $p\in\overline{O_{f}(U_{i})}\subset\overline{O_{f}(\overline{U_{i}})}$.
Thus $NH(f)$ is contained in $\bigcup_{i=1}^{\infty}(\overline{OfU_{i}^{-}}-O_{f}(\overline{U_{\iota}}))$ .
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Lemma 1 implies that $NH(f)$ contains $\bigcup_{i=1}^{\infty}(\overline{O_{f}(\overline{U_{i}}})-O_{f}(\overline{U_{i}}))$ . Thus Lemma
2 holds. $\square$

We define the limit set $Lim_{f}(S)$ of a subset $S$ by $\bigcap_{n\geq 0}\bigcup_{1it\geq n}f^{i}(S)$ . Then
$Lim_{f}(S)$ is a closed invariant set for any subset $S$ . We consider the non-Haus-
dorff set in terms of this limit set in the following.

LEMMA 3. Let $K$ be a continuum (i.e., a compact connected set) such that
$f(K)\cap K=\emptyset$ . Then $Lim_{f}(K)=\overline{O_{f}(K)}-O_{f}(K)$ .

$=( \bigcup_{Ii1\xi n-1}f^{i}(K))\cup\bigcup_{1it\geqq n}f^{i}(K)foranyn\geqq 0,zisane1ementof^{\overline{\frac{\bigcup_{i=-\infty}^{\infty}f^{i}(K)}{\bigcup_{|i|\geqq n}f^{i}(K)}}}PROOF.Letzbeane1ementof\overline{O_{f}(K)}-O_{f}(K).Since\overline{O_{f}(K)}--$

.
Thus $\overline{O_{f}(K)}-O_{f}(K)\subset Lim_{f}(K)$ .

Next suppose that $z$ is an element of $Lim_{f}(K)$ (i.e., $z \in\bigcup_{|i|\geq n}f^{i}(K)$ for
any $n\geqq 0$). Then $z$ is an element of $\bigcup_{i=-\infty}^{\infty}f^{i}(K)=\overline{O_{f}(K)}$.

In order to show that $z$ is not contained in $O_{f}(K)$ , it suffices to prove that
$f^{j}(K) \cap\bigcup_{i\neq j}f^{i}(K)=\emptyset$ for any integer $j$ because $z\in\overline{\bigcup_{|i|}\geqq|j|+1f^{i}(K}$) $\subset\overline{\bigcup_{i\neq J}f^{l}(K)}$ .

Suppose that $f^{j}(K) \cap\bigcup_{i\neq j}f^{i}(K)\neq\emptyset$ for some $j$ . Let $U$ and $V$ be open sets
satisfying that $K\subset U,$ $f(K)\subset V$ and $U\cap V=\emptyset$ . Let $\epsilon=d(f(K), R^{2}-V)>0$ , where
$d(A, B)= \inf\{d(x, y);x\in A, y\in B\}$ . For any point $p\in K$, there is $\delta(p)>0$ such
that $f(B_{\delta(p)}(p))\subset B_{\epsilon/2}(f(p))$ and $B_{\delta(p)}(p)\subset U$ . Since $K$ is compact, there are
finitely many points $p_{1},$ $p_{2}$ , $\cdot$ .. , $p_{k}\in K$ such that $\{B_{\delta(p_{i})}(p_{i})\}_{i=1,\cdots,k}$ is an oPen
covering of $K$. Let $W= \bigcup_{i=1}^{k}B_{\delta(p_{i})}(p_{i})$ . Then $\overline{W}$ is also a continuum satisfying
$K\subset W$ and $\overline{W}\cap f(\overline{W})\subset\overline{U}\cap U_{i=\iota}^{k}f\overline{(B_{\delta(p_{i})}(p_{i}))}\subset\overline{U}\cap V=\emptyset$ . Furthermore, $f^{j}(\overline{W})\cap$

$\bigcup_{i\neq j}f^{i}(\overline{W})\supset f^{j}(W)\cap\bigcup_{i\neq j}f^{\mathfrak{i}}(K)\neq\emptyset$ because $f^{j}(W)$ is an open set containing $f^{j}(K)$ .
However this contradicts Brown’s lemma ([3] Lemma 3.1), which implies that,

if $C$ is a continuum and $C\cap f(C)=\emptyset$ , then $f^{i}(C)\cap f^{j}(C)=\emptyset$ whenever $i\neq j$ .
Hence $f^{j}(K)\cap U_{i\neq j}f^{i}(K)$ is empty. Therefore $Lim_{f}(K)$ is contained in $\overline{O_{f}(K)}$

$-O_{f}(K)$ . $\square$

THEOREM 1. Let $f$ be an orientation Preserving fixed poini free homeomor-
Phism of $R^{2}$ . For any countable base $\{U_{i}\}_{i=1,2},$

$’.\cdots$ of $R^{2}$ satisfying that $\overline{U_{i}}\cap f(\overline{U_{\mathfrak{i}})}$

$=\emptyset$ and each $\overline{U_{i}}$ is a continuum, the following equations hold;

$NH(f)= \bigcup_{1=1}^{\infty}Lim_{f}\overline{(U_{i}})=\bigcup_{i\Rightarrow 1}^{\infty}(\overline{O_{f}\overline{(U_{i}}})-O_{f}(\overline{U_{i}}))$ .

PROOF. By Lemma 2, $NH(f)= \bigcup_{i=1}^{\infty}(\overline{O_{f}\overline{(U_{i})}}-O_{f}\overline{(U_{i}}))$ . Since $Lim_{f}\overline{(U_{i}}$) $=$

$\overline{O_{f}(U_{i})}-O_{f}(\overline{U_{i})}$ by Lemma 3, $NH(f)= \bigcup_{i=1}^{\infty}Lim_{f}(\overline{U_{i}})$ . $\square$

REMARK. For any foliation of $R^{2}$ , there is a leaf preserving homeomor-
phism, and foliations of $R^{2}$ are given by 1-dimensional non-Hausdorff manifolds
([7]). Since many kinds of 1-dimensional non-Hausdorff manifolds have already
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been given ([7]), we can make various homeomorphisms of $R^{2}$ . For example,
we obtain a homeomorphism whose non-Hausdorff set is dense in $R^{2}$ .

THEOREM 2. $NH(f)$ has no interior $p\alpha nts$ .
PROOF. By taking sufficiently small balls, we choose a countable base $\{U_{i}\}$

of $R^{2}$ such that $\overline{U_{i}}\cap f(\overline{U_{i})}=\emptyset$ and $\overline{U_{i}}$ are continua. By definition, $Lim_{f}\underline{(\overline{U_{i})}}$

–

closed. Furthermore, $Lim_{f}\overline{(U_{i}}$) has no interior points because $Lim_{f}\overline{(U_{l}}$) $=O_{f}(U_{i})$

$-O_{f}\overline{(U_{i}})$ . Since $NH(f)=U_{i\Leftarrow 1}^{\infty}Lim_{f}(\overline{U_{i}})$ by Theorem 1, $NH(f)$ is a countable
union of closed sets without interior points. By Baire’s theorem, $NH(f)$ has
no interior points. $\square$

\S 3. Proof of the main theorem.

First we prove the connectivity of $NH(f)\cup\{\infty\}$ in $R^{2}\cup\{\infty\}$ in order $t_{\vee}$

consider the dimension of $NH(f)$ .

THEOREM 3. $NH(f)\cup\{\infty\}$ is connected in $R^{2}\cup t\infty$ }.

PROOF. It is enough to prove that $NH(f)$ is not contained in the union of
any disjoint open sets $U_{1}$ and $U_{2}$ of $R^{2}\cup\{\infty\}$ satisfying that $NH(f)\cap U_{1}\neq\emptyset$ and
$\infty\in U_{2}$ .

Let $P$ be an element of $NH(f)\cap U_{1}$ and let $q$ be a pair of $p$ . Since $O_{f}(tp\})$

is closed, we can choose an $\epsilon>0$ such that $\overline{B_{\epsilon}(q)}\cap O_{f}(\{p\})=\emptyset$ and $\overline{B_{\epsilon}(q)}\cap f(\overline{B_{\epsilon}(q)})$

$=\emptyset$ . Denote by $K$ the closed ball $\overline{B_{\epsilon}(q)}$ . Then $P$ is contained in $\overline{O_{f}(K)}$ because
$O_{f}(B_{\epsilon}(q))$ intersects any neighborhood of $p$ . In particular, $U_{1}$ intersects $O_{f}(K)$ .

Let $\Lambda$ denote the non-empty set $\{n\in Z;U_{1}\cap f^{n}(K)\neq\emptyset\}$ . Suppose that $\Lambda$ is
a finite set. Then there is a positive integer $N_{1}$ such that $U_{1}$ is disjoint from
$f^{n}(K)$ for any $|n|\geqq N_{1}$ . Hence $P$ is not contained in $\overline{U_{|n|\geqq N_{1}}f^{n}(K}$). However
this contradicts that $p \in\overline{O_{f}(K)}=(\bigcup_{|n|<N_{1}}f^{n}(K))\cup\overline{\bigcup_{|n|\geqq N_{1}}f^{n}(K)}$ and $p\not\in O_{f}(K)$ .
Thus $\Lambda$ is an infinite set. We denote the elements of $\Lambda$ by $n_{1},$ $n_{2},$ $n_{3},$ $\cdots$ where
$\lim_{iarrow\infty}|n_{i}|=\infty$ .

Let $z$ be an element of $K$ . Since $\lim_{narrow\pm\infty}f^{n}(z)=\infty$ , there is a positive
integer $N_{2}$ such that $f^{n}(z)\in U_{2}$ for any $|n|\geqq N_{2}$ . In particular, $U_{2}$ intersects
$f^{n}(K)$ for any $|n|\geqq N_{2}$ . By taking a sufficiently large $I$ such that $|n_{i}|\geqq N_{2}$

for any $i\geqq I,$ $f^{n_{i}}(K)$ intersects both $U_{1}$ and $U_{2}$ for any $i\geqq I$ . Since $f^{n_{i}}(K)$ is
connected, there exists an element $x_{i}$ of $f^{n_{i}}(K)-(U_{1}\cup U_{2})$ for $i\geqq I$ .

By taking a subsequence of $\{x_{i}\}_{i\geqq I}$ , we can assume that $\{x_{i}\}$ converges to
a point $z\not\in U_{1}\cup U_{2}$ because $(R^{2}\cup t\infty\})-(U_{1}\cup U_{2})$ is comPact. For any integer
$m\geqq 0$ , there is a positive integer $I_{m}(I_{m}\geqq I)$ such that $|n_{i}|\geqq m$ for any $i\geqq I_{m}$ .
Since $x_{i} \in f^{n_{i}}(K)\subset\bigcup_{tj1\geqq m}f^{j}(K)$ for any $i\geqq I_{m},$ $z$ is an element of $\overline{\bigcup_{Ij1\geqq m}f^{j}(K)}$.
Thus $z$ is a point of $Lim_{f}(K)$ . By Lemmas 1 and 3, $z$ is a non-Hausdorff point,
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which is not contained in $U_{1}\cup U_{2}$ . $\square$

REMARK. $NH(f)\cup\{\infty\}$ is not always arcwise connected (see [4], Ex-
ample 3).

PROOF OF THE MAIN THEOREM. Since $NH(f)\cup\{\infty\}$ is COnneCted in $R^{2}\cup\{\infty\}$

by Theorem 3, the dimension of $NH(f)\cup\{\infty\}$ is not zero if $NH(f)$ is not
empty. By [8], the dimension of $NH(f)$ is not zero, either. On the other
hand, the dimension of $NH(f)$ is less than two by Theorem 2. Thus $NH(f)$

is one-dimensional. $\square$
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