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Introduction.

In the previous papers [7, 8], we determined the cuspidal class numbers of
the modular curves X,(p™) for prime numbers p+2, 3. The purpose of this
paper is to determine the cuspidal class number of the modular curve X,(3™).
Let h’ be the number obtained by the substitution of 3 for p in the cuspidal
class number formula for the case p+2,3 ([8 Theorem 7.1, Theorem 8.1]).
Let h,(3™) be the cuspidal class number of the curve X,(3™). Then our main
results (Theorem 3.1, [Theorem 4.1) show A,(3™)=~h’/3 if m=2. (If m=1, then
hi(3)=h’/3*=1.) As is well known, the cuspidal divisor class groups of the
modular curves are finite (Manin [6], Drinfeld [1]). As far as the author
knows, the (full) cuspidal class numbers are determined in the following cases
of modular curves. Let p be a prime number #2, 3. Ogg determined the
cuspidal class number of the modular curve X,(p). Kubert-Lang [3, 4] deter-
mined the cuspidal class number of the modular curve X(p"). Takagi [7, 8]
determined the cuspidal class number of the modular curve X,(»™). (Klimek
[2], Kubert-Lang [3,4] and Yu determined the order of a certain sub-
group of the cuspidal divisor class group of the modular curve X;(N).)

The contents of this paper are the following. In Section 1, we summarize
some results and definitions of [8, Section 1-5]. In[8], we assumed p+2, and
the assumption p+#3 was used only in Section 6-8. So the results of this sec-
tion hold for all p=2. Here we define modified Siegel functions, construct
modular units on the curve X,(p™), embed the cuspidal divisor group into a
ring R, and define a special element § of the algebra R®Q. In Section 2, we
determine the group of modular units on the curve X;(3™) precisely (Theorem
2.2). In Section 3, we determine the principal divisor group as a subgroup of
the ring R, which is expressed as 1,60 where I, is a subgroup of K. In Sec-
tions 3 and 4, we calculate the cuspidal class number of the curves X,(3?") and
X,(3%7*1), respectively (Theorem 3.1, [Theorem 4.1). In the calculation, we use
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the algebraic structure of RQC that it has a basis consisting of orthogonal
idempotents. Essentially, the cuspidal class number is the product of eigen-
values of the element 4.

In this paper, we denote by Z, @, C, 1, the ring of rational integers, the
field of rational numbers, the field of complex numbers, the two-by-two unit
matrix, respectively.

1. Summary of some results.

1. We recall some results and definitions from [8, Section 1-5]. Let p be
a prime number #2. After Section 2 we put p=3. Let N=p™ be a fixed
prime power. We consider the conjugate /' of the group I';(N) defined by [I'=

1 0\~ 1 0 , ) .
(0 «/]V> I'\(N) (O «/ZV)' Let X, be the complete non-singular curve associated

with the quotient space I'\® of the upper half plane © by /. Then the curve
Xp is isomorphic to the curve X,(IN). By a technical reason it is convenient to
consider the curve Xr instead of X,(V).

We divide the case into the following two:

I m=2n with n = 1.

) m=2n+1 with n = 0.

In case (I) (resp. (II)) the group /" is a subgroup of SL.(Z) (resp. G(«/D)). (For
the definition of G(+/p), see [7].) Let M=1 or p according as m satisfies the
condition (I) or (II), respectively. Then I” is a subgroup of G(+/M).

Let &r be the field of all automorphic functions with respect to I whose
Fourier coefficients belong to the cyclotomic field ky=@Q(e%***/¥). The field ky
is algebraically closed in ;. The field C¥r can be identified with the func-
tion field on the curve X.

Let O=Z++/MZ. Put I=p*"+/MO. Then I is an ideal of ©. Let I'()
be the principal congruence subgroup of G(~/M) (see [7]). Let X, be the com-
plete non-singular curve associated with the quotient space I'(J)\9. Let &; be
the field of all automorphic functions with respect to I'(/) whose Fourier co-
efficients belong to the cyclotomic field 2y. Then the field ky is algebraically
closed in %;. The field CF; can be identified with the function field on the
curve X;. Since I'DI'(I), we have FrC$;. The extension F,;/Fr is an abelian
extension whose Galois group is isomorphic to the group (Z/p*Z):.

Let ¥ be field of all automorphic functions with respect to G(~/M) whose
Fourier coefficients belong to the field Q. Then the extension ¥;/%: is normal,
whose Galois group is isomorphic to the group G;(&%). Here g,(+)=¢,/{£1},
ar bar*
Y dAr
GLy©/I) with a, b, ¢, deZ, r|M, and »*=M/r. The number r (=1 or M) is

and ¢; is the group of all elements a:< ) (mod I) contained in
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called the type of a and denoted by #(a). Let C(+)=C/{£1}. Here C is the
abelian subgroup of &; (called a Cartan subgroup) consisting of all elements
a:( Z://% x:z)j;*) (mod I) with a, b= Z. 'The number « is chosen as follows,
and fixed throughout the paper. In case (I), let ¥ be an integer prime to p
(#2) satisfying (k/p)=—1, where (x/p) denotes the Legendre symbol. In case
(ID), let k=1. We write a=a(a) and b=b(a).

2. Let P, be the prime divisor of &; defined by the g-expansion. Let
g G;()=Gal (F;/F:) be the isomorphism. Then every conjugate of P, over
. can be written as P%® with a unique element @ of C(zx). The conjugates
of P, can be identified with the cusps on the curve X;. So the cusps on the
curve X; can be parametrized by the elements of the abelian group C(+). We
call the conjugates of the prime P. the cuspidal primes of ;.

For a prime P of §¥; we denote by [P] the prime divisor of the field &,
induced by P. If P is a cuspidal prime of $;, then we call [P] a cuspidal
prime of the field §,. The cuspidal primes of &, can be identified with the
cusps on the curve Xpy. Let 9 be the free abelian group generated by the
cuspidal primes of ¥r, and let 9, be the subgroup of @ of divisors of degree 0.
Let & (resp. F.) be the group of non-zero functions in Fr (resp. CFr) whose
divisors have support within the cuspidal primes. (The elements of %, are
called modular units.) Then F,=C*<, and we can identify div(¥) with div
(Fe). We call the factor group

(1.1) C = D,/div (9)

the cuspidal divisor class group on Xp and the order of C the cuspidal class
number of Xp (namely, of X,(p™)).

The cuspidal primes of ¥, can be written as [PL®] with a=C. For two
elements @ and 8 of C, let a~f be the equivalence relation defined by [P&®]
=[P%#7. Then the cuspidal primes of §r are parametrized by the equivalence
classes of C. This equivalence relation can be described by the use of the
subgroups C, and D, of C which are defined as follows. Let k2 be an integer
with 0<k<n. Let C{" (resp. C{™?) be the set consisting of all elements a of
C satisfying b(a)t(a)*=0 (mod p*M) (resp. a(a)t(a)=0 (mod p*M)). Put C,=
CiO\UCE Y. Let D, be the set consisting of all elements a of C§" satisfying
a(a)=1 (mod p***M) and b(a)=0 (mod p™). Then the sets C,, C{¥, and D, are
subgroups of C. They satisfy C=C,DC,D - DC,D*xDyD+D,D - D+D,.
For 1ksn—1, [Cy: Crl=p. For0=k=n—1, [D,: Dy, ]=p. For1=<k<n,

[Cp: C]=2, and C{V=C® (‘1) g) When M=1, we have C,=C{=C§™D,
0 1

When M=p, we have [C,: Ci]=p, [C,: C{P’]=2, and C{=C{V (1 o) In
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both cases of M, C§" is the set of all elements of C of type 1. Now, if ac
Cy—Cryy, we call £ the order of a, and denote it by ord (a). (When k=n, we
put C,.,=0.) Then the equivalence relation can be described as follows. For
two elements @ and 8 of C, a is equivalent to 8 if and only if they have the
same order (=#k) and also they belong to the same coset of +D,.

Put G,=C,/+D,, G¥=C¥/+D, (e==+1),and H,=+D,/+D,. Then we
have a filtration G=G,DG,D - DG, DH,D - DH,=1. This filtration defines
a subring R of the group ring Z[G] of G by

(1.2) R= N Z[(Gs—GCun)/Hil,

where Gn..=0, and a coset xH, denotes the element X cx, xy. 'The rank of
R is equal to that of the divisor group 9. Let [P%®] be a cuspidal prime,
where a is an element of C of order 2. Then the mapping [P%¥®]—p*aH,
defines an embedding

1.3) p: 99— R.

Let D be any element of 9. Then the embedding ¢ satisfies the equation
deg (¢(D))=p"deg (D). Let R, be the subgroup of R consisting of all elements
of degree 0. Then ¢(9D,)CR,. Let R° be the subgroup of R consisting of all
elements 3 f(x)x satisfying f(x)=0 (mod p°*¢®), where the order of x
(=ord (x)) is the number k& such that x€G,—G,,,. Put Ri=R°‘"\R,. Then
e(D)=R°® and ¢(D,)= RS.

3. We recall some properties of Siegel functions. For any element a=
(a,, a,) of Q*—Z* the Siegel function g.(r) (r&9) is defined in [4]. It has
the ¢-product

(1.4) Ga(r) = —gmBragrminaei (] ) TT (1—-gig,)N(1—/qs),
k=1

where g¢.=e*™*, g,=e*** (z=a,t+a,), and By(X)=X*—X-+(1/6) is the second
Bernoulli polynomial. If b=(b,, b,)E Z?, then

(1.5) Zars(7) = &(a, b)ga(7),

where ¢(a, b) is a root of unity given by

(1.6) ¢(a, b) = exp [%’—(blbﬁb,wﬁalbz—azbo] .

If a=SL,(Z), then

(1.7 Zala(r)) = Pla)gan(T),

where ¢ is the character of SL,(Z) appearing in the transformation law of the
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square of the Dedekind y-function. Explicitly, ¢ is given as follows (Weber

[9, pp. 125-127]). Let a:(? (’;) be any element of SL,(Z). Then

(—1)@-D12 exp [%3 {(b—c)d+ac(1—d2)}] it d is odd,
(1.8) ¢(a) = i
—i(—1)¢ DI exp [T’;} {(a—l—d)c—i—bd(l—cz)}] if ¢ is odd.

Note that ¢{(—1,)=—1, and that ker (¢) is a congruence subgroup of level 12
and of index 12. (It can be shown that the kernel is the commutator subgroup.)

In order to construct modular units in ¥, we define a set A; in the fol-
lowing. Let % be an integer with 0<Ak<n. Let e=+1, and put h=*ke. Put
A=A UATY, where A, is a set defined as follows. First, suppose M=1.
If k=0, then put A;P=A¢"P=1/p")Z*—Z* and define the sign of usA; to
be 1. If k=1, then let A, be the set of all pairs u=(a, ¢) with ac1/p"**")Z
X{1A/p*MZ—Z% We call ¢ the sign of u. When the sign is specified, we
identify u with its row vector part a. Formally, we define the type of ue A,
(0<k<n) to be 1, and denote it by #(u). Next, suppose M=p. Put A;®=
(I/p™* "NV Z Sy XL/ p* M) Z /15— Z /¥ X Z /7%, Where r=p or 1 according as
e=1 or —1, respectively. If ucA;®, we call ¢ the sign of u, and r the type
of u. We denote the type of u by #u).

Let u=(a.+/7, as+/¥*) be an element of A, of sign ¢ and type r. Put
h=ke and u°=(a,, a,) (=Q>—Z?. We define the function g, ,(z) on the upper
half plane 9 by

These functions g, ., will generate the unit group 9.

We state the fundamental properties of g, , in the following. For r=1 or
M, put ZM=Zr XZ~/7*%. For v=(b;/7, boa/THEZ", let v°=(by, by) (€ Z?).

av's ba/s*

c/s* dx/E‘)
be any element of G(~/M), where a, b, ¢, d=Z, s=1 or M. Let » be as above.
a(r, s) b(r, s*)
c(r®, s*) d(r* s)
(resp. E{™") (0Lk<n) be the subset of G(+~/M) consisting of all elements a
satisfying bs*=cs*=0 (mod p*M) (resp. as=ds=0 (mod p*M)). Put E,=
EMUESY. Then E, and E{V are subgroups of G(~/M). The group E, acts
on the set A, as follows. Let @ be an element of E{® (6—=+1) expressed as
above. Let

For ue A;, with t(u)=r and v 72", put e(u, v)=eu°, v°). Let az(

Put a(”:( ) Then @™ is an element of SLy,(Z). Let E
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(1.10) u= (o v, V)

pTH'hT n h’?’*

be an element of A; of type r (h=ke), where x, y&Z. We denote by u-a
the element of A, given by

(a’?c+phcry vF b hbr*x—i—dy\/*) i 5=1

pn+h =%
- e p‘f 5+ bp—H) ng
ar*x+cy - bx ry .
(S e P ) e

. . . 1
Then the mapping u—u-a is a group operation. Let A:(O pg), and put

am=A"aA or p»A-'a A~ according as =1 or —1. Then au,=G(+/M), and
uea=uag,. (In [8], an, was written as a™. Since we have already defined
the notation a‘”, this expression is misleading.) The fundamental properties
of the function g, , are described in the following proposition ([8, Proposition
3.10).

PROPOSITION 1.1. Let u be an element of Aj of sign ¢ and type r. Put
h=ke.

(1) Let veZ". Then gi w.ot)=¢e(U, v)gr (7).

(2) Let acE,. Then g u(a()=¢u(@)8k, uoa(T), where dula)=¢((a(n)) ).

(8) Let acsl’ (CELV). Then g a(n)=cy(a)Pu(@)gr .(T), where e, a)=
e(u, v) with v=uca—u (£2Z").

This proposition implies that the function gi*¥ belongs to the group ¥ of
the modular units in §,. The function gi?) depends only on the residue class
of u modulo Z¢7, and is invariant under the exchange u——u.

Put A, =(A;2/Z")/{x1} and A=AV UAY. Then for an element u
of A;, the notation giY is well defined. For elements of A4, we again use the
terminology sign and type. Let Gf" (resp. ¢i™) (0=<k<n) be the subset of g,
://z bf ) (mod I) with bs*=cs*=0 (mod p*M)
(resp. as=ds=0 (mod p*M)). Put ¢,=a»Ugi". Then G, and g are sub-
groups of &;. The group &, acts on the set .A; in a manner similar to the
case of E,. Namely, for a=¢{®, and for uc, of sign ¢ and type », we
denote by u-a the element of A; of sign de given by [1.1I). In particular, the
group C, acts on ;, and the group =+ D, acts trivially. Hence the group G./H,
acts on A;. Let ue 4, and a=¢g,. Then

consisting of all elements (

(1.12) (g7 = g,

4. We shall see that any element of & can be expressed as a product of
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the functions g, , modulo constants. In fact, the set A; is superfluous. We
define a subset Af® of Az as follows. Let u be an element of A;®) expressed
as [1.I0). Then Af® is the subset of A;* consisting of all ¥ with the follow-
ing property. When k#n, (x, p)=(v, p)=1. When k=n, (x, p)=1or (v, p)=1
according as e=1 or —1. Put A,=AMUAY. Let AL be the subset of AL®
corresponding to Af®. Put A,=APUASY. We call elements of A, or A, pri-
mitive. Put
(1.13) wy = (pn%kM VM,0),
which is an element of A; of sign 1 and of type M. If k=n, w, is primitive.
Then the set (G,—G.1)/H, corresponds to the set A, bijectively by the map-
ping a—w,.a. Hence |\UjoA;| is equal to the number of the cusps of the
curve X,. We define a subset R{ of A{® to be the set of all elements us A
which satisfy one of the conditions (i) or (ii):

(i) 1=x5(p™r—1)/2, 0Ky < prrprk—1,

(i) x=0, I=sy=(p*r*—1)/2.
(Case (ii) occurs only when k=n and e=—1.) Put R,=R{PURLY. The set
R, (resp. Rf®) is a complete set of representatives of A, (resp. A:¥). In [8,
Section 6], we assumed p+#2, 3. But from the beginning of [8, Section 6.2] to
the end of the proof of [8, Theorem 6.2], the assumption p+3 is not used.
So that [8, Theorem 6.2] holds including the case p=3, which is the following.

THEOREM 1.1. Any element g of the unit group F can be expressed as g—=
cITosesn Iues, gnksw  where cky and m(k ;u) are integers.

By [8, (4.3)], the product ITosesn ITuew, gr.« is a constant. By [8, Theo-
rem 4.1], this is the only relation among the functions g, . with v ®,.

5. Let ¢ be the embedding [1.3]. Put Ry=R®Q and R,.=R®C. Let §
be the element of R, defined by

— ,A]"_ 1 12N
(1.14) 6 - 12N SD(le (gn. wn)) .

(This element plays an analogous role to the Stickelberger element in the theory
of cyclotomic fields.) The explicit expression of # can be given by [8, Proposi-
tion 3.2]. Let u be an element of A; expressed as u=w,-a with ac=G,. Put
Gu)={psGCGrlu=w;,-B}. Then G(n)=aH,, and we have ([8, (4.2)])

(1.15) o(div (gitd)) = 12N(ﬁ > B

eG(u)

(In the proof of [1.I5), [8, Proposition 3.3] was used. In order to prove the
proposition, the author used direct calculations of divisors. But it follows im-
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mediately from without any calculations of divisors.) In particular, u is
primitive if and only if the order of a is .. If the element u runs through
the set of all primitive elements, then the elements 3gce) 8 constitute a basis
of R over Z. For each 0k<n, let X, be the set of characters X of the
group G./H, which satisfy X| H,_,#1 when k=1. Put X=\Upk, X,. If leX,,
we say that the order of X is £, and denote it by ord(X). For every XeX
(ord X)=~F), put ’

1
(1.16) @y = en Iezgkl(x)x !,
Then the set of all elements e, is a basis of R, over C, and also they satisfy
the orthogonality relation ([8, Proposition 1.2]): for %,€X (i=1, 2), ey, -er,=ey,
if X%,=X,, or =0 otherwise. Let B, \ r be the Bernoulli Cartan number associated
with X of order k. For the definition of B, , ;, see [8, (4.1)]. Then the ele-
ment e, is an eigenvector of &:

(1.17) be: = (50" Bri)er

where the overline indicates the complex conjugate. If X=1 is the trivial
character of G/H, (ord(1)=0), then B, ,,=0. If X1, then B, ; y#0 ([8, Pro-
position 5.2-5.5]).

2. Determination of the unit group on X,(3™).

1. From now on until to the end of this paper, we assume p=3. In this
section, we determine the unit group ¢ on the curve X, which is isomorphic
to the curve X;(3™). This section is similar to [8, Section 6].

By [Theorem 1.1, any element of & can be written as a product of the
Siegel functions. Here we study conditions under which a product of Siegel
functions g, , belongs to ¥. For each 0<k=<n, let m(k; ): Ay—Z be a map-
ping such that m(%; u)=0 except for a finite number of u. Put

(2.1)

g= II I gf¢™.
0sksn ugal

Since the Fourier coefficients of g, , belong to the field £y, the condition g9
is equivalent to saying that g is a modular function with respect to /. By (3)
of Proposition 1.1, this condition is equivalent to the following:

(2.2) I II {eu(@)pu(@)}™®® =1 Vael'.

0sksn ugd),

We note that ¢, and ¢, are characters of the group /'. Let us assume that u
is written as [(1.10). For a=[I’, let us write as
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14+aN_ 3"bx/M)
3%c/M 1+dN.

where a, b, ¢, d&Z. Then using the condition det(a)=1, we have ¢, (a)=
exp [(2r:i/2)¢], where £ is an element of @ satisfying

2.3) a= (

2.4) & =3""rar*x(bx+1)+3"**dry(cy+1)
+bx(3n+h +1>+cy( 37;7 *—I—l) (mod2Z7).

LEMMA 2.1. If ael'(4-3"NO), then e, (a)=¢,(a)=1.
Proor. Easily verified by (1.8) and [2.4) Q.E.D.

Put G“):F/F(‘]:O), and G(s):P/F(BnNO) Then G“) SLz(Z/4Z) and
I')T(4-3"NO)=G 4y, XGw. Let a, and B, be elements of [ such that a,=

o dM)( 0d4), g=(_4y 1) (mod ), and a=B.=1, (Mod3N). Letas, i,

rs be elements of [’ such that as_.((l) 3 I/M) (mod 3”N), ‘335( 1— 0)

1-N 0 3"vM 1
(mod 3"N), 75=( 0 14 N) (mod 3"N), and ay=Bs=1,=1, (mod 4).

LEMMA 2.2. The elements a,, B, (I=3, 4), and y; generate the factor group
I'/T'(4-3"NO).

Proor. Elementary. Q.E.D.

LEMMA 2.3. e, (y9)=¢u(rs)=1.

Proor. Easily verified by (1.8) and Q.E.D.

LEMMA 24. (1) ¢ula)=exp [2ri/N)3***"yN]. ey las) =exp [(2ni/N)E,],
where &, is an integer satisfying & =2"'3""*r*x* (mod N).

) Pu(Ba)=exp [2ri/N)(—3""""'r*N)]. eu(B)=exp [(2ni/N)§,], where &,
s an integer satisfying &,=—2"'3"*"ry? (mod N).

ProOF. These can be proved by (1.8) and [2.4). Since the proof is similar
to that of [8, Lemma 6.4], we omit it. Q.E.D.

LEMMA 2.5. (1) eu(a)=1. ¢, la)=exp [2ni/4)(—3*r)].
2) eu(B)=1. ¢u(B)=exp [(2ri/4)3*r*].

PrROOF. These can be proved by (1.8) and [2.4) Since the proof is similar
to that of [8, Lemma 6.5], we omit it. Q.E.D.

By these lemmas and we have the following

THEOREM 2.1. Let g be a function given by (2.1). Then g belongs to the
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unit group F if and only if the relations (i), (ii), (iii) hold :
(1) Zosksn ZuEA’k 3* rr*xim(k ; u)—(N/3) Eue%(-w m(n; u)=0 (mod N).
(i1)  Zosksn EueA'k 3" rryim(k ; u)—“(N/g)ZueAh(l) m(n; u)=0 (mod N).
(i)  Zosrsn Duea, 3*rm(k ; w)=0 (mod 4).

PROOF. By Lemmas 2.1-2.3, the condition is equivalent to saying that the
relation holds for the four elements a; and 8, (=3, 4). If we put a=a,
(resp. B, in then we obtain the relation (i) (resp. (ii)) by Lemma 2.4 If
we put a=a, in then we obtain the relation (iii) by Lemma 2.5. If we
put a=p, in then again by we obtain a congruence relation
(i1i’) which is (iii) with » replaced by r*. Since r*M=r (mod4), (iii’) is equi-
valent to (iii). Q.E.D.

By Theorems [.1] and 2.1, we have the characterization of the unit group &.

THEOREM 2.2. The unit group F consists of all functions g of the form
g=cTlosesn [luca, gB™, where cEky and m(k ;u) are integers satisfying the
relations (i), (ii) and (iii) of Theorem 2.1 where Ai, ATV, AXY are replaced by
Ry, RSV, RV, respectively.

3. Calculation of the cuspidal class number of X,(3%2%).

1. We reduce the problem of calculating the cuspidal class number to a
problem of purely algebraic nature in the ring R. This section is similar to
8, Section 7].

Let ¢ be the embedding of 9 into R. Then ¢(9,)=Ri. We deter-
mine the image of div(F). Let a be an element of C,. Then the elements
3"~ ta(a)*(a) (mod N) and 3" *b(a)*t(a)* (mod N) of Z/NZ are dependent only
on the coset class +aD,. So for any element a=G,/H;, we can define two
elements 3" *a(a)%(a) and 3" *b(a)%(a)* of Z/NZ. Let I, be the set of all
elements >j.ecem(a@)a of R (m(a)=Z) which satisfy the following conditions

()-(ii) :
3.1

n

(i) 2 PN 3 *Fa(@aym(a)—(N/3) 2 m(a)=0 (mod N),

k=0 ac(Gp-Gpy ) /Hp ag@f™P

(i) 3 > 3" *b(a)*(@)*m(a)—(N/3) 2 m(a) =0 (mod N),
k=0 ac(Gp-Gpy ) /Hyp aEG;ll)

(iii) g}t(a)m(af)zo (mod 4).

PROPOSITION 3.1. ¢(div (9))=1.,0.

PROOF. Since the proof is similar to that of [8, Proposition 7.1], we give
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only a sketch. Let g=cIl. Il. g% ™ be any element of & (Theorem 2.2).
Then by [1.15), odiv(g)=3 3w Decew Mk ; w)af. For any a=G, put m(a)
=m(k; u), where k=ord(a) and u=w;,-a. Then ¢(div(g)=(Zsec m(@)a)f.
When u=w,-a, we have 3" *t(u)*x*=3""*a(a)*(a) (mod N), and 3" ™(u)y’=
3 kp(a)t(a)* (mod N). Also, ue R (resp. RV) if and only if aeGF?Y
(resp. G). Hence, the equations (i) and (ii) of [Theorem 2.2 become (i) and (ii)
of (3.1), respectively. If we use |H,|=3""*=3"*"* (mod4), we can prove that
the equation (iii) of is equivalent to (iii) of (3.1).
Q.E.D.

This proposition implies that the cuspidal class number is equal to the
index [R§: I,0]. Put p=3l,cc .

LEMMA 3.1. [R,: R§]=3%, where a=3""*2n%+4n)—n. (Here, m is the ex-
ponent of N=3™, namely m=2n or 2n+1).

Proor. This follows from the definitions of R, and R{. Since the proof
is exactly the same as that of [8, Lemma 7.1], we omit it. Q.E.D.

LEMMA 3.2. &<, and £§0=0 if and only if §€Zyp.

PrROOF. Since deg (8)=0, we have pf=(deg (#))p=0. The fact p<I, can
be verified directly. (But the calculation is not so easy.) As another proof, we
can use the fact that the product g=TIlosesn ITuex, ge.« iS @ constant. Since g
belongs to &, and the proof of Proposition 3.1 imply pg=I,. Con-
versely, let £ R, and £60=0. Then by the same argument as in the proof of
[8, Lemma 7.2], we have £=Cp. Hence, if £€1,, then (= Zp. Q.E.D.

2. Now we assume N=3%", so M=1. Put §’=60—s, where s=(1/4)p.
LEMMA 3.3. LO=R,NU.0'+Zp).

PrOOF. The inclusion I,§C R, follows from [Proposition 3.1 For é=1, we
have £0=§60'+&s=§0"4(det (§)/Husl,§’+Zy. This proves the inclusion C.
Conversely, let p=§0'+kpy, where é1, and k=Z. Suppose deg ()=0. Since
deg (0")=—1G|/4 and deg(u)=|G|, we have deg(§)=4k. Hence, £§60=E£0'+
(deg (6)/4)p=£E0"+kpu=n. This proves the reverse inclusion D. Q.E.D.

By we have the isomorphism

(3.2) Ry/1,0 = (Ry+1,0'+Zp)/1,0'+Zp).

For an integer d, let R,; denote the set of all £ R such that deg (§)=0 (mod d).
LEMMA 34. R +-1,0/'+Zp=R ;.
ProOOF. For &1, the fact £8’<R is implicit in the proof of
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Since deg (§0")=—(deg (§)/4)|G|=Z|G| and deg (#)=|G|, we have the equality
of the lemma. Q.E.D.

LEMMA 3.5. The element @’ is invertible in the algebra R,.

PROOF. Since the set of all ey is a basis of B¢, we can write ¢'=>la(X)e;y.
Since they are orthogonal idempotents, we have 6’ey;=a(X)ey, and §’ is invertible
in R. if and only if a(X)#0 for all X. By and the definition of ', we
have a(X)=(3"/2)B, ». 1 #0 X#1), —|G|/4#0 (X=1). Thus @’ is invertible in
R¢. Since #’= Ry, this implies that 8’ is invertible in Ry. Q.E.D.

Now we consider the inclusion:
(3.3) RDOR DLO+ZuD 1O .

By Lemmas 8.1, and (3.2), we see that the cuspidal class number is equal
to [Rigi: 1.0'+Zp]/3%, where a is the integer in Lemma 3.1l

LEMMA 3.6. (1) [R:Ria]=|G|(=4-3"%.
@ [1O'+Zp:1,0']=\Gl/4.

ProOF. (1) This is obvious. (2) The left-hand side is equal to [Zu:
Zunl,g’]. Let §0’=Fky, where §€1, and k& Z. Since §’ has the inverse 6/
(Lemma 3.5), we have é=kpf''=kdeg (0’ ")p=(—4k/|G|)p. Since é€l,, we
have ke(|G|/4)Z. Put é=—p. Then é=l,and §6’=(|G|/4)p. Thus we have
Zpn1,0’=(1G|/4)Zyp. This proves (2). Q.E.D.

For two lattices A and B of Ry let C be a lattice contained in ANB.
Then [A: C]/[B: C] does not depend on the choice of C. We denote this

number by [A:B]. It satisfies the usual multiplicative property, namely
[A: B]=[A: DI[D: B]. In particular, we have

(3.4) [R:[,0']=[R: RO"][RG': 1,6'].

LEMMA 3.7. (1) [R: RO']J=(IG|/DITxs 1(3*/2)Bs &, 1].
(2) [RO':1,07]=4-3""

PrROOF. (1) Let f’¢xy=aX)ey. Then [R: RO']=|det(68’)|=|TIaX)|. The
eigenvalues a(X)’s are given in the proof of This proves (1). (2)
Since §’ is invertible, we have [R§’: I,6']1=[R:1,]. Let ¢: R—(Z/3*"Z)*X
(Z/AZ) be the homomorphism defined by ¢(&)=(¢:.(&), ¢s(&), @s(£)), Where ¢,(€),
©a(8), @s(§) are the left-hand sides of (i), (ii), (iii) of (3.1), respectively. Let x
be an integer satisfying 4x=1 (mod 3?"). Put & =Ux)lg+{@4x-3*"Ha, and &=
(4x-3*""Dls+@x)a, where 1z denotes the unity of G, and a denotes the element

of GV represented by ((1) I(;) Let y be an integer satisfying 3*"y=1 (mod 4).
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Put £=(3""y)l¢. Then ¢()=(1, 0, 0), ¢&)=(0, 1, 0), p(&:)=(0, 0, 1). Hence, ¢
is surjective. Since ker (p)=1,, we have the proof. Q.E.D.

By [(3.3), Lemmas and B.7, we obtain the cuspidal class number.

THEOREM 3.1. The cuspidal class number of the modular curve X,(3%") is
given by

’

1
hy(37) = 3¢ 11 {—Bz, o
iz i 2

where e=2+n~+2-3""*n® and X runs through all characters #1 in %,

REMARK 3.1. Let A’ be the number obtained by the substitution of 3 for
p in the formula of [8, Theorem 7.1] (which is the formula for the case p=+
2, 3). Then h(3**)=Ah’/3.

4. Calculation of the cuspidal class number of X,(32"*').

1. In this section, we assume N=3*"*!, so M=3. Since the case n=0 is
exceptional and the genus of the curve X,(3) is 0, we assume n=1. This sec-
tion is similar to [8, Section 8]. Let I,.43n (resp. I,) be the set of all elements
of I, which satisfy that the left-hand side of (iii) of (3.1) is congruent to 0
modulo 4-3*" (resp. equal to 0).

LEMMA 4.1. (1) [10: I,3320]=3"""".
(2) 14.33110:106.

PROOF. (1) Let p=£0, where é=3m(a)acl,. Put d(§)={Z.ectl@)m(a)}/4
(eZ). Then the residue class of d(§) modulo 3°" depends only on 7. In fact,
let & be another element of I, satisfying »=§’6. Then (§’—§)0=0; hence by
& —¢=kp with keZ. Since d(p)=3*", we have d(§’)=d(§) (mod 3°).
Now, put ¢(n)=d(§) (mod 3°"). Then ¢ is a homomorphism from 1,0 to Z/3*"Z.
Since ker (¢)=1,.5sn0, it is sufficient to prove Im (¢)=3Z/3*"Z. Let 5 and & be
as above. Then ¢(n)=d¢)=4d()=Xsec> m(a) (mod 3). When k#n, |H,|=
37=k=(0 (mod 3). So we have gD(ﬂ)EEaeaél) m{a) (mod 3). The condition (i) of
(3.1) implies that the latter is congruent to 0 modulo 3. Hence we have Im (¢)
C3Z/3*"Z. Next, put £=16-1c—4a, where a denotes the element of G re-

presented by (g (2’) Then <1, and d(§)=3. This proves (1). (2) Since d(z)

=3%", we have p&l,sn. If §&1,430, then d(§)=3*"k with 2=Z. Hence
d(—Fkp)=0; namely, é—kpesl, This implies I,.;sn=1I+Zp. So by Lemma
3.2, we have I,...0=1,0. Q.E.D.

By Proposition 3.1, Lemmas and £, we see that the cuspidal class




684 T. TakAGI

number is equal to [R,: [,60]/3****"!, where a is the integer in [Lemma 3.1
For an element &=, m(a)a of R, write &, =3lseccy m(a)a and &. =3 ce-n
m(a)a. Put §'=60—s, where s=(1/4)2sec a)*a=(1/4)3Bp.+p-).

LEMMA 4.2. (1) [;sCZp,.
(2) 100:R0ﬂ(100’+Zy+).

ProOF. (1) For £€R, we have &§s=(1/4)(§.+£)Bp.+p)=(1/4){3deg (§.)+
deg (6 ) p+(1/4) {deg (§.)+3deg (§)}p-. If &1, then deg(§.)+3deg(§.)=0.
Hence &s=—2deg(§.)u.=Zp,. This proves (1). (2) The inclusion C follows
from (1). Let p=§0'+kp., where £, and k= Z. Suppose deg (n)=0. Since
deg (’)=—deg (p.), we have k=deg (§). Put 9,=£0=£6"+&s. (1) implies §s=
kip, with some k,&Z. Then we have again k,=deg (§)(=k). Hence n=x,&
I,6. This gives the reverse inclusion D. Q.E.D.

By Lemma 4.2, we have the isomorphism

4.1 Ry/100 = (Ry-+1,0"+Zp.)/ 1,0+ Zp.).

For an integer d, let R, denote the set of all £& R such that deg (§)=0 (mod d).
LEMMA 43. Ry+1,0'+Zpu. =R cw,.

Proor. For ¢&=l, &0’ =¢&0—&s=R (Lemma 4.2). Since deg(§6’) =—
deg (6)|G| and deg (p.)=|G"|, we have the equality. Q.E.D.

LEMMA 4.4. The element £=3u,—p_ belongs to I, and satisfies §6’'=3""""p
_2_32n—1(3n+1+1>ﬂ+.

PrOOF. We can verify by direct calculations that both p, and p_ satisfy
(i) and (i) of (3.1). This implies 3y, —p_=I,. Next, we have £0’'=4deg (6 )p
—8{deg (0_)+deg (s_)} p.. (Here, the relations p.=p—p,, deg(0.)=—deg(0.),
and deg(s,)=3deg(s.) are used.) Since deg(f_)=3*""'/4 and deg (s_)=3*"/4,
we have the result. (The calculation of deg(6_) is not so easy. In [8, Lemma
8.4], we calculated it directly. But there is another method. Here, let p be
any prime #2. Let X, be the non-trivial character of G/H, such that X,|G"=1.
We see easily fey,—=(—2deg(0.))e;,, Then by [I.I7}, we have —2deg(f.)=
(p"/2)Bso.z,, On the other hand, we have B, , y,=—(p—1)p"/6 ([8, Proposi-
tion 5.5]). This gives the value of deg(6.).) Q.E.D.

LEMMA 4.5. 1,0'+Zy,.=1,.:.0"'+Zp..

PrOOF. The inclusion C is obvious. In the proof of Lemma 4.1, we ob-
tained I,.gn=I+Zp. Since pd'=deg (8 )p=—3"y, we have I,.sn0'=1,6"+
Z3*"u. By 3m =310/ +2-3%(3" Dy, & 1,0+ Zpr,., where £=
3p.—p-. This implies the reverse inclusion D. Q.E.D.
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Let X, be the unique non-trivial character of G/H, such that X,|G"=1.
LEMMA 4.6. The element 6 is invertible in the algebra R,.

PROOF. As in the proof of write as 8#’=31a(X)ey. Then it is
sufficient to show a(X)#0 for allX. By and the definition of 6’, we have
a)=(3"/2)B, . 1 #0 A=1, X)), —32» 137" 141)/2#0 A=X,), —3**+0 X=1). This
proves the lemma. Q.E.D.

Now we consider the inclusion:
(42) RDR[G(I)I 314.33n0/+Z[1+:314.33n0/-

By Lemmas (4.3, and (4.1), we see that the cuspidal class number is equal
t0 [Riga: Lig3nl’+Zp,]1/3°*°"", where a is the integer in Lemma 3.1

LEMMA 4.7. (1) [R: Rcw ]=|GM|(=3%").
2) [l4-33n0l+Zﬂ+ 1 14 33007]=2-327(37*14-1).

PrROOF. (1) This is obvious. (2) Put [=2-3*%(3"*'+1). It is sufficient to
prove Zp.NIl.qn0'=1Zp,. Let £0’=kp,, where &0 and k€ Z. Then
§=kp,0’7". Put §=3p.—p.. By lp 07 = Brpf’ " —3""¢, =
—(u+3""%,). Put po=p+3""¢, (€l,4). Then &=(—k/l)n, Since &5
and deg ((7,):)+3deg ((5,)-)=4-3'", we have k=l/Z. This proves the inclusion
C. The reverse inclusion D follows from /p,=—1,6". Thus (2) is proved.

Q.E.D.

Similarly to [3.4), we have
(4.3) [R: 1.0’ =[R:RO'I[RO : 1,.;:20"].

LEMMA 4.8. (1) [R:R60']1=(1/6)3"@""'+DITrs1. 2, |3"/2)Bz &, 1!
(2) [RO": I.;320"]=4-37""".

PROOF. (1) Let #’ey=a(X)e;. Then [R: RO'1=|det(8’)|=|IIa(X)|. The
eigenvalues a(X)’s are given in the proof of Lemma 4.6. This proves (1). (2)
Since §’ is invertible, we have [R#’': [,0’]=[R:1,]. Let ¢: R—(Z/3**"'Z)*X
(Z/4-3*Z) be the homomorphism defined by ¢(&)=(p:i(&), ¢s(&), ¢s(&)), Where
01(8), @2(6), @a(§) are the left-hand sides of (i), (ii), (iii) of (3.1), respectively.
Let ¢:(Z/3""Z)*}(Z/4-3"Z)—~(Z/3Z)* be the homomorphism induced by the
reduction. Let A be the subgroup of (Z/3Z)° consisting of all elements (x, v, z)
which satisfy x=z (mod3). Put G=¢ '(4). Now we prove ¢(R)=G, which
implies the desired equation [R: [,.5n]=4:3""*'. First, put &, =—1g+a, &=
4:1¢—a, and §,=38—3&,;, where 1 denotes the unity of G, a denotes the ele-

ment of G{P represented by (g g), and f is the element of G represented
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by (g (1)> Then ¢(E)=(@3, 0, 0), ¢E)=(0, 3, 0), p(&)=(0, 0, 3). This implies

o(R)Dker (¢). Second for é=Xm(a)= R, we see easily ng(E)E(ps(E)Ezaeg(nl) m(a)
(mod 3). This implies @¢(¢p(R))CA. Lastly, we have ¢p(ls)=(1, 0, 1) (mod 3) and
o(B)=(0, 1, 0) (mod 3). Since A is generated by (1, 0, 1) and (0, 1, 0), we have
#(p(R))DA. Summarizing these results, we have ¢(R)=G. Q.E.D.

By (4.3}, Lemmas and [£.8, we obtain the cuspidal class number.
THEOREM 4.1. Let h,(3?"*') be the cuspidal class number of the modular
curve X,(3***Y). If n=1, then

1
'2—Bz,k,l
where e=142n-+2-3*""*(n+n?%, and X runs through all characters #1, X, in X.

If n=0, then h,(3)=1.

h1(32n+1) —_ 301 II

£1. %,

s

REMARK 4.1. Let A’ be the number obtained by the substitution of 3 for p
in the formula of [8, Theorem 8.1] (which is the formula for the case p+2, 3).
Then A,(3***Y)=h’/3 if n=1, h’/3* if n=0.
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