The cuspidal class number formula for the modular curves $X_1(3^m)$

Dedicated to Professor Hideo Shimizu on his 60th birthday

By Toshikazu TAKAGI

(Received Oct. 15, 1992) (Revised Dec. 20, 1993)

Introduction.

In the previous papers [7, 8], we determined the cuspidal class numbers of the modular curves $X_1(p^m)$ for prime numbers $p \neq 2$, 3. The purpose of this paper is to determine the cuspidal class number of the modular curve $X_1(3^n)$. Let h' be the number obtained by the substitution of 3 for p in the cuspidal class number formula for the case $p \neq 2$, 3 ([8, Theorem 7.1, Theorem 8.1]). Let $h_1(3^m)$ be the cuspidal class number of the curve $X_1(3^m)$. Then our main results (Theorem 3.1, Theorem 4.1) show $h_1(3^m)=h'/3$ if $m \ge 2$. (If m=1, then $h_1(3)=h'/3^2=1$.) As is well known, the cuspidal divisor class groups of the modular curves are finite (Manin [5], Drinfeld [1]). As far as the author knows, the (full) cuspidal class numbers are determined in the following cases of modular curves. Let p be a prime number $\neq 2, 3$. Ogg [6] determined the cuspidal class number of the modular curve $X_0(p)$. Kubert-Lang [3, 4] determined the cuspidal class number of the modular curve $X(p^n)$. Takagi [7, 8] determined the cuspidal class number of the modular curve $X_1(p^m)$. (Klimek [2], Kubert-Lang [3, 4] and Yu [10] determined the order of a certain subgroup of the cuspidal divisor class group of the modular curve $X_1(N)$.

The contents of this paper are the following. In Section 1, we summarize some results and definitions of [8, Section 1-5]. In [8], we assumed $p \neq 2$, and the assumption $p \neq 3$ was used only in Section 6-8. So the results of this section hold for all $p \neq 2$. Here we define modified Siegel functions, construct modular units on the curve $X_1(p^m)$, embed the cuspidal divisor group into a ring R, and define a special element θ of the algebra $R \otimes Q$. In Section 2, we determine the group of modular units on the curve $X_1(3^m)$ precisely (Theorem 2.2). In Section 3, we determine the principal divisor group as a subgroup of the ring R, which is expressed as $I_4\theta$ where I_4 is a subgroup of R. In Sections 3 and 4, we calculate the cuspidal class number of the curves $X_1(3^{2n})$ and $X_1(3^{2n+1})$, respectively (Theorem 3.1, Theorem 4.1). In the calculation, we use

the algebraic structure of $R \otimes C$ that it has a basis consisting of orthogonal idempotents. Essentially, the cuspidal class number is the product of eigenvalues of the element θ .

In this paper, we denote by Z, Q, C, 1_2 the ring of rational integers, the field of rational numbers, the field of complex numbers, the two-by-two unit matrix, respectively.

1. Summary of some results.

1. We recall some results and definitions from [8, Section 1-5]. Let p be a prime number $\neq 2$. After Section 2 we put p=3. Let $N=p^m$ be a fixed prime power. We consider the conjugate Γ of the group $\Gamma_1(N)$ defined by $\Gamma=\begin{pmatrix} 1 & 0 \\ 0 & \sqrt{N} \end{pmatrix}^{-1}\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{N} \end{pmatrix}$. Let X_{Γ} be the complete non-singular curve associated with the quotient space $\Gamma \setminus \mathfrak{F}$ of the upper half plane \mathfrak{F} by Γ . Then the curve X_{Γ} is isomorphic to the curve $X_{\Gamma}(N)$. By a technical reason it is convenient to consider the curve X_{Γ} instead of $X_1(N)$.

We divide the case into the following two:

- (I) m = 2n with $n \ge 1$.
- (II) m = 2n+1 with $n \ge 0$.

In case (I) (resp. (II)) the group Γ is a subgroup of $SL_2(\mathbb{Z})$ (resp. $G(\sqrt{p})$). (For the definition of $G(\sqrt{p})$, see [7].) Let M=1 or p according as m satisfies the condition (I) or (II), respectively. Then Γ is a subgroup of $G(\sqrt{M})$.

Let \mathfrak{F}_{Γ} be the field of all automorphic functions with respect to Γ whose Fourier coefficients belong to the cyclotomic field $k_N = Q(e^{2\pi i/N})$. The field k_N is algebraically closed in \mathfrak{F}_{Γ} . The field $C\mathfrak{F}_{\Gamma}$ can be identified with the function field on the curve X_{Γ} .

Let $\mathcal{O}=\mathbf{Z}+\sqrt{M}\mathbf{Z}$. Put $I=p^{2n}\sqrt{M}\mathcal{O}$. Then I is an ideal of \mathcal{O} . Let $\Gamma(I)$ be the principal congruence subgroup of $G(\sqrt{M})$ (see [7]). Let X_I be the complete non-singular curve associated with the quotient space $\Gamma(I)\backslash \mathfrak{F}$. Let \mathfrak{F}_I be the field of all automorphic functions with respect to $\Gamma(I)$ whose Fourier coefficients belong to the cyclotomic field k_N . Then the field k_N is algebraically closed in \mathfrak{F}_I . The field $C\mathfrak{F}_I$ can be identified with the function field on the curve X_I . Since $\Gamma \supset \Gamma(I)$, we have $\mathfrak{F}_\Gamma \subset \mathfrak{F}_I$. The extension $\mathfrak{F}_I/\mathfrak{F}_\Gamma$ is an abelian extension whose Galois group is isomorphic to the group $(\mathbf{Z}/p^n\mathbf{Z})^2$.

Let \mathfrak{F}_1 be field of all automorphic functions with respect to $G(\sqrt{M})$ whose Fourier coefficients belong to the field Q. Then the extension $\mathfrak{F}_I/\mathfrak{F}_1$ is normal, whose Galois group is isomorphic to the group $\mathcal{G}_I(\pm)$. Here $\mathcal{G}_I(\pm)=\mathcal{G}_I/\{\pm 1\}$, and \mathcal{G}_I is the group of all elements $\alpha=\begin{pmatrix} a\sqrt{r} & b\sqrt{r^*} \\ c\sqrt{r^*} & d\sqrt{r} \end{pmatrix}\pmod{I}$ contained in $GL_2(\mathcal{O}/I)$ with $a,b,c,d\in \mathbb{Z}$, r|M, and $r^*=M/r$. The number r (=1 or M) is

called the type of α and denoted by $t(\alpha)$. Let $C(\pm)=C/\{\pm 1\}$. Here C is the abelian subgroup of \mathcal{G}_I (called a Cartan subgroup) consisting of all elements $\alpha = \begin{pmatrix} a\sqrt{r} & \kappa b\sqrt{r^*} \\ b\sqrt{r^*} & a\sqrt{r} \end{pmatrix}$ (mod I) with $a, b \in \mathbb{Z}$. The number κ is chosen as follows, and fixed throughout the paper. In case (I), let κ be an integer prime to p ($\neq 2$) satisfying $(\kappa/p)=-1$, where (κ/p) denotes the Legendre symbol. In case (II), let $\kappa=1$. We write $a=a(\alpha)$ and $b=b(\alpha)$.

2. Let P_{∞} be the prime divisor of \mathfrak{F}_I defined by the q-expansion. Let $\sigma: \mathcal{G}_I(\pm) \cong \operatorname{Gal}(\mathfrak{F}_I/\mathfrak{F}_1)$ be the isomorphism. Then every conjugate of P_{∞} over \mathfrak{F}_1 can be written as $P_{\infty}^{\sigma(\alpha)}$ with a unique element α of $C(\pm)$. The conjugates of P_{∞} can be identified with the cusps on the curve X_I . So the cusps on the curve X_I can be parametrized by the elements of the abelian group $C(\pm)$. We call the conjugates of the prime P_{∞} the cuspidal primes of \mathfrak{F}_I .

For a prime P of \mathfrak{F}_I we denote by [P] the prime divisor of the field \mathfrak{F}_I induced by P. If P is a cuspidal prime of \mathfrak{F}_I , then we call [P] a cuspidal prime of the field \mathfrak{F}_I . The cuspidal primes of \mathfrak{F}_I can be identified with the cusps on the curve X_I . Let \mathscr{D} be the free abelian group generated by the cuspidal primes of \mathfrak{F}_I , and let \mathscr{D}_0 be the subgroup of \mathscr{D} of divisors of degree 0. Let \mathscr{F} (resp. \mathscr{F}_C) be the group of non-zero functions in \mathfrak{F}_I (resp. $C\mathfrak{F}_I$) whose divisors have support within the cuspidal primes. (The elements of \mathscr{F}_C are called modular units.) Then $\mathscr{F}_C = \mathbb{C}^{\times}\mathscr{F}_I$, and we can identify $\operatorname{div}(\mathscr{F})$ with $\operatorname{div}(\mathscr{F}_C)$. We call the factor group

$$(1.1) C = \mathcal{D}_0/\operatorname{div}(\mathcal{F})$$

the cuspidal divisor class group on X_{Γ} and the order of C the cuspidal class number of X_{Γ} (namely, of $X_{\mathbb{I}}(p^m)$).

The cuspidal primes of \mathfrak{F}_{Γ} can be written as $[P_{\infty}^{\sigma(\alpha)}]$ with $\alpha \in C$. For two elements α and β of C, let $\alpha \sim \beta$ be the equivalence relation defined by $[P_{\infty}^{\sigma(\alpha)}] = [P_{\infty}^{\sigma(\beta)}]$. Then the cuspidal primes of \mathfrak{F}_{Γ} are parametrized by the equivalence classes of C. This equivalence relation can be described by the use of the subgroups C_k and D_k of C which are defined as follows. Let k be an integer with $0 \leq k \leq n$. Let $C_k^{(1)}$ (resp. $C_k^{(-1)}$) be the set consisting of all elements α of C satisfying $b(\alpha)t(\alpha)^*\equiv 0\pmod{p^kM}$ (resp. $a(\alpha)t(\alpha)\equiv 0\pmod{p^kM}$). Put $C_k=C_k^{(1)}\cup C_k^{(-1)}$. Let D_k be the set consisting of all elements α of $C_0^{(1)}$ satisfying $a(\alpha)\equiv 1\pmod{p^{n+k}M}$ and $b(\alpha)\equiv 0\pmod{p^n}$. Then the sets C_k , $C_k^{(1)}$, and D_k are subgroups of C. They satisfy $C=C_0\supset C_1\supset\cdots\supset C_n\supset\pm D_0\supset\pm D_1\supset\cdots\supset\pm D_n$. For $1\leq k\leq n-1$, $[C_k:C_{k+1}]=p$. For $0\leq k\leq n-1$, $[D_k:D_{k+1}]=p$. For $1\leq k\leq n$, $[C_k:C_k^{(1)}]=2$, and $C_k^{(-1)}=C_k^{(1)}$ (1) 0). When M=1, we have $C_0=C_0^{(1)}=C_0^{(-1)}$. When M=p, we have $[C_0:C_1]=p$, $[C_0:C_0^{(1)}]=2$, and $C_0^{(-1)}=C_0^{(1)}$ [0). In

both cases of M, $C_0^{(1)}$ is the set of all elements of C of type 1. Now, if $\alpha \in C_k - C_{k+1}$, we call k the *order* of α , and denote it by ord (α) . (When k=n, we put $C_{n+1} = \emptyset$.) Then the equivalence relation can be described as follows. For two elements α and β of C, α is equivalent to β if and only if they have the same order (=k) and also they belong to the same coset of $\pm D_k$.

Put $G_k = C_k / \pm D_n$, $G_k^{(\varepsilon)} = C_k^{(\varepsilon)} / \pm D_n$ $(\varepsilon = \pm 1)$, and $H_k = \pm D_k / \pm D_n$. Then we have a filtration $G = G_0 \supset G_1 \supset \cdots \supset G_n \supset H_0 \supset \cdots \supset H_n = 1$. This filtration defines a subring R of the group ring Z[G] of G by

(1.2)
$$R = \sum_{k=0}^{n} \mathbf{Z} [(G_k - G_{k+1})/H_k],$$

where $G_{n+1}=\emptyset$, and a coset xH_k denotes the element $\sum_{y\in H_k} xy$. The rank of R is equal to that of the divisor group \mathcal{D} . Let $[P_{\infty}^{\sigma(\alpha)}]$ be a cuspidal prime, where α is an element of C of order k. Then the mapping $[P_{\infty}^{\sigma(\alpha)}] \mapsto p^k \alpha H_k$ defines an embedding

$$\varphi: \mathcal{D} \longrightarrow R.$$

Let D be any element of \mathcal{D} . Then the embedding φ satisfies the equation $\deg(\varphi(D)) = p^n \deg(D)$. Let R_0 be the subgroup of R consisting of all elements of degree 0. Then $\varphi(\mathcal{D}_0) \subset R_0$. Let R^c be the subgroup of R consisting of all elements $\sum f(x)x$ satisfying $f(x) \equiv 0 \pmod{p^{\operatorname{ord}(x)}}$, where the order of $x \pmod{x}$ is the number k such that $x \in G_k - G_{k+1}$. Put $R_0^c = R^c \cap R_0$. Then $\varphi(\mathcal{D}) = R^c$ and $\varphi(\mathcal{D}_0) = R_0^c$.

3. We recall some properties of Siegel functions. For any element $a=(a_1, a_2)$ of Q^2-Z^2 , the Siegel function $g_a(\tau)$ $(\tau \in \mathfrak{H})$ is defined in [4]. It has the q-product

$$(1.4) \hspace{1cm} g_{a}(\tau) = -q_{\tau}^{(1/2)B_{2}(a_{1})} e^{2\pi i a_{2}(a_{1}-1)/2} (1-q_{\mathbf{z}}) \prod_{k=1}^{\infty} (1-q_{\tau}^{k}q_{\mathbf{z}}) (1-q_{\tau}^{k}/q_{\mathbf{z}}),$$

where $q_{\tau}=e^{2\pi i\tau}$, $q_z=e^{2\pi iz}$ $(z=a_1\tau+a_2)$, and $B_2(X)=X^2-X+(1/6)$ is the second Bernoulli polynomial. If $b=(b_1,b_2)\in \mathbb{Z}^2$, then

$$(1.5) g_{a+b}(\tau) = \varepsilon(a, b)g_a(\tau),$$

where $\varepsilon(a, b)$ is a root of unity given by

(1.6)
$$\varepsilon(a, b) = \exp\left[\frac{2\pi i}{2}(b_1b_2 + b_1 + b_2 + a_1b_2 - a_2b_1)\right].$$

If $\alpha \in SL_2(\mathbf{Z})$, then

$$(1.7) g_{a}(\alpha(\tau)) = \phi(\alpha)g_{aa}(\tau),$$

where ψ is the character of $SL_2(\mathbf{Z})$ appearing in the transformation law of the

square of the Dedekind η -function. Explicitly, ψ is given as follows (Weber [9, pp. 125-127]). Let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be any element of $SL_2(\mathbf{Z})$. Then

$$(1.8) \qquad \phi(a) = \left\{ \begin{array}{ll} (-1)^{(d-1)/2} \exp\left[\frac{2\pi i}{12}\left\{(b-c)d + a\,c(1-d^2)\right\}\right] & \text{if d is odd,} \\ \\ -i(-1)^{(c-1)/2} \exp\left[\frac{2\pi i}{12}\left\{(a+d)c + b\,d(1-c^2)\right\}\right] & \text{if c is odd.} \end{array} \right.$$

Note that $\phi(-1_2)=-1$, and that $\ker(\phi)$ is a congruence subgroup of level 12 and of index 12. (It can be shown that the kernel is the commutator subgroup.)

In order to construct modular units in \mathfrak{F}_{Γ} , we define a set A'_k in the following. Let k be an integer with $0 \le k \le n$. Let $s = \pm 1$, and put $k = k \varepsilon$. Put $A'_k = A'_k^{(1)} \cup A'_k^{(-1)}$, where $A'_k^{(\varepsilon)}$ is a set defined as follows. First, suppose M = 1. If k = 0, then put $A'_0^{(1)} = A'_0^{(-1)} = (1/p^n) \mathbf{Z}^2 - \mathbf{Z}^2$, and define the sign of $u \in A'_0$ to be 1. If $k \ge 1$, then let $A'_k^{(\varepsilon)}$ be the set of all pairs $u = (a, \varepsilon)$ with $a \in (1/p^{n+h})\mathbf{Z} \times (1/p^{n-h})\mathbf{Z} - \mathbf{Z}^2$. We call ε the sign of u. When the sign is specified, we identify u with its row vector part a. Formally, we define the type of $u \in A'_k$ $(0 \le k \le n)$ to be 1, and denote it by t(u). Next, suppose M = p. Put $A'_k^{(\varepsilon)} = (1/p^{n+h}r)\mathbf{Z}\sqrt{r} \times (1/p^{n-h}r^*)\mathbf{Z}\sqrt{r^*} - \mathbf{Z}\sqrt{r} \times \mathbf{Z}\sqrt{r^*}$, where r = p or 1 according as $\varepsilon = 1$ or -1, respectively. If $u \in A'_k^{(\varepsilon)}$, we call ε the sign of u, and r the type of u. We denote the type of u by t(u).

Let $u=(a_1\sqrt{r}, a_2\sqrt{r^*})$ be an element of A_k' of sign ε and type r. Put $h=k\varepsilon$ and $u^\circ=(a_1, a_2)$ $(\in \mathbb{Q}^2-\mathbb{Z}^2)$. We define the function $g_{k,u}(\tau)$ on the upper half plane \mathfrak{P} by

$$(1.9) g_{k,u}(\tau) = g_u \circ (\sqrt{r/r^*} p^h \tau).$$

These functions $g_{k,u}$ will generate the unit group \mathcal{G} .

We state the fundamental properties of $g_{k,u}$ in the following. For r=1 or M, put $Z^{(r)} = \mathbb{Z}\sqrt{r} \times \mathbb{Z}\sqrt{r^*}$. For $v = (b_1\sqrt{r}, b_2\sqrt{r^*}) \in Z^{(r)}$, let $v^\circ = (b_1, b_2)$ $(\in \mathbb{Z}^2)$. For $u \in A_k'$ with t(u) = r and $v \in Z^{(r)}$, put $s(u, v) = s(u^\circ, v^\circ)$. Let $\alpha = \begin{pmatrix} a\sqrt{s} & b\sqrt{s^*} \\ c\sqrt{s^*} & d\sqrt{s} \end{pmatrix}$ be any element of $G(\sqrt{M})$, where $a, b, c, d \in \mathbb{Z}$, s=1 or M. Let r be as above. Put $\alpha^{(r)} = \begin{pmatrix} a(r, s) & b(r, s^*) \\ c(r^*, s^*) & d(r^*, s) \end{pmatrix}$. Then $\alpha^{(r)}$ is an element of $SL_2(\mathbb{Z})$. Let $E_k^{(1)}$ (resp. $E_k^{(-1)}$) $(0 \le k \le n)$ be the subset of $G(\sqrt{M})$ consisting of all elements α satisfying $bs * \equiv cs * \equiv 0 \pmod{p^k M}$ (resp. $as \equiv ds \equiv 0 \pmod{p^k M}$). Put $E_k = E_k^{(1)} \cup E_k^{(-1)}$. Then E_k and $E_k^{(1)}$ are subgroups of $G(\sqrt{M})$. The group E_k acts on the set A_k' as follows. Let α be an element of $E_k^{(\delta)}$ $(\delta = \pm 1)$ expressed as above. Let

(1.10)
$$u = \left(\frac{x}{p^{n+h}r} \sqrt{r}, \frac{y}{p^{n-h}r^*} \sqrt{r^*}\right)$$

be an element of $A_k^{\prime(\varepsilon)}$ of type r $(h=k\varepsilon)$, where x, $y \in \mathbb{Z}$. We denote by $u \circ \alpha$ the element of $A_k^{\prime(\delta\varepsilon)}$ given by

(1.11)
$$u \circ \alpha = \begin{cases} \left(\frac{ax + p^{h}cry}{p^{n+h}r} \sqrt{r}, \frac{p^{-h}br^{*}x + dy}{p^{n-h}r^{*}} \sqrt{r^{*}} \right) & \text{if } \delta = 1, \\ \left(\frac{p^{-h}ar^{*}x + cy}{p^{n-h}r^{*}} \sqrt{r^{*}}, \frac{bx + p^{h}dry}{p^{n+h}r} \sqrt{r} \right) & \text{if } \delta = -1. \end{cases}$$

Then the mapping $u\mapsto u\circ\alpha$ is a group operation. Let $A=\begin{pmatrix} 1 & 0 \\ 0 & p^h \end{pmatrix}$, and put $\alpha_{(h)}=A^{-1}\alpha A$ or $p^hA^{-1}\alpha A^{-1}$ according as $\delta=1$ or -1. Then $\alpha_{(h)}\in G(\sqrt{M})$, and $u\circ\alpha=u\alpha_{(h)}$. (In [8], $\alpha_{(h)}$ was written as $\alpha^{(h)}$. Since we have already defined the notation $\alpha^{(r)}$, this expression is misleading.) The fundamental properties of the function $g_{k,u}$ are described in the following proposition ([8, Proposition 3.1]).

PROPOSITION 1.1. Let u be an element of A'_k of sign ε and type r. Put $h=k\varepsilon$.

- (1) Let $v \in Z^{(\tau)}$. Then $g_{k,u+v}(\tau) = \varepsilon(u,v)g_{k,u}(\tau)$.
- (2) Let $\alpha \in E_k$. Then $g_{k,u}(\alpha(\tau)) = \psi_u(\alpha) g_{k,u \circ \alpha}(\tau)$, where $\psi_u(\alpha) = \psi((\alpha_{(h)})^{(r)})$.
- (3) Let $\alpha \in \Gamma$ ($\subset E_k^{(1)}$). Then $g_{k,u}(\alpha(\tau)) = \varepsilon_u(\alpha) \psi_u(\alpha) g_{k,u}(\tau)$, where $\varepsilon_u(\alpha) = \varepsilon(u, v)$ with $v = u \cdot \alpha u$ ($\in Z^{(\tau)}$).

This proposition implies that the function $g_{k,u}^{12N}$ belongs to the group \mathcal{F} of the modular units in \mathfrak{F}_{Γ} . The function $g_{k,u}^{12N}$ depends only on the residue class of u modulo $Z^{(r)}$, and is invariant under the exchange $u \to -u$.

Put $\mathcal{A}_k'^{(\varepsilon)} = (A_k'^{(\varepsilon)}/Z^{(r)})/\{\pm 1\}$ and $\mathcal{A}_k' = \mathcal{A}_k'^{(1)} \cup \mathcal{A}_k'^{(-1)}$. Then for an element u of \mathcal{A}_k' , the notation $g_{k,u}^{12N}$ is well defined. For elements of \mathcal{A}_k' , we again use the terminology sign and type. Let $\mathcal{G}_k^{(1)}$ (resp. $\mathcal{G}_k^{(-1)}$) $(0 \le k \le n)$ be the subset of \mathcal{G}_I consisting of all elements $\begin{pmatrix} a\sqrt{s} & b\sqrt{s^*} \\ c\sqrt{s^*} & d\sqrt{s} \end{pmatrix}$ (mod I) with $bs^* \equiv cs^* \equiv 0 \pmod{p^kM}$ (resp. $as \equiv ds \equiv 0 \pmod{p^kM}$). Put $\mathcal{G}_k = \mathcal{G}_k^{(1)} \cup \mathcal{G}_k^{(-1)}$. Then \mathcal{G}_k and $\mathcal{G}_k^{(1)}$ are subgroups of \mathcal{G}_I . The group \mathcal{G}_k acts on the set \mathcal{A}_k' in a manner similar to the case of E_k . Namely, for $\alpha \in \mathcal{G}_k^{(\delta)}$, and for $u \in \mathcal{A}_k'$ of sign ε and type r, we denote by $u \circ \alpha$ the element of \mathcal{A}_k' of sign $\delta \varepsilon$ given by (1.11). In particular, the group C_k acts on \mathcal{A}_k' , and the group $\pm D_k$ acts trivially. Hence the group G_k/H_k acts on \mathcal{A}_k' . Let $u \in \mathcal{A}_k'$ and $\alpha \in \mathcal{G}_k$. Then

$$(1.12) (g_{k,u}^{12N})^{\sigma(\alpha)} = g_{k,u,\alpha}^{12N}.$$

4. We shall see that any element of \mathcal{F} can be expressed as a product of

the functions $g_{k,u}$ modulo constants. In fact, the set A_k' is superfluous. We define a subset $A_k^{(\epsilon)}$ of $A_k'^{(\epsilon)}$ as follows. Let u be an element of $A_k'^{(\epsilon)}$ expressed as (1.10). Then $A_k^{(\epsilon)}$ is the subset of $A_k'^{(\epsilon)}$ consisting of all u with the following property. When $k \neq n$, (x, p) = (y, p) = 1. When k = n, (x, p) = 1 or (y, p) = 1 according as $\epsilon = 1$ or -1. Put $A_k = A_k^{(1)} \cup A_k^{(-1)}$. Let $A_k^{(\epsilon)}$ be the subset of $A_k'^{(\epsilon)}$ corresponding to $A_k^{(\epsilon)}$. Put $A_k = A_k^{(1)} \cup A_k^{(-1)}$. We call elements of A_k or A_k primitive. Put

$$(1.13) w_k = \left(\frac{1}{p^{n+k}M}\sqrt{M}, 0\right),$$

which is an element of A'_k of sign 1 and of type M. If k=n, w_n is primitive. Then the set $(G_k-G_{k+1})/H_k$ corresponds to the set \mathcal{A}_k bijectively by the mapping $\alpha \mapsto w_k \circ \alpha$. Hence $|\bigcup_{k=0}^n \mathcal{A}_k|$ is equal to the number of the cusps of the curve X_{Γ} . We define a subset $\mathcal{R}_k^{(\varepsilon)}$ of $A_k^{(\varepsilon)}$ to be the set of all elements $u \in A_k^{(\varepsilon)}$ which satisfy one of the conditions (i) or (ii):

- (i) $1 \le x \le (p^{n+h}r-1)/2$, $0 \le y \le p^{n-h}r^*-1$,
- (ii) $x=0, 1 \le y \le (p^{2n}r^*-1)/2.$

(Case (ii) occurs only when k=n and $\varepsilon=-1$.) Put $\mathcal{R}_k=\mathcal{R}_k^{(1)}\cup\mathcal{R}_k^{(-1)}$. The set \mathcal{R}_k (resp. $\mathcal{R}_k^{(\varepsilon)}$) is a complete set of representatives of \mathcal{A}_k (resp. $\mathcal{A}_k^{(\varepsilon)}$). In [8, Section 6], we assumed $p\neq 2$, 3. But from the beginning of [8, Section 6.2] to the end of the proof of [8, Theorem 6.2], the assumption $p\neq 3$ is not used. So that [8, Theorem 6.2] holds including the case p=3, which is the following.

THEOREM 1.1. Any element g of the unit group \mathfrak{F} can be expressed as $g = c \prod_{0 \le k \le n} \prod_{u \in \mathfrak{R}_k} g_{k,u}^{m,(k;u)}$, where $c \in k_N^{\times}$ and m(k;u) are integers.

By [8, (4.3)], the product $\prod_{0 \le k \le n} \prod_{u \in \mathcal{R}_k} g_{k,u}$ is a constant. By [8, Theorem 4.1], this is the only relation among the functions $g_{k,u}$ with $u \in \mathcal{R}_k$.

5. Let φ be the embedding (1.3). Put $R_{\mathbf{q}} = R \otimes \mathbf{Q}$ and $R_{\mathbf{c}} = R \otimes \mathbf{C}$. Let θ be the element of $R_{\mathbf{Q}}$ defined by

$$\theta = \frac{1}{12N} \varphi(\operatorname{div}(g_{n,w_n}^{12N})).$$

(This element plays an analogous role to the Stickelberger element in the theory of cyclotomic fields.) The explicit expression of θ can be given by [8, Proposition 3.2]. Let u be an element of \mathcal{A}'_k expressed as $u=w_k \circ \alpha$ with $\alpha \in G_k$. Put $G(u)=\{\beta \in G_k \mid u=w_k \circ \beta\}$. Then $G(n)=\alpha H_k$, and we have ([8, (4.2)])

(1.15)
$$\varphi(\operatorname{div}(g_{k,u}^{12N})) = 12N\left(\sum_{\beta \in G(u)} \beta\right)\theta.$$

(In the proof of (1.15), [8, Proposition 3.3] was used. In order to prove the proposition, the author used direct calculations of divisors. But it follows im-

mediately from (1.12) without any calculations of divisors.) In particular, u is primitive if and only if the order of α is k. If the element u runs through the set of all primitive elements, then the elements $\sum_{\beta \in G(u)} \beta$ constitute a basis of R over Z. For each $0 \le k \le n$, let \mathcal{X}_k be the set of characters \mathcal{X} of the group G_k/H_k which satisfy $\mathcal{X}|H_{k-1} \ne 1$ when $k \ge 1$. Put $\mathcal{X} = \bigcup_{k=0}^n \mathcal{X}_k$. If $\mathcal{X} \in \mathcal{X}_k$, we say that the *order* of \mathcal{X} is k, and denote it by $\operatorname{ord}(\mathcal{X})$. For every $\mathcal{X} \in \mathcal{X}$ ($\operatorname{ord}(\mathcal{X}) = k$), put

(1.16)
$$e_{\chi} = \frac{1}{|G_b|} \sum_{x \in G_b} \chi(x) x^{-1}.$$

Then the set of all elements e_{χ} is a basis of R_c over C, and also they satisfy the orthogonality relation ([8, Proposition 1.2]): for $\chi_i \in \mathcal{X}$ (i=1, 2), $e_{\chi_1} \cdot e_{\chi_2} = e_{\chi_1}$ if $\chi_1 = \chi_2$, or =0 otherwise. Let $B_{2, k, \chi}$ be the Bernoulli Cartan number associated with χ of order k. For the definition of $B_{2, k, \chi}$, see [8, (4.1)]. Then the element e_{χ} is an eigenvector of θ :

$$\theta e_{\chi} = \left(\frac{1}{2} p^n \overline{B_{2, k, \chi}}\right) e_{\chi},$$

where the overline indicates the complex conjugate. If $\chi=1$ is the trivial character of G/H_0 (ord(1)=0), then $B_{2,0,1}=0$. If $\chi\neq 1$, then $B_{2,k,\chi}\neq 0$ ([8, Proposition 5.2-5.5]).

2. Determination of the unit group on $X_1(3^m)$.

1. From now on until to the end of this paper, we assume p=3. In this section, we determine the unit group \mathcal{F} on the curve X_{Γ} which is isomorphic to the curve $X_1(3^m)$. This section is similar to [8, Section 6].

By Theorem 1.1, any element of \mathcal{F} can be written as a product of the Siegel functions. Here we study conditions under which a product of Siegel functions $g_{k,u}$ belongs to \mathcal{F} . For each $0 \le k \le n$, let $m(k;): A'_k \to \mathbb{Z}$ be a mapping such that m(k;u)=0 except for a finite number of u. Put

(2.1)
$$g = \prod_{0 \le k \le n} \prod_{u \in A'_k} g_{k, u}^{m(k; u)}.$$

Since the Fourier coefficients of $g_{k,u}$ belong to the field k_N , the condition $g \in \mathcal{F}$ is equivalent to saying that g is a modular function with respect to Γ . By (3) of Proposition 1.1, this condition is equivalent to the following:

(2.2)
$$\prod_{0 \le k \le n} \prod_{u \in A_k'} \{ \varepsilon_u(\alpha) \psi_u(\alpha) \}^{m(k;u)} = 1 \qquad \forall \alpha \in \Gamma.$$

We note that ε_u and ψ_u are characters of the group Γ . Let us assume that u is written as (1.10). For $\alpha \in \Gamma$, let us write as

(2.3)
$$\alpha = \begin{pmatrix} 1 + aN & 3^n b \sqrt{M} \\ 3^n c \sqrt{M} & 1 + dN \end{pmatrix}$$

where $a, b, c, d \in \mathbb{Z}$. Then using the condition $\det(\alpha)=1$, we have $\varepsilon_u(\alpha)=\exp[(2\pi i/2)\xi]$, where ξ is an element of Q satisfying

(2.4)
$$\xi \equiv 3^{n-h} a r^* x (bx+1) + 3^{n+h} d r y (cy+1) + b x \left(\frac{x}{3^{n+h} r} + 1\right) + c y \left(-\frac{y}{3^{n-h} r^*} + 1\right) \pmod{2Z}.$$

LEMMA 2.1. If $\alpha \in \Gamma(4 \cdot 3^n NO)$, then $\varepsilon_u(\alpha) = \psi_u(\alpha) = 1$.

PROOF. Easily verified by (1.8) and (2.4).

Q. E. D.

Put $G_{(4)} = \Gamma/\Gamma(4\mathcal{O})$, and $G_{(3)} = \Gamma/\Gamma(3^nN\mathcal{O})$. Then $G_{(4)} \cong SL_2(\mathbf{Z}/4\mathbf{Z})$, and $\Gamma/\Gamma(4\cdot 3^nN\mathcal{O}) \cong G_{(4)} \times G_{(3)}$. Let α_4 and β_4 be elements of Γ such that $\alpha_4 \equiv \begin{pmatrix} 1 & \sqrt{M} \\ 0 & 1 \end{pmatrix} \pmod{4}$, $\beta_4 \equiv \begin{pmatrix} \frac{1}{\sqrt{M}} & 0 \\ \sqrt{M} & 1 \end{pmatrix} \pmod{4}$, and $\alpha_4 \equiv \beta_4 \equiv 1_2 \pmod{3^nN}$. Let α_3 , β_3 , γ_3 be elements of Γ such that $\alpha_3 \equiv \begin{pmatrix} 1 & 3^n\sqrt{M} \\ 0 & 1 \end{pmatrix} \pmod{3^nN}$, $\beta_3 \equiv \begin{pmatrix} 1 & 0 \\ 3^n\sqrt{M} & 1 \end{pmatrix} \pmod{3^nN}$, $\gamma_3 \equiv \begin{pmatrix} 1 - N & 0 \\ 0 & 1 + N \end{pmatrix} \pmod{3^nN}$, and $\alpha_3 \equiv \beta_3 \equiv \gamma_3 \equiv 1_2 \pmod{4}$.

LEMMA 2.2. The elements α_l , β_l (l=3, 4), and γ_3 generate the factor group $\Gamma/\Gamma(4\cdot 3^nN\mathcal{O})$.

PROOF. Elementary.

Q.E.D.

LEMMA 2.3. $\varepsilon_u(\gamma_3) = \psi_u(\gamma_3) = 1$.

PROOF. Easily verified by (1.8) and (2.4).

Q.E.D.

LEMMA 2.4. (1) $\psi_u(\alpha_3) = \exp\left[(2\pi i/N)3^{n+h-1}rN\right]$. $\varepsilon_u(\alpha_3) = \exp\left[(2\pi i/N)\xi_1\right]$, where ξ_1 is an integer satisfying $\xi_1 \equiv 2^{-1}3^{n-h}r^*x^2 \pmod{N}$.

(2) $\psi_u(\beta_3) = \exp\left[(2\pi i/N)(-3^{n-h-1}r*N)\right]$. $\varepsilon_u(\beta_3) = \exp\left[(2\pi i/N)\xi_2\right]$, where ξ_2 is an integer satisfying $\xi_2 \equiv -2^{-1}3^{n+h}ry^2 \pmod{N}$.

PROOF. These can be proved by (1.8) and (2.4). Since the proof is similar to that of [8, Lemma 6.4], we omit it.

Q.E.D.

LEMMA 2.5. (1)
$$\varepsilon_u(\alpha_4) = 1$$
. $\psi_u(\alpha_4) = \exp[(2\pi i/4)(-3^k r)]$. (2) $\varepsilon_u(\beta_4) = 1$. $\psi_u(\beta_4) = \exp[(2\pi i/4)3^k r^*]$.

PROOF. These can be proved by (1.8) and (2.4). Since the proof is similar to that of [8, Lemma 6.5], we omit it.

Q.E.D.

By these lemmas and (2.2), we have the following

THEOREM 2.1. Let g be a function given by (2.1). Then g belongs to the

680 T. TAKAGI

unit group F if and only if the relations (i), (ii), (iii) hold:

- (i) $\sum_{0 \le k \le n} \sum_{u \in A'_k} 3^{n-h} r^* x^2 m(k; u) (N/3) \sum_{u \in A'_k} (-1) m(n; u) \equiv 0 \pmod{N}$.
- (ii) $\sum_{0 \le k \le n} \sum_{u \in A'_k} 3^{n+h} r y^2 m(k; u) (N/3) \sum_{u \in A'_n(1)} m(n; u) \equiv 0 \pmod{N}$.
- (iii) $\sum_{0 \le k \le n} \sum_{u \in A'_k} 3^k rm(k; u) \equiv 0 \pmod{4}$.

PROOF. By Lemmas 2.1-2.3, the condition is equivalent to saying that the relation (2.2) holds for the four elements α_l and β_l (l=3, 4). If we put $\alpha=\alpha_3$ (resp. β_3) in (2.2), then we obtain the relation (i) (resp. (ii)) by Lemma 2.4. If we put $\alpha = \alpha_4$ in (2.2), then we obtain the relation (iii) by Lemma 2.5. If we put $\alpha = \beta_4$ in (2.2), then again by Lemma 2.5, we obtain a congruence relation (iii') which is (iii) with r replaced by r^* . Since $r^*M \equiv r \pmod{4}$, (iii') is equivalent to (iii). Q.E.D.

By Theorems 1.1 and 2.1, we have the characterization of the unit group \mathcal{F} .

THEOREM 2.2. The unit group \mathcal{F} consists of all functions g of the form $g = c \prod_{0 \le k \le n} \prod_{u \in \mathcal{R}_k} g_{k,u}^{m(k,u)}$, where $c \in k_N^{\times}$ and m(k;u) are integers satisfying the relations (i), (ii) and (iii) of Theorem 2.1 where A'_k , $A_n^{(-1)}$, $A'_n^{(1)}$ are replaced by \mathcal{R}_k , $\mathcal{R}_n^{(-1)}$, $\mathcal{R}_n^{(1)}$, respectively.

Calculation of the cuspidal class number of $X_1(3^{2n})$.

1. We reduce the problem of calculating the cuspidal class number to a problem of purely algebraic nature in the ring R. This section is similar to [8, Section 7].

Let φ be the embedding (1.3) of \mathcal{D} into R. Then $\varphi(\mathcal{D}_0)=R_0^c$. We determine the image of $\operatorname{div}(\mathfrak{F})$. Let α be an element of C_k . Then the elements $3^{n-k}a(\alpha)^2t(\alpha) \pmod{N}$ and $3^{n-k}b(\alpha)^2t(\alpha)^* \pmod{N}$ of $\mathbb{Z}/N\mathbb{Z}$ are dependent only on the coset class $\pm \alpha D_k$. So for any element $\alpha \in G_k/H_k$, we can define two elements $3^{n-k}a(\alpha)^2t(\alpha)$ and $3^{n-k}b(\alpha)^2t(\alpha)^*$ of $\mathbb{Z}/N\mathbb{Z}$. Let I_4 be the set of all elements $\sum_{\alpha \in G} m(\alpha) \alpha$ of R $(m(\alpha) \in \mathbb{Z})$ which satisfy the following conditions (i)-(iii):

(3.1)

$$(i) \sum_{k=0}^{n} \sum_{\alpha \in (G_{k} - G_{k+1})/H_{k}} 3^{n-k} a(\alpha)^{2} t(\alpha) m(\alpha) - (N/3) \sum_{\alpha \in G_{n}^{(-1)}} m(\alpha) \equiv 0 \pmod{N},$$

$$(ii) \sum_{k=0}^{n} \sum_{\alpha \in (G_{k} - G_{k+1})/H_{k}} 3^{n-k} b(\alpha)^{2} t(\alpha)^{*} m(\alpha) - (N/3) \sum_{\alpha \in G_{n}^{(1)}} m(\alpha) \equiv 0 \pmod{N},$$

(ii)
$$\sum_{k=0}^{n} \sum_{\alpha \in (G_k - G_{k+1})/H} 3^{n-k} b(\alpha)^2 t(\alpha)^* m(\alpha) - (N/3) \sum_{\alpha \in G^{(1)}} m(\alpha) \equiv 0 \pmod{N}$$

(iii) $\sum_{\alpha \in G} t(\alpha) m(\alpha) \equiv 0 \pmod{4}$.

PROPOSITION 3.1. $\varphi(\operatorname{div}(\mathcal{F})) = I_4 \theta$.

PROOF. Since the proof is similar to that of [8, Proposition 7.1], we give

only a sketch. Let $g=c\prod_k\prod_u g_{k,u}^{m(k;u)}$ be any element of \mathcal{F} (Theorem 2.2). Then by (1.15), $\varphi(\operatorname{div}(g))=\sum_k\sum_u\sum_{\alpha\in G(u)}m(k\,;u)\alpha\theta$. For any $\alpha\in G$, put $m(\alpha)=m(k\,;u)$, where $k=\operatorname{ord}(\alpha)$ and $u=w_k\circ\alpha$. Then $\varphi(\operatorname{div}(g))=(\sum_{\alpha\in G}m(\alpha)\alpha)\theta$. When $u=w_k\circ\alpha$, we have $3^{n-h}t(u)*x^2\equiv 3^{n-k}a(\alpha)^2t(\alpha)\pmod{N}$, and $3^{n+h}t(u)y^2\equiv 3^{n-k}b(\alpha)^2t(\alpha)*\pmod{N}$. Also, $u\in\mathcal{R}_n^{(-1)}$ (resp. $\mathcal{R}_n^{(1)}$) if and only if $\alpha\in G_n^{(-1)}$ (resp. $G_n^{(1)}$). Hence, the equations (i) and (ii) of Theorem 2.2 become (i) and (ii) of (3.1), respectively. If we use $|H_k|=3^{n-k}\equiv 3^{n+k}\pmod{4}$, we can prove that the equation (iii) of Theorem 2.2 is equivalent to (iii) of (3.1).

Q.E.D.

This proposition implies that the cuspidal class number is equal to the index $[R_0^c: I_4\theta]$. Put $\mu = \sum_{\alpha \in G} \alpha$.

LEMMA 3.1. $[R_0: R_0^c] = 3^a$, where $a = 3^{m-2}(2n^2 + 4n) - n$. (Here, m is the exponent of $N = 3^m$, namely m = 2n or 2n + 1).

PROOF. This follows from the definitions of R_0 and R_0^c . Since the proof is exactly the same as that of [8, Lemma 7.1], we omit it. Q.E.D.

LEMMA 3.2. $\xi \in I_4$ and $\xi \theta = 0$ if and only if $\xi \in \mathbf{Z}\mu$.

PROOF. Since $\deg(\theta)=0$, we have $\mu\theta=(\deg(\theta))\mu=0$. The fact $\mu\in I_4$ can be verified directly. (But the calculation is not so easy.) As another proof, we can use the fact that the product $g=\prod_{0\leq k\leq n}\prod_{u\in\mathcal{R}_k}g_{k,u}$ is a constant. Since g belongs to \mathcal{F} , Theorem 2.1 and the proof of Proposition 3.1 imply $\mu\in I_4$. Conversely, let $\xi\in R_c$ and $\xi\theta=0$. Then by the same argument as in the proof of [8, Lemma 7.2], we have $\xi\in C\mu$. Hence, if $\xi\in I_4$, then $\xi\in Z\mu$. Q.E.D.

2. Now we assume $N=3^{2n}$, so M=1. Put $\theta'=\theta-s$, where $s=(1/4)\mu$.

LEMMA 3.3: $I_4\theta = R_0 \cap (I_4\theta' + \mathbf{Z}\mu)$.

PROOF. The inclusion $I_4\theta \subset R_0$ follows from Proposition 3.1. For $\xi \in I_4$, we have $\xi\theta = \xi\theta' + \xi s = \xi\theta' + (\det(\xi)/4)\mu \in I_4\theta' + Z\mu$. This proves the inclusion \subset . Conversely, let $\eta = \xi\theta' + k\mu$, where $\xi \in I_4$ and $k \in \mathbb{Z}$. Suppose $\deg(\eta) = 0$. Since $\deg(\theta') = -|G|/4$ and $\deg(\mu) = |G|$, we have $\deg(\xi) = 4k$. Hence, $\xi\theta = \xi\theta' + (\deg(\xi)/4)\mu = \xi\theta' + k\mu = \eta$. This proves the reverse inclusion \supset . Q. E. D.

By Lemma 3.3, we have the isomorphism

$$(3.2) R_0/I_4\theta \cong (R_0+I_4\theta'+\mathbf{Z}\mu)/(I_4\theta'+\mathbf{Z}\mu).$$

For an integer d, let R_d denote the set of all $\xi \in R$ such that $\deg(\xi) \equiv 0 \pmod{d}$.

LEMMA 3.4. $R_0 + I_4 \theta' + Z \mu = R_{1G1}$.

PROOF. For $\xi \in I_4$, the fact $\xi \theta' \in R$ is implicit in the proof of Lemma 3.3.

Since $\deg(\xi\theta') = -(\deg(\xi)/4)|G| \in \mathbb{Z}|G|$ and $\deg(\mu) = |G|$, we have the equality of the lemma. Q. E. D.

LEMMA 3.5. The element θ' is invertible in the algebra R_{θ} .

PROOF. Since the set of all e_{χ} is a basis of R_c , we can write $\theta' = \sum a(\chi)e_{\chi}$. Since they are orthogonal idempotents, we have $\theta'e_{\chi} = a(\chi)e_{\chi}$, and θ' is invertible in R_c if and only if $a(\chi) \neq 0$ for all χ . By (1.17) and the definition of θ' , we have $a(\chi) = (3^n/2)\overline{B_{2,k,\chi}} \neq 0$ ($\chi \neq 1$), $-|G|/4 \neq 0$ ($\chi = 1$). Thus θ' is invertible in R_c . Since $\theta' \in R_q$, this implies that θ' is invertible in R_q . Q.E.D.

Now we consider the inclusion:

$$(3.3) R \supset R_{+G+} \supset I_4\theta' + \mathbf{Z}\mu \supset I_4\theta'.$$

By Lemmas 3.1, 3.4 and (3.2), we see that the cuspidal class number is equal to $[R_{1G1}: I_4\theta' + Z\mu]/3^a$, where a is the integer in Lemma 3.1.

LEMMA 3.6. (1)
$$[R:R_{1G1}] = |G| (=4 \cdot 3^{3n-2}).$$

(2) $[I_4\theta' + Z\mu:I_4\theta'] = |G|/4.$

PROOF. (1) This is obvious. (2) The left-hand side is equal to $[\mathbf{Z}\mu: \mathbf{Z}\mu \cap I_4\theta']$. Let $\xi\theta'=k\mu$, where $\xi\in I_4$ and $k\in \mathbf{Z}$. Since θ' has the inverse θ'^{-1} (Lemma 3.5), we have $\xi=k\mu\theta'^{-1}=k\deg(\theta'^{-1})\mu=(-4k/|G|)\mu$. Since $\xi\in I_4$, we have $k\in (|G|/4)\mathbf{Z}$. Put $\xi=-\mu$. Then $\xi\in I_4$ and $\xi\theta'=(|G|/4)\mu$. Thus we have $\mathbf{Z}\mu\cap I_4\theta'=(|G|/4)\mathbf{Z}\mu$. This proves (2). Q. E. D.

For two lattices A and B of $R_{\mathbf{Q}}$, let C be a lattice contained in $A \cap B$. Then [A:C]/[B:C] does not depend on the choice of C. We denote this number by [A:B]. It satisfies the usual multiplicative property, namely [A:B]=[A:D][D:B]. In particular, we have

$$[R:I_4\theta'] = [R:R\theta'][R\theta':I_4\theta'].$$

LEMMA 3.7. (1) $[R:R\theta']=(|G|/4)\prod_{\chi\neq 1}|(3^n/2)B_{2,k,\chi}|.$ (2) $[R\theta':I_4\theta']=4\cdot 3^{4n}.$

Put $\xi_3 = (3^{2n}y)1_G$. Then $\varphi(\xi_1) = (1, 0, 0)$, $\varphi(\xi_2) = (0, 1, 0)$, $\varphi(\xi_3) = (0, 0, 1)$. Hence, φ is surjective. Since $\ker(\varphi) = I_4$, we have the proof. Q. E. D.

By (3.3), (3.4), Lemmas 3.6 and 3.7, we obtain the cuspidal class number.

Theorem 3.1. The cuspidal class number of the modular curve $X_1(3^{2n})$ is given by

$$h_1(3^{2n}) = 3^e \prod_{\chi \neq 1} \left| \frac{1}{2} B_{2, k, \chi} \right|,$$

where $e=2+n+2\cdot 3^{2n-2}n^2$, and χ runs through all characters $\neq 1$ in \mathfrak{X} .

REMARK 3.1. Let h' be the number obtained by the substitution of 3 for p in the formula of [8, Theorem 7.1] (which is the formula for the case $p \neq 2, 3$). Then $h_1(3^{2n}) = h'/3$.

4. Calculation of the cuspidal class number of $X_1(3^{2n+1})$.

1. In this section, we assume $N=3^{2n+1}$, so M=3. Since the case n=0 is exceptional and the genus of the curve $X_1(3)$ is 0, we assume $n \ge 1$. This section is similar to [8, Section 8]. Let $I_{4\cdot 3^{3n}}$ (resp. I_0) be the set of all elements of I_4 which satisfy that the left-hand side of (iii) of (3.1) is congruent to 0 modulo $4\cdot 3^{3n}$ (resp. equal to 0).

LEMMA 4.1. (1)
$$[I_4\theta:I_{4\cdot 3^3n}\theta]=3^{3n-1}$$
. (2) $I_{4\cdot 3^3n}\theta=I_0\theta$.

PROOF. (1) Let $\eta = \xi \theta$, where $\xi = \sum m(\alpha)\alpha \in I_4$. Put $d(\xi) = \{\sum_{\alpha \in G} t(\alpha)m(\alpha)\}/4$ $(\in \mathbb{Z})$. Then the residue class of $d(\xi)$ modulo 3^{2n} depends only on η . In fact, let ξ' be another element of I_4 satisfying $\eta = \xi'\theta$. Then $(\xi' - \xi)\theta = 0$; hence by Lemma 3.2, $\xi' - \xi = k\mu$ with $k \in \mathbb{Z}$. Since $d(\mu) = 3^{3n}$, we have $d(\xi') \equiv d(\xi) \pmod{3^{3n}}$. Now, put $\varphi(\eta) = d(\xi) \pmod{3^{3n}}$. Then φ is a homomorphism from $I_4\theta$ to $\mathbb{Z}/3^{3n}\mathbb{Z}$. Since ker $(\varphi)=I_{4\cdot 3^3n}\theta$, it is sufficient to prove Im $(\varphi)=3\mathbb{Z}/3^{3n}\mathbb{Z}$. Let η and ξ be as above. Then $\varphi(\eta) \equiv d(\xi) \equiv 4d(\xi) \equiv \sum_{\alpha \in G(1)} m(\alpha) \pmod{3}$. When $k \neq n$, $|H_k| =$ $3^{n-k} \equiv 0 \pmod{3}$. So we have $\varphi(\eta) \equiv \sum_{\alpha \in G_{\mathfrak{p}^{(1)}}} m(\alpha) \pmod{3}$. The condition (i) of (3.1) implies that the latter is congruent to 0 modulo 3. Hence we have $\operatorname{Im}(\varphi)$ $\subset 3\mathbb{Z}/3^{3n}\mathbb{Z}$. Next, put $\xi=16\cdot 1_G-4\alpha$, where α denotes the element of $G_n^{(1)}$ represented by $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Then $\xi \in I_4$ and $d(\xi)=3$. This proves (1). (2) Since $d(\mu)$ =3³ⁿ, we have $\mu \in I_{4\cdot 3^{3n}}$. If $\xi \in I_{4\cdot 3^{3n}}$, then $d(\xi)=3^{3n}k$ with $k \in \mathbb{Z}$. Hence $d(\xi - k\mu) = 0$; namely, $\xi - k\mu \in I_0$. This implies $I_{4.33n} = I_0 + Z\mu$. So by Lemma Q.E.D. 3.2, we have $I_{4.33n}\theta = I_0\theta$.

By Proposition 3.1, Lemmas 3.1 and 4.1, we see that the cuspidal class

number is equal to $[R_0: I_0\theta]/3^{a+3n-1}$, where a is the integer in Lemma 3.1. For an element $\xi = \sum_{\alpha} m(\alpha)\alpha$ of R, write $\xi_+ = \sum_{\alpha \in G^{(1)}} m(\alpha)\alpha$ and $\xi_- = \sum_{\alpha \in G^{(-1)}} m(\alpha)\alpha$. Put $\theta' = \theta - s$, where $s = (1/4)\sum_{\alpha \in G} t(\alpha)^*\alpha = (1/4)(3\mu_+ + \mu_-)$.

LEMMA 4.2. (1) $I_0 s \subset \mathbb{Z} \mu_+$. (2) $I_0 \theta = R_0 \cap (I_0 \theta' + \mathbb{Z} \mu_+)$.

PROOF. (1) For $\xi \in R$, we have $\xi s = (1/4)(\xi_+ + \xi_-)(3\mu_+ + \mu_-) = (1/4)\{3 \deg(\xi_+) + \deg(\xi_-)\}\mu_+ + (1/4)\{\deg(\xi_+) + 3 \deg(\xi_-)\}\mu_-$. If $\xi \in I_0$, then $\deg(\xi_+) + 3 \deg(\xi_-) = 0$. Hence $\xi s = -2 \deg(\xi_-)\mu_+ \in \mathbf{Z}\mu_+$. This proves (1). (2) The inclusion \subset follows from (1). Let $\eta = \xi \theta' + k\mu_+$, where $\xi \in I_0$ and $k \in \mathbf{Z}$. Suppose $\deg(\eta) = 0$. Since $\deg(\theta') = -\deg(\mu_+)$, we have $k = \deg(\xi)$. Put $\eta_1 = \xi \theta = \xi \theta' + \xi s$. (1) implies $\xi s = k_1\mu_+$ with some $k_1 \in \mathbf{Z}$. Then we have again $k_1 = \deg(\xi) = k_1\mu_+$. Hence $\eta = \eta_1 \in I_0\theta$. This gives the reverse inclusion \square .

By Lemma 4.2, we have the isomorphism

(4.1)
$$R_0/I_0\theta \cong (R_0 + I_0\theta' + Z\mu_+)/(I_0\theta' + Z\mu_+).$$

For an integer d, let R_d denote the set of all $\xi \in R$ such that $\deg(\xi) \equiv 0 \pmod{d}$.

LEMMA 4.3. $R_0 + I_0 \theta' + Z \mu_+ = R_{1G(1)}$.

PROOF. For $\xi \in I_0$, $\xi \theta' = \xi \theta - \xi s \in R$ (Lemma 4.2). Since $\deg(\xi \theta') = -\deg(\xi) |G^{(1)}|$ and $\deg(\mu_+) = |G^{(1)}|$, we have the equality. Q. E. D.

LEMMA 4.4. The element $\xi = 3\mu_{+} - \mu_{-}$ belongs to I_{0} , and satisfies $\xi \theta' = 3^{2n-1}\mu - 2 \cdot 3^{2n-1}(3^{n+1}+1)\mu_{+}$.

PROOF. We can verify by direct calculations that both μ_+ and μ_- satisfy (i) and (ii) of (3.1). This implies $3\mu_+ - \mu_- \in I_0$. Next, we have $\xi\theta' = 4\deg(\theta_-)\mu - 8\{\deg(\theta_-) + \deg(s_-)\}\mu_+$. (Here, the relations $\mu_- = \mu - \mu_+$, $\deg(\theta_+) = -\deg(\theta_-)$, and $\deg(s_+) = 3\deg(s_-)$ are used.) Since $\deg(\theta_-) = 3^{2n-1}/4$ and $\deg(s_-) = 3^{3n}/4$, we have the result. (The calculation of $\deg(\theta_-)$ is not so easy. In [8, Lemma 8.4], we calculated it directly. But there is another method. Here, let p be any prime $\neq 2$. Let χ_0 be the non-trivial character of G/H_0 such that $\chi_0 \mid G^{(1)} = 1$. We see easily $\theta e_{\chi_0} = (-2\deg(\theta_-))e_{\chi_0}$. Then by (1.17), we have $-2\deg(\theta_-) = (p^n/2)B_{2,0,\chi_0}$. On the other hand, we have $B_{2,0,\chi_0} = -(p-1)p^n/6$ ([8, Proposition 5.5]). This gives the value of $\deg(\theta_-)$.)

LEMMA 4.5.
$$I_0\theta' + Z\mu_+ = I_{4.33n}\theta' + Z\mu_+$$
.

PROOF. The inclusion \subset is obvious. In the proof of Lemma 4.1, we obtained $I_{4\cdot 3^3n}=I_0+Z\mu$. Since $\mu\theta'=\deg(\theta')\mu=-3^{8n}\mu$, we have $I_{4\cdot 3^3n}\theta'=I_0\theta'+Z^{3^3n}\mu$. By Lemma 4.4, $3^{3n}\mu=3^{n+1}\xi\theta'+2\cdot 3^{3n}(3^{n+1}+1)\mu_+\in I_0\theta'+Z\mu_+$, where $\xi=3\mu_+-\mu_-$. This implies the reverse inclusion \supset . Q. E. D.

Let χ_0 be the unique non-trivial character of G/H_0 such that $\chi_0 | G^{(1)} = 1$.

LEMMA 4.6. The element θ' is invertible in the algebra R_q .

PROOF. As in the proof of Lemma 3.5, write as $\theta' = \sum a(\chi)e_{\chi}$. Then it is sufficient to show $a(\chi) \neq 0$ for all χ . By (1.17) and the definition of θ' , we have $a(\chi) = (3^n/2)\overline{B_{2,k,\chi}} \neq 0$ ($\chi \neq 1$, χ_0), $-3^{2n-1}(3^{n+1}+1)/2 \neq 0$ ($\chi = \chi_0$), $-3^{3n} \neq 0$ ($\chi = 1$). This proves the lemma. Q.E.D.

Now we consider the inclusion:

$$(4.2) R \supset R_{+G(1)} \supset I_{4\cdot33n}\theta' + \mathbf{Z}\mu_{+} \supset I_{4\cdot33n}\theta'.$$

By Lemmas 4.3, 4.5 and (4.1), we see that the cuspidal class number is equal to $[R_{1G(1)}]: I_{4\cdot 3^3n}\theta' + \mathbf{Z}\mu_+]/3^{a+3n-1}$, where a is the integer in Lemma 3.1.

LEMMA 4.7. (1)
$$[R: R_{+G(1)+}] = |G^{(1)}| (=3^{3n}).$$

(2) $[I_{4\cdot3^{3n}}\theta' + \mathbf{Z}\mu_{+}: I_{4\cdot3^{3n}}\theta'] = 2\cdot3^{3n}(3^{n+1}+1).$

PROOF. (1) This is obvious. (2) Put $l=2\cdot 3^{3n}(3^{n+1}+1)$. It is sufficient to prove $\mathbf{Z}\mu_+\cap I_{4\cdot 3^{3n}}\theta'=l\mathbf{Z}\mu_+$. Let $\xi\theta'=k\mu_+$, where $\xi\in I_{4\cdot 3^{3n}}$ and $k\in\mathbf{Z}$. Then $\xi=k\mu_+\theta'^{-1}$. Put $\xi_0=3\mu_+-\mu_-$. By Lemma 4.4, $l\mu_+\theta'^{-1}=3^{3n}\mu\theta'^{-1}-3^{n+1}\xi_0=-(\mu+3^{n+1}\xi_0)$. Put $\eta_0=\mu+3^{n+1}\xi_0$ ($\in I_{4\cdot 3^{3n}}$). Then $\xi=(-k/l)\eta_0$. Since $\xi\in I_{4\cdot 3^{3n}}$ and $\deg((\eta_0)_+)+3\deg((\eta_0)_-)=4\cdot 3^{3n}$, we have $k\in l\mathbf{Z}$. This proves the inclusion \subseteq . The reverse inclusion \supseteq follows from $l\mu_+=-\eta_0\theta'$. Thus (2) is proved. Q. E. D.

Similarly to (3.4), we have

$$[R:I_{4\cdot 3^{3n}}\theta'] = [R:R\theta'][R\theta':I_{4\cdot 3^{2n}}\theta'].$$
 Lemma 4.8. (1) $[R:R\theta']=(1/6)3^{5n}(3^{n+1}+1)\prod_{\chi_{\neq 1},\chi_{0}}|(3^{n}/2)B_{2,k,\chi}|.$ (2) $[R\theta':I_{4\cdot 3^{3n}}\theta']=4\cdot 3^{7n+1}.$

PROOF. (1) Let $\theta'e_{\chi}=a(\chi)e_{\chi}$. Then $[R:R\theta']=|\det(\theta')|=|\Pi a(\chi)|$. The eigenvalues $a(\chi)$'s are given in the proof of Lemma 4.6. This proves (1). (2) Since θ' is invertible, we have $[R\theta':I_4\theta']=[R:I_4]$. Let $\varphi:R\to (Z/3^{2n+1}Z)^2\times (Z/4\cdot3^{3n}Z)$ be the homomorphism defined by $\varphi(\xi)=(\varphi_1(\xi),\,\varphi_2(\xi),\,\varphi_3(\xi))$, where $\varphi_1(\xi),\,\varphi_2(\xi),\,\varphi_3(\xi)$ are the left-hand sides of (i), (ii), (iii) of (3.1), respectively. Let $\phi:(Z/3^{2n+1}Z)^2\times (Z/4\cdot3^{3n}Z)\to (Z/3Z)^3$ be the homomorphism induced by the reduction. Let A be the subgroup of $(Z/3Z)^3$ consisting of all elements (x,y,z) which satisfy $x\equiv z\pmod{3}$. Put $G=\phi^{-1}(A)$. Now we prove $\varphi(R)=G$, which implies the desired equation $[R:I_{4\cdot3^{3n}}]=4\cdot3^{7n+1}$. First, put $\xi_1=-1_G+\alpha$, $\xi_3=4\cdot1_G-\alpha$, and $\xi_2=3\beta-3\xi_3$, where 1_G denotes the unity of G, α denotes the element of $G_n^{(1)}$ represented by $\binom{2}{0}$, and β is the element of $G_n^{(-1)}$ represented

by $\binom{0}{1}\binom{1}{0}$. Then $\varphi(\xi_1)=(3,0,0)$, $\varphi(\xi_2)=(0,3,0)$, $\varphi(\xi_3)=(0,0,3)$. This implies $\varphi(R)\supset\ker(\phi)$. Second for $\xi=\sum m(\alpha)\in R$, we see easily $\varphi_1(\xi)\equiv \varphi_3(\xi)\equiv \sum_{\alpha\in G_n^{(1)}}m(\alpha)\pmod 3$. This implies $\varphi(\varphi(R))\subset A$. Lastly, we have $\varphi(1_G)\equiv (1,0,1)\pmod 3$ and $\varphi(\beta)\equiv (0,1,0)\pmod 3$. Since A is generated by (1,0,1) and (0,1,0), we have $\varphi(\varphi(R))\supset A$. Summarizing these results, we have $\varphi(R)=G$. Q. E. D.

By (4.2), (4.3), Lemmas 4.7 and 4.8, we obtain the cuspidal class number.

THEOREM 4.1. Let $h_1(3^{2n+1})$ be the cuspidal class number of the modular curve $X_1(3^{2n+1})$. If $n \ge 1$, then

$$h_1(3^{2n+1}) = 3^e \prod_{\chi \neq 1, \chi_0} \left| \frac{1}{2} B_{2, k, \chi} \right|,$$

where $e=1+2n+2\cdot 3^{2n-1}(n+n^2)$, and χ runs through all characters $\neq 1$, χ_0 in χ . If n=0, then $h_1(3)=1$.

REMARK 4.1. Let h' be the number obtained by the substitution of 3 for p in the formula of [8, Theorem 8.1] (which is the formula for the case $p \neq 2$, 3). Then $h_1(3^{2n+1}) = h'/3$ if $n \geq 1$, $h'/3^2$ if n = 0.

References

- [1] V.G. Drinfeld, Two theorems on modular curves, Functional Anal. Appl., 7 (1973), 155-156.
- [2] S. Klimek, Thesis, Berkeley, 1975.
- [3] D. Kubert and S. Lang, The index of Stickelberger ideals of order 2 and cuspidal class numbers, Math. Ann., 237 (1978), 213-232.
- [4] D. Kubert and S. Lang, Modular Units, Grundlehren der Mathematischen Wissenschaften, 244, Springer-Verlag, Berlin-New York, 1981.
- [5] J. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 19-64, (AMS translation).
- [6] A. Ogg, Rational points on certain elliptic modular curves, In AMS Conference, St. Louis, 1972, pp. 211-231.
- [7] T. Takagi, Cuspidal class number formula for the modular curves $X_1(p)$, J. Algebra, 151 (1992), 348-374.
- [8] T. Takagi, The cuspidal class number formula for the modular curves $X_1(p^m)$, J. Algebra, 157 (1993), 515-549.
- [9] H. Weber, Lehrbuch der Algebra, Vol. III, Chelsea, New York.
- [10] J. Yu, A cuspidal class number formula for the modular curves $X_1(N)$, Math. Ann., 252 (1980), 197-216.

Toshikazu TAKAGI
College of Arts and Sciences
Showa University
Hatanodai, Shinagawa-ku, Tokyo 142
Japan