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§0. Introduction.

In this paper we are concerned with the decay property of the solutions to
the Cauchy problem for the semilinear wave equation with a dissipative term:

Up—Aut+u,+ f(u) =0 in RNX[O, co)
o

u(x, 0)=uy(x) and wuyx, 0) =u,(x),

where f(u) is a nonlinear function like f(u)=|u|%u, a>0.

As far as the existence and the uniqueness are concerned, the dissipative
term u, causes no difficulty and the known results for the usual nondissipative
equations remain valid. That is, the problem (P) admits a weak solution u(f)e
L>([0, o) ; H'N L )NW'=([0, «); L?) for each (u,, u;) e H'NL**2XL? (cf.
Strauss [St70]), and moreover, such a solution belongs to C([0, o); HY)
CY[0, oo); L? and is unique if 0<a<4/(N—2) 0<a<co if N=1, 2) (cf. Ginibre
and Velo [GV85], Brenner etc.). Further, roughly speaking, if 0<a<
4/(N—2) and (u,, u,) are smooth, the solution u is also smooth. (Cf. Jérgens
[J061], Pecher [Pe76], Brenner and W.v. Wahl etc.. See also Grillakis
for the case N=3, a=4.)

The purpose of this paper is to derive certain decay rates in several energy
norms of the solutions of the problem (P) by use of the effect of the dissipative
term u,. When 0<a<2/(N—2), we can employ a rather standard energy method
to show, for example, in the typical case N=3 and a=2,

%IIIDED;"+1—iu(t)II < Cm+1(1+t)—(m+l)/2,
=0

where cn,; is some positive constant depending on [|u,| gm+1+1u1lzm.
For the case 2/(N—2)<a<4/(N—2), however, our problem is more delicate
and we must utilize precise L?-L%-estimates for the linear equation. In this
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case our purpose will be achieved by combining these L?-L%-estimates with the
energy method. It should be noted that by such a combination we can derive
a sharper decay estimate of the energy even for the case 4/ N<a<2/(N—2)
under the additional condition (u,, ¥,)L" X L", 1<r<2, which is also an object
of this paper.

Although our main interest lies in the case N=3 and 2<a <4 we treat for
generality the cases 1=<N=<6 and 0<a<<4/(N—2).

For the linear equation a closely related result was obtained by A. Matsu-
mura and there the result was applied to the proof of global existence
and decay for some semilinear wave equations with small initial data, while
here we make no smallness condition on the data.

§1. Statement of the results.

We denote by D*, k=1, 2, ---, any partial differential operators of order %
with respect to ¢ and x;, =1, ---, N. In particular D, and D; denote such
differential operators in space variable x=(x,, -+, xy) and the time variable ¢,

respectively. Pairs of conjugate indices are written as p, p’, where 1/p+1/p’
=1.

We use only standard function spaces Hp (L?=H), H*=H3) equipped with
the norm

Iy = 157 KE*AEN I,

where <&>=(1+1£|%"? and |lu||, denotes the usual LP-norm (we use |u| for
lull,), and ¢ denotes the Fourier transform:

F (u(x)}(§) = 2() = @ ee ¢ P utx)dx.

We summarize the assumptions on the nonlinear term f(x) in the following.

HyYPOTHESIS. (i) f(u) is a continuous function on R and satisfies the con-
ditions

(1.1a) fau z kP 20, Fa=2{ fody,
for some constant k>0 and

(1.1b) [f)| Skgluler

for some constants ky>0 and a>0.
(i) f(u) belongs to C'(R) and satisfies

(1.2) L f/(u)] < kylul®
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for some constants k,>0 and a>0.
(iii)  f(u) belongs to C:R) and satisfies
(1.3) [ f7(u)| = kapfuftetI”

for some constants k,>0 and a>0, where we use the notation a*=max{0, a}.

We shall pick up freely appropriate set of assumptions on f(u) from Hyp.
(i)-(iii).

Our first two theorems are concerned with the decay of the usual energy
E@) = Eu@) = Huz(t)llz+HVu(t>HZ+SRNF(u(t))dx :

THEOREM 1. (i) Let (u,, u)H'XL? and let Hyp. (i) be satisjied with a
such that

(1.4a) 0<a<4/(N-2) 0<a<e if N=1, 2).

Then, the solution u(t)e C([0, «o); HHYNCY[O, «); L?) of (P) has the boundedness
and decay property

(1.4b) [u@® = ¢, and E@) = c(1+0)7".
(i) Moreover, if 1<N=Z3, (uy, u)eH'NL"XL*NL", 1=r<2, and
(1.5a) 4/N < a < 2/(N-2) 4/ N<a<w if N=1,2),

then we have

(1.5b) lu®l < e;(14+t)"7 and E@) £ cy(1-+1)717%7
with

Ns1oo 1
(150 =3 %)

where ¢, denotes positive comstants depending on (uollgi+llull or fwollgi+fu.l+
eollr + 12l

REMARK 1.1. Strauss established the existence of a weak solution
u(t)e L2([0, o) HINL**HNWE([0, o) ; L* of (P) for any 0<a< e by use of
an approximation method. Our result is valid for the solution in
without any restriction on a.

When 4/N<a<4/(N—2) and 3<N=6, the decay rate of E(t) is improved as
follows.

THEOREM 2. Let 3<N=<6 and let Hyp. (i)-(ii) be satisfied with a such that

(1.6a) 4/N <a <4/(N—-2),
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and further let the initial data (u,, u,) belong to H*N\L"XH'"NL7, 1=r=2,
Then, we have

(1.6b) lu@l = c.(1+8)"7 and E@) < co(14+8)717%7
with

. (N1 1\ Na
(1.6c) p=min{z(—-—5) "}

where ¢, denotes positive constants depending on |[ue) me+ |ts]l 1+ %ol {24l

REMARK 1.2. (i) The solution u(¢) in belongs to MN3-, C¥[0, );
H* %) (see the proof of and Remark 1.3 below).
(if) For the decay rate » of L*norm of solution u(#), we note that

» = min {%(—le—%), Nf} = g—(%—%) if 1<N=<4 and a>4/N.

When «a satisfies the condition:
0<a<4/(N=2) (O<a<co if N=1,2),
the results of Theorems 1 and 2 are summarized in a convenient form
(1.72) lut)l < co(14+8)"7 and [|Du@)] = c(1+D7"1,
where » and 6, are defined by

min {%(%——l-) Nﬂ} if a>4/N

(1.7b) n= 27 4

0 if a<4/N,
and
(1.7¢) 0, =1/2+7 .

In what follows, we denote by ¢, various positive constants depending on
ol m+a % || arm [ oll 4221 1.
Our third result reads as follows.

THEOREM 3. Let 1SNZ5 and (uy, u)SHNL"XH'NLT, 1272, and let
Hyp. (i)-(ii) be satisfied with a such that

(1.8a) 4/ NSa <4/(N—-2) 4/ N<a<oo if N=1,2).
Then, it holds that
(1.8b) oo+ IV O+ Au@)]| = ca(1-+2)772

with



Semilinear wave equation 621

(1.8¢c) 0,=1/2+6, =149,
where v is the number given by (1.7b).

REMARK 1.3. Even in the case 0<<a<4/N, we can derive some decay rate.
Indeed, if 1<N=<4 and 0<a<4/N, or if N=5 and 0<a<2/(N—2), then
holds true with 6, replaced by

(1.8d) f.=1/24+w,
where w=w(a) is
o .
g if N=1
% if N=2 and a=2
(1.8e) 0=
%_e if N=2 and a<2 (0<e<1)
a .
- (N-Da if N23.

Note that w(a) is a monotone increasing function of a<(0, 4/N] such that 0<
w=1/2. Further, for the case N=5 and 2/(N—2)<a=<4/N, we could show a
similar result to the above with a certain >0 by use of an L%estimate (see
6.12)).

When (u,, u,)sH™"'X H™, m=2, we can show by a standard argument that
the solution u(f) belongs to u(H)eNmy! CY[0, «); H™**%). Concerning such a
smooth solution, we give two theorems.

THEOREM 4. Let 1<NZ5 and (uy, u)eHNL" XH*NL", 1Zr<2, and let
Hyp. (i)-(iii) be satisfied with a such that (1.8a) holds. Then, we have

(1.92) S DD u(t)| < cy(1+8)0
with
(1.9b) 05 =1/2+6,=3/2+7,

where v is given by (1.7b).
REMARK 1.4. When 0<a=<4/N, we have with @, replaced by
(1.9¢) fy=40,+0=1/24+20 (see Remark 1.3).

THEOREM 5. Let 1SNZ5 and (uy, u ) EH™NL*XH™NLT, 1=r<2, with
m=3. Assume that f(u) is an m-times continuously differentiable function and
satisfies Hyp. (1)-(iii) with a such that



622 S. KawasHimMa, M. Nakao and K. Ono

(1.10a) 0<a<4/(N-2) O<a<oo if N=1, 2).

When N=1, we assume further that f(u)is at least four times differentiable and
satzsfies

(1.10b) [fDu)] < ky|u|tart-a? near u=0, i=3, 4.

Then, we have
(1.10¢) BUDIDE - u(@)| < cpr(l48 0101, 1=i=m,
1=0

where we set

?,g},Jr,? if 2<N<5, or N=1 and az=4
(1.10d) 0100 =

a, 1 . ~
—g“l-l-—z” Zf N=1 and 6¥§4

with n given by [(1.7b).

REMARK 1.5. By we know that the solutions u(¢) are uniformly
bounded in L*(R¥)-norm, and under the assumptions of we can show

| fP@)| = es(lu®ll)u@|**,  1=0,1,2,3.
From this, we note that « in Hyp. (i)-(iii) may be chosen as
a>4/N if 3<N<5 and a =4/N if N=2.

In particular, we can always take

y = -1;’-(—}-—%-) if 3<N<5.
REMARK 1.6. (i) When N=6, the results of Theorems 1-5 hold under a
restricted condition 0<a<2(N—1)/(N—2)(N—3) (<4/(N—2)) (see (7.4b)), though
Theorem 5 must be modified a little when 3=<m<[N/2]+1.
(ii) If we relax the inequalities in Hyp. (i)-(iii) as

(L.1y | f)| = ko(ful ™ 4 [u |72t
(L.2y [ f)] = Ra(lue] 1+ [u|®2)
(L.3y | f7(w)] < hofu|t7117 - [ | Lo2717)

with 0<a,<4/(N—2), i=1, 2, respectively, then all the results are valid if «a,,
i1=1, 2, satisfy the conditions on a.
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§2. Some Lemmas.
We use the following lemmas. The first one is well known.

LEMMA 2.1 (Gagliardo-Nirenberg). Let 1Sr<p=<oo, 1=<¢=<p and m=0. Then,

the inequality
(2.1a) Wi, = cIDFvlgvlli=?  for vEHFNLT

holds with some ¢>0 and

o 1= ()

provided that 0<0=<1 (0<0<1if 1<qg<oco and m—N/q ts a nonnegalive integer).
The second one is useful in deriving decay rate of the energy.
LEMMA 2.2. Let ¢(t) be a nonnegative function on R*=[0, o), satisfying

(2.2a) sup @(s)' "= ko(1+0° {¢(H) — pt+1)} +A(t)

tssst+1

for some ky>0, a>0, B<1 and a function h(t) with

(2.2b) 0= h(t) £ ky(1+8)7
for some k>0 and y>0. Then, ¢(t) has a decay property

- . (1-8 7

0 _— — - [
(2.2¢) o) < co(l+07, 0 =min{-_F, T},

where ¢, denotes a positive constant depending on ¢(0) and other known constants.

Proor. The proof is given in Nakao under a little stronger as-
sumption hA(t)=o0(t™"), y=1+a)1—B)/a, as t—co. Here, we give another proof
which improves it as above.

We may assume y/(1+a)=(1—-8)/a, i.e., 0<y=(14+a)(1—pB)/a. Suppose that
was false. Then, for any large K>0, there exists 7°>1 such that

¢(t) = K(l+t)"7/(1+a) for OétéT——l/z
and
OT) = KQ+T)ra+re

(We can easily prove ¢()'*“*<max{ck;, ¢'ky@d0)+c”k,} <co.) Taking t=T-—1 in
the inequality we see

K *(14+T)7 < by TH{KT 1100 — K(14T) 114} 4y (14T

and, taking K so large as K> min {2k, 1},
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2.3) KWe(1+T) 7" < 2R KT BT 11040 (14 T) 1/ 0% a2}
= 2Rk K(14-T)P -1/ (1 Ty 0 — 1}
< CxK(1+T)f-rioro
for some C4x>0. Since y=(14a)(1—pB)/a we have from
Ko< Co(14T)Priarat < Cy,
which is a contradiction if we choose K>CJ“. Q.E.D.
The third one is convenient in deriving [%-estimate.

LEMMA 2.3. Let y(t) be a nonnegative function on [0, T), T>0 (possibly
T=c0), and satisfy the integral inequality

(2.4a) y(@) = ko(1+t)‘“+kIS:(1+t—S)‘ﬁ(1+8)"y(8)"ds
for some ko, o, >0, a, B, y=20 and 0=pu<1. Then
(2.4b) y@ < cQ+0)7*
for some constant ¢>0 and
— mi . Br=l
(2.4c) 0 = mln{a, B, I~ 1-p },
with the following exceptional case: If a=6 and (ﬁ+r—1)/(1~y):9§1, where
5 — mi .
(2.4d) v = mm{ﬁ, 1~#},
then
(2.4¢) y(®) < c(L+8)"2(log 2-+1)Hem

REMARK 2.1. Once we know y(t) is bounded function, we can apply
2.3 also to the case p=1. In particular, if y>0 and 8+y—1>0, we obtain
(2.4b) with

2.46) 6 = min {a, B}.

We note that even for the exceptional case, (2.4b) is valid if @ is replaced by
6—e, 0<ekl.

Proor. The case p=0 is well known. Although the case 0<<p<1 also
seems to be known, we give a proof for completeness. We define M(?) by

(2.5) M) = sup, {1492 y(s)}.

Then, we have from [2.4a) and [2.5) that




Semilinear wave equation 625

(1) = /eo(1+l‘)”'+klg:(1+t—S)“ﬂ(l—l—S)’T"’”dSM(t)"

< k(141" %+ c(1+8)"*M(t)*

with a constant ¢>0 and 6*={§, y+p6, f+7y+pf—1}, where we assumed that
B+#1 and y+pf+1. Here, it is easy to see min{a, §*} =6 and hence

(L+0Py (1) < kgt M@~ .

Since 0<<p<1, this inequality implies M(t)=C <o, which is equivalent to (2.4b).
The exceptional case where §=1 or y+puf#=1 can be proved in a similar way.
Q.E.D.

§3. LP-L%estimates for the linear equation.

In this and the next sections we consider the linear wave equation with a
dissipative term:

Upe—Au+u, = f(x, 1) in R¥x[0, o)
(3.1) {

u(x, 0) = uo(x) and wu,(x, 0) =u,(x).

The result for the linear equation [3.1) seems to be interesting itself apart from
nonlinear problem.

The solution u(#) of the problem is given through Fourier transform:
(3.2a) aE, ) = anE )+1,E 1.

Here, we define

06, 1) = S (G, D66, D@8, D0(E)
(3.2b)

I 0= 948 t—97(& s,
where we set

¢1(5’ ) = e—t/z{et(1—41512>1/2/2+e—c(1~4|6|2>‘/2/2}
(3.2¢) ot/

$l&, ) = (1;41'5'{'2‘51’;28

ta-as1H 22 p-ta-n89 22

Using the formula (3.2) we shall derive L?-L%estimates for u(t). The argu-
ment itself is rather standard and related to the nondissipative case (cf. Brenner
[Br75], Pecher [Pe76], Mochizuki etc.). Indeed, recently Racke
has given some L?-L%estimates for the dissipative equation in more general
setting including with f(x, t)=0 for the case N=3. For our purpose, how-
ever, we need a little more preciser estimate than those in [Ra90]. See also
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Matsumura for a closely related result.
We take X;=C=(RY), i=1, 2, 3, such that

1 if [§]=1/4
X1(5):{ .
if [§1z1/3,

0 if |§]=2/3
Xy(6) = {

if [£§]1=3/4,
and

%06 = 1-4(6)—X(§), l.e, glli(é): 1.
Our main step is the following.

PROPOSITION 3.1. Let v belong to C5(RY). Then, we have:
(i) For 1=p=2, 2£q= o0, and yER,

3.3) IF 7 {gu(€, DEWE gy = cAF-O)™ POl i=1, 2.

(i) For 1<p<2 and y<R,
3.4) IF @&, DXEVEN gy = ce™ vl =12,

with some 0<<y<<1/2.
(iii) For 1=p=2, y=R and an integer k=0,

(3.52) [ F7H{Gu(&, DAEDEN I 7, = ct= Vv ap=tm et ey,
with some 0<v<1/2, provided that
11 J e if i=1
3.5b +N+I)——5) =
(3:50) T >(1> 7) | e+1  if i=2.
(iv) For v=R,
, ce™ vl yr if i=1
(3.6) F = {Bi(&, DXL(EWEN} |y = . o
ce il yr-1 if 1=2

with some 0<v<1/2.

PROOF. Noting that

|96, H(E)] < ce N (8),  i=1,2,

and using the Hausdorff-Young inequality we have

3.7a) IF=Hu(&, DNEDE} g7 = IF~H{<EDTP:(€, X(E)D(E} g

=1, 2,
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< clgue, L@@y = of [esrmner 0@ agf ™

IA

c{ge"‘f'zp'q"“""q"dé

}(pl_ql)/plql

o)l
< VOB p(@)], £ etV a0, i=1,2,
We also observe for 1=1, 2,

(3.7b) 1F 7@€, HUEVEN |y

1/q’
< o({uer m@wde)™ < cio@l, < el .

The inequality follows from (3.7a-b).
Next, we shall show [3.4). For this, it suffices to show

<607 @:(§, Ko@)l < ce™,  i=1, 2.
The case 7=1 is easier and we treat the case /=2. Now, we have

3.8) <657 @a(&, DXo(E)leo

B Ly S BOP
- 1/4516s8/4 H1—4|&1%)42/2 .
with some 0<y<1/2, which proves [3.4).
Next, we shall prove (3.5). The cases 7=1, 2 are proved similarly, and we
consider the case 7=2 only. From
e-t/2

68 = sqep_pin {e™1g(E, )—e " EIgE, —1))

with (&, f)=e @D we see that

B9 IF (&, DUOIEO} | gy, = 1F 7LD ol DUEOEN} 5

ST

g e*‘t/Z{

+”g—1{x3(g>m<|§2_r i 46, —peretp@| L= ey,

The first term /? on the right hand side of (3.9) is estimated as follows. Since
r+(N+1)(1/p—1/2)<k+1, we can choose

<E>r|5|(1v+1)(1/p~1/2>
(41&1°=1)"*1&1*

as a Fourier multiplier on supp X, (&)C{|&]=2/3} (cf. [Ho60], [Mi65, p. 2327])
to get
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. git1él R
e G GO C) | I
Next, we take X=C=(R) such that
0 if |s|=1/4
As) = {
1 if |s]1=1/2.

Then, we can choose [&]*/33X, X(&,)|&;]* as a Fourier multiplier on supp Xs(§) to
get

2 N
It<c3}|g

) 161496, g S @],

Moreover, we regard X(&;)|&;]*/&% as a Fourier multiplier to get

gﬁ\

it1é)

gttt

“g X3(5)¢(§ t)]EI<N+1>(1/p 172) ifv(g)}“p'

Finally, we can choose ¢(&, t) as a Fourier multiplier on supp Xs(§) to get
ettifl
11 = o+0Y 35 1 o Samam D@ -

At this stage we can apply an estimate used for the LP?-L?'-estimation of the
usual wave equation (cf. [Br75], [Pe76]) to get
I% g C(1+t)Nt—2N(1/p_1/2)+(N+l)(”p_1/2)||D§va

— c(1+t>Nt—(Ar—1)(1/p—1/2)”D’;v”p .

The second term of (3.9) is treated in the same way and we obtain the desired
estimate (3.5), i=2.

Finally we note that follows easily from the Parseval identity. Q.E.D.

Summing up the above estimates (3.3)-(3.6) in [Proposition 3.1, we have the
following.

COROLLARY 3.1. (LP-L?-estimate). [For 1<p<2, yeR and veCYR"Y), it
holds

”9;—1{¢£($’ HD(€)} ”m})’g c{(l—f—t)'N“”’”””+L“<N‘”“/p"”2’e"”} ”v“p, i=1,2,

with some 0<v<1/2, provided that y+(N+1X1/p—1/2)<i—1, i=1, 2.

Applying Proposition 3.1 to the equation or using similar argument as
in the proof of [Proposition 3.1, we can obtain the desired L?-estimate of the
solution u(¢) of the linear equation [3.1).
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ProOPOSITION 3.2. (i) Let (u,, uy)€H'NL"XL*N\L", 1=r=<2, and let f&
L7([0, 00); LPNL?), 1<p=<2. Then, the solution u(t) of (3.1) satisfies

(3.10) lu@lle < cQ4+-OY YT D (gl 4l [l)+ce ™ (ol 14 l2)

e (tsyHamrmi f(5)ds-+e| e f9)lds

with some 0<<y<<1/2.

(ii) Let (u,, u)eH™'NL"XH™NL", 1=r<2, m=0 and let f& L3([0, o);
LP1), Dt fe LT[0, o0); L?), 1<p,, p<2, k=0 being an integer. Then, the solu-
tion u(t) satisfies

B.11a)  u@®l, = cA+5)~ VIO ug |+ usllr) +ce ™ (1ol mmsr+ ] m)

el =gy amr f(9)],,ds

el (s DA DL (s) | ds

with some 0<<v<<1/2, provided that

m+1 _ 1 1 m—+1
A e —— < o0 e — —
(3.11b) N ZTT 2Ea4E, (N > if g= )
and there exists y>0 such that
Lor 11 LT 0 if =
(3.11¢) {1
r+<N+1)(—5—§) < h+1.

Proor. The proof of (i) is easier and we shall give the proof of (ii) only.
Recall that u(t)=u,(t)41,(t) (see (3.2)). We assume 2=<g<oo. (The case g=o0
is treated quite similarly by a trivial modification.) First, we use the Sobolev
embedding theorem that

m+1 q - e
H c L if - oTEN 7

Then, we see by [Proposition 3.1]

lur@lly = 1F7H{ga(€, DXER(E)/2} ],
HIFH{ge(&, DXENR(E)/2+ 2 (ED}

¢ S IFHGE, DLERE)/2} 11
HIFH{Po(§, DX(EN@o(E)/ 2+ W (EN} | rrm +1}
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< ¢4~V VO R (gl A+ fJuy )4 ce” (ol Nl fl2)

+ee ™ (uoll gm+1+lurll gm) .

Next, we use

. 1 1 1
(3.12) Hp c Lt if 1— ?—£ s S1-5, 0.
Then, we see by [Proposition 3.]|
B13) L@l o 157 g6, SO FE S}y

TIT 648, SMESE
HIF o, XE)FE gy, Hds

< c§:{<1+t—s>-N<wl-w>/2||f<s>||p1+e-v<t-s>nf<s>np2

+(E—s)" N WPTUR D DE f(s)] p} ds

where k is a nonnegative integer, p, is any number with 1<p,=<2, (7., Do)
should satisfy the condition and (7, p) should satisfy the condition
and y+(N+1)(1/p—1/2)=<k+1. When 1=p=<2and 2<¢g< oo, there always exists
y satisfying [3.12). Hence, we can take p,=p, (1=p,=2) in [3.13) and this
gives (3.11). Q.E.D.

ReEMARK 3.1. (i) When we use (3.11a), the additional condition

1 1 . ~2(N-=-1)
5 2)<1, e, p>
is made for the convergence of the last integral.
(ii) Furthermore, when k=1 and Nz=3, for this p in [3.14), we can take

any ¢ such that

(3.14) (N-l)(

(3.15) 1 2 1<1 1

1 1
sy oY
2 NTN\; z)zqzl )
(g=oo is possible only if 1/2—2/N+4(1/N)1/p—1/2)<0). In particular, we can
take g=oo if N=3.

§4. Energy decay for the linear equation.

In this section we shall derive some difference inequalities concerning the
energy E(®)=lu.)|*+[Vu®)||* for the linear equation [3.I), which is useful in
deriving the decay rate of the solutions for the nonlinear equation.

PROPOSITION 4.1. Let f(t)e Lio([0, o0); L?) and let u(t) be the solution of
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the problem (3.1) which belongs to C([0, o0); HYNCY[0, =); L?). Then, the
following inequality holds:
(4.1a) sup E(s)<c {D(t)2+(D(t)+5(t))tsssgg>ﬂIlu(S)H+5(t)2},

tssst+l
where ¢>0 is a constant and
(4.1b) D) = EQ)—EGt+1)+00)® and 6@ = S:H]{f(s)llzds.
(Nonnegativity of D(t)? easily follows from (4.2) below.)

PrOOF. The proof is essentially included in Nakao [Na83] and we sketch
it briefly. Multiplying the equation by u, and integrating over R”, we have

d
“2) 5 EEOHION = (O, ), (9=,

which implies
4.3) SZ“nuxs)nst < eD(t).

Thus, there exist t,=[t, t+1/4], t,=[t+3/4, t+1] such that
lut)ll < 2¢D@), i=1,2.

Next, multiplying the equation by u and integrating over R¥ %[#,, t,], we have

(4.4 [1muclrds = s s+ uatt), u)—Guts), ue)

| o), usnds+ 709, utsas
< D +e(DO+(0), sup_ u(s)] = A
It follows from (4.3) and that there exists t*<[¢, #,] such that
E) < 2| "E(s)ds < cAW.
Returning to (4.2), we obtain easily
sup B9 = B+ | lud)tds+ | I us)lds
< cAD@®H(DO+3(E), sup, [u()]+3(E)}.

Q.E.D,

In application of [Proposition 4.1 to the nonlinear equation we will take
— f(wu,, —D*f(u), etc. for f(¢), and the following is convenient.
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PROPOSITION 4.2. In the inequality (4.1a), we assume further

(4.52) [u@®? < ko(14-2)"°
and
(4.5b) IO < B+ +A+DE®*+1A+1) 2 E@®)}

with some ko, £,>0, a=0, b, ¢, d>0 and 0<pu<l. Then, E(t) has the decay
property

(4.5¢) E@®) < (14077,

where c¢; is a constant depending on E(0) and other known constants, and >0 is
given by

at+b c atc
21—y 2—p

4.5d) = min{1+ a, b, , a+ d} :

PrROOF. It is clear from (4.2) and (4.5b) that E(¢) is locally bounded, i.e.,

(4.6) EQ=cEQ), T)=c <o, 0T,

for any T>0. Now, we see from (4.1) that

sup E(s)' < ¢{D@®'+ sup [u(9)]% Dy

tssst+
+eBOHE A+ sup ()]
< ¢{B(t)+ sup [u(s)|*} {E@O—EG+D)
+cB(0E()+cde) 801+ sup_ [u(s)]*
and
,gs,‘;RlE(SV = C{E(l‘)-i-tglslgl lu(HIPHE®—E(+1)}
+06(t)2{5(t)2+t§§ggﬂllu(8)ll’}
= c{E@Q+A+0)"HEW®~E@+1)}
{142+ (A1) > E()*
+A+) T E@ A+ E@+ A+ E®)Y .
Hence, there exists 7,>0 such that if ¢t>7T,,
(4.7a) zgss';RlE(s>2 = AEQ+A+)HEG—E@+ D} +c(1+8)7

with
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(4.7b) y = min{2b, a-+b, Tzicp’ ?‘iz“—_%l, 2a+d)}.

Here, we observe that E(f) is bounded on [0, «). Indeed, if E(#)<E(t+1) for
some t=T,, then (4.7) implies
sup E(s? S c(I4) 7 Ci < 0
tssst+l

and we conclude

E®) < max{r,,:,‘irpwE(S)’ Ca},
that is, by use of (4.6),
4.8) E@) £ ¢(E0)) < = on {0, o).

In what follows, we denote by ¢, various positive constants depending on E(0).
By and (4.7) we see first

Sup E(s)* = e {E@)—E(t+ D} +e(1+)77
and hence, by Lemma 2.2,
(4.9 EM) < e(14+8"%, 6, = min{l, y/2}.
Returning to (4.7) and using the estimate just obtained we see

sup E(s)? < ¢,(14¢)y ™int@- 00 {F)— E@¢+ 1} +c(1+0)77

tssst+l

and hence, yields

E@t) < (14772, 6, = min {1+ min {a, 6.}, y/2}.
Repeating this procedure indefinitely, we have

E@) < c,(148)7m, 0. = min {1+ min{a, 0.}, 7/2}

for m=2, 3, 4, ---. Since #,=min{1+a, y/2} for large m and we arrive at the
estimate (4.5¢-d). Q.E.D.

Now, let us return to the linear equation and the inequality (4.1a).

PROPOSITION 4.3. (i) Suppose that f=0 and (u,, u, )= H'NL™ X L*N\L7,
1=r=<2. Then, the solution u(t) of (3.1) meets the decay property:

(4.102)  Ju@®l < c(1+H) VYU gnd  E(t) < ¢y(14-1)" VW1

(i) Moreover, if (u,, u)eH™'NL"XH™NL", 1r<2, m=1, we have

-

@10D)  "BIDIDET D] £ cp(lHt)y YOIy

i=0
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PrROOF. (4.10a) follows immediately from Propositions B.2 and 4.2. Next,
differentiating the equation, we get

Up—AU+U, =0
with U(x, ty=Du(x, t). Since
U@ = 1Du@* < e+, 20,=1+N(+—),
Proposition 4.2 implies
IU@IIPHINUD]? < ca(141)71 720,
Repeating this argument we obtain [4.10b). Q.E.D.

§5. Proof of Theorem 1.
Now, we are in a position to treat the nonlinear equation:
{ Up—Au+u+ f(u) =0 in RYx[0, o)

u(x, 0) = uo(x) and u.(x, 0) = u,(x).

(5.1a)
Setting
G1b) B = @+ IVuel+ | Famids,  Fa =2 fopdy,

the same argument yielding (4.1a) can be applied to (5.1) without any essential
changes and (4.1a) remains valid for FE(?) defined above and for d(#)=0 (i.e.,
f@#®)=0). To show the boundedness of ||u(t)], we first note that

(5.2 E® +{ uds)lds = EO) < o0,

which follows by multiplying (5.1) by u, and integrating over R¥ X[0, o).
Further, multiplying (5.1) by u we have

£ {0t w5 O el 1T+ rudz = 0
and by Hyp. (@),
SO < 5 ol w)+ e @i+ Tusoltds

which together with implies
(5.3) lu@®] = e(E0)) < 0.

Thus, applying [Proposition 4.2 with f(1)=0 and a=0 to (5.1), we obtain

(5.4) E) < a(1+07, and |1Du@®)<c,(1+1)712,
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where D denotes D; and D,. The former part of is now proved.
To show the latter part we must improve the estimate (5.3). For this, we
utilize with p=1 in Proposition 3.2/ and Hyp. (i) to get

G5 U@l S e+ e (Lt Y I u(s) | sids

o] e sl ds
Here, to estimate the second and the third terms on the right hand side of
(5.5), we need the following well known interpolation estimates.
CLAM 1. (1) Let a satisfy the condition:
(5.6a) 1<asx(N+2)/(N=-2) (1sa<w if N=1,2).
Then, it holds
(5.6b) lu@lisst = c|Vu@I¥ P 2u@lr,  m=a+l-Na—1)/2,

where we note that p,>1if N=1, 2, and p,>1 for a KN/(N—-2) if N=3.
(ii) Let «a satisfy the condition:

(5.7a) 0<a=2/(N-2) (O=a<w if N=1,2).
Then, it holds
(5.7b) Ju@lgdhn = clVu@ Y lu@ljerr-var,
First, using the estimates (5.4) and (5.6), we see that
(5.8) lu@llati = clVu@I Y P 2lu@]#0 < eI+ VD u@)] .

(Note that from the assumption of (ii) we see g,>1, and therefore
lu@®||#*oZc,lu@)] by [5.3).) Next, using the estimates [5.3), (5.4) and (5.7), we
see that

(5.9) [u@®lgdn = cVu@I¥ 2 fu@) e Y2 < (18N
Thus, it follows from (5.5), and that

G10) (O] £ el [ (Lot ) V(L5 () d

+c, Ste“”“‘“(l—}—s)“‘v“'/‘ds .
0

Here, from 1=<r=<2 and a>4/N>1 (if 1<N<L3), we see

N(l ;

N(a—1)/4>0, N/4+N(a—1)/4—1>0 and Na/4>N/4_>1—:Z— ~
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Thus, applying (see Remark 2.1) to (5.10), we have

_ E(AWL

T 2\r 2/

Moreover, applying [Proposition 4.2 with f(#)=0 and a=2%» to (5.1), we can
obtain

[u@l = e:(1+8)77,

E® < c,(14+8)"%, and ]]Du(t)” < ¢,(14+p)v2 7,
The proof of is now complete.

§6. Proof of Theorem 2.

We consider the nonlinear equation (5.1). Here, we make the hypotheses
Hyp. (@)-(ii)) with N/4Za<4/(N—2), 3<NZL6, and (u,, v )eH*N\L"XH'NLT,
1<7<2. For the proof of we first derive L%*-estimate of the solu-
tion u(t). Let us define gy by

0 for N=3
(6.1) g« =1{ 2N(N—1)

It et A _ < N<

(N—~2)(N——3)+8 for 4<N=<6,

where ¢>0 is sufficiently small. We note that H2C L%,

PROPOSITION 6.1. Under the above conditions (i.e., the condition of Theorem
2), the solution u(t)&Ni=y CH[0, o0); H*"*) satisfies

6.2) 1Bl g0 < oLt ¥ r2rsam sz,

where g* is defined by (6.1).

REMARK 6.1. After is proved, this estimate is in fact
improved a little (see [Proposition 6.2).

PROOF. Let us take px such that

A _ N+l L Ly = AN=1)
(6.3 be AN—T) ST 2TNIT TS M BT oNgoTe

where ¢>0 should be chosen very small. Thus, we see 1<px<<2 and [(3.14) in
Remark 3.1 is satisfied. For this choice of py, ¢« in is given by

gx = oo if N=3
(6.4) 1 1 2 1¢1 1 if 4<N<6 (see [3.15))
a——z'*ﬁw(z;”?) -

We utilize (3.11) in Proposition 3.2 with g=g¢«, p=p« and k=1 to get




Semilinear wave equation 637

65)  Ju@la = el 00 o (Lt gy N () 5 ds

el =92 () | “Dyu()lpuds

with 0=(N—-1)1/px—1/2), 0<d<1, and 1=<p,<2. Here, to estimate the second
term on the right hand side of (6.5), we need the following interpolation esti-
mate in addition to Claim 1.

CLAIM 2. Let N=3 and let a satisfy the condition:

2 B 4 2(2N—3)
(6.62) vor=es (30 <) ey
Then, it holds that
(6.6) Ju(gidn S el Tu@) P ju@)s

with B, and p, satisfying

(L _atl\N—=2 1\- gl

(6.6¢) 28, _(2 . X = q*) . m=a+1-23, .
Movreover, we have

N/1 1 Na
(6.6d) ‘@14—? 7 q*)ﬂl T
and
(6.6e) ﬁﬁg(%———%) > 1 if a<4/(N=2).

%

PROOF OF CLAIM 2. If 2N/(N—-2)=q=gx, then we have by the Gagliardo-
Nirenberg inequality

lu@lly = cllVu@®)? lu@®li?, a:(___)(_m_-_)"‘_

Here, taking ¢=2(a+1), We see

2N 2 I/
=g =Hayg) 20 fazgy
and

_of 2@N—4) oo 2@N-=3)
gx—q = 2((N—~2)(N—~3) a)+a >0 if a< (N—2)(N—3)

which implies (6.6a-c). The relations and (6.6e) are checked directly.
To estimate the third term on the right hand side of (6.5), we need the
following interpolation estimates for 3<N<6,
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CLamM 3. (i) Let a satisfy the condition

2 2 2N
(6.72) v (Sz) S e <aoho—g-
Then, it holds that
(6.7b) | 12(@)]*Dau@®llpe < [ Tu)*24u(t)] -5+
with
. a-+1 1
(6.7¢) 284 = (A_é_“-,p; ,
Moreover, we have
1 _N/1 1 o
6.7d) But 5 > -2—(—2“—5;) if a=4/N.
(i) Let a satisfy the condition
2N 4 2N
(6.82) wonv-2 =< (=2 =) a3
Then, it holds that
(6.8b) Hu@*Du®)ps < cllVu@**P2)u(®)) 2
with
1 1\ ayN—2 1\ )
(680) 2‘82 = ((‘};;“'z—)wq—*) W—q_,;) and Y2 = a~2[32 .
Moreover, we have
Nl o 1
(6.84) Bot 7(7—(1—*)#2 = Bx
with Bs given by [6.7c), and also
(6.8¢) 0= <1l if a<4/(N-2).

ProoF or CrLAIM 3. Noting that 1<p«<2, we can use the Holder inequality
to get

(6.9) @) *Dau®)llpe = cliNu®lu@)lg, % = }}*-—%
Here, if 2<¢<2N/(N—2) we see further
(6.10) lu@lg < cVu@®*u@))*-9

with

@ = aN(%—%) = N(E——Z—E»{f%;) = 2B« .
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Since g=(N—1)a+c¢, the condition 2<¢<2N/(N—2) is equivalent to
2 2N

—efas oo —¢,

N—1 (N—1)(N—2)
and this is certainly valid under our condition on a in (i) if we choose a suf-

ficiently small ¢>0, which implies (6.7a-c). Moreover, we see

(ﬁw%)—g—(%—ql) Nlre>0  if azuN

(see [6.7¢), [6.4) and [6.3)), which implies (6.7d). If 2N/(N—2)<g<g+« we have,
instead of

(6.11) lu@®)llg = clTu®l*? fu@®lg "

with

gx
The condition 2/(N—2)<¢=gx is equivalent to
2N 2N
IO e T E S A S
(N—1)(N—2) (N—2)(N-3)

and satisfied under the condition on a in (ii), which implies (6.8a-d). Finally,
we note that

1—ps = Nti(Nil——a)—s >0 if a<4/(N=-2),

which implies (6.8e).
Now, we are in a position to complete the proof of the L%-decay estimate
(6.2). »
.As the first step, we shall show that the solution u(¢) is uniformly bounded
in L% i.e., '

(6.12) [U(Bllge = €2 < 0 if 2/(N—1=a<4/(N-2).
We set

1 if a>1
(6.13) b= 2 e

a1 if a<1.

Then, we see, noting [6.1),
N1l o1

d4) w{———)>1 and 2< D= s
(6.14) (pl Z)>1 an pila+1) =

It follows from [(6.14), [5.3) and (5.4) that
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(6.15a) @l pyarn = cllu@llm = ¢ <0

Also, in the case (i) of Claim 3, we have

(6.15b) [1u@®|*Du®)lpe = cllu@®Igt = 1 < o0,

while in the case (ii) of Claim 3

(6.16) @] “Deu®)ps = c|Vu@|**P2lu®)le’ < cillu@®la’, p<1,

which follows from (6.8) and (5.4). Thus, from (6.5), (6.14), (6.15) and [6.16),
we have, in both cases (i), (ii) of Claim 3,

lu®lles = c2(1+t>“"“”'“‘1*“%clgt<1+t—s>—‘\,(,,prl,q:.‘,,zdS
0
t
o | =5yt O ful)IfDds (0= <),

which implies [6.12) by Lemma 2.3
As the second step, we shall show that if the solution u(t) satisfies

(6.17) Ju@®)) < cx(1+1)"7
(6.18) 1Du@® < co(148)7127
with

. (Ns1 1\ Na
=0 or %= min {5(7—-2— , —744},
then it holds that
(6.19) [(Bllq0 £ collt) ¥ trzbmoremr

If we can prove the above assertion, the estimate follows by taking 5=0

(see (5.4) or [Theorem 1). To show we take p,=2 on the interval
[t/2, t] in the second integral of (6.5) to get

(6.20) u@®le = Cz(l'{'t)-ml/r'l/q*”z-l-CS:/2(1+t—S)-N(l/pl—l/qw)/z“u(s)”;j(lﬂuds
+CS:/Z(]_-l-—t.__s)—N(l/Z—l/q*)/Z“u(s>”g(4‘;1+l)ds

el (=50 ()] “Dat(5) s

=L+1,+1,+1,

with 0=(N—1)(1/px—1/2) and 1<p,<2. (Such a division of the integration
interval is justified by the procedure to derive (6.5).)
We claim
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(6.21) L <c(1+0)°%, (===

First, we assume a>1. Then, taking p,=1 (see [6.13)) and applying (5.6) in
the case (i) of Claim 1, we have from [6.17), that

le@lgHasn = c(14+8)7%,  A=N(a—1)/4+(a+1)y .
Hence,

I, = Cz(l+t)“v(l—l/h)/2g”2(1+S\)—st )
0
When 2=1 we see r+#1, i.e., p<<N/4 and
I, < co(14-p) Va4 gy~ Nt Jog (24-1) < ey(141)7C.

In the case 1>1 or 1<1, we can show [(6.21) by a direct calculation. Next, we
shall consider the case a<1. Taking p,=2/(a+1) (see [6.13)), we have from
that

Ul §Hars = [u@] = co( 148707,

Then, we see that
I, = ety rammeon (g gernngs
0

From this we can derive by a direct calculation, where we note that 7 <
Na/4 if (a41)n=1.
Concerning the term [I; in (6.20), we claim

. N/l 1
(6.22) L <o+ 04+Men), =% _—__—)+,] ,
for some 0<p<1, where M(t) is defined by
(6.23) M) = sup {(1+9) [u(®)lat-

First, we assume a<2/(N—2). 'Then, it follows from (5.7), [6.17) and [6.18)
that

Tu@lgEy = co(lt)"Nast-tarin,
Noting N(1/2—1/¢x)/2<1, we can show
I, < CZ(1+t)—N(l/Z——l/q*)/Z~;7<1+t)-(}v'n'/4fl)“a17 < 62(1—}-2‘)*5 ,

which implies the estimate with ¢=0. When 2/(N—2)<a<4/(N-2), it

follows from (6.6) and that
(6.24) Tu@llsn = eI+ ju(@)ig)

with g, defined by [6.6b). If p,<1, then
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I < c2<1+t>—m§j (Lt s) VO sinn e s Mty
/
with
N/1 1
01 = ,31+2ﬁ10+<"2" ‘2"’“5;)‘}‘7]);11

N/1 1 Na . .
= ﬁ1+—2—<—2———q;)[11+(2ﬁ1+p1)77 =1 +(a+1y (see (6.6c-d)).

Since N(1/2—1/g4)/2<1, we easily have
Iy £ cy(140) N r-1r=n(] )= Wanb-an Mgy < cy(141)- My,

which implies the estimate with p=g,<1. If g, =1, we have from the
uniform estimate [6.12) and [6.24) that

L= c2<1+t>-f’§: (ot t—s) N d s M)
/

with p.=1—¢, 0<e<1, and p=p4,+289p+(N(1/2—1/¢g%)/2+n)p.. Here, we note
that

otz =) 1= 2z {ﬁl*‘ 2(g5) 10
1 1

N
2( g
N
—2—( —~5;) = (see (6.6e)) .
Thus, it holds again

< IEDEM®" e, pe=1—e(<1),

which implies the estimate with p=g..
Concerning the last term 7, in (6.20), we claim

(6.25) L < e(14+07 QA+ M), C= E(.L__l_)+,7

with some 0<pu<l1, where M(t) is defined by [6.23). First, assume that @<
2N/(N—1)(N—2). Then, it follows from (6.7), and that

Hu@®*Du@®llp, = ca(l42)"Fxrtim=@by < e,(144)7%  (see (6.7d)).
Thus, we have

I, < cZS:(t—s)-ae-v<t-s><1+s)*<ds < cyl41)¢

which implies the estimate with p=0. When ZN/(N—-1}(N—-2)= a <
4/(N-2), it follows from (6.8) and that

Hu@19Dau@®ll o < co(l+1)~PertP= 00| u(t)|f2 < co(14-1)"P2M(B)*>
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with 0= p,<1 in (6.8e) and p, defined by

pr = Bt L2+ 1280 +(G (5= + )i

N1 o1
= Bx+1/247n+ay (see (6.8c-d) > 5(7—&‘)“1 (see (6.7d)).

Thus, it holds that
I, < (10" Mtz 0= pe<1,

which implies the estimate [(6.25) with p=ps,.
Consequently, summing up the above estimates [6.21), [6.22) and [6.25), we
obtain from (6.20) that

[u®llge = a1+ (14+M@®)")
with some 0=<p<1, and hence

M) = e.(1+M(@)").
Thus, we conclude that

B . N1 1
M) = Sup {L+s) u(s) gt = €2 < 0, = *2‘(72‘—‘(]—*)+77 ,
which implies of course [6.19). This completes the proof of [Proposition 6.1l.

Q.E.D.

On the basis of L%*-estimate [(6.2), we can derive the decay rate for [u(?)|
and consequently the decay estimate for E(t), which will complete the proof of

[Theorem 2.

COMPLETION OF THE PROOF OF THEOREM 2. It is enough to prove [Theoreml
2 for the cases

(5<) yog<a<yr, if N=3

2 4 4 .
(v=z=) y<a<y—g [f4=N=6,

and r+#2, i.e., 1=r<2. First, we shall derive a sharper estimate for |lu(t)|.
We utilize [3.10) in [Proposition 3.2 to get

626)  [u < cx(14+0 ol (Lt YD)t 1 ds

¢
+c§0e"”“‘*>nu(s)||g(*¢;‘+1)ds = 1L+1,+1,,

where 1<p<2. The term [; is treated as follows. Since 2/(N—2)<a<4/(N—2),
it follows from (6.6), and that
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lu@®ligdtn = clVu@PPsllu@®)liz

< (14t BrNan-tameyt — c (14" Vet (see (6.6d)).
Thus, we have

N
627) L <+ VS o+, g= min‘{g(}——*%), —Nf}

r

Next, we shall estimate the term I,, When a>1, we take p=1 in (6.26). Then,
it follows from (5.6) and (5.4) that

lu@®lieti < c|Vu@Y 22 u@lre < (145 V @D u@®) o

with gy=a+1—N(a—1)/2. Thus, we have

(6.28) I £ o (1t sy ¥ (1.9 N u(s)rods
0

Hence, we have from (6.26), and [6.28) that

(6.29) @) < c2<1+z>-v+c1§;<1+t—s>-N~<1+s>~N<a-WNu<s>nf’°ds.

Here, we note that
N/l o1
Na—1)/4>0, N/4+Na—1)/4 = Na/4>1 and N/4= -2—(7—*2*)277-

Also, we note that if p,>1, we may replace y,=1 (see [5.3)), while in the case
2e<1, we have

N1/t _ Neji—1_
]. e ‘LZQ 1 - ‘[,lo

’

because p,<1 corresponds to a>N/(N—2) and this applies only to the case N=3
and 3<a<4. Thus, applying (see Remark 2.1) to we obtain

(6.30) [u@®) = ca(1+2)77.
When a1, we take 1/p=(a+1)/2—2¢,/N in (6.26), 0<e,<1. 'Then, we see

2N

Nl 1 Na
'2—(—1)—"—‘2‘) =4 TS and 2 < pla+1) =2+0(e,) < N_93 "

Here, we have H'C L?“*Y and
N . - 1 1
@5t = lTu@I D fu@ 20, 6= N(5— ),
where we note that

(@a+1)8 = N(f‘—;f—l-—%) —2¢, and (a+1)1—0) = a+1—2¢, > 1.

It follows from and (5.4) that
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lu@®ltarn = aX+D7lu@*7%0 = er(1+0)7fu@)] .
Thus, we have from (6.26) and that
@l < eo(1+8)74 e, (Lht—s) Y1) o fu(s) ds
We apply (see Remark 2.1) to obtain
(6.31) el < cx(14+8)"71, 71 = min {5, Na/4—¢&} (>0 by r+2).

Further, we shall improve L2-decay estimate [6.31). For this, we take p=
2/(a+1) in I,. Then, we see by

(6.32) lu@®5taen < eI+ flu@d)] .
Thus, ‘we have from (6.26), [(6.27) and [(6.32) that

[ S el 7+ e (=) ¥ L5y ()l ds,

with a5,>0 and Na/4+an,—1>0. Applying Lemma 2.3 (see Remark 2.1), we
obtain

(6.33) Ju@l < 140772, 5= min {y, f\iﬁ} — .
From [6.30) and [6.33) we conclude

@) < e(l4877,  p= min{f_;f_(_i__% , 1%}

Moreover, applying [Proposition 4.2 with f(#)=0 and a=2% to (5.1), we obtain

E®) < c(14+877%7, and [|Du@)| < c(142)717277 .
The proof of is now finished. Q.E.D.

Finally in this section, we shall state an improved result of [Proposition 6.1|
for the case a=4/N, which is as follows.

PROPOSITION 6.2. Let 1<N=<6 and a satisfy the following
(6.34a) 4/N< a <4/(N-2) (4/N<a<oo if N=1,2).
Then, it holds that

(6.34b) @l £ el ermeer L 9<e<g,
where qx is defined by
o ' for 1I<NZ3
gx = 2N(N-1)

UVm‘F& for 4<N=<6,
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(0<ekl, see (6.1)), and 7 is defined by (1.7b), i.e.,

(6.34c) 7= min{%’(—i——%«), %‘1} (n=0 if a=N/4).

REMARK 6.2. When 0<a<4/N we can show

(6.34d) lu@)lly < el Nzt
provided that

2<gg o0 if N=1
(6.34e) 2<g< o0 if N=2

2<¢g=<2N/(N-2) if N=3.

PROOF OF PROPOSITION 6.2. When 3<N=<6, we have proved
so that [6.17) and [6.18) hold true with 5 given by (6.34c). Consequently, we
have with the same 7. A simple interpolation, using [6.17) and [6.19),
then gives (6.34b).

When N=1, (6.34b) follows easily from (1.5) by using the Gagliardo-Niren-
berg inequality. The same argument also yields (6.34b) for N=2 and 2=<g<co.
On the other hand, in order to prove (6.34b) for N=2 and g—=o0, we must carry
out a similar computation employed in the proof of Proposition 6.1 In fact,
we apply (3.11) with g=oo, p=1 and k=1 in [Proposition 3.2, Since (N+1)-
(1/p—1/2)=3/2 and k+1=2 in this case, we can take y=1/2 in (3.11) to get

0@ = ex1+07 [ bt =) () s

el amsrme e ) D)l ds

Then, repeating a similar argument as in the proof of [Proposition 6.1, we get
the desired conclusion, the details being omitted.

Finally we note that (3.34d) in Remark 6.2 follows easily from (1.4) by us-
ing the Gagliardo-Nirenberg inequality.

§7. Proof of Theorem 3.

On the basis of the estimates (6.34) in [Proposition 6.2 (see also Remark
6.2), i.e.,

lu@lly < cx(14p=¥eetwr=n - 2<g< gy,

where ¢4 is given by we shall give the estimate for | Du(t)|®. Setting
Ulx, )=Du(x, t), U(x, t) satisfies
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Un——AU-f"Uz = -—Df(u) .

Applying [Proposition 4.1, we have

D(t)* = Ey(t)—E(t+1)+0()* 2 0
and

(7.1a) ,8up_ Ex(s) = e {DO*+(D)+6) sup [US)I+8t)),
where we set |

Tb) B0 = U@PHITUGR and ot = | IDAw(s)Ids.
Now, by Hyp. (ii) we see

(7.2) IDf@)® = clllu@®|*Du@®)|* = I*.

In order to apply Proposition 4.2 with a=26,=142y to (7.1), we shall estimate
the term I? under the condition 4/ N<a<4/(N—2). When 1<N<3, we see from
(6.34) with g=g4==c0 that

(7.3a) I* < cllu@®& ) Du@)|® < c(1+1)7°
with b=2a(N/4+9)+20,=2+26,42«, where k is defined by
(7.3b) £ = Na/4—1+ay (=0 if a=4/N).

Here, we note that for a=24,

(7.3¢) min{1+a, b ‘%i—b—} — 1420, .

When N=4, 5, we see
(7.4a) I* < cllu®lF N Du®lin v -0 = cllu@®|3=1VDu@))*.
Since 4/ NZa<<4/(N—2), we see

: ) = 2NWN—D) N4 E
(7.4b) 2 < Na < gx = (N*Z)(N—3)+s if N=4,5,

and we can use (6.34) with ¢g=Na to get from the above

Ns1 o1
2 -d J— —_— —
(7.4¢) IS o+ B, d= 2a(5( s—wa) 1) = 142,
where £=0 is defined by (7.3b). Here, we note that for a=264,
(7.4d) min {1+a, a+d} = 14+26,.

Any way, we can apply [Proposition 4.2 to (7.1) to obtain
Et) = UM+ IVUDN* < ca(1418)7202,
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with 260,=1+4260,=2+2% (see (7.3), (7.4)). 'The proof of is now com
plete.

Finally we briefly discuss the case treated in Remark 1.3. Let 1<N=<4 and

0<a<4/N, or let N=5 and O0<a<2/(N—2). Then we have the following esti-
mates for /%; When N=1,

1< ¢, (1407
with b=14a/2, and when N=2,
I* < o(1+8)7 Eyt)",

where c=a+1—4a/q and p=2a/q (¢ being sufficiently large) if N=2, while
c=a+1l—p and py=(N—2)a/2 if N=3. The assertion of Remark 1.3 can be
proved by using these estimates. The details are omitted. Q.E.D.

§8. Proof of Theorem 4.

We make the hypotheses (u,, u)EH* L™ XH!*N\L7, 1<r<2, and Hyp. (i)-
(iii). Setting D*u(x, )=U(x, t), U(x, t) satisfies

Uu—AU+U, = —D*f(u).

U(x, t)=D*u(x, t) can be regarded as (N+1)X(N-+1) matrix valued function and
it is clear that Propositions 4.1 and are applicable to this U(x, ¢) with

8.1 Ey®) = [UDP+IIVU@)® .
Now, by Hyp. (ii)-(iii) we see
(8.2) ID*fQ)® < c{l w3 [ Du PP+ | [u | * D*ul?} = Ii+15.

In order to apply [Proposition 4.2 with a=28,=2+27 to we shall estimate
the right hand side of (8.2). Since the term /% is treated by the same way as

in the proof of (see [7.2)), we have only to estimate the first term

I:. When 1<N<3, we know H!C L> and hence (see also Remark

1.3) implies Ju(H)jo=<c,<<co. Thus, under our hypothesis Hyp. (i)-(iii), we know
L FPw®)] = e(lu®lla)lu@)|*F, i=0,1,2.

Noting this fact and taking ¢=gx=oc in we have, if ISNZS3,

(8.3a) I < clu@IEe=1* | Du))d |

= cu@E N Du@F VDIV Du@)|Y = e(14-8)7°

with b=2(a—1)(N/4+79)+4(1—N/4)0,+N8,=2+4-26,+2k (k=0 by (7.3b)). Here,
we note that for a=28,
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(8.3b) min{1+a, b 40— 1426,
2
When N=4, 5, we have
+ 2 1 N-2 1
(8.4a) If=c||ult " | Dul?|® < cluli¥7d s | Duls, e 27 o= }2[1{][ v L
N— 2 1 N—2 1\
< ¢||Vulte- 1]+||Duu'é (1— (0 o |ADu| |40 0:__< ZN 5)(2_*_ ZN §> ,

= (1487 Ey(t)”

with c=[a—1]"0,+4(1—0)0, and pu=20=(N—4)/24+(N—2)[a—1]*/4N. Here,
we note that 0<p=20<1 if N=4,5 and 4/N<a<4/(N—-2), and for a=20,

c o atc _ [a 1] +2—|—279+2'99

SR i G >
1=p = 2—p 2-20 = 1426,
and hence
. ¢ atc|
(8.4b) min{1+a, T o, b=1+20,

(if N=4 and a=1 then ¢=0). Applying [Proposition 4.7 to (8.1}, we obtain for
a>=4/N that

Es@) = | UM+ IVUD? £ es(1+8)720

with 20,=1+26,=3+426, (see (7.3), (7.4), (8.3) and (8.4)).

Finally, we note that the proof of Remark 1.4 is given easily by the proofs
of Theorems 3 and 4 combined with Remark 1.3. The proof of Theorem 4 is
now complete.

§9. Proof of Theorem 5.

Let us proceed to the proof of Theorem 5. By Theorem 4 and Remark 1.4,
we know already ||u()f.=c;<o for 0<a<4/(N—-2) 0<a< = if N=1, 2). Since
f(u) is assumed further to be m-times continuously differentiable with m=3, it
holds from Hyp. (i)-(ii) that

9.1) LfP®)] < eo(lu@®)e) u@)|®F, 1=0, 1, 2, 3 (cf. Remark 1.5).

(Cf. Consider the Taylor expansion of f(x) at ©u=0.) Hence, in this situation
we can choose a>max{4/N, 1} if 3<N<5 and a=4/N=2 if N=2 in all the
previous arguments. In particular, we can always take

— %(%_%) if 3<N<5.

Setting U(x, t)=D'u(x, t), U(x, t) satisfies
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Uu—AU+U,= —D'f(u), =1,2,--,m
It is easy to see that Propositions and are applicable to this U(f) with
(9.2) Ea @) = UP+HINO®*
Note that

D f(u) = 1 f‘”(u) 2 Co (D71u)7r - (D7 *u)"k

Jj= ses]

where ¢; , i1s a certain constant and
S = g ] & b
L= \0—<01, e, 0)EN i_Elairi:l, %7’1‘:] .

We shall prove [Theorem 5l by induction. Our estimate is valid for (=1, 2, 3 by
Theorems 1-4, and we assume that it is valid for less than [/ (3</<m).

9.3) 1Dt < (14079, 0= "2 +7, 1<7=[.

We must show that (9.3) is valid for j=I[+41. It will be sufficient to consider
the case [/=m, the other cases being treated similarly. First, we note from
Theorem 4 that

(9.4) [u®lle < cllu@ =¥ Diu® |V < cy(1+)74,  A=N/4+7.
In order to apply Proposition 4.2 with a=260,=m42% to (9.2), we shall esti-

mate the L%norm of D™f(u). For 3<7<m, we see

(9.5a) I £9(w) Z(D"lu)' (DT S ¢y S TL Do I35,

¢ i=1

k
S 6 3 MLID%ufPria= o Dru Pt < cp(l41)72,
g i=1

where 0<¢;<1 and 1<p; <o should be chosen as

(9.5b) =2 (1-52 )N <1 ana BLod

j),r1 m—a; 1 Dy

Such a choice of a set of {§;} and {p;} is possible since, setting

N ) 1 N
ol (£ DR S W A, % T
2 (1 p’fn)m——ai 1, fe, p1 re IN=2(m—a)]*’

we see

L R 2(m—a;)7*
S =BT <

details being omitted. Here, b in (9.52) is given by
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b= min 3} {2r(1—&)8,,+27 &0}

3sism t=1

k
= min 3 {rm—o)+oiri+ory}  (see

3gism

= min {N(j—1)/2+m+277}  (see (9.5b))

= 2420 n+(N—2+4475) .
Quite similarly, we see
1f7@)D?1uD%2ull® < collu@®)ial D?suD?2ulf* < cm(1+1)7°
and
17/ a)D™u®)|® < csllu@&I D™ u®|® < canl(l+1)7°.
We observe that for a=26,

9.6) min{1+ a, b, 932”’} = 1420, .

Thus, applying [Proposition 4.2 to [9.2), we have from that
Enu@® = [UP+HIVUDI < cnp(142)*0mn

with 26,,,=14+260,=14+m+25, which completes the proof of for
2<N<5.
When N=1, we make the following induction assumption

(9.7a) ID'u®)| < cn(14-1)7%

with

(9.7b) ;= —1—+(j-—l)w+ 1<j<m, o= min{l ﬁ}
- J 2 72’ =J =" 2 ’ 8 s

where 7 is given by [L.7b). First, we note from [Proposition 6.2 (see Remark
6.2) that

9.8) J[u@®lle = ;(14+6"4,  A=4/N+y,
and from the assumption Hyp. (i)-(iii) and that
(9'9) f(i)(u) = kiiu‘[a+1~ij+ s Z'ZO) ] 4

with a=2 (see (9.1)). For 5<7<m, we see

1P w) Z (D) (D7 ku)7#|®

= el D (D)7 (D7 Fu) P = cn(140)™
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with by=4w+260,+2k,, £,=2+4p—4w, where w is given in [9.7b) Further,

we see

If P ) Z D)7 (D7 ru)7

S clulE I B D) (D7) S (L)

with b,=40+20 n+2ks, £,=3/2+[a—3]1*(1/4+9)+3n—Tw/2 (see (9.1), and
[9.9), and

@) Z (D7) (D7 k)" +|?

S e D D7) (Do) R S (L4

with by;=4w+260 n+2ks, k;=(2+a)/4+an—3w, and

L7 @)D* D 2ul® < cofful* | DD u|* = cn(l+6)™"

with b,=4w+260 42k, £, =(1+4a)/4+an—5w/2. Finally, we see also

[ £ )D™ull* = c|ulZ D™ u)® < cu(l46)7"

with b;=4w+260,,+2k;, ts=a/4+an—2w. By the definition of ® in we

see x;=20, i=1, ---, 5, and observe for a=24,
(9.10) min{l—}-a, b;, 9—%—2—1—} = min {1+28.., 20+20.,,+«;} = 20-+20.,.

Thus, applying [Proposition 4.2 to [9.2), we obtain from (9.10) that

Ena® = [UOPHINUDN £ cnea(1+8)720mn

with 26 .1 =2w+26 ,=1+2mw+2y. The proof of is now finished.
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