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Introduction.

Let M be a flat affine manifold with flat affine connection D. Among Rie-
mannian metrics on M there exists an important class of Riemannian metrics
compatible with the flat affine connection D. A Riemannian metric g on M is
said to be a Hessian metric if g is locally expressed by g=D?u where u is a
local smooth function. We call such a pair (D, g) a Hessian structure on M and
a triple (M, D, g) a Hessian manifold [5]-[8]. Geometry of Hessian manifolds
is deeply related to Kdhlerian geometry and affine differential geometry. In
Amari showed that a manifold consisting of a smooth family of probability dis-
tributions admits dual affine connections and proposed geometry of statistical
manifolds (i.e., manifolds with dual affine connections). The notion of a Hessian
structure is the same that dual affine connections are flat. It is known that
many important smooth families of probability distributions admit Hessian struc-
tures (dual flat affine connections).

In section 1 we define Hessian sectional curvatures (which correspond to
holomorphic sectional curvatures for Kdhlerian manifolds) and study fundamental
properties of spaces of constant Hessian sectional curvature. In section 2 we
construct Hessian manifolds of constant Hessian sectional curvatures. We see
in section 3 that certain smooth families of probability distributions are Hessian
manifolds of constant Hessian sectional curvature. Chen and Ogiue [4] charac-
terized Kidhlerian manifolds of constant holomorphic sectional curvature in terms
of Chern classes. We give in section 4 a similar characterization of the spaces
of constant Hessian sectional curvature by affine Chern classes. In the last
section 5 we define the notion of affine Chern classes for flat affine manifolds,
which correspond to Chern classes for complex manifolds.

1. Spaces of constant Hessian sectional curvature.

Let M be a Hessian manifold with Hessian structure (D, g). We express
various geometric concepts for the Hessian structure (D, g) in terms of affine
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coordinate systems {x!, ---, x*} with respect to D, i.e., Ddx'=0.
(i) The Hessian metric;

o%u

8497 Gxign
(i) Let y be a tensor field of type (1, 2) defined by
7 X,Y)=VyY—-DyY,
where V is the Riemannian connection for g. Then we have

1 iragTj
78 oxt
1 agijr _ 1 a3u

Tk = 5 5%k T D Gxioxioxt’

rliae=1" =

Tiie = Viik = Vkrji>
where I'%;, are the Christoffel’s symbols of V.
(iii) Define a tensor field S of type (1, 3) by

S=Dy,
and call it the Hessian curvature tensor for (D, g). Then we have
) ort;
Sljkl - ag!ki)
1 o‘u 1 0*u do*u

rs —

T2 GxioxtoxT oxioxiox®

St = 5 Grigaiaxion’
Sijkl = Silkj - Skjil - Sjilk - Sklij .
(iv) The Riemannian curvature tensor for V;
Rijkl = TirkTrjt"“TirlTrjk s
Rijkl = %’(Sjikl_sijkl)-

(v) We denote by v the volume element determined by g. Define a closed
l-form a and a symmetric bilinear form 8 by

Dyv=aXw, B=Da.
Then

_lologdet{gs] .,
a; —= ‘2‘ ”a}i — =7 ri>
_ 1 logdet[gul _

= = 8"y

Bis = 2 oxtox’
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We call @ and B the first Koszul form and the second Koszul form for (D, g)
respectively. The second Koszul form § fills the role of the Ricci tensor for a
Kéhlerian manifold.

DEFINITION 1. Let S be an endomorphism of the space of contravariant
symmetric tensor fields of degree 2 defined by
S = Stk
Then S is a symmetric operator. In fact we have
(S, 9> = SH* 8 e = Sijnélint
= St = (§Lent)En = <& SOy,
where <, > is the inner product by g.
DEFINITION 2. For a non-zero contravariant symmetric tensor &, of degree

2 at x we set

, _ (S €
M= = e

and call it the Hessian sectional curvature in the divection &,.
DEFINITION 3. A Hessian manifold (M, D, g) is said to be a space of con-

stant Hessian sectional curvature ¢ if h(¢.) is a constant ¢ for all contravariant
symmetric tensor &, at x and for all point xeM.

THEOREM 1. Let (M, D, g) be a Hessian manifold of dimension =2. If the
Hessian sectional curvature h(£.) depends only on x, then (M, D, g) is of constant
Hessian sectional curvature. (M, D, g) is of constant Hessian sectional curvature
c if and only if

c
Sijer = ~2—(gijgkz+gugkj).

PROOF. Put hA(x)=h(&;). Since

<S(Ex>’ E:c> - h(x)<$x; $x> ’
for all contravariant symmetric tensor &, at x and since S is symmetric we
have

SE2) = h(x)§:,
for all &,. Set

h(x)
2

where 6! is Kronecker’s delta. Then we see

Tk, = Sik,— (030140105,
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Ty =Tk =T4Y%;
Tijkz{"x” =0,
for all £,. Thus we have
0 = Tyini(a?b+a'b’)(ctd*+c*d?) = AT ;;,a7b ¢t d*
for all tangent vectors af, b%, ¢?, d* at x, and so T%;*,=0. Hence we obtain

. i . .

=M a0y oty

h(x)
2

Sljkl =

(0igri+0igsn) .

By differentiating S*;,;, we have

aSi,-H _ _1.‘ ah
ax™ ~ 2 oxT

On the other hand we have

0S?; 0*r'; oSt 1 oh : ; ;
"a;];li = a;%];:‘k = "a;J,é—L =3 Z?Tk‘(af'grri—a?gjr)‘*‘h(ajTrzk+5z7’rjk)-

(08 k1+01g,8)+h(8jy surt0ir esr) -

These imply

ah ., . oh

P (B;gkﬂ' 52gjk) = Oxk (5}gr1+5%g1r> .
Multiplying g*' and contracting %, / and 7, ; we obtain

oh
n(n-{—l)g%— = (n+1)—axr .

Thus h(x) is a constant ¢ and

c
Sijer = ?(gijgkl+gilgkj)-

It is easy to see that, if the above condition is satisfied, then (M, D, g) is of

constant Hessian sectional curvature c. [ ]

COROLLARY 2. [If a Hessian manifold (M, D, g) is a space of constant Hes-

sian sectional curvature c, then the Riemannian manifold (M, g) is a space of

constant sectional curvature —c/4.
The proof immediately follows from and (iv).

COROLLARY 3. Let (M, D, g) be a simply connected Hessian manifold of
constant Hessian sectional curvature c¢. If the Riemannian metric g is complete,
then ¢=0.
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PROOF. Suppose ¢<0. Then (M, g) is a simply connected complete Rie-
mannian manifold of constant sectional curvature —c¢/4, so (M, g) is isometric
to the sphere of radius 2/+/—c¢. On the other hand by a theorem of Yagi
[10], a simply connected Hessian manifold (M, D, g) with complete Riemannian
metric g is isomorphic to a domain in R*. This is a contradiction. |

DEFINITION 4. A Hessian manifold (M, D, g) is said to be Hessian-Einstein
if B=2g holds.

COROLLARY 4. A Hessian manifold of constant Hessian sectional curvature c
is Hessian-Einstein,; B={(n+1)c/2}g.

We define a tensor field W by
N 1 . A
lekl = Sijkl—n—_*_“f(a},@kl+5%ﬁkj)-

This tensor field W is similar to the projective curvature tensor for a Kéhlerian
manifold.

THEOREM 5. (M, D, g) is of constant Hessian sectional curvature if and only
if W=0.

PrROOF. Suppose M is a space of constant Hessian sectional curvature c.
It follows from

St = %(5§gkz+5fgkj)-
Using the above formula and (v) we have
Bir = St =5 (n+Dgu.
Thus we have

) 1
Wijkl - Sljkl_m(a}:ﬁkl‘l'afﬁkj)

= SYu— %(5}gkz+5fgkj>
=0.
Conversely suppose W=0. Then
1
Sijp = m(gtfﬁu-f‘guﬂu) .

Since Sijri=S:1;; We get

ZiiBritguBri = &riBist grifir -
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By multiplication g* and by contraction we obtain

i .

B Zﬂnl gkt

Hence we have

r

- _ BT
Stju = n(n+1)

(gugkﬁ—gugk]).

THEOREM 6. We have
TrSt > 2 TrB)?,
n(n +1)

where TrB=B%. The equality holds if and onlyif (M, D, g) is of constant Hes-
sian sectional curvature.

PROOF. As in the proof of we set

. T
Tk, = St,.kl—%%(a,a +8i0%).

Then we have
. ) ) , 2Tr
leleiJkl — Sljlei] _"(_‘:*_ﬁl)stjkl(a 5 _{__515k)

+{h,(_ +1>} (81334 510%) (8108 + 010)

— Trgi— 2178 b4 2T By
= TrSt S SN

=TrS*— n(n+1)( rB)*.
Thus

TrSt =

— n(n +1)( T8

and the equality holds if and only if

Tk Trp

i3k
= ) Ot 310)).
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2. Constructions of Hessian manifolds of constant
Hessian sectional curvature.

In this section we shall construct, for each constant ¢, a Hessian manifold
with constant Hessian sectional curvature c. We now recall the following result
due to Yagi [8J[10]. Let (M, D, g) be a simply connected Hessian manifold.
If g is complete, then (M, D, g) is isomorphic to (&, D, 52¢), where £ is a
convex domain in R”, D is the canonical flat connection on R™ and ¢ is a
smooth convex function on Q.

A. The case ¢=0.
It is obvious that the Euclidean space (R", D, g=1/2)D*{3 (x%)*) is a simply
connected Hessian manifold of constant Hessian sectional curvature 0.

B. The case ¢>0.

THEOREM 7. Let 2 be a domain in R™ given by
c n=1
x> o 3 (xh)?,
2 iz
where ¢ is a positive constant, and let ¢ be a smooth function on £ defined by
— 1 n_ﬁ_n_l 1\2
go_——c—log{x Zgll(x)}.

Then (2, D, g:ﬁ%p) is a simply connected Hessian manifold of positive constant
Hessian sectional curvature c. As Riemannian manifold (8, g) is isometric to
the hyperbolic space (H(—c/4), g) of constant sectional curvature —c/4;

H={(§, -, §7 ¢n e R e >0,
1 ey 4 n\2
£ = Gl & (46 (den

PROOF. It is easy to see that 2 is a convex domain in R*. Set 7,=0¢/0x".
Then

-1
xi{x"—é 22;}(x*)2} 1<i<n—1
N = c »
__p—-1 n______ n—1 r\2 ) —
¢ {x 227=1(x)} i=n,

1 _51" n il/n
[gujzc[vm n 7177}.

Nal; Nafn
Put
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xt 1£:i<n—-1,
Si: ¢ 1/2 '
{x"—g nol(xT) } i=n.
Then we have

—oo g <o (I=i=n—1), §">0,

S} (g ey}

g:

(&™)* {
Thus (M, g) is isometric to the hyperbolic space (H(—c/4), g). Consider matrices
ri=[7i;] and y*=[yh]. By (ii) we obtain

1 o gz]7]l+gzl7]] 6Jlgin gijﬂn+gin77j

7i = Eax |: ;z] = ’
Zini+8unn 28inn

and so

: 6[5}'1;1—!—5%111-——51-[6}; 557in+5ﬁﬂj}
(] R T T T
Setting S*,=0y?/0x* we obtain
ari _ [%gu—}‘&gk; 5§gkn+57izgkj:|

[S* ;kz] = S = = ox*

57‘.gkz+51gkn zarizgkn
Hence

c .
Stip = —2—(5§gu+5%gkj),
and (2, D, g:ﬁ%) is of positive constant Hessian sectional curvature ¢. W

C. The case ¢<0.

THEOREM 8. Let ¢ be a smooth function on R"™ defined by
Q= —?log(igle cx +1>,

where ¢ is a mnegative constant. Then (R, ﬁ, g:ﬁ%o) s a simply connected
Hessian manifold of negative constant Hessian sectional curvature ¢. The Rie-
mannian manifold (R™, g) is isometric to a domain of the sphere 72 &¢=—4/c
defined by £,>0 for all 1.

PROOF. Put
{ 0 /0xt = e~ * (D0, e T 41)t 1<i<n
Ni =

(D e+ 1) i=n+1,
\1/2
s=2(-1)".
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Then
5%—'— +§?L+§%+1 = —%9 Ei>0’
dta = — % s,
=1 6na
L
Thus we have
= ;{] Q??jdxidxj— ¢ 2 a& xidxi
7 w2 on - 4“131
__c3 0¢;
o ___2_ i=15i(]_. ox’ dx])dx - T 9 2 (§:d&)dx?
n i n n+1 n+1d i id n+l
= Sededlog S = 3 (g Ty S e 8l
i=1 §n+1 i=1 Ez €n+1
&

i

B e —( 5 - de)dbnn = 3 (dE)+(d6n ).

=160
Hence (R", g) is isometric to a domain of the sphere 274! &5=—4/c¢ defined by
£,>0. On the other hand we obtain
gij = c(—0ims+947m;) .
Using the same notation as in the proof of we get
1 0 c
Ti = D oxt Lgn] = —2*[—5jlgij+gij7]z+gum] )

7' = - [—8u0j+8imu+0in,] .

Thus
[Stn] = St = o _ i[aig“_l_gig ]
jkl k axk 2 J I5kjl -
Hence (R", D, g:ﬁ%) is a simply connected Hessian manifold of negative con-
stant Hessian sectional curvature c. n

3. Families of the multivariate normal distributions
and the multinomial distributions.

In this section we see that Hessian manifolds of constant Hessian sectional
curvature are realized as smooth families of probability distributions.
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The family of normal distributions of dimension n. Let 37, be the family
of n-variate normal distributions having the density functions

px, p 3) = {(det D)2m)" 7 exp {7 — Ik — )

with mean vectors p=[p;] and positive definite variance-covariance matrices
2=[ag;;]. Then 71, can be identified with

{(w, 2)lp e R, ¥ € 27},

where R™ and 2" denote the vector space of all n-dimensional column vectors
and the set of all positive definite symmetric (n, n) matrices respectively. Then

~

the Fisher information metric g on 7, is expressed by (cf. [9])

8 Y
g(é@’ﬂ)“’]’ g(a;’%;):"’

0 0 o .
M T\ — gilgik ik 71

where ¢¥ is the (7, j)-component of X!, Let D be the flat affine connection
on @" such that Ddo;;=0 and let ¢ be a smooth function on %" defined by

@)= ——é«log det 2.
Then (ﬁ, ﬁz(p) is a Hessian structure on 2" and
~ 0 0 o .
2~ " Y — gilgik ik 27l
DSO(GU,-]-’GUH) oroT o7
Thus we have:
A. For each fixed 2= P", the subfamily of 91, given by
{(er, 2ol pe € R
is a simply connected Hessian manifold of constant Hessian sectional curvature 0.

B. For each fixed ¢>0 and y,€R", consider a subfamily 2 of 7, given by
1 0.0 gl

(o, Z)| 3 | oo -

Identifying (u,, 2) and X we set
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p(2) = ——@(2)

Denoting by D the restriction of Dto Q2 @ D, g=D?p) is a simply connected
Hessian manifold of constant Hessian sectional curvature ¢ (cf. [Theorem 7).

The family of multinomial distributions. Let ¥ be the family of multi-
nomial distributions having the density functions

p(x, 01, 0, On) =~ 011052 - 0241,

Xilxg !l Xy !

where 27 x;=I, x,=0, 1, ---,{, and X274 0;,=1, 0<@;<1 and n, [ are fixed
positive integers. Setting

$(6,, -, 02) =150, 10g 6.,

the Fisher information metric g is expressed by (cf. [L])

aZ
(ao ao) 1(5”0 1) a6, go’

where 7, =1, ---, n. Put
0 4, .
80 =/ log b @G=1, -, n).
Then
— 0 < éi < +OO )
ettt .
0i—m (@G=1, -, n),
1
O = P eI
Setting
o€, -, &M =1llog (B et +1),
we have

0 9\_ P
(a0 a5) = g
Denote by D a flat affine connection on ¥ such that Ddé*=0. Then, by Theo-
rem 8 we know:
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C. (M, D, g) is a simply connected Hessian manifold of constant Hessian
sectional curvature —1/1.

4. Characterizations of Hessian manifolds of constant Hessian
~ sectional curvature by affine Chern classes.

In [4] B.Y. Chen and K. Ogiue characterized Kdhlerian manifolds of con-
stant holomorphic sectional curvature in terms of Chern classes. In this section
we give similar characterizations of Hessian manifolds of constant Hessian sec-
tional curvature by affine Chern classes. For affine Chern classes, see the next
section 5.

DEFINITION 5. We denote by ¢, the k-th affine Chern form for the tangent
bundle T over M with fiber metric g (see section 5 Definition 8) and call it the
k-th affine Chern form for (M, D, g).

Since
0
Ap =2 nd x5 Qdx!),
37’ il 3
B, = z( dx'®dx )®(3P®dx7>
0
— 2(S‘j;ldx‘®dx5)®(é};®dx’>
=25,
it follows
— . ( Z)k J1dk QL iy
cr = [1(2S) = 0 SHA - NS,

where Si=S%;,dx'®dx*. Thus we have
¢ = —25'5dx'QdxF = —28,
2 = 2(SINS}—SINS]) = 2(BAB—SINS) .
We shall now prove the following.
PROPOSITION 9. We have
1) cing™? =4n—-2)H(Trp)—Trp*vQv,
@) c:ANg E=2n=2){(Trp)>—2Trp*+TrS}vQu.

PROOF. Let 6%, ---, 8™ be local orthonormal frame fields for the cotangent
bundle T* over M. We write
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g= %3 0'®0*,
8= 121 B:;0*R67 .
Then we have
BEAE 2= 3 Bi s By 01N -+ AGIIR(BINA - A Gin)

= <a§n ,Ba(x)a(l),Ba(zw(z))U®U_(agnﬁa(x)a(z)ﬁa<z)u(x))U®U

= (n—2)! (ig BisBiw@u—(n—2)! (#Zj‘: Biw&v

= (n—2)1{( ; Bii)( ?ﬁjj)—i%] Bitv&®u

= n=-2)HTrB}*—Trp}vQv,

where v is the volume element for g and S, is the permutation group of {1, 2,
-, n}. This implies (1). Writing S{=S5%,,0'®607 we have

SinSing™
= 5%p,10,5 i pyrg (0N O N OBN - AGIYOPINGPAOPN - AOP7)

= Es {S*e013S 02 =S Henro@yS io@ramr VRV
seSy

= (1=2)! 33 {S1pS"i07—S" ;a5 sap} V@V
= (n—2)1{( % Stip) = S — ES%MSQ@} v@v
= (n—2) B4 — S * .57 L v@v
= (n—2) T rp*—TrS}v@v .
Hence we obtain
caAg™ 2 = 2(B*—SINSHAgE™?

=2n=2)H{(TrB)—=2TrB*+TrS*}vQu .
]

DEFINITION 6. Let w=fv@vefl™™. According as f is everywhere posi-
tive, zero, negative, ---, w is said to be positive, zero, negative, ---, and denoted
by >0, =0, w<0, ---.

Suppose that (M, D, g) is an Einstein-Hessian manifold of dimension 7.
Then we know
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) TrB .,
181.7': 755;’

and so

_ (Trpy

)

Trg*= 88"
Hence we have

n

ng = 4n—2)} ;1 (Trp) v,

n—2
CAgTE = 2n—2) !{T

(Trﬁ)2+Tr82}v®v .
Using these we obtain

{—nei+2(n+1)cs} Ag™?

2
n(n+1)

= 4+ D(n—2){Trs*— (TrB?h@v .

By we have:

THEOREM 10. Let (M, D, g) be a Hessian-Einstein manifold of dimension n.
Then we have

{—nci+2(n+1)c,} Agm 2 20.

The equality holds if and only if (M, D, g) is of constant Hessian sectional cur-
vature.

Similarly we know
{—(n—=2)ci4+2(n—1)c:} AP 2 =4(n—DTrSvQu .
Thus we have:
THEOREM 11. Let (M, D, g) be a Hessian-Einstein manifold of dimension n.
Then we have
{—(n—2)c2+2(n—1Dec, ) Ag"*=0.

The equality holds if and only if (M, D, g) is of constant Hessian sectional cur-
vature 0.

5. Affine Chern classes for flat vector bundles over flat affine manifolds.

Let F be a flat vector bundle of rank m over a flat affine manifold (M, D).
We denote by £27¢ (resp. 27 4FXF*)) the space of all smooth sections of
(APTHRANIT*) (resp. (ANPTHRQNTHRQFRF*), where T* is the cotangent
bundle over M and F* is the dual bundle of F. An element o=Q27(FQF*) is
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identified with (m, m) matrix (¢} where @i Q?% For ¢=(¢;)cQ?(FQF*),
e (FQF*) we define [¢, ¢]=R7* " (FQRF*) by

Lo, 1= eAP—(=1)?""PNo,
that is

lp, $1 = S QIAGI—(— 1P " Sgings .
LEMMA 1. Let f(X,, -+, Xi) be a GL(m, R)-invariant symmetric multilinear
form on gi(m, R). Then we have
2(___1)(p1+-~+p1;)p+(ql+"'+q1;)llf(SDb Tty [SDi: ¢J’ Tty S0k> =0 »
for o, €Q7¢%(FQRQF*), ¢=Q?YFQRF*).

PrOOF. It is enough to prove the formula for ¢,=w;X;, ¢=wY, where
w0, €Q27% @we Q7 X,Y cglim, R). Since [w;X;, oY ] =@ A0)X;Y —
(=Pt A w, Y X, we have

?(——1)“’1“"'*“’p”qﬁ‘"*qi’qf(lel, vy [0 Xy, 0Y], -, @0 Xy)
:;(—1)"’1“"'”’1'””‘ql*"'“’i"’wl/\ e AN@AOIN - Ao (X, -, XY, -, Xb)

__?(_1)(1’1+"'+Pi-1)P+(q1"'"‘+‘1i-1)qwl/\.../\(w/\wi)/\.../\wkf(xh Y X o X
= (@A - /\wk);{f<X11 e XY, e, X)Xy e, Y X o, X))

= @AGA - Ao DXy, o, [Xu YD, o, X))

=0.
|

For w:Ewil...tp;I...;q(dxil/\ e AdxP)RA XA - Adx)e 79 we define dw

QP Joe QP by

a PRI e B | . . . = =
a(l)—_‘— ; ~gla%p;1_']g(dxz/\dx11/\ /\dxlp)®(dx11/\ /\dx.lq),
X
a&)i vk pired . . - - 4
oo =3 hlaﬁpf;l_gwxh/\ e Adx )RQAxINdXIN - Adxda),
3 x

where {x!, ---, x*} is an affine coordinate system for D. Then we have
0*=0, 0t=0.

Let A be a fiber metric on F. Using local frame fields such that the transi-
tion functions are all constant matrices in GL(m, R), we define A, 2" %(FQF*)
by
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Ay = H(s)™'0H(s),

where s={s;, ---, s} is a local frame of F and H(s)=[h(s;, s;)]. This defini-
tion is independent of the choice of s. We define B, 2" (FRF*)by

B, =30dA,.
LEMMA 2. We have
(1) 04, = —AsNAs,
(2) 0By = —[Ba, Anl.

PROOF. Since 0H(s)'=—H(s)"'(0H (s))H(s)™, we have dA,=0H (s)*ANIH(s)
=—H(s) " YOH(s)H(s) *NOH(s)=—H(s) "0H(s)\NH(s)'0H(s)=—A, N\ A,. Using
(1) we obtain 0B, = 004, = 004, = (—AsNAL) = —(0ANAR+ A NOAL) = —
(BaNAn+An ABp)=—[Bnx, Asl. =

REMARK. The identity dB,=—[B,, A,] corresponds to the Bianchi identity.

Let f(X,, ---, X.) be a GL(m, R)-invariant symmetric multilinear form on
gl(m, R). We set

. ’ f(Br) = f(Bh, o, By).
Then f(B,)=Q%* and

LEMMA 3. We have
0f(By) =0, 0f(By)=0.
PrROOF. Denoting by x¥X) the (i, j)-component of Xe<gi(m, R) we write
fXy o, Xo) = Seiriasi(Xn) - xf(Xe).

1l p

Then f(Bn)=3 ¢l BujiA - AByit. Since dB,=383A4,)=0, we have df(By)=

1

S el SA—1TBRiA - ABuI A - ABrit=0. Applying Lemma |, 2 we have
Of(By) = etk }rj(wl)’B,,}'-}/\ o NOBRSIA - ABaft
= D=0 Dl BaitA - A(=[Ba, ALDA - ABuh
= ';(—1)Tf(3h; Tty [Bh,T Apl, -+, Ba) !

=0.

Let {h.} be a l-parameter family of fiber metrics on F. We set

Az:Aht, Bcant-
Define L, eFQF* by
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L., = H(s)? Ht(s)
where Hi(s)=[h.s;, s;)]. We put
FHBe; Lo =S f(Be, -, Li -, Bye@tri-1,
Applying and 0B,=—[B,, A;] we have

0f*(Bu; L) = X S (—1Y-1f(-, 8By, = Ly, )

i j<i

S 1, Ly )R S (=LY (e, Ly, 0By, )

i >t

=S -Ve L [Bu Ad, -, Ly )

(D oy [Ley A, =) S (=1 f (oo, Ly ooy [Bo, Ag], -

i>i

_.zl:(_l)l—lf(, [L“iAL], )+ 1‘2(_1)1—1_,‘(, ai,t, )

= S (=D By, -, dL.—[L., A/, -, B
We know
0L—[L, AJ = —AL
In fact we have

oL, = o(His)y & Hio)
= — HA(S) OHUSHA) ™ 5 H(5)+ Hi(s) 0 5 Hi(s)
= — ALk T HAS) OHS)+ Hi9) (o Hl) Huls) 0H (o)
= —AL d A+LA
- tLat '+' 'd_i £+ t<4it

d
=[L:, Ad+ E‘At .

Thus
a
dt

8f*Bis Lo = (=1 f(By, -+, Z Ay -, Bl).
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We show

d

zif(Bz) = 36f*(B¢ ; L;).
Indeed, since dB,=0 we have

90f*(B:; Ly)

1

= ;(_1)i-1]§(_1)1‘-1f<..., ngt, ., %Az, >+;f(, 3%146, )

i

i-1 i-2 £ ... _d_ '
+ =D D (e, AL, 3B )

1

— 2_f<Bz, . %Bt, ) Bt)

1

d
- E}f(B" ) By).

Therefore we obtain

LEMMA 4. Under the same notation as above we have
1 1
F(B)— f(Bo) = 30 f*(Bu; Lot

DEFINITION 7. We define a cohomology group A*(M) by
ﬁk(M) = {¢Egk,k !6‘90:0, 5¢:0}/339k—1,k—1 i

Let f.(X) be a GL(m, R)-invariant homogeneous polynomial of degree £k
defined by

det (I—tX) = %t"fk(X),

where [ is the unit matrix.
By Lemma 3 we may give

DEFINITION 8. We set c.(F, h)=f«(Bx) and call it the k-th affine Chern
form for a flat vector bundle (F, h) over M.

By Lemma 4 we have

THEOREM 12. The class in H¥*(M) represented by ci(F, h) is independent of
the choice of h.

DEFINITION 9. We denote by é,(F) the class represented by c¢,(F, k) and
call it the k-th affine Chern class for F.
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