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0. Introduction.

In [8], Man\’e proved that if a compact metric space $X$ admits an expansive
homeomorphism, then $X$ is finite dimensional. In $[6, 7]$ , we introduced the
notion of continuum-wise (fully) expansive homeomorphism and investigated the
several properties. The class of continuum-wise expansive homeomorphisms is
much larger than the class of expansive homeomorphisms. In relation to dimen-
sion theory, the following results were proved; (1) if a compact metric space
$X$ admits a continuum-wise expansive homeomorphism, then $X$ is finite dimen-
sional [6], and (2) if a continuum $X$ admits a positively continuum-wise fully
expansive map, then $X$ is 1-dimensional [7]. In this paper, we define the no-
tion of barriers of a homeomorphism $f:Xarrow X$ and an index $B(f)$ . We are inter-
ested in the relation between the index $B(f)$ and the dimension of $X$ . The
following theorem is proved; if $f:Xarrow X$ is a continuum-wise expansive homeo-
morphism of a compact metric space $X$, then $\dim X\leqq B(f)\leqq 2\cdot\dim X<\infty$ . As a
corollary, if $f:Xarrow X$ is a continuum-wise fully expansive homeomorphism, then
$\dim$ X$B(f)$2.

1. Definitions and preliminaries.

By a continuum, we mean a compact metric connected nondegenerate space.
A homeomorphism $f:Xarrow X$ of a compact metric space $X$ with metric $d$ is
expansive ($e.g.$ , see [1] and [2]) if there is a positive number $c>0$ such that
if $x,$ $y\in X$ and $x\neq y$ , then there is an integer $n=n(x, y)\in Z$ such that

$d(f^{n}(x), f^{n}(y))>c$ .

A homeomorphism $f:Xarrow X$ is continuum-wise expansive [6] if there is a
positive number $c>0$ such that if $A$ is a nondegenerate subcontinuum of $X$ ,

then there is an integer $n=n(A)\in Z$ such that

diam $f^{n}(A)>c$ ,
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where diam $B$ denotes the diameter of a set $B$ . Clearly, every expansive
homeomorphism is continuum-wise expansive, but the converse assertion is not
true. There are many important continuum-wise expansive homeomorphisms
which are not expansive (see [6, 7]). Those homeomorphisms have frequent
applications in topological dynamics, ergodic theory and continuum theory $(e.g.$ ,

see the references).

Note that if $f:Xarrow X$ and $g:Yarrow Y$ are (resp. continuum-wise) expansive
homeomorphisms, then the product $f\cross g:X\cross Yarrow X\cross Y$ is also (resp. continuum-
wise) expansive. Hence this implies that for each natural number $n$ , there is
an expansive homeomorphism $f:Xarrow X$ of a compact metric space $X$ with
$\dim X=n$ . In [7], we introduced the notion of (positively) continuum-wise fully
expansive and study several properties of continuum-wise fully expansive homeo-
morphisms, which are contained in the class of continuum-wise expansive
homeomorphisms. A homeomorphism $f:Xarrow X$ of a continuum $X$ is continuum-
wise fully expansive [7] if for each $\epsilon>0$ and $\delta>0$ , there is a natural number
$N=N(\epsilon, \delta)>0$ such that if $A$ is a subcontinuum of $X$ with diam $A\geqq\delta$ , then
either (i) $d_{H}(f^{n}(A), X)<\epsilon$ for each $n\geqq N$, or (ii) $d_{H}(f^{-n}(A), X)<\epsilon$ for each $n\geqq N$,

where

$d_{H}(A_{1}, A_{2})= \inf t\eta>0|U(A_{1}, \eta)\supset A_{2}$ and $U(A_{2}, \eta)\supset A_{1}\}$ ,

for each closed subsets $A_{1},$ $A_{2}$ of $X$ and $U(A_{1}, \eta)$ denotes the $\eta$ -neighborhood
of $A_{1}$ in $X$ . The distance $d_{H}$ is called the Hausdorff metric. A map $f:Xarrow X$

is positively continuum-wise fully expansivi if for each $\epsilon>0$ and $\delta>0$ , there is a
natural number $N=N(\epsilon, \delta)>0$ such that if $A$ is a subcontinuum of $X$ with
diam $A\geqq\delta$ , then the above condition (i) is satisfied.

Note that there is a 2-dimensional continuum $X$ which admits a continuum-
wise fully expansive homeomorphism. In fact, each hyperbolic toral automor-
phism $f:Tarrow T$ of the torus $T$ is (continuum-wise fully) expansive. Note that
$\dim T=2$ .

For a compact metric space $X$ , Put $C(X)=\{A|A$ is a nonempty subcon-
tinuum of $X$}. Then it is well known that $C(X)$ is a compact metric space
with the Hausdorff metrie $d_{H}$ .

2. Barriers of a homeomorphism.

Let $f:Xarrow X$ be a homeomorphism of a compact metric space $X$ . Then
$B=\{B^{+} ; B^{-}\}$ , where $B^{+}=\{B_{1}^{+}, , B_{k}^{+}\}$ and $B^{-}=\{B_{k+1}^{-}$ , $\cdot$ .. , $B_{m}^{-}\}$ are families of
closed subsets of $X$ , is said to be a family of barriers of $f$ provided that for
each $\eta>0$ there is a natural number $N=N(\eta)>0$ such that if $A\in C(X)$ and
diam $A\geqq\eta$ , then one of the following two conditions holds:
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$(+)$ For some $1\leqq i\leqq k,$ $f^{N}(A)\cap B_{i}^{+}\neq\emptyset\neq f^{N}(A)\cap(X-B_{i}^{+})$ .
(–) For some $k+1\leqq i\leqq m,$ $f^{-N}(A)\cap B_{t}^{-}\neq\emptyset\neq f^{-N}(A)\cap(X-B_{i}^{-})$ .

Briefly, we write $B==\{B^{+} ; B^{-}\}=\{B_{1}^{+}, \cdots , B_{k}^{+} ; B_{h+1}^{-}, \cdots , B_{\overline{m}}\}$ . Each $B_{i}^{+}$ (l:;$i\leqq k)

is said to be a positive barrier of $f$ and each $B_{i}^{-}(k+1\leqq i\leqq m)$ is said to be a
negative barrier of $f$ . Put $B(f)= \min\{m|there$ is a family $B=\{B^{+} ; B^{-}\}$ of
barriers of $f$ such that $|B|=|B^{+}|+|B^{-}|=m$ }, where $|A|$ denotes the cardinality
of a set $A$ . If there is no finite family of barriers of $f$ , we define $B(f)=\infty$ .

3. Dimension and families of barriers of continuum-wise
expansive homeomorphisms.

Let $X$ be a compact metric space. Then $X$ has $dimension\leqq n$ , denoted by
$\dim X\leqq n$ , if for any $\eta>0$ there is a covering $c_{U}$ of $X$ by open sets with dia-
meter $<\eta$ such that ord $c_{U\leqq n}+1$ , $i.e.$ , every point of $X$ belongs to at most
$n+1$ sets of $c_{U}$ If $\dim X\leqq n$ and $\dim X\leqq n-1$ is not true, then $\dim X=n$ . Let
$f:Xarrow X$ be a homeomorphism of a continuum $X$ . Put $V^{s}=\{A|A$ is a subcon-
tinuum of $X$ such that $\lim_{narrow\infty}$ diam $f^{n}(A)=0\}$ and $V^{u}=\{A|A$ is a subcontinuum
of $X$ such that $\lim_{narrow\infty}$ diam $f^{-n}(A)=0\}$ .

(3.1) PROPOSITION. Let $f:Xarrow X$ and $g:Yarrow Y$ be homeomorphisms of com-
pact metnc spaces, respectively, and let $fXg:XXYarrow X\cross Y$ be a product of $f$

and $g$ , i.e., $(f\cross g)(x, y)=(f(x), g(x))$ for each $x\in X$ and $y\in Y$ . Then $B(f\cross g)$

$\leqq B(f)+B(g)$ .
PROOF. Let $\{B_{1}^{+}, \cdots , B_{i}^{+} ; B_{i+1}^{-}, \cdots , B_{m}^{-}\}$ and $\{C_{1}^{+}, \cdots , C_{j}^{+} ; C_{j+1}^{-}, \cdots , C_{n}^{-}\}$ be

families of barriers of $f$ and $g$ , respectively. Then { $B_{1}^{+}xY,$ $\cdots$ , $B_{i}^{+}\chi Y,$ $X\cross$

$C_{1}^{+},$ $\cdots$ , $X\cross C_{j}^{+}$ ; $B_{i+1}^{-}XY,$ $\cdots,$
$B_{m}^{-}\chi Y,$ $X\cross C_{j+1}^{-},$ $\cdots$ , $X\cross C_{\overline{n}}$ } is a family of bar-

riers of $f\cross g$ . By this fact, we see that B(f $\cross$ g);$ $B(f)+B(g)$ .

(3.2) LEMMA ([6, Corollary (2.4)]). Let $f:Xarrow X$ be a continuum-wzse expan-
srve $hOmeomorph2sm$ of a compact metric space X. Then there is a positive
mrmber $\delta>0$ such that for each $\eta>0$ there is a natural number $N=N(\eta)>0$ such
that if $A\in C(X)$ and diam $A\geqq\eta$ , then diam $f^{n}(A)\geqq\delta$ for each $n\geqq N$, or diam $f^{-n}(A)$

$\geqq\delta$ for each $n\geqq N$ .

(3.3) PROPOSITION. Let $f:Xarrow X$ be a continuum-wise expansive homeomor-

Phasm of a comPact metric space $X$ and let $\delta>0$ be a $po\alpha tive\tau mmber$ as in (3.2).

Then $B(f)\leqq 2\cdot i(\delta)<\infty$ , where for each $\epsilon>0$ ,

$i( \epsilon)=\min\{m|there$ is a fimte family $F=\{F_{1}, \cdots , F_{m}\}$ of closed subsets of $X$

such that for each component $C$ of $F_{i}$ (l;$i\leqq m), diam $C<\epsilon$ , and for each com-
ponent $D$ of $X-U_{i=1}^{m}F_{i}$ , diam $D<\epsilon$ }.
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PROOF. Let $i(\delta)=m$ and let $F$ be a family of closed subsets of $X$ as in the
statement of (3.3). Put $B_{i}^{+}=F_{i}(1\leqq i\leqq m)$ and $B_{j}^{-}=F_{j}(1\leqq j\leqq m)$ . Then the
family $\{B_{1}^{+}$ , $\cdot$ .. , $B_{m}^{+}$ ; $B_{1}^{-}$ , $\cdot$ .. , $B_{m}^{-}\}$ is a family of barriers of $f$ (see (3.2)). Hence
$B(f)\leqq 2\cdot i(\delta)<\infty$ .

(3.4) PROPOSITION. Let $X$ be a compact metric space with $\dim X=n$ . Then
$\sup\{i(\epsilon)|\epsilon>0\}=n$ .

PROOF. Note that if $\epsilon_{1}\geqq\epsilon_{2}>0$ , then $i(\epsilon_{1})\leqq i(\epsilon_{2})$ . For each $\epsilon>0$ , there is a
finite open cover $c_{U}$ of $X$ with mesh $c_{U<\epsilon}$ and ord $q$] $\leqq n+1$ . By [9, p. 213],

there are families $\subset\nu_{1},$ $\cdots$ , $CV..1$ of pairwise disjoint open sets of $X$ , $i.e.$ ,
ord $c_{V_{i}}\leqq 1$ , such that each $c_{\mathcal{V}_{i}}$ shrinks $c_{U}(1\leqq i\leqq n+1)$ and $u_{\iota=1}^{n+1_{C}}\nu_{l}$ is a cover
of $X$ . Taking a shrinking $C[\nearrow_{i}’$ of $\subset v_{i}(1\leqq i\leqq n+1)$ such that $u_{i=1}^{n+1}\subset[\nearrow_{i}’=X$ and
each element of $\subset\nu_{i}’$ is a closed subset of $X$ . Put $F_{i}=\cup^{c}V_{i}’(1\leqq i\leqq n)$ . Con-
sider the family $\{F_{1}, \cdots , F_{n}\}$ . Then the family satisfies the desired condition,

Hence $i(\epsilon)\leq n=\dim X$ . Next, we shall show that $\sup\{i(\epsilon)|\epsilon>0\}\geqq\dim X$ . Sup-
pose, on the contrary, that for each $\epsilon>0,$ $i(\epsilon)<\dim X=n$ . Let $\epsilon>0$ be a given
positive number. Then there is a family $F=\{F_{1}, \cdots , F_{m}\}$ of closed sets of $X$

such that $m<n$ , for each component $C$ of $F_{i}$ , diam $C<\epsilon$ and for each com-
ponent $D$ of $X-U_{i=1}^{m}F_{i}$ , diam $D<\epsilon$ . By considering small neighborhoods of
components of $F_{i}\in F$, we can easily see that there is an open cover $c_{U}$ of $X$

with mesh $c_{U<\epsilon}$ and ord $qJ\leqq m+1$ . Hence $\dim$ $X m<n$ . This is a contra-
diction.

(3.5) REMARK. In [8], Man\’e proved that if $f:Xarrow X$ is an expansive
homeomorphism of a compact metric space $X$ , then $\dim X<\infty$ . In fact, from
his proof, we can see (by [6, Proposition 2.2]) that $\dim X\leqq(j(\delta))^{2}-1$ , where
$j( \epsilon)=\min\{n|there$ is a finite closed cover $F=\{F_{1}, \cdots , F_{n}\}$ of $X$ with mesh $F$

$<\epsilon\}$ . Clearly $i(\epsilon)<j(\epsilon)$ .

(3.6) EXAMPLE. Let $A$ be a $2\cross 2$ matrix satisfying (i) all entries of $A$ are
integers, (ii) $\det(A)=\pm 1$ and (iii) $A$ is hyperbolic, $i.e.$ , none of its eigenvalues
have absolute one. Then the eigenvalues $\lambda_{1},$ $\lambda_{2}$ are real and we may assume
that $|\lambda_{1}|>1,$ $|\lambda_{2}|<1$ . For example, let $A=(\begin{array}{ll}2 11 1\end{array})$ . Let $p:R^{2}arrow T$ be the natural

covering projection from the plane $R^{2}$ to the torus $T=S^{1}XS^{1}$ , and let $L_{A}$ : $Tarrow T$

be the homeomorphism of $T$ induced by $A$ , $i.e.,$ $p\cdot A=L_{A}\cdot p$ . Then $L_{A}$ is
called a hyperbolic toral automorphism. The dynamical properties of $L_{A}$ is
well known. By [7, (2.4)], $L_{A}$ is continuum-wise fully expansive. Let $V_{i}$

$(i=1,2)$ be the eigenvector space corresponding to $\lambda_{i}$ in $R^{2}$ . Consider the sub-
set $D$ in $R^{2}$ as in the Figure 1. Put $B=p(D)\subset T$ , and $B^{+}=B$ and $B^{-}=B$ .
Since $T\supseteqq B\supset IntB\neq\emptyset$ and $L_{A}$ is continuum-wise fully expansive, $\{B^{+} ; B^{-}\}$ is
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a famlly of barriers of $L_{A}$ . Then $B(L_{A})=2$ (see (3.7) below).

Figure 1. Figure 2.

The following is the main theorem of this paper.

(3.7) THEOREM. If $f:Xarrow X$ is a $hOmeomorphism$ of a compact metric space
$X$, then $\dim X\leqq B(f)$ . In particular, if $f$ is a continuum-wise expansive homeo-
morPhesm, then $\dim X\leqq B(f)\leqq 2\cdot i(\delta)\leqq 2\cdot\dim X<\infty$ , where $\delta$ is a Positive number
as in (3.2).

PROOF. We may assume that $B(f)=m<\infty$ . Let $\{B^{+} ; B^{-}\}=(B_{1}^{+}$ , $\cdot$ .. , $B_{k}^{+};$

$B_{k+1}^{-}$ , , $B_{\overline{m}}\}$ be a family of barriers of $f$ . For each $n=0,1$ , $\cdot$ .. , and $i=1,2$ ,

2 $m$ , consider the following subsets of $X$ ;

$M(i, n)=f^{-n}(B_{i}^{+})$ , for l$i\leqq k, and

$M(i, n)=f^{n}(B_{i}^{-})$ , for $k+1\leqq i\leqq m$ .

Let $\eta>0$ be a given positive number. Since $\{B^{+} ; B^{-}\}$ is a family of barriers
of $f$ , we can choose a natural number $N=N(\eta)$ such that if $A\in C(X)$ and
diam $A\geqq\eta$ , then one of the following two conditions is satisfied;

$(+)$ $f^{N}(A)\cap B_{i}^{+}\neq\emptyset\neq f^{N}(A)\cap(X-B_{i}^{+})$ for some $1\leqq i\leqq k$ , or

(–) $f^{-N}(A)\cap B_{i}^{-}\neq\emptyset\neq f^{-N}(A)\cap(X-B_{i}^{-})$ for some $k+1\leqq i\leqq m$ .

For each $i=1,2,$ $\cdots$ , $m$ , put $\Lambda_{i}=$ { $E|E\subset\{1,2,$ $\cdots$ , $m\}$ and $|E|=i$}. For each
$j=1,2,$ $\cdots$ $m$ , put

$L_{j}= \bigcup_{E\in\Lambda_{j}}(\cap\{M(i, N)|i\in E\})$ .
Note that $L{}_{m}CL_{m-1}\subset$ $\subset L_{1}$ and $L_{m}= \bigcap_{i=1}^{m}M(i, N)$ , and $L_{1}=U_{i=1}^{m}M(i, N)$ .
NOW, we shall show that there is a family $c_{U’}$ of open sets of $X$ such that $cU’$
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covers $L_{1},$ $i.e.,$ $\cup^{c}U’\supset L_{1}$ , and ord $c_{U’\leqq m}$ First, consider the set $L_{m}$ . If $C$ is
a component of $L_{m}$ , we see that $f^{N}(C)\subset B_{i}^{+}$ for each $1\leqq i\leqq k$ , and $f^{-N}(C)cB_{i}^{-}$

for each k+l$i\leqq m. Since $\{B^{+} ; B^{-}\}$ is a family of barriers of $f$ , by the
choice of $N$ we see that diam $C<\eta$ (see Figure 2). By considering small neigh-
borhoods of components of $L_{m}$ , we can choose a family $c_{U_{m}}$ of open sets of $X$

such that $c_{U_{m}}$ covers $L_{m}$ , ord $c_{U_{m}\leqq 1}$ and mesh $U_{m}<\eta$ . Next, consider the
set; $P_{m-1}=L_{m-1}-\cup^{c}u_{m}$ . If $C$ is a component of $P_{m-1}$ , we see that diam $C<\eta$ ,
because that $\{B^{+} ; B^{-}\}$ is a family of barriers of $f$ . By considering small
neighborhoods of components of $P_{m-1}$ , we can choose a family $CU_{m-1}$ of open
sets of $X$ such that $V_{m-1}$ covers $P_{m-1}$ , ord $cU_{m-1}\leqq 1$ and mesh $q]_{m-1}<\eta$ If we
continue this procedure, we obtain a sequence $c_{U_{m}}q]_{m-1},$ $\cdots$ , $CU_{1}$ of families of
open sets of $X$, and a sequence $P_{m}=L_{m},$ $P_{m-1}$ , $\cdot$ , $P_{1}$ of closed sets of $X$ such
that $P_{i-1}=L_{i-1}-\cup(^{c}U_{m}\cup q]_{m-1}\cup\cdots\cup^{c}U_{i}),$ $\cup qf_{i-1}\supset P_{i-1}$ , and ord $c_{U_{i-1}\leqq 1}$ and
mesh $c_{U_{i-1}<}\eta$ $(i=m+1, \cdot. , 2)$ . Put $c_{U’}=c_{U_{m}}\cup^{c}U_{m-1}\cup$ $\cup^{c}U_{1}$ . Then $q]’$

covers $L_{1}$ , mesh $c_{U’}<\eta$ and ord $cU’\leqq m$ . Finally, consider the set $Y=X-\cup^{c}U’$ .
If $C$ is a component of $Y$ , then diam $C<\eta$ . Hence we can choose a family $c_{U’’}$

of open sets of $X$ such that ord $cU’\leqq 1$ , mesh $c_{U}"<\eta$ and $c_{U’’}$ covers $Y$ . Put $\subset U$

$=^{c}U’\cup^{c}U’’$ . Then $c_{U}$ is an open cover of $X$ such that ord $c_{U\leqq m+1}$ and mesh $c_{U}$

$<\eta$ . Hence we can conclude that $\dim X\leqq m=B(f)$ . If $f:Xarrow X$ is a con-
tinuum-wise expansive homeomorphism, by (3.3) and (3.4) $B(f)\leqq 2\cdot i(\delta)\leqq 2\cdot\dim X$

$<\infty$ . This completes the proof.

(3.8) COROLLARY. If a continuum $X$ admits a continuum-wise fully exPamve
homeomorPfusm $f:Xarrow X$ , then

(a) B(f);$2, and hence $X$ is at most 2-dimensional, and
(b) if $A\in V^{\sigma}$ ( $\sigma=s$ and $u$ ), then $\dim A\leqq 1$ .

PROOF. (a): Choose a proper closed subset $B$ of $X$ with Int $B\neq\emptyset$ . Put
$B^{+}=B,$ $B^{-}=B$ . Then the family $\{B^{+} ; B^{-}\}$ is a family of barriers of $f$ . Hence
$\dim X\leqq B(f)\leqq 2$ . (b): We prove the case $\sigma=u$ . The family $\{B^{+} ; \phi\}$ is a family
of “barriers” of $f|A$ , where the notion of barriers of the restriction $\beta|A:Aarrow X$

of $f$ to $A$ is similarly defined. Hence $\dim A\leqq 1$ (see the proof of (3.7)).

In case of a map $f:Xarrow X$ , we can define the index B $(f)$ as follows: Let
$f:Xarrow X$ be a map of a compact metric space $X$ . Suppose that there is a
family $B^{+}=\{B_{1}^{+}, \cdots , B_{m}^{+}\}$ of positive barriers of $f,$ $i.e.$ , for each $\eta>0$ there is
a natural number $N$ such that if $A\in C(X)$ and diam $A\geqq\eta$ , then there is $1\leqq i\leqq m$

such that

$(+)$ $f^{N}(A)\cap B_{i}^{+}\neq\emptyset\neq f^{N}(A)\cap(X-B_{i}^{+})$ .

Put $B^{+}(f)= \min\{m|there$ is a family $B^{+}$ of positive barriers of $f$ such that
$|B^{+}|=m\}$ . If there is no finite family of positive barriers of $f$ , we define
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$B^{+}(f)=\infty$ .
(3.9) COROLLARY ([7, (4.3)]). If a continuum $X$ admits a Posztively continuum-

uise fully expansive map, then $\dim X=B^{+}(f)=1$ .

PROOF. Let $B$ be a proper closed subset of $X$ with $IntB\neq\emptyset$ . Then
$\{B^{+}=B\}$ is a family of positive barriers of $f$ . Hence $\dim$ X$l (see the proof
of (3.7) $)$ .

(3.10) COROLLARY. If $f:Xarrow X$ is a Posztively continuum-wise exPansive maP
of a compact metric sPace $X$ , then $\dim X=B^{+}(f)$ .

PROOF. Let $m=\dim X$ . By (3.4), we can choose a family $\{B_{1}, B_{2}, \cdot.. , B_{m}\}$

of positive barriers of $f$ . Hence $\dim X=B^{+}(\beta)$ (see the proof of (3.7)).

We have the following problems.

PROBLEM 1. IS it true that if $f:Xarrow X$ is a continuum-wise fully expansive
homeomorphism of a 1-dimensional continuum $X$ , then $\beta$ or $f^{-1}$ is positively
continuum-wise fully expansive?

PROBLEM 2. IS it true that for each continuum-wise expansive homeomor-
phism $\beta:Xarrow X$ of a compact metric space $X,$ $\dim X=B(f)i$

In relation to the above problems, we have the following fact.

(3.11) PROPOSITION ([7, (3.3)]). Let $f$ : $Xarrow X$ be a continuum-wise fully ex-
pansive $homeomorp1\dot{u}sm$ of a continuum. Then neither $f$ nor $f^{-1}$ is Posrtively
continuum-wise fully exPamve if and only if for each $x\in X$ , there are two non-
degenerate subcontinua $A,$ $B$ of $X$ such that $x\in A\cap B,$ $A\in V^{S}$ and $B\in V^{u}$ . In
Particular, $\dim(A\cap B)=0$ and $\dim A=1=\dim B$ .
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