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0. Introduction.

The purpose of this paper is to apply the theory of distributions founded
by L. Schwartz to C*-algebras. The theory of distributions has made the
mathematical analysis explosively develop. The starting point of this theory is
to generalize the concept of ordinary functions to be continuous linear functionals
on smooth functions, called distributions, and to define differentiations on such
linear functionals by using the idea of integration by parts. Schwartz in [Schl,
Sch2] has studied topological and analytical property of the space of distribu-
tions. He has also discussed convolutions between distributions, Fourier trans-
forms and applications to partial differential equations.

On the other hand, the theory of C*-algebras can be called the theory of
“non-commutative” locally compact spaces. In other words, we can say that
non-commutative C*-algebras are algebras of all continuous functions on “non-
commutative” locally compact spaces because of the classical Gelfand-Naimark
theorem for commutative C*-algebras. Fourier analysis on such “non-commuta-
tive” spaces has rapidly developed by the theory of spectral subspaces induced
by W. Arveson (cf. [Ar]).

In this paper, we will exhibit a theory of distributions on C*-algebras. We
restrict our interest to the periodic cases. Namely, we will start at a C*-
algebra A with a continuous action a of n-dimensional torus 7". Such a triplet
(A, a, T™) is called a C*-dynamical system. The most primitive and non-trivial
example is the triplet (C(T), a, T) where C(T) denotes the commutative C*-
algebra consisting of all continuous functions on the one dimensional torus T
and a means the action induced by translation on the group 7.

Let (A, a, T") be a C*-dynamical system. We denote by C3x(A) the dense
x-subalgebra of all elements of the C*-algebra A whose members are differenti-
able infinitely many times by the derivations induced by the action a. We
equip C%(A) with a natural Fréchet space topology. We denote by 9,(A) this
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Fréchet algebra. It is nothing but the “non-commutative” test function space
associated to the action @. Let B be the fixed point subalgebra of A under the
action a. Notice that both algebras 9,(A) and B are non-commutative in general
so that our definition for non-commutative periodic distributions as follows:

DEFINITION., A C*-left (resp. right) periodic distribution is a continuous
left (resp. right) B-module map from 9,(A) to B.

We denote by 9., (A) (resp. 94 (A)) the set of all C*-left (resp. right) dis-
tributions. We mainly treat 9,,(4). Symmetric discussions work for 9g.(A).
The object 9,,(A) becomes a topological space with left 9,(A) and right B-
module structure in a canonical way. '

The differentiations can be extended to 9,,(A) in an analogous way to the
classical case. Since the algebra A is contained in 9,,(A), all elements of A
can be differentiable in C*-distribution sense.

For keZ™, let E, be the natural projection on A to the &-th spectral sub-
space A%(k). The k-th Fourier component &,(&) for a C*-left distribution & is
defined as also a C*-left distribution by

Cr@)x) =E(E_1(x)),  xED.(A).

Suppose that A is represented on a Hilbert space H on which the action «
is spatial. Hence «a is extended on the weak operator closure A” of A as a o-
weakly continuous action of 7%, which is also denoted by «. Then we have

THEOREM A (Theorem 5.13). There exists a bijective correspondence between
the set Doi(A) of all C*-left distributions and the set of all sequences a,<
(A")%(k), ke Z™ satisfying the following conditions :

(i) A*(—k)a,CB, kesZ™,

(1)) {llarll} rezn is slowly increasing,
through the relation

Cx6)x) = Eo(xar), xE9D,A), keZ™.

Such a sequence a, is denoted by E.(&) for the C*-distribution &.

THEOREM B (Theorem 5.14). Any C*-left distribution is a finite sum of
finite order derivatives of elements of A” in the C*-distribution sense.

Let 9(T") be the Fréchet space consisting of all smooth functions on T
and L*T™) the Hilbert space consisting of all square integrable functions with
respect to the Haar measure on 7" In the pair

T LXT™)
and its dual pair
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L(Tnc 9/(TH,
the Hilbert space L*T™) is self-dual so that we have the triplet
T C LT C 9(T™),

which is called the Gelfand triplet. As a non-commutative version of this
triplet, we take a Hilbert C*-module in stead of the Hilbert space. We define
a B-valued inner product ¢, >, by

<a, byr = Ey(a*b), a,bsA.

The completion of A by the norm induced by this inner product is denoted by
L3.(A). It has a Hilbert C*-right B-module structure in an evident way. We
similarly define Hilbert C*-left B-module LZ2,(A).

Let LZ%,/(A) be the dual of LZ%,(A), which consists of all continuous left B-
module map from LZ,(A) to B. Then we naturally have the following sequence
of three inclusion relations of left 9,(A) and right B-modules

D(A) T Li(A) T LE(A) C Der(A)

We then introduce the notion of left (resp. right) locally self-dual spectrum
Q,a) (resp. 2,(a)) for an action a. That is defined as the set of all points of
Z™ in which the spectral subspaces are not self-dual as left (resp. right) B-
module. We call an action a a left locally self-dual action if each spectral sub-
space A*(k), k=Z™ is self-dual as left B-module, that is, £,(a) is empty. In
this case, each element & of L2,(A) can be characterized as C*-left distribution
whose Fourier component E .(£) satisfies the next condition :

There exists a constant K>0 such that

| DEE*EO] < K, for any finite subset F of Z".
rer

In particular, & belongs to LZ2.(A) if and only if Xiezn E:(&)*E (&) converges
in C*norm of B. Hence it is not generally valid that the Hilbert C*-module
is self-dual, i.e., L2.(A)=L%’(A). In fact, we have many cases in which L2.(A)
is properly contained in L2,/(A4). Thus we can regard the preceding quadruplet
as a non-commutative version of the classical Gelfand triplet.

In this paper, we first study the test function space 9,(A) and next study
the Hilbert C*-module LZ2,(A) in focusing on Fourier expansions, which will be
done in Sections 2 and 3. In Section 4, we exactly define C*-distribution and
define differentiation on them. Fourier series for C*-distributions will be study
in Section 5. The dual L2,’(A) is characterized in terms of the Fourier series
as C*-distributions in Section 6. In Section 7, we exhibit a mode! of the pre-
vious quadruplet. Its C*-dynamical system is the Cuntz algebra ©.. with the
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canonical action a of T defined by
a(S,) = e**"S,, teR/Z =T,
where S,, neZ is the generators of isometries of O. satisfying

2S.SE=1 (strong operator convergence on a Hilbert space).
nez

The action a is left (and hence right) locally self-dual in our sense, that is,
every spectral subspace 0%(n), neZ is self-dual as left and right B-module.
But we see L2.(0.) is properly contained in LZ,’(0.).

We finally, in Section 8, give an example of non locally self-dual action on
a unital C*-algebra.

In [Ma], C*distributions associated with R™-actions are studied.

1. Preliminary.

Let A be a unital C*-algebra and a an action of n-dimensional torus 7" on
A. We identify

T = {(e*, &'z, ---, e'n)|t;ER, i=1, 2, -+, n}.

For each /=1, 2, ---, n, we denote by d; the partial differentiation for the i-th
component of 7™ defined by

5,(x) = lim Z@mos00(X) =X

, xeA
80 S

where the above limit is taken in the norm of A.
Set

2= {{y, -, la)EZ™|; =0, 1Zi<n}, N=Z}.
For a multi-index [=({,, ---, [,)=Z7?, put the differential operator
D! = 5{1 57%11.

whose order is denoted by |{|={,+ - +{,.
Let C2(A) be the intersection of all domains of differential operators D!,
that is,

C2(A) = "\ domain of D*.

n
ezl

Let C=(T") be the set of all complex valued smooth functions on 7'". For
keZ", the function e, is defined on 7" by

ex(ets, -, etn) = et = expli(kiti+ -+ +&ata)}.

Let o, be the normalized Haar measure on T". For x4 and k=Z", we de-
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fine the k-th Fourier component of x by

Evn = adestdon@  (cf. [ALD.

2. The space 9,(A).

All results in this section are probably known. We will however give a

proof of for the sake of completeness.

We first notice that the #-subalgebra C%(A) is dense in A. Let {hj}jen be
an approximate identity on 7™ which consists of a sequence of smooth functions
approximating the delta function on 7'* (cf. [Yo; p. 157]).

For a smooth function f on 7" and an element a= A, put

axf=| alaf@done.
which defines an element of A. The following lemma is routine.

LEMMA 2.1. For ac= A, we have
(i) D¥axf)=axD'f, leZ? and hence axfeC3(A), f€C=(T™).
(ii) lirn;_.w IIa*hj~—aH:0.

Set the =x-subalgebra of A

T, = {2 E(x)|F is a finite subset of Z*, x A}.
keF

Since Ei(a)=axe_,, acA, k=Z" and we can take an approximate identity
consisting of a sequence of finite linear combinations of ¢,, k=Z", the next
lemma is clear.

LeMMmA 2.2. T,(A) (and hence C%(A)) is a dense =-subalgebra of A.
We next equip the sequence of the seminorms {pn}ney wWith C3(A) by

Pm(x) = max IDkx)|, x=C3(A).
1 m

We denote by 9,.(A) the topological x-algebra C%(A) with the topology induced
by the sequence of seminorms {pn}men.

LEMMA 2.3.
Ek(afx):ikjEk(x>) xeg)a(A)) k:(kh tty, kn)ezn'

PrOOF. By integration by parts, we see

Ex@) = | aame*tdant) = | ikt tday ).
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COROLLARY 2.4.

Ew(D'x) = @Gk - Gha)'mEr(x),  sup(lkift- [Ral ') Ex(x)] <oo,
keZ ™

where xD(A), k=(ky, -, k)eZ 1=, -, lH)EZT.
By the corollary above, we can define a sequence of seminorms {gm}mey
on C%(A) by
gm(x) = max- sup (| ky |4 - [k |'n)]| E4(x)ll

ILism keZn

where [=(,, -+, [,)EZE,
We will see that the topology on CZ(A) induced by the seminorms {gn} mexn
coincides with that done by the seminorms {pn}men-

LEMMA 2.5. For any x€9D,(A) and |27, we have

(1)
= 0t S
(i)
1Dl < Q|L:(X)+(/|ll+zn(x)Jé< 7]1 )(%E>n—1 .

ProOF. (i) Take an arbitrary continuous linear functional ¢ on A with
lel<1 and put f(H)=¢(a(x)), t=T" so that feC=(T"). We first notice that

o) = sup pla() = flos 3 17k

where 7(k) means the k-th Fourier coefficient of f.

Let 2, (=1, 2, ---, n) be the subset of Z" consisting of all elements in
which the number of nonzero components is n—7. Then the following inequality
holds

7!.'2

5,170 = i ()(5)

because XJj.o 1/7°==?%/3. In fact, we have
jez

2 Olf(()) k27 Ty kn)!

ko#0, by

17N

sup [ &o|® - [kal2 O, ko, oo, k)

kg0 kpro RE r RE 4yl ke

s (R R AR,

ko#0. kg0 RE - BE 4

A

As we see
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L F(R)] = 1o(E()] < | Ex(x)],
it follows that

2 _ 1 1
o Do O e k) = (3 ) (3] i aen(®)
so that
a 7:2 n-1
voeo Do 7O oy )] < ()

Hence we get similarly

N 77.'2 n-1
<. r
5 B ngnt(3)
It is easy to see that
R n\/mi\n-J
- < "
3 1ol = gon(0)( ]. 5)
in a similar way. Thus we have

7 F < 2 n N/ -F
v FROT =170, 014 23 3 1700 = go(0)+ qz,,<x)§1(j)(§) ,

(i) The assertion is easily seen by the identity: ¢n(D'x)=gmu.11(x).
COROLLARY 2.6. The two seminorms pun(-)men and q(-)iexy on C(A) yield
the same topology on it.

Proor. For any [=Z", we have

sup (11 [ kn | ') Ex(x)]] = Sup IE«(D'x)| < |ID'x||

rez,
which shows ¢,(x)<pn.(x). By combining with the inequality above,

we conclude the assertion.

We call the topology on C%(A) induced by these seminorms 9,(A)-topology.
Since the differential operators D' for /&Z? are closed on 9,(A), the next
proposition is clear.

PROPOSITION 2.7. The topological vector space 9D, (A) is complete. Namely,
it becomes a Fréchet space.

DEFINITION. Let x,, k=Z" be a sequence of A which satisfies F,(x,)=x,,
keZ". Such a sequence is said to be rapidly decreasing if for any multi-index
=, -, )& Z%, there exists a positive constant ¢; such that

[yt TRy, < ey, for all k=(ky, -+, kp)EZ™.

LEMMA 2.8. Let {x,}rezn be a sequence in A with Ey(xp)=x;. Then the
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following two conditions are equivalent:
(1) There exists xED(A) such that E(x)=x,.
(i1) {x.} is rapidly decreasing.

ProOOF. The implication (i) = (ii) is clear by the inequality
Loyt TRa ' | Ew(0)]| = [ ER(D'x)| < | D' x 1.
To prove the other implication (ii) = (i) we set for j&N

Y= A(ky, -, ka)EZ™ k|4 - +1ka1=5}.
Hence we have

Y.CY,CY,C e, UY,=2Z".
j=0

Put
()= X x,=A.
kEYj
Since {x:}rezn is rapidly decreasing, for the multi-index (2, ---, 2)&Z%, we take

a positive constant ¢,>0 satisfying
[ool? - [Ral®lxell S o for all k=(ky, -+, RW)EZ".
As in the proof of we get

w2 hraola B(E)

This implies that the sum >J;czn X, converges absolutely in the norm of A so
that it defines an element of A. We write it as x. Namely, x=3],cz" x,=
lim;.. x(7)e A. For =y, -, [,)=Z%, we have
D'x(f) = X D'xy= 33 (k) (GRa)lnxy .
kGYj kEYj
It is routine to show that the lim;.. D'x(s) converges to an element of A and
it is nothing but D'x. Thus we conclude that the summation X,czn x, (or the
lim;.. x(j)) converges to the x in the 9,(A)-topology. Hence x belongs to

D.(A). We then have E.(x(y))=x,, for k€Y, so that E,(x)=x, by the con-
tinuity of E,.

COROLLARY 2.9. Any element x of D.(A) can be expanded as

X = 2} xp: convergence in D,(A)-topology

keZT

where the sequence x,, k< Z™ in A satisfies the following two conditions:
(i) Euilxp)=x; and hence E.(x;)=0 for [+k.
(ii) {x4}rezn s rapidly decreasing.
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3. The Hilbert C*-modules.

Let B be the C*-subalgebra consisting of all fixed elements under the action
«, that is,
B = {acsAla(a)=a, for all teT"}.

We define a B-valued inner product on A by
x, yor = Eo(x*y),  x,y€EA.

By completing A under the norm }jx||, .=|<x, x>,[|'/?, we see that the completed
space naturally has a Hilbert C*-right B-module structure (cf. [BI]). It is also
a left 9,(A)-module in an evident way. We denote it by LZ{(A). We can
similarly construct a Hilbert C*-left B-module LZ,(A) by using the following
B-valued inner product

<x, yor=Eo(xy*), x, yEA.

In this section, we mainly treat the Hilbert C*-right B-module LZ.(A). Similar
discussion works for L};(A). Throughout this section, we write {, >, and |- ||, »
as <{,> and ||, respectively.

Let us extend the action @ on A to that on LZ2.(A). It is possible because

la(a)ll, = llall., acA, teT".

We also write the extended automorphism as « on L2,(A). For any x&L2,(A)
and 27", we define the k-th Fourier component by

Eu(x) = STnat(x)e_k(t)dan(t), kezm,

The element E.(a) is defined first as a member of LZ2.(A). But we will see
that it belongs to the algebra A and hence to the smooth algebra 9,(A4). We
first notice that the inequality below

(3.1) NEe(le = lIxlle, x€L3(A), keZ™.
because of the inequality

If,..atmestidon], < e stildone.

LEMMA 3.1. [Ex(@)l=lal., a€D(A), kEZ™.
PROOF. For a€9,(A), by using we see
E((a*a) =z Ex(a)*Ew(a), keZ™,

so that [|[E.(a)|<|all..
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LEMMA 3.2. For any x=L%.(A), and keZ", Ey(x) belongs to A and hence
to 9,(A).

PrROOF. Take a sequence x;E9,(A) satisfying lim;... [x;—x],=0. By the
inequality we see that E(x;) converges to E.(x) in |-|l;-norm as j tends
to infinity. On the other hand, we see, by [Lemma 3.1, that the sequence
{E(x;}; is a Cauchy sequense in C*-norm of A so that there exists a C*-
norm limit a, in A. The inequality below

lax—Ew(xp)le = llar—Ew(x))l
shows that a,=F,(x). Thus we have E.(x)=A. It is easy to see that
D'E o(x) = k)t -+ (ky) " EW(x)
for /€2, because E,(x)=x*e_, and Lemma 2.1
LEMMA 3.3.
(ER(x), a> =<Eyx), Ex(a)y, xsA, asLi(A), keZ™,

Proor. Take a sequence b;=9,(A), 7N such that lim;... [|b;—al,=0. By
the Schwartz type inequality (cf. [Bl; Proposition 13.1.37), we have

(Ey(x), a> = C*norm lim {E(x), b;>.
J—oc

As each b; can be expressed as b;=3rezn Er(b;) in the 9,(A)-topology, it fol-
lows that

CE(x), by = KEw(x), Ex(b)

because of the continuity of £, and orthogonal relations. By the Schwartz type
inequality and [3.I)}, we obtain the assertion.

LEMMA 3.4. Any element a=LZ:,(A) can be uniquely expanded as

a = Zak, ak:Ek(a)EA

kezZ™

where the summation converges in ||-|l,-topology.

PROOF. Let Y; be the finite set of Z" defined in the proof of
Put )
a(j)= 2 a,.
kEY;

We notice that
(3.2) CEWx), a—a())> =0, for all x=A, keY;

from the previous lemma. Since the x-subalgebra 9,(A4) is dense in L2.(A) in
|| -1l.-topology, for ¢>0, there exist ¢c,=A and j&N such that
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la— 2 cill. <, Eic)=c¢;y.
kGYj

Put ¢=3lier, cr. Set

La(A);={ 2 xelxs€A, Ex(xp)=x4}.

kEY;
As L;(A)={Zrer, Ex(x)|x€ A}, we have <y, a—a(;)>=0, yeL;,(A); by the
equality [3.2) By using the Pythagorean theorem, it follows that
{a—a(j), a—a(y)) = <a—a(j), a—a(y)>+<a(f)—c, a(j)—c)
=<a—c, a—cy.
This means a—a(j)[.=Z|la—cl,<e. Thus we conclude

a= L:normlim ) a,.
Jroo kEYj

The uniqueness for the expression follows from the inequality [3.1)

COROLLARY 3.5.
(i) For any element ac= L%, (A), we have

k%‘nEk(a)*Ek(a) ={a, a

where the summation above converges in C*-norm of A.

(ii) Comnversely, for a sequence a, A, ke Z™ with E (ar)=ay, if Dreza afa,
converges in C*-norm of A, then Xiezn Gy converges in L*-norm. In this case,
if we put a=3pezn A, then E(a)=a,, k=Z™.

PROOF. (i) For a=LZ.(A), let a(j), J€Z be the sequence defined in the
proof of the preceding lemma, which converges to a in L*norm topology.
Since we have

<a(y), a(y)) = kE E(a)*E(a),

€Y

it follows that

| 22 Ew(@)*E(a)—<a, a>|| = Ka(y), a(y)>—<a, a>|

= lla(Dlalle()—all+la(y)—all:)all. .
Thus we obtain

C*normlim 3> Eu(a)E.(a)=<a, a).

Jjooo keY;

(ii) Conversely, suppose E.(az)=a; and lim;... Zter; a¥a, converges in C*-norm
of A. Put a(j)=3ev;a,. Then we have for i>;
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la@)—aDl. =1 2 afa.l.

REY\Y

As we have lim; j.. [ Zier,\v; a¥a:]=0, the sequence {a(/)}jev is a Cauchy
sequence in L%mnorm, whose limit in L}.(A) is nothing but Xiczn as.

PROPOSITION 3.6.
(i) For any element ac= L% (A), there uniquely exists a sequence a,<E A,

keZ™ with Ey(a,)=a, satisfying

a= 2 ap: L:norm convergence
kezZm

and

{a, a> = ) a¥ay: C*-norm convergence.
ksZn

(ii) For elements a, b L%.(A4), we have

{a, bp = 3 a¥b,: C*-norm comvergence
rezZn

where
a= 3 a, b= X bs.

kezZn kez™

(iii) Conversely, for a sequence a,<=A, k=Z" with E (a;)=a,, such that

3 a¥a, : C*-norm convergence,
keZn

there uniquely exists an element a< L3.(A) such that

a= 3 a,: L%norm convergence.
rezn

4. The C*-distributions.

DEFINITION. A C*-left (periodic) distribution & is a continuous left B-module
map from 9,(A) to B under the 9,(A)-topology and C*-norm topology on B.
Namely, it satisfies

&(bx) = b&(x), beB, x&9,(A).

A C*-right (periodic) distribution is similarly defined as a continuous right B-
module map from 9,(A) to B.

We denote by D,,(A) (resp. D,.(A)) the set of all C*-left (resp. right) dis-
tributions.  We mainly deal with C*-left distributions and sometimes simply
call them C*-distributions unless we specify.

We first equip 9,,(A) with left 9,(A) and right B-module structure as in
the following way:
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(aéb)(x) = &(xa)b, §€9:(A), aeD(A), beB, x=D,(A).

It is clear that the above one a&b becomes a C*-distribution again.

We next equip 9,,(A) with a topology which is induced by the pointwise
norm convergence. Namely, &; converges to & if and only if for each x=9,(4),
§4(x) converges to &(x) in the C*-norm on B. We call it 9’-topology. We will
define an action of the compact abelian group 7" on 9;(A) by

a(§)(x) = &la-«(x)), xED(A), teT™.

As an analogue of the classical case, we will consider an embedding LZ,(A)
intO g):xl(/l).

DEFINITION. For any xeL?%,(A), we define a C*-distribution L, by
Lo(3)=<y% x0r,  YEDL(A), x&Li(A).

It is easy to see that L, gives a C*-distribution and the map L preserves
the left 9,(A) and right B-module structure on LZ2.(A). Namely we have

al.b= Lqyy, as9(A), xeL%,(A), beB.
Moreover, we have
at(Lx) - Lat(z) ’ XEL,Z,,-(/U, teT™.

Thus we sometimes identify the Hilbert module LZ2,(A) with its image in D,;(A)
through the map L. Since the original C*-algebra A is embedded into LZ.(A),
all elements of A can be naturally regarded as C*-distributions.

DerFINITION (Differentiation). For any &é=9,:(A) and a multi-index [=
Uy, -+, l)EZ?, we define its [-th differentiation D'¢ (as a C*-left distribution)

by
(D¥)(x) = (=D)EMDYx)),  for xEDL(A).

It is immediate to see that D'€ is a C*-left distribution again.
LEMMA 4.1. D'L,=Lpi;, x=D(A), lEZT.

PROOF. We denote by D; the i-th partial derivative on 9,,(4). As we
have L.(y)=FE,ya), for a, ye9,(A4), it follows that

0= 0,(Eo(yx)) = Eo(0:(y)x)+Eo(y0:(x)) = —(D; L2)(¥)+ Li; s (¥)
and hence (D;L.)(¥)=Ls;x(¥).

This lemma says that the original derivations D!, l€Z% on the domain
D4 (A) can be extended on the whole distributions beyond 9,(A). Therefore
any element a of the C*-algebra A can be differentiable in the C*-distribution
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sense. It is a matter of course that the resulting element D'a does not neces-
sarily belong to A.

LEMMA 4.2. For all §€9,,(A) and 1<i<n, we have

2'-lim @_f)_—g ~ D,

h—0
where heR and ¢,=(0, ---,0,1,0, -+, 0)=Z%.

Proofr. For x€9,(A), we have
4=ty - = o)

As xE9,(A), (@-ney(x)—x)/—h converges to 0;(x) in D.(A)-topology. Hence
we get the assertion.

The C*-left distribution space 9,,(A) has left 9,(A)-module structure as
we cited before. This module structure behaves well for differentiations.
Namely, we can easily show the following Leibnitz formula.

LEMMA 4.3.
Di<a$) = ai(a)s_*'aDis 3 EEQ:H<A)1 aeg)a(A>y lézgn .
and hence
D¥a&) = X c.uD'"*(a)D*¢.
ksl
where ¢, is a constant for |, kEZ? and k<[ means k;</; for 1<i<n.

We next study convolution products on the C*-distributions. In general,
convolutions between C*-distributions can not be defined. However, it is pos-
sible to define convolutions between C*-distributions and the classical distribu-
tions as follows. Let 9/(T™) be the set of all classical distributions on T". It
is well known that a distribution ¢ in 9'(T") can be regarded as a slowly in-
creasing sequence {¢(e:)}rezn Of its Fourier coefficients.

DEFINITION (Convolutions). For £=9.,(A), ac9,(4) and o9/ (T"), we
define the convolutions a*¢ and &x¢ by

axp = keZZnEk(a)so(ek), Exp)(x) = §(x%p), xEDa(A)

where ¢=9’(T™) is a distribution whose Fourier coefficients are given by
{p(e_2)} rezn.

The following lemma is routine.

LEMMA 4.4. For §€94(A), a€D(A) and o=’ (T™"), we have
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(1) a*@ED(A), Exp= D) (A).
(i) D'x@)=(D'E)x@o=Ex(D'e), € Z%.

5. Fourier series for C*-distributions.

We define Fourier series for C*-distributions. As in our following defini-
tion, each component of them are defined as C*-distributions.

DEFINITION (Fourier components for C*-distributions). For é€9;,(A4), k€Z™,
we define k-th Fourier component &£,(§) of & as a C*-left distribution by

Ex)x) = EE-+(x)),  xED(A).

It is easy to see that &£,(6)€9,,(A). The following lemma is immediate
from the definition.

LEMMA 5.1.
Sk(f), l:k)

0, l#Pk,

Ex)x), [=k,
0, l+Ek,
where €D (A), |, keZ™, x=D,(A).

Ex(ENEUR)) = { &) = {

LEMMA 5.2. &.(L,)=E (x), x€L%.(A), keZ™.
PrOOF. We have for ye9,(A4),
Ex( L)) = LAE_+(3) =<3% Ex(x)r = LE, ()
because of the orthogonal expansion x=3),cz» Ex(x) in LZ.(A).

This lemma shows that the Fourier components of C*-distributions are ex-
tended notations for those of the elements of the C*-algebra A and of the
Hilbert C*-module L2.(A).

We henceforth assume that A is nondegenerately represented on a Hilbert
space H on which « is spatial. This means that a is written as a,=Ad u,,
teT™ for some strongly continuous unitary representation x on H of T". This
assumption is always achieved by embedding A into the reduced crossed product
AX,T™ Hence a is uniquely extended on the weak operator closure A” of A
as a o-weakly continuous action of 7", which is also denoted by a.

We will show that each Fourier component of a C*-distribution can be
regarded as an element of A” and hence a C*-distribution can be characterized
in terms of a sequence of A”.

For k=Z™ let, A*(k) be the k-th spectral subspace for the C*-dynamical
system (A, @, Z™), which means

A¥k) = {lacAlaa)=¢""*a, t=Z" = E.(A).
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We put for each ksZ”
m,(k) = {éx(l}y(!)*lx(l), y(l)éA"(k), 1<i<m, mEN} .

Namely m,(2) is the set of all finite linear combinations of elements of the
form xy*, x, yeA%(k). It is easy to see that m,(k) becomes a 2-sided ideal of
B. We fix k=Z" henceforth.

LEMMA 5.3. There exists a net {u,}eq of elements of mq(k) such that

lim jjxu,—x| =0, xS AYN—Fk),
2

Osur=uy, A=sp and fuzl =1.

PROOF. By [Ta; Theorem 7.4], we can take a net {u;}:e4 Of elements of
m,(k) which forms a (right) approximate identity for the C*-norm closure m,(k)
of mu(k). It follows that for x& A%(—k)

2w, —x)i* = [(u,—D*x*¥x(u; — DI < 2| x*x(u,—1)] .
Thus we have lim;|lxu;—x|=0.
LEMMA 54. A continuous left B-module map { from A*(—k) to B satisfies
the following inequality

| 8z

< 18| B 2w, 26, wHeA k), 1<i=m, meN.
PrROOF. The identity below
(& zrwam) (& z0twi)m) = o Bewem ot 3 2imwi))
implies that

| & zxwem|” = 12| Gewammaor- 56w

< 18| 33 20wy

PEOIOL

Hence we have the desired inequality.

Since (A”, a, T™) is a W*-dynamical system, the k-th spectral subspace
(A”)*(k) associated with this action is similarly defined as the previous ones.
The expectation E, is uniquely extended on A” as a og-weakly continuous ex-
pectation from A” to (A”)*(k), which is also denoted by E;.

LEMMA 5.5. The spectral subspace A%(k) is dense in (A”)*(k) in the weak
operator topology.
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PROOF. Since the extended expectation £, from A” to (A7)*(k) is weakly
continuous, we easily have the desired assertion from the fact that A is dense
in A” in the topology.

We then have the following proposition.

PROPOSITION 5.6. For a continuous left B-module map { from A*(—Fk) to
B, there exists a unique element e,(Q) in (A”)*(k) such that

Lx) = xex(Q), x € A%(—k) and e, = ICll.

ProOF. Take a net {u;};es of elements of m,(k) as in Lemma 5.3 They
are of the form

wi= "3 nGwir,  aed

i=

-

for some z,;(7), w;@)eA*k), and m(A)N. Put
b= "8 n@wa), e,

Then we have

lvall < I8l all = IICl

by Lemma 5.4 so that {v;}i,es is a bounded net in A. Thus we can take a
weak limit point ¢.({) in A7 which satisfies lle.(D)II<]Ill. As v; belongs to
A*(k), e,({) belongs to (A”)*(k) because (A”)%(k) is weakly closed in A”. Since
we see for x& A% (—k)

XUy = té)C(xe(i)wz(i)*) ={(xuz),
it follows that
xep() =L(x), x€AY(—k)

because of the continuity of { and The inequality [{|<ex)l is
direct from the above equality so that we have [{||=le:()].

For an element e=(A”)*(k) with xe=0, x A*(k), we obtain ye=0, yc
(AMa(k), by so that e*e=0. Therefore ¢,(l) is unique.

As each Fourier component &€,(8), k=Z™ of a C*distribution é=9,,(A4) is
a continuous left B-module map from A%*(—£&) to B, we thus obtain

COROLLARY 5.7. For each C*-distribution E€D,,(A), there exists a unique
sequence E(§)e(A”)*(k), ke Z™, satisfying

Ex&)(x) = xEw§), x€A%(—k).
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Namely, each C*-distribution of Fourier components of a C*-distribution can be
regarded as an element of the weak operator closure A” of the C*-algebra A.

DEFINITION. A C#*-distribution £§=9,,(A) is said to be of order meN, if
there exists a constant ¢>0 such that

[l sec 2 D[, x€9.4).

ezl ilism

ExXAMPLE 5.8. For acL?.(A) and [€Z7%, the C*distribution D'L, is of
order |/|. In fact, we have

[(D*La)()| = |1D'x|llal , xED(A).
LEMMA 5.9. For any £€9D,(A), there exists meN such that € is of order m.

PROOF. Suppose that for any meN, & is not of order m. Hence there
exists x,=9,(A) such that

[§(xmll > (m+1) 22 | D'xull.

lezll ilism

Put
1 1 )
T mA T ez uznl DEal "
so that
1 Xm )
1€l = m—+1 . Elezgl.li(lsmﬂnDlxm“ >
On the other hand,
S Dyl =
1€z, itl=m m+1
Hence
IDl S Sy for 122 satistying [11<m,

Thus {yn}meny converges to zero in .@a(A)-topology although [|&(y)|=1, which
is a contradiction for the continuity of &

DEFINITION. A sequence a,<(A”)%(k), kZ" is said to be slowly increas-
ing if there exist me N and a constant ¢>0 such that

fael <c 2 kil Jkylin for all k=(ky, -, ka)esZ™.

Lezﬁ,mgm
The next lemma is clear.

LEMMA 5.10. For a sequence a,=(A")*(k), ke Z", the following two condi-
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tions are equivalent :
(1) {aw}rezn 1s slowly increasing.
(ii) There exist m’&N and a constant ¢’>0 such that

lael < c'(lks| = ki)™, for all keZ™

where for k=(ky, -, ky) only k;, -, k;  are nonzero components.

ip
LEMMA 5.11. A sequence of Fourier components of a C*-distribution is slowly
increasing.
PrROOF. For £€9,,(A), there exists E,(§)e(A”)*(k), ke Z™ such that
E)x) =xEW), x€A(—h).
We further assume that & is of order m(eN) and hence

Il =e 2 D), xE9.(4).

1ez 1tism

Thus we have for k=sZ®

IE.e(RE@I ¢ X [kilfre [Ral"E_o(x)] .

ezl itism

By the continuity of the extended expectation £, on A” and Kaplansky’s den-
sity theorem, we can find a net x;€A4, yel such that

Strong-lirm Evxp)=Ew§ and [E.x)l = |E&N, rel.

Thus we have
IE_e(xn)E &N < ¢ nE Loylte - | k||| Ex(8)]

l€Z+,|lI§m
and hence
IE:E*E@ =c 2 kil [ka|!Ex(©).

n
ez, itism

Therefore we see
IExOI =S¢ 2 kil kafin,

ezl tism
For k=(k,, ---, ka)eZ", a finite subset supp kC{L, 2, .-, n} is defined by

supp k=7 if and only if k;=0.

LEMMA 5.12. For any slowly increasing sequence a,<=(A”)*(k) with A*(—k)a,
€B, keZ”, there exists a unique C*-left distribution € D,,(A) satisfying

Ey§)=a,, keZ.
ProOF. By there exist meN and ¢>0 such that
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laell = clkg | TR 1™,

for all b=(k&,, -, kn)eZ”, supp k= {zy, -++, ip}.
Put
b = (—iky)™™ (—ikip)""ak , for 20, and b,=C.

Since we see for k0,
10all < clly 172 The 177,
it follows that

2 bel = ¢ Z Lk |72 TRy 170
rEZT kEZT

=c¢( X kI B kT

k€Z7, &k #0 kEp€Z7, kp#0

)

=cl=) .

3

Thus iezn b, converges in C*-norm of A. For any finite set A={j,, =, jg}

ciL 2, ---, n}, we put
bA: 2 bl!

1€Zm, supp L=4
(which absolutely converges in C*-norm as in the above discussion)
DA =D, - D;,, (DY™ = DF - Dy

where D; means the differentiation on 9,,(A) corresponding to the i-th com-
ponent of Z?. We define a C*-distribution & by the finite sum:

= S (DY'LyytLa,.

Acii 2,5 A%2
For xe9,A), and A={y,, ---, jtC{l, 2, -+, n}, we have

(DA™ Lop(E_p(x)) = (—iks)™ -+ (—ik; )" Lyp(E_ (%))
which is zero unless {j,, ---, j,} Csupp k. Since we see

E_(x)by, suppk=A,
Lyy(E_x(x)) = Eo(E_x(x)ba) =
0, supp k#4,

we have for k=Z" with supp k=A
(D)™ Lyy(E_y(x)) = E-k(x)ak = L, (x).

As we have L, (E_.(x))=0, for 2#0, we obtain

Ex@)x)= 3 (DM)MLap(E_p(x)+ Lag(E_y(x) = L, (x).
Act

1,2, .}, A#Q

Hence we have E.(§)=a, for k=Z", k+0. In the case of k=0, it is easy to
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see that
(DYYmLop(E_x(x)) =0,  for A# @, Lo (E_((x)=Eq(xa,)
so that Ey(§)=a, Thus we conclude E.(§)=a,, for all keZ™.
We summarize the above discussions as in the following way.

THEOREM 5.13.

(i) For a C*-left distribution =Dy (A), the sequence a,, REZ" of the
Fourier components of § is taken as a,=(A”)*(k), keZ™ and satisfies the follow-
ing conditions:

(5.1 A*(—k)a, C B, keZ™
and
(5.2) {laell} eezn is slowly increasing.

(ii) Conversely, for a sequence a,=(A")*(k), k€ Z™ satisfying the above two
conditions (5.1) and (5.2), there exists a unique C*-left distribution $€D,,(A)
whose Fourier components are given by the sequence {a}iczn.

In the proof of we reach the next theorem for C*-distributions.

THEOREM 5.14. For any C*-distribution §< Dq,(A), there exists a family of
elements by A(A)(=rezn, supp k=2 (A7)*(R)) for ACAL, 2, ---, n} such that

E= B (DYmbath,

Acqi.2,--n), A

where differentiations are taken in C*-distribution sense.

By the continuity of & and Corollary 2.9, we have

PROPOSITION 5.15. For any C*-distribution & and a smooth element x = 9, (A),
we have

§(x) = keEZnE—k(x)Ek(f)
where the summation converges in C*-norm of B.
COROLLARY 5.16. For any C*-distribution £ 9,,(A), we put
§; :kezijk(S) where Y j={k=(ky, -, ka)EZ"| ||+ - + |kl <7}
Then the sequence of C*-distributions {£;}5-0C Dai(A) comverges to & in D’-topo-
logy.

As seen in the classical case, convolutions between C*-distributions and
ordinary distributions, cited in the previous section, can be written in terms of
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the Fourier components as follows:
PROPOSITION 5.17. For é€9,(A) and o= 9'(T™), we have
Ew(&xp) = Ex(§)pler), keZ™.

For a C*-distribution £é=9,,(A4), a Fourier component £,(§) does not neces-
sarily come from the C*-algebra A. We however have many cases in which
all Fourier components of all C*-distributions come from A. We specify such
cases as in the following way.

DEFINITION (locally self-dual spectrum and local self-duality). The £k-th
spectral subspace A*(k) is called a left self-dual module if for any continuous
(C*norm on A and C*norm on B) left B-module map { from A*(k) to B,
there exists an element a_,<= A%(—*k) satisfying

Ux)==xa_,, xS A%k).
We define the left locally self-dual spectrum 2,(a) for an action a by
Q) = {k=Z™| A*(k) is not left self-dual}.

This invariant of actions on C*-algebras can be defined for actions of general
compact abelian groups. The action a is said to be left locally self-dual if all
spectral subspaces A®(k) are left self-dual, that is, 2,(a)=@. The right locally
self-duality for the action are similarly defined, we mainly deal with left ones.
We indeed have 2,(a)=—&.(«). In what follows, local self-duality always
means left local self-duality unless we specify.

There are, of course, many examples of C*-dynamical systems with local
self-duality. But, in Section 8 we will also see an example of an action of a
unital C*-algebra which is not locally self-dual.

By the previous discussions, we have the following proposition.

PROPOSITION 5.18. Suppose that the action a is locally self-dual. Then we
have '

(1) For any C*-left distribution §, there uniquely exists a slowly increasing
sequence a,=A*k), keZ™ satisfying

&(x) = xa,, xeAN(—k), kesZ™,

(ii) Any C*-left distribution is a finite sum of finite order derivatives of
elements of A in C*-distribution sense.

We notice that, by [Tk], there exists a W*-dynamical system (M, @ T7)
associated with a C*-dynamical system (A, a, T™") such that A is g-weakly dense
in M, the restriction of & to A is @ and it is universal in a sense. The k-th
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spectral subspace A%(k) is o-weakly dense in the k-th spectral subspace MZ(k)
by [Ik; Proposition 2], our previous discussions still go well in replacing
(A”)*(k) by M&k). Namely, we can take Fourier components of a C*-distribu-

tion as elements of M#(k). Hence we can express as in the fol-
lowing way.

THEOREM 5.19.

(i) For a C*-left distribution §=94,(A), the sequence a,, k€Z™ of the
Fourier components of & is taken as a,=M?*(k), ke Z" and satisfies the conditions
(5.1) and (5.2).

(ii) Conversely, for a sequence a,=M*(k), ke Z™ satisfying the conditions
(5.1) and (5.2), there exists a unique C*-left distribution £ =Dy, (A) whose Fourier
components are given by the sequence {a.}rczn.

6. The dual L2,/(A).

In this section, we will study the dual LZ%,/(A) of the Hilbert C*-left B-
module L2;(A) cited in Section 3. We will show that L2,(A) can be regarded
as a subclass of 9,,(A) and their members are characterized in terms of their
Fourier components.

We denote by LZ,/(A) the set of all left B-module homomorphisms from
L2,(A) to B which is continuous in |-]|; ,-norm on LZ;(A) and C*-norm on B.

For = L%/’(A), we put

Inll = sup lp()l -

veLl ), 1yny g=1
We equip LZ%,/(A) with left A (and hence 9,(A)) and right B-module structure
as in the following way:
(apb)(y) =n(ya), nelLi/(A), yeLi(A), acA, beB.
We notice that, in the above expression, L2;(A) naturally has right A-module

structure because of the inequality

Ival,:. < lalliyle, acA, yeLii(A).

The *-involution in A can be extended as an anti-module isometry between
2,(A) and L2,(A). We also write the extended *-involution between them by
%, Set

L(¥)=L9* x>, x€Li(A), yeLi(A4).
LEMMA 6.1. For any xeL2.(A), we have

(i) L. L3/ (A)
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(ii) ILall = Il
(iii) al.b=Lsz, acs A, beB.
COROLLARY 6.2.
The map L:x=L2.(A)— L.,=L:/(A)
is an isometry which preserves left A and right B-module structure.

LEMMA 6.3. Any element of L2,/(A) can be regarded as C*-left distribution
of order 0.

PrROOF. Since we have |y];.Zlyll, for ye9d,(A), the assertion is clear
from the boundedness of an element of LZ,/(A).

By the continuity of an element of L2,/(A) and [Proposition 5.15, the next
lemma is easily proved.

LEMMA 6.4. For yeLk/(A) and nLi/(A), we have

()= X E_:(3)Ew(n): C*-norm convergence in B
keZ T

where E(n) is the k-th Fourier component of n as C*-left distribution.

PROPOSITION 6.5. Suppose that the action a is locally self-dual. For any
C*-left distribution nE 9D, (A), the following two conditions are equivalent:

(i) peL%/(A) (Namely, n can be extended on L%, (A) as an element of
L%/ (A)).

(i) There exists a constant K >0 such that

I 3 Edp*El <K,  for all meN.

k€Z" k1sm

where |ki=\ki|+ - +1kn| for k=(ky, .-, kn)EsZ".

PrOOF. (ii)= (i) For any yeL2,(A), put yn=>rer,, £:(v), where Y, is
a subset of Z" defined in the proof of Lemma 2.8 Thus we have for i<},

lp(y)—noll = IIKES]_E_k(y)Ek(v)H

=K 2 E_(), Z E.(p*
i<ikiss

i<ikis]

sl 2 Eihal 2 Ex)*e

i<lk1s) i< ks)
=1 Z E:WMEL*I2 X Ed(p*Ex(p|*?
i<tk sd i<k |=d

/

< IKyvs y1r—<yo youll'PK

=|lyi—yilli, K2,
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Hence we can define %(y) by 9(y)=lim;.. 5(y;) where the limit is taken in C*-
norm of B. Since [|p(yHISK'?|yjli,., we have [[p(»)|SK'?|yll:,., so that 5
can be extended on L2,(A) as an element of LZ%,/(A).

(i) = (ii) Assume that npeLZ,/(A), so that there exists K>0 such that
IpII=Klylli,e, yEL&(A). For any meN, we put zn=2er, E:(p)*. Note
that zn€9D,(A) and 9(zn)=2rer,, E+(p)*Er(y). Now we have

lzmllee =1 2 Ex(p)*Ex(p)'2.
kEY

Hence we obtain

I 2 Ee(p)*Ex(pl éKerEY Ex(y*Ex(p]'’?

keY

so that we conclude
| = Ed*E(pl = K*.
keY

REMARK. In general, for a sequence a,c A4, k=Z", satisfying E.(a:)=a;,
the following two conditions
(1) Siezn afa, converges in C*-norm,
(2) there exists K >0 such that
[ 32 afaxl <K, for all meN,

keZT, | k|sm
are clearly different. The implication from (1) to (2) is immediate but the other
one does not necessarily hold. Hence the inclusion relation through .0
Li.(A)c Li/(A)

is proper in many cases. We will see such an example later.

DEFINITION. An action a of T" is said to be globally self-dual if the Hilbert
C*-right B-module L2.(A) is self-dual: LZ%,(A)=L3%,’(A), namely the above im-
plication from (2) to (1) always holds.

It is clear that global self-duality automatically implies local self-duality
whereas the converse does not hold (cf. Corollary 7.2).

The following proposition is immediate from [Proposition 6.5/and [Li; Theo-
rem 4.1 (ii)]. ‘

PROPOSITION 6.6. Suppose that the fixed point algebra B is primitive. Then
the following conditions are equivalent :

(i) The action a is globally self-dual.

(ii) There exists meN such that the linear subspace
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> A*(k)*A%(k) = Span{a*b|a, b A*(k), |k|>m}

REZT, 1k I>M
is finite dimensional.

PrOOF. (i)=(ii) If the Arveson spectrum Sp(a) is infinite and for any

meN
2 A%(k)*A%(k)
kEZT, 1k I>M

is not finite dimensional, L2.(A) becomes an infinitely generated Hilbert C*-
module over the infinite dimensional C*-algebra B. It contradicts to [Li; Theo-
rem 4.1 (ii)].

(ii) = (i) This implication is easy from [Proposition 3.6/ and [Proposition 6.5

By summing the previous discussions, we reach the following inclusion
relations as left 92,(A) and right B-modules

Da(A) C Le(A) C L5/ (A) C De(A).

This sequence of inclusion relations can be regarded as a non-commutative ver-
sion of Geifand triplet.

7. Model of C*-distribution.

For an action 8 of Z on a unital C*-algebra B, its dual action § of T on
BXgZ is locally self-dual and gives a clear example for C*-distributions. In
fact, put A=BXzZ and a= B. In considering A as the reduced crossed product,
we denote by u the generating unitary of the left regular representation of Z
corresponding to the positive generator 1 of Z. As the n-th spectral subspace
A%(n) is of the form A*(n)=Bu™ for n=Z, any continuous left B-module map
¢ from A%(n) to B can be written as

{x)=xa_,, xe A%(n)

by putting a_,=u""{(u™) so that a_, belongs to A*(—n). This shows that «
is locally self-dual.

In this section, we will present a good model for C*-distributions which is
not given by a dual action. ,

Let ©. be the Cuntz algebra with infinite generators of isometries {S;};ez
(cf. [Cu]). Namely, O. be the C*-algebra generated by isometries S; indexed
by the integer group Z, which satisfies 3};cz S;:S¥==1, where the convergence
in the summation is taken in the strong operator topology on a Hilbert space.

We define an action a of the l-dimensional torus T on O. by

a;(Sz) = A"S,, neZ, 2&C, |]=1
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so that we have a C*-dynamical system (O, @, T). One will know that this
triplet can be regarded as a good example of a non-commutative version of the
ordinary torus T in C*-distribution theory.

Let d be the infinitesimal generator of the action « and E the expectation
from O.. to the fixed point algebra ©2 defined by

EX) = STaz(X)dz, Xeo. .

As we will see that the generators S, (or S¥), n=Z behave as a “basis” in
Fourier expansion of elements of ©., we can take Fourier coefficients of ele-
ments of 9,,(0.) as elements of O%.

DEFINITION. For X€9,0.), neZ, we define the n-th left (resp. right)
Fourier coefficient by

FYX)= E(XS¥eoz, (resp. FLH(X)=E(S,X)e02).
Note that the following identities hold

FYX)S.SE=FiX),  SaS¥Fi(X)=FiX)
and
En(X) = Fi(X)S, = S, FL,(X)

where E,(X) is the n-th Fourier component in the sense of Section 2.

It is clear that the action @ on O is locally self-dual. Not only the Fourier
components of a C*-distribution associated to this dynamical system can be
defined as elements of O. but also the Fourier coefficients of it can be given
by elements of ©2. We can indeed define the n-th right Fourier coefficient of
§€9D41(0=) by

Fu§)=§&S) €0, neZ

so that we have S,S¥F (&)=Fx(§) and E_,(&)=SXFi(&).
As seen in the previous discussions, each classes of the following quadruplet

(7.1) Da(O) T L5r(0x) C L1/ (O) C Dot(Ow)

can be characterized in terms of decay of their Fourier components. Hence, in
this case, we know the following proposition by the previous results.

PROPOSITION 7.1. For a sequence a,=0%, neZ with a,=S,S¥a,, we put
E=lsez Ska, (formal sum). Then we have

(i) €€9,0.) if and only if {a,}.cz 1s rapidly decreasing.

(ii) é€LZ%(0.) if and only if Xncz @xan, comverges in C*-norm.

(ili) &€€L2%/(0.) if and only if there exists a constant K >0 such that for
any lEN: ”21n|<l a;lz‘an”<K-
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(iv) £€90(0=) if and only if {a}acz is slowly increasing.
COROLLARY 7.2. The above all inclusion relations (7.1) are proper.

PROOF. (i) L2, (0=)CLZ%/(0.): Let &, be the ordinary delta function at 1
on T. The induced C*-left distribution & has of the form

£,(X)= ZFiX), XE9.0).

Since F5(6})=S.S¥ the summation X.cz F7(&})*Fi(¢}) does not converge in
C*-norm whereas

I 2 Fagi *Fagipl <1,  for all IeN.
12

Inis

Hence we see
& € LL/(ONL%(0x).

(i) L&/'(0=)C9Da(0x): Put an,=nS,S%, n€Z. As a,, neZ is slowly in-
creasing, there exists a C*-left distribution §, whose Fourier coefficients are
{@n}nez. 1t is clear that [|Xin1s: Fa(§a)*Fi(§.)|l is not bounded on /N so that
we have

§2 €EDa1(O)NLE)(0s).

We remark that the local self-duality for the action « does not necessarily
imply the global self-duality (the self-duality for the Hilbert C*-module LZ2.(0.))
from the above corollary.

One of the most excellent point of this model is the fact that the classical
theory of distributions on T is absorbed in this model. In fact, let 9/(T) be
the ordinary distributions on the torus T (cf. [Be]). For a classical distribution
oe2"(T), we can define an associated C*-left distribution &, 9;,(0.) as

Eu(X) = ZFaX)plen) €08, XED(Ox)

where the summation above converges in the C*-norm of OZ.

REMARK 7.3. Keep the above notations. We see for ¢, ¢=9'(T),

(i) Fub)=S.Skp(en)

(ii) DEL=¢b,

(ii)  Ehrdh=ELay
where in (ii) the left side means the differentiation of the C*-distribution &,
whereas the right one denotes the C*-distribution induced by the differentiation
of the classical distribution ¢, and in (iii) the left side means the convolution
between &l and ¢ whereas the right one denotes the C*-distribution induced by
the convolution ¢#*¢ of the classical distributions ¢ and ¢.
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8. Other examples.

As we stated in the previous sections, a C*-dynamical system, which is
locally self-dual in our sense, well behaves in our machinery. However, all
(unital) C*-dynamical system are of course not necessarily locally self-dual.
We will, in this section, give an example of a C*-dynamical system which is
not locally self-dual.

The C*-algebra of the C*-dynamical system is the same as the preceding
one, that is the Cuntz algebra O. with infinite generators. But the action is
different, which is called the gauge action (cf. [Cu]). The action y is defined
by 72(Sk) = A4S, keN, ie(C, [A]1=1
where 0. is generated by isometries S, k&N with 3,en SeS¥=1 whose sum-
mation converges in the strong operator topology on a Hilbert space.

For neZ, we denote by ©L(n) the n-th spectral subspace of the action 7.
As in [Cu], we see

OLSYT, n=1
OL(n) =4 0Ok, n=>0
S¥-mer,, ns—1

where OL is the fixed point algebra of O. under the action y.
The following lemma is straightforward.

LEMMA 8.1. For a C*-left distribution & with respect to the action y and
n=0, the —n-th Fourier component E_,(§) is given by

E_.(§) = S¥"&(ST) €0L(—n).
Therefore the spectral subspaces OL(n) for n=0 are left self-dual.

On the other hand, we henceforth show that the other spectral subspaces
on(n) for n<<0 are not left self-dual.

Let ¢, >, denotes the inner product of the Hilbert C*-left ©L-module on O.
as in Section 3. Then we can analogously prove the following lemma.

LEMMA 8.2. For nz=l, any element XOL(—n) can be expressed as in the
following way
X= % FL(X)g 1,5t - S%
1,1,"-. n=
where F1y(X)i, .i,=XS; - S
on OL(—n).

iy Sy, and the above summation converges in L*-norm

We notice that L*norm on OL(—n) coincides with C*-norm on OL(—n).
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We shall mainly treat 0L(—1) for simplicity.
LEMMA 8.3. Put &S¥)=S;S*, 1<i<oco. For X=3%, F4(X):S¥ in OL(—1),
we define

&X) = ii FL(X):&(5%).

Then & becomes a continuous left B-module map from OL(—1) to B such that
1ECON = 1XH
PROOF. Put X,=37, F1,(X);S* in OL(—1). As we see &(X,)=2 0 F4L(X):S¥:
S:S;:S%, it follows that by the Schwartz type inequality

16Xl =

<§ FL(X),S%, ,% s,-s’;s;k>l

31 FL(X),St

i=1

IA

lvzn :Ez:{ S;S%S*

1.2

A

3 FL(X), St

Bt

’

Hence we have &(X,)|<]|X.]| and so that JEXDI=X].

We now assume that O.. is represented on a Hilbert space H on which the
canonical action «, defined in the previous section, is spatial.

LEMMA 8.4. Let & be as in Lemma 8.3. If there exists an element ¢;E0.
such that '
§(X) = Xeg, X e on(—1),
then
0s = w-lim 33 S:6(SH) (= w-lim hy sisiszf)
n-co g=1 n—oo i=1

where w-lim means the limit with respect to the weak operator topology on the
Hilbert space H.

LEMMA 8.5. The limit w-lim, .. 23%1 S:S;S* in the weak operator closure
O% of O can not belong to the C*-algebra O..

PROOF. We extend the canonical action & on @.. to the g-weakly continuous
action on the von Neumann algebra ©Z  Suppose that the element w-
limp e 237-1 S:S;5% belongs to O. which we denoted by f,. Then the k-th
Fourier coefficient of f: with respect to the action a is Fi(f:)=S,S:.S¥S¥, ke Z.
When we put

Ew(fe) = Fi(foSr = SiSkS¥,
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it is clear that the summation

D E(fOE(f)* = 2 SeSSiSE
keZ keZ

does not converge in C*-norm (but converges in weak operator topology). Thus
f¢ can not become an element of L2;(0.) and hence of 0., which is a contra-
diction.

By combining the previous two lemmas, we reach

COROLLARY 8.6. For the C*-left distribution & defined in Lemma 8.3, there
does not exist an element Y in O. such that

&X) = XY, for all Xeoi(—1).

Since similar discussions work for other spectral subspaces OL(n), n<0, we
can summarize the above discussions as follows:

PROPOSITION 8.7. For the gauge action y of the torus T on the Cunitz alge-
bra O, the spectral subspaces OL(n), n<0, are not left self-dual whereas OL(n),
nz=0, are left self-dual. Namely, we have

Q) = {neZ|n<0} = —2.().
Thus the gauge action on O. is not locally self-dual.

REMARK 8.8. It is easy to see that the gauge actions on other Cuntz
algebras ©,, n<co are all locally self-dual.
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