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§0. Introduction.
Let 1<) £--<2, < be a series of positive real numbers such that

A0 < o for some integer s,.
nzl

For each n& N, formally consider e, to be an eigenvector corresponding to the
eigenvalue 1,. Define for any s€Z

g ={p= 2 anen; a6, €C, I a1 < oo},
neN neN

g* is a Hilbert space for every s&Z with the norm || p|2=>,enla.|?4%. The
inclusion mapping ¢: g* — g*"! is a compact operator for every s€Z. Set g=
Nsa®. {g, 8*; s€Z} will be called a Sobolev chain. Set g*=\U,g*. As g~° is
the dual space of g° g* is the dual space of g.

We denote by C>=(g°) the commutative algebra of all C* functions on g’.
Since C=(g*~"HC>=(g*), we set C=(g*)=/N:C>(g*). Any uecg, regarded as a linear
function on g* is an element of C~(g*). Let (®g’)"‘ be the Banach space of
all continuous symmetric m-linear mappings of g *X---Xg~* into C with the
natural operator norm, || |- and set (®g)m:ﬂs(®g*)m with the projective limit
topology. Hence, any element of (®g)™ can be naturally viewed as an element
of C>(g*) as a homogeneous polynomial of degree m. Thus, we define a poly-
nomial of degree m as an element of 37, D(®e)*, where we set (®g)°=C.
Denote by 2(g*) the space of all polynomials on g*.

We define the C=-topology on C*=(g*), i.e. the C* uniform topology on each
compact subset: a basis of neighborhoods of 0 is given by the family {N(K, m,
s, &)} for compact subsets K —g* non-negative integers m, integers s and ¢>0,
where

NK, m, s, &) = {f & C=(g%); |(d*[)(p)-ls < &, for YpeK, 0 < Vk < m},

where (d*f)(p) is the k-differential of f regarded as an element of (®a)*.
In the following, we denote C>(g*) with the C* topology by a for simplicity.
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a is a topological algebra over C.

We are now interested in “deforming” & to a noncommutative but associa-
tive algebra.

Introducing a formal parameter v, we consider the direct product

a[[x]] = [I»"a

with the direct product topology. We want to define a continuous product *
on a[[v]] with the following properties:

(A.1) *: a[[v]Ixal[v]]—a[[v]] is an associative product.

(A.2) v commutes with any element of a[[v]] and 1xf=/f*1=f for any
feallv1l.

For a product * on a[[v]] with (A.1~2), we set for any f, g<aq,

f*g:EOymﬁm(f) g): ﬂm(f, g)ea'
By (A.1~2), we see for any f, g, heaq,

©0.1) { (On) Zevi=n®e(mf, &), b) = Zi=nm:(f, m(g, h), Ym=0,
' mof, D=ml, f)=f, anlf, )=an(l, )=0, Ym>0.

A continuous m-linear mapping 7: aX---Xa—a is called an m-differential
operator of order k, if at any peg*, n(fi, -+, f«)(p)=0 holds whenever (f, ---,
fn) satisfies (d**'(f1fa - Fn))D)=0.

Now suppose g is a topological Lie algebra with Lie bracket [, ]J’. For
any f, g€a, df(p), dg(p) are elements of g**=g for any peg*, and (df)x: g*—
g is a C* mapping, i.e. df: g~*—g* is C~ for any s, . Thus, we may define
{f, gteC=(g*) by

{f, gl(p) =Ldf(p), dg(p)I (D).

It is obvious that (a, {, }) is a Poisson algebra.

DEFINITION 1. (a[[v]], %) is called a deformation quantization of a if x
satisfies (A.1~2) and the following (A.3~4):

(A.3) m(f, g)=fg (the usual product) and =,(f, g)=—(1/2){f, g} for any
f, g=a.

(A.4) =, isabidifferential operator of order 2m and 7 ,(f, g)=(—1)"7.(g, f).

Our main theorem of this paper is as follows:

THEOREM A. There exists a deformation quantization (a[[v]], *) of a such
that w.(g, 8)=0 for any m=2. Moreover, P(g*)[[v]] is a subalgebra of (a[[v]], %).

Thus, the quantized algebra (a[[v]], *) naturally contains the universal
enveloping algebra of the Lie algebra g, i.e. the Lie algebra generated by g
and v with the relations [X, Y]=u[X, Y.
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For any k=N, let x, be the linear function on g* defined by x,(p)=<es, pD.
Xy, ++, X4, --- are elements of C>(g*).
In the quantized algebra (a[[v]], %), we have

1
xxx; = x,x;+5v[x, x;), s0 xpxx;—xpxx; =vlx,, x;].

2

Hence, the above theorem extends the Poincaré-Birkhoff-Witt theorem for finite
dimensional Lie algebras.

The method of proof of our main theorem is as follows: suppose we have
{my, my, -+, Tm_y}t satisfying (Os) in (0.1) for 0<s<m—1. Our problem is to
construct m, such that ((,) is satisfied for s=m.

For multi-indices a=(a;, ---, az, ), we set |a|=a,. For a with |a|<
o0, we set x*=x%1x%2---xfe---. We shall first construct 7 ,(x%, x#) for monomials
x% xf, and then applying Taylor’s formula. To show key properties of =,
we use the following polynomial approximation theorem:

THEOREM B. The space of all polynomials is dense in C=(g*) in the C>
topology.

The condition lim,_.. A,=cc is essentially used in this theorem.

Note that the assumption >},s; 4;%0<co, for some integer s,, is crucial for
[Theorem Al In fact, for a separable Hilbert space FE, let H=EQEPC be an
infinite dimensional Heisenberg Lie algebra with the skew-symmetric continuous
bilinear mapping 0: (EQE)X(EDBE) — C given by 0((u, v), (v, v')=<u, v'>—
v, u’y. Then, f((u, v, ¢)=|uli®, gl(u, v, ¢))=]|v|* are polynomials of degree 2
on H*=H, but the xproduct fxg diverges (cf. (2.9). Thus, there is
no deformation quantization of C=(H).

If g is the Lie algebra of all C~ vector fields on a compact manrifold, then
Theorem A can be applied for g. Thus, there are several applications including
quantizations on coadjoint orbits, which will be given in forthcoming papers.

§1. Smooth functions on g*.

1.1. Polynomial approximation theorem.
First, we note the following:

LEMMA 1.1. There exists an increasing series of compact subsets K,c K,
- cK,< - such that \UK, =g* For any compact subset K < g*, there is K,
containing K.

PrROOF. For any positive integer s, let D_s be the open ball in g~* of radius
s. It is easy to see that D_scD_;_,<---. Since the inclusion mapping ¢ is
compact, D_; is a relatively compact subset of g™*~!, and hence of g* Set
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K,=D_, in g*.
Let p=g*. By the definition of g*, there exists s such that p=g™. Sup-
pose || pl|l-s<m for a positive integer m. Setting n=max{s, m}, we have pcD_,.
Let K —g* be a compact subset. Suppose for each positive n, there exists
p.€ K such that p,=g¢*—K,. By taking a subsequence if necessary, there

exists p,=g* such that p,=g*—D_, for any n. This contradicts the above
fact. O

PROOF OF THEOREM B. Consider now a C* function f on g*. Let K be an
arbitrary fixed compact subset of g*. By [Lemma 1.1, one may assume that
KcD_, for some n. Since D_, is relatively compact in g~* for any />n and
f is C= on g% for any ¢ and N, there exists d>0 such that if | p—q|l.,<0,
then ||d?f(p)—d’f(g)]-1<e for any 0<j<N.

Let R™ be the subspace of g spanned by e, ---, ¢, and 7, the projection
of g* onto R™. We regard m, as a linear mapping of g* into itself. For any
point p=3a;e; of D_,, set pn=nn(p) (=27 a;e;). Then

15— bnll-s < nAz*"

for any peD_,. Since limi,=c, taking m so large that ni;'*"<d, we find
that f is approximated on K by =% f.

By the polynomial approximation theorem on R™, we see that on K, 7% f
is approximated by a series of polynomials on g*. Thus, the space of all poly-
nomials is dense in C*=(g*) in the C= topology. O

1.2. Tensor products and differential operators.

For a Sobolev chain {g, g°; s=Z}, we introduced the tensor products (@g“)m
as the Banach space of all continuous symmetric m-linear mappings of g=*Xx--
xXg™* into € with the natural operator norm, and set (@g)”‘:ﬂs(@)g’)’” with
the projective limit topology. For Le(@gs)m, setting || L|-s=supz_,=:| L(x, -
x)| defines a Banach norm on (@g’)m.

On the other hand, let (®g*)™ be the usual symmetric tensor product of g°
as a Hilbert space, that is, any element a = (®g*)™ can be written as a=
20;,.i,0:,®--Pe;,, with the Hilbert norm |a|, defined by

H

(1.1) lal}= 3 Ciyiy | 2458 - A28

Obviously, the dual space of (®g*)™ is (g~ *)™.

There is a natural continuous inclusion of (®g*)™ into (@g’)m. Moreover,
by the assumption that >J,., A%<, we see also that there is a continuous
inclusion of (&g*)™ into (Rg*~**’2)". Hence (®g)™ coincides with the inverse
limit of (®¢®)™. Taking its dual, we see that the dual space of (®g)™ is
Us(®g~*)™ with the inductive limit topology, which will be denoted by (Eg*)™.
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For multi-indices a=(a;, -+, ay, ), we set |a|=Xa;. For a such that
lal <o, we set al=a;la,!---a, !+, and

a a a (/3 a — a a a
X = x§1xg2-- xgk-e -ax}azgaxﬁ

For any teZ, 2**=2"1222... 2t %¢...,
Ziai=m{l/aVa,x® is a homogeneous polynomial of degree m on g* if and
only if
2 laa|®8% < oo

fal=m
for any s>0. For any fea, d'f(p) is a continuous symmetric [-linear mapping

of g7*Xx---Xg™* into C for any s, hence d'f(p)=(®g°)* for any s. It follows
that d'f(p)=(®g)'. We define the norm |d'f(p)|s by

(1.2) [ f(Ds = Z 107 fIp)aT.

Iri=t

The following is easy to see by the converse of Taylor’s theorem :

LEMMA 1.2. fea, if and only if |d'f(p)|s< o for any non-negative integer
[ and any integer s, and d'f(p) is continuous with respect to p=g*.

It is easy to see that any [-differential operator = of order d has the ex-
pression

la++0isd

T = 2 na,---,éaa®"'®aa'
1

For any linear differential operator L=3},sm a,0% 0of order m mapping a to
itself, by evaluation at each p=g*, L defines a continuous linear mapping

L= 3 ap)d": 3 &®* —C.
Thus, L,e3,P(@®g¢*)*. This implies that
L, e éﬂ D(®¢~5*  for some s = s(p).

Since L is a differential operator of order m, p—L, is a C* mapping of g*
into L, D(@®eg*)*. In particular, for any N, (" L), &(®g)"QIi.D(®g*)*.
This implies that for any ¢, there exists s=s(¢) such that (d¥Ly),=(@¢)"RQ
SED(®g7)".

The continuity of (d¥ L), implies that for any p<g* and for any integers
t, N=0, there exist s=s(f, N, p) and a neighborhood V, of p in g~* such that
p—(d¥ L), is a continuous mapping of V, into (@g")¥ R, B(Rg~*)*.

Similarly, we have the following criterion:

LEMMA 1.3. 7= Sia.pisn(l/a!B N, 0% Q0% ma pa, is a bidifferential
operator of order m, if and only if m, g satisfies for any non-negative integers
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t, N and for any psg*,
(1) there is an integer s=s(t, N, p)>0 such that

D ]aTTL‘a,[g(p)|2,22‘7,2‘23<0‘+.3) < oo,

i71=N a, 8

(ii) for any >0, there exist s=s(N, t, p, €) and a neighborhood V, of p
in g~% such that

D D07, s(D)—0Ta, p(@RTRF DL, for any g E V.

171=N a, 8
PROOF. Suppose 7 is a bidifferential operator of order m. Then, we have

T, 5(0) = A((x—x(P), (x—2(p))’) D).

At every peg* by the same argument as above 7 induces

13)  my= X w0008 < (B @) o Eomenr).

lat+Blsm Q& !ﬂ !‘
The differentiability of =, gives the first inequality. The continuity of p—
(dVmy), yields the second one.

Conversely, given n, g<a, |a+ 8| <m, satisfying (i) and (ii), we define x,,
by (1.3). Then, by (i), we have

(1.4) m, = (2 B(®e*)Q( 2 Bi®e))

for any peg* The second inequality (ii) gives the smoothness of p— 7 ,. Note
that z(f, g)(p)=r,(f, g) for any f, g=a and =n(f, g)(p) depends only on o*f(p),
0°g(p) for |a+Bl<m. Thus, n(f, g)=a by (i) and (ii). It is easy to see that
7 gives a continuous bilinear mapping of aXa into a. [

For any f<a and p<g* we see that f= f(p)+Zizice Filx, p)(xi—x:(D)),
where Fy(x, p):g:(b‘f/axi)(x(p)—i—t(x—x(p)))dt. By Lemma 1.3, we have the fol-
lowing :

LEMMA 14. Let & be a bidifferential operator of order m. Then, the operator
L defined by

LUXP) = T alFy, x—xD)P)
1S a linear differential operator of order m.

Note that a similar criterion is available for 3-differential operators. If =,
n’ are bidifferential operators of order m, m’ respectively, then =(f, n’(g, h))
is a 3-differential operator of order m+m’. If E(f, g, h) is a 3-differential
operator of order m, then E(x;, f, x,) is a linear differential operator of order
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m—2 with respect to f.

§2. Algebraic preliminaries.

To introduce the obstructions R, given in §3, we prepare some algebraic
tools, called Hochschild and de Rham-Chevalley coboundary operators. This
notion is given in a purely algebraic manner. So, in this section, we do not
specify a and take it only as an abstract topological vector space.

2.1. Hochschild coboundary operators.

Let a be a topological vector space over C. Denote by CP(a), p=1, the
space of all continuous p-linear mappings of ax --- Xa to a. We denote by
ACP(a) and SC?(a) (p=1) the set of the alternative and the symmetric p-linear
mappings, respectively. If p=0, we set C%a)=ACa)=SC%a)=a.

For any m=C%a), we define the Hochschild coboundary operator 6,: CP(a)—
CP*Ya), pz1, by

(2.1) B=F)wy, =, V1) = (01, F(vs, -+, Vper))
p .
+§1(—_1)1F(01; Ty 77-(1)1;, Ui+l), ey, 'Up+1)
+(—1)p+17r(F(1}1, Y vp); Up+1)

for FeC?(a), and for p=0, we set (6,v)(v,)==(v,, v) for any vea.
By a direct computation using the linearization, we have the following :

LemMmA 2.1. For any =, o/, #” < C¥a), we have

0.7’ = 0,7, 0.l =m, (I=identity) and 0.6,7 =0,
0.0 7" =0,

(=, =’ z")

where Bz ., means the cyclic summation with respect to &, ', &”.

0.7=0, if and only if (a, 7) is an associative algebra. If (a, #) is an as-
sociative algebra, then 02F=0, for any F&C?(a) (cf. [Mc]). In particular,
021 =0.x=0. Therefore, 62=0 is equivalent to d,7=0.

Let (a, m,) be any associative algebra. Suppose 7, 7, -+, 7,_;<C*a) satisfy
(O in (0.1) for any integer [ such that 0</<k—1. We denote 0,=0,,; for
simplicity. We consider the equation ({J,), which is equivalent to

(2.2) 607rk == —Qky Where Qk - l

2 i+j=k,i.j;15in.j‘
Since 0%=0 by the associativity of m,, if (2.2) can be solved, then the right
hand side must satisfy 0,0 ,=0. At the first glance, this looks like a necessary

condition for (a, 7,) to be deformed associatively, but in fact this is fulfilled
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automatically. Namely, we have

PROPOSITION 2.2. Let (a, m,) be any associative algebra. If m,, 7y, -+, Tpoy
eC¥a) satisfy (O, for any integer | such that 0<I<k—1, then m,, -, Tp_y
satisfy also 0,Q,=0.

Proof is seen in [OMY2], Proposition 1.3.

2.2. p-derivations. ‘
For #=C%a), we define 97: C?(a)—~CP*a) (1<i<p), p=1, by

(a’{F)(vly Y vp+1) = z(viy F<v1r ttty ﬁi) T, vp+1))
—F(vy, =, w0y, Vig1), 0, Vpet)
(2'3) +7r(F(v1) tty ﬁ'i+1) Ty vp+1); vi+1)

for any FeC?(a).

We call FEC?(a) a p-derivation with respect to =, if 67F=0 for any j,
(1£7<p). By DerP(a, =), we denote the space of all p-derivations with respect
to =. Set also

AP(a, w) = ACP(a)N\Der®(a, «).
We define mappings ¢,, ¢,: C?(a)—>C?(a) by
(2.4) (6pF) vy, sy =+, Vp-1, Vp) = F(vp, Up-1, ==, Vs, V1),
(2.5) (cpF )vy, V2, =+, Vpr, Up) = F (v, V1, e, =+, Up-1)-
Since ¢{=1, we have
2.6) (1+cs+cd)(1—c) =0,
(2.7) (I—cs+B)(1+c) = 2.
The following formulas are useful for later computations:
LEMMA 2.3. (i) For any #=C¥a) and F<CPqa), we have
8,0 ,F = (—1)""'65,3.,:F,
0%, F =05, F (1< 7< p—1), 05, F =¢2,,05F.
(ii) In particular, if r=SC¥a), we have

0:F= 3 (=1)''9iF, 850,F=0,.05..,F 1</ D).

15i5p

(iii) If m#=SC*a) and 0,7=0, we have
(05—0%,1005 =0  for 1<j<p.
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2.3. de Rham-Chevalley coboundary operators.
For any m=AC%a), we define the Chevalley coboundary operator d.: ACP(a)
—AC?*Y(a) by

(2.8 (dF)vy, -+, Vpst)
p+1 )
= E(—1)1+1ﬂ(viy F(vly Tty ﬁi: Tt vp+1>)

+ 2 <—1)i+jF(7t(vi7 vj)y vl’ Tty ﬁiv ) ﬁj’ T, vP"‘l)'
i<j

By a direct computation using the linearization, we have
LEMMA 2.4. For any =, n’, n”< AC¥a),
d.nt’ =d., d.I=m, (I=/identily), and d.d.x =0,
dd.n” =0, (d.aXu, v, w)= Z(U,Q,}w)z(u, (v, w)).

(mo !, ")

By the last identity in Lemma 2.4, d,#=0 if and only if (a, ) is a Lie
algebra. If (a, w) is a Lie algebra, then d2F=0 for any Fe AC?(qa) (cf. [Ma]).
Therefore, d2=0 is equivalent to d,7z=0.

In the following, we use the notations

2.9) zu, v) = % {m(u, v)+rlw, w},

for r=C¥a).

DEFINITION 2.5. For =, -, tn_1=C¥a), we set

Qm = ‘1— 2 aiﬂ'j, (Cf (22))
2 i+j=m 4 izl
2.10) )
Rn = D i i.j;ld;x;’

where d7=d;,-.
By Proposition 2.2, we have 6,Q,=0, if =, =y, -+, 7w, satisfy ([0,;) 0ZI<
k—1.
Assume that (a, 7, 7;) is a Poisson algebra, i. e. n,&SC%¥a), n,= AC¥a) such
that 607’.’020, 5077.'1:0, dﬂrl:O.
We easily have
d. A%(a, 7)) < d, AP Na, ), dz, =0.

Thus, we can give the following p-th cohomology group HP?(a, m,, 7;) of the
cochain complex

L1
> V’qp(a) 7r0) -_—> V4p+l(a) EO) >,
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which is called the de Rham-Chevalley cohomology group of the Poisson algebra.
By a similar manner as in [Proposition 2.2, we have the following :

PROPOSITION 2.6. Suppose (a, m,, ;) is a Poisson algebra. If m,, -+, Tp_y
€C¥a) satisfy ([0;) for 0LI<k—1, then R,=0 for 2<I<k—1 and d1R,=0.

Proof is seen in [OMY2], Propositions 3.2-3.3.

§3. Jacobi identities.

3.1. The obstruction R,.

Let a=C>(g*) and assume the following :

(H.1) Set =,(f, g9)=fg, =.(f, g9 =—1/2){f, g}. Furthermore, 7,, -+, Tn-:
&C%a) are given so that ([0;): 3, =:10:7;=0 for any [, 0<i<m—1.

(H.2) 7mdaa=meven=0 and zs(x;, x;)=0 for 2<s<m—1.

(H.3) =, is a bidifferential operator of order 2s for any 0<s<m—1.

Remark that if m is odd, then R,=0. R.(f, g, h) is a 3-differential
operator of order 2m. '

Let Q, be given in (2.2). Under the assumptions (H.1)~(H.3), we want to
solve the equation 6,7, = —Q, (cf. (2.2)). By remarking ¢,=c¢,, and using
the above equation is rewritten as

(—cfims = —buth = — (=0 orn = 51— 0Qn,
3.1)

~ 1
(14e)dtms = —Bom = *%<1+as>5onm = 21409,

where 670=0}. By [2.7), the equation splits into two equations:

- 1
(3.2) 037 = Z(l—f3+c§)(l+as)Qm,
, ~o 1
(3.3) (1—cy)osmsh = —z—(l—oa)Qm-

Assume has a solution z,. By applying Lemma 2.3, and 2.7),
in addition to 0,Q,.=0, Q. must satisfy the following consistency conditions
for (3.2-3): ’ ‘

(3.4) (03—0)(1—cs+)(1+0:)Qn =0,

(3.5) 1+ +5)(1—03)Qn = 0.

However, is not a new condition. Namely, we have the following;
LEMMA 3.1. If 8,Q=0 for Q& C?*a), then (3.4) is satisfied.

Proof is seen in Appendix 6.1.
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Next, we consider [3.5), the consistency condition for [3.3).

LEMMA 3.2. (14c+)(1—03)Qn=4R,. Thus, the consistency condition of
(3.3) is R,=0.

PRrROOF. Since d,=07+07, where szénf, we see by the definition of @Q,,

that

: 1
(3.6) Qn = Gimj+omn+, B aiag.

2 i+j=mijz1 i+j=m i jz1

Note i0i7;=0in7, 0:0{n}=—0dn}, 0.0in;=—07n; by Lemma 2.3. Then, we
have

. Qm_aaQbm == Zi+j=m,i.jzl(5i:7rj:+527r;)’
3.7
Qunt03Qn =23 1j=m6,5210577 .
By (2.2), and Lemma 2.4, we have

(I+6+)(1—0:)Q(f, g, ) =4 2 & =i(f, m3(g, h))

t+j=m, 4, j2z1 (f. g h)

(38> = 4Rm(f, g; h)' D

3.2. Cohomological property for R,. ,
By Lemma 3.2, R,=0 must held for =, to exist. First, recall the follow-
ing fact whose proof is seen in [OMY2], Theorem 3.4.

THEOREM 3.3. Suppose w,, -+, Tm_1=C¥a) satisfy (H.1)~MH.3). Then,
0}R, =0, for 7=1,2,3 i.e. R,e< da, m,).
Hence, by Proposition 2.6 R, is a de Rham-Chevalley 3-cocycle.
Using [Theorem 3.3, we have |
COROLLARY 3.4. Assume that (H.1)~(H.3) hold for a=C>=(g*). Then, R,=0.

PrOOF. =,(x;, x;)=0 for [=2. By the 3-derivation property and by the
polynomial approximation theorem, we have only to check the quantities

Ro(xy, x5, xp) = Qk Tm-a(Xy, T(X5, Xp)).
. j, k)

R, always vanishes because d. m,=0. Hence, if m(x,, x;)=c;j+2rckix,, then
R,=0. O

REMARK. We shall call R,=0 the Jacobi identities.

For the convenience sake, in what follows, we use the notation:
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fg=nrnf, g, f, on=rxnlf, 8, m=z=l),
{f, g-<h, D% =, .iln?(f, g-mi(h, 1) (m=2),

+j=m, 1, ]

3.9

1 Kf <8 WD ba=_ S miwif, milg, ), (mz3),
Kf, @5 < bDi=_ B wiEf, ), wih, D) (mz9).

a+db+c=m,a,b.cz1

Now, we shall discuss the cases m=even and m=odd separately.
(E) Case m=2k: The equations (3.2-3) for m,,=x3i-+7z are rewritten as
follows :

{(a) l—dizh =+ 51 @tai+oies)

2 i+j=3F 1. 521

(b) =0,

(3.10)

where we used [3.7). One may set n;,=0, for this is the trivial solution of
(3.10, (b)). By a little careful computation together with the definition of df=¥,
o07;m;, we see that (3.10, (a)) is equivalent to the following:

(3.11) o f, gh)—nd(h, gf) = Esu(f, g, h),
where
(312) E2k(f) g) h') - ”;k(f) g)huﬁ;k(h, g)f

+Lf, g, hHi—<Kh, gF, [
—h, 57, 8-
E,.(f, g, h) is a 3-differential operator of order 4k.
(O) Case m=2[+1: The equations (3.2-3) are changed into

A 1
(a) 0y = ‘4‘<1_C3+C§><1+03)Qﬂ+1
(3.13)

1
(b) (l—fs)agﬂ2+1+1 = _2‘Zi+j=2l+1,i,j;l(a‘{-z-;+az—‘ﬂ;)-

By (H.2), the right hand side of (3.13, (b)) vanishes. In what follows we set
7z.2'-l+1:0-

§4. Construction of 7, 4qq.
In this section, we prove the following:

THEOREM 4.1. Let [=1. Under the assumptions (H.1-3), there exists my . E
AC¥a) such that X, j=s141.5,5:00:7;=0 and 7y, s a bidifferential operator of
order 2(21+1) satisfying mo (7, x;)=0.

Let x, be the linear functional on g* defined by x,.(p)=<e:, P>, and set
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(4.1) 7f51+1(xi, x,) = 0.

4.1. Construction of_mggq.

First, we show how to construct 7m,;,,. By we see that (3.13, (a)) is
equivalent to

4.2) TS, gh) = grnaa(f, M+ra.a(f, gh
+<<f: g>_, h>.2+l+1+<<f: h>_) g>;l+1—<f’ <g7 h>+>2_l+1°

Setting {;=x,—x;p), we have
g(x) = g1+ T Gy, P,
where G,(x, p) = S:(ag/6XJ)(P+t(x— p)di. Putting f=x, in [42), we get
4.3) Taa(xy, gXP) = ]221 {Lxi, G, xpha(p)
+Lxi, %57, GRta(P)—<%4, <Gy, x> Daa(D)}.

Remark that 03G;(x, p)|+=p=(1/(]a| +1))(0%0:,8)(p). By the assumptions (H.1-3)
+ and Lemma 1.4, the right hand side (4.3) is a linear differential operator of
order 4/+1 with respect to g.

Define =3;..(h, x;) by

4.4) Taa(h, X;) = —wa (%, ).
By [4.2), we have

45 maalf, 80 = S{EEDmaalf, £XD)
Jjzl \O0X;

+Lf, G, xp51(D)HLLF, 207, GRta(p)—<Lf, <Gy, xj>+>§z+1(]>)}-

By a similar proof as in the right hand side of (4.5) is a bidif-
ferential operator of order 2(2{+1) with respect to f, g.

Thus, we obtain z;;,,(f, g) for any f, g=a. However, we only see that
o41(xs, x;)=0 for [=1 and #5;,.:(x;, h)=—mz,.(R, x;).

4.2. Skewness of ;..
To prove [Theorem 4.1, we only show the following:

PROPOSITION 4.2. 735;..(f, h) given by (4.5) is skew-symmetric.

PrROOF. By the polynomial approximation theorem, we have only to show
the skewness for polynomials. Thus in what follows, we assume the following :

(S)s Taa(x, x8) = —my, (x5, x%) for any a, B such that |a+B| <s.

Consider 75,,(x*, x?#) such that |a+8|=s+1. If either of |a|, |B] is 1, then
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shows the skew-symmetricity. We now show (S),,, for |a|, |f]=2. Since
Tz.1 IS a continuous bilinear mapping, it is enough to show that

Toa(xex®, xPxF) = —ny, (xfxP', xex*")  for

lal, la’l, 8], 181 = 1.

For simplicity, set f==x¢, g=x%, h=x# t=xf. By the assumption (S);, one

obtains
(4.6) 7maa(fg, h) = —mu.(h, fg),
By we have
Taa(fg, ht) =rmn.(fg, Mit+ra.(fg, HDh+Lfg, h)7, Dia
+Lfg 7, Wi —<fg, <h, O D51
Using [4.2), and the assumption (S);, we have

Taalf, gh) = —7w5..(gh, f), etc..

4.7) mua(fg, ht) = mau(f, R)gt+7a.a(g, Mft+ma.(f, Hgh+rna(g, t)fh
—tKhy 157, @fina—tKh, @7, Hhiat+th, {f, @ Dnn
—hlt, [O7, @fa—hlLt, g7, Phu+ht, {f, & Dnn
+LLfg, b7, D +Lfg 07, Wi —<fg, <h, B .

The first line of the right hand side of (4.7) is skew-symmetric under the per-
mutation of (f, g, h, t)—(h, t, f, g), which we shall denote by ¢. Let & denote

140¢. Then, using and applying the assumption to the last line of (4.7),
we have the following:

Graa(fg, ht) =

—&th, 57, @hin —8iKh, @7, fHiin +&i<h, {f, &> a

A
+®h<t; <f’ g>+>2—l+1
A
—&fLg, <h, D D51 —&g{f, <h, ¥ 51
A A

—Bhl{, 77, i —ShLKLL, 27, i

+@<<f: g>+) <h’) t>+>;l+l
L 4

+BLLKLh, Y, o, 8o+t

F+BLKLKh, Y, 87, Hiin

v v

—&KKh, 57, ©F, i —8KKh, g7, 57, i —CKKS, @, BT, Dt
v

—BLL, O, @F, Wi —SKKLL, @7, O, i —SKKLS, 2%, BT, i
v

+8{fLg, h>~, i
+8{fLg, 7, hddra

+&Lglf, o7, D
+&gLf, 7, hDiia
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The terms marked by A, ¥, & are cancelled out. Denoting by ¢, os. the
permutations (f, g, h, ) > (g, f, h, ), (f, &, h, t) = (f, g, t, h) respectively, we

have :

4.8) ©r514.1(f g, ht) = —S(1+0:.)(1+0a..) {th, >, 83141
KL, 57, @7, Dia—<fLg, b7, i)

Substitute the equality (e.;) given in Appendix 6.2 to the last term of [4.8),
where we remark that (ey;) is valid for any #} such that m<2/. Note that

(4.9) S(1+03)(1+012)S.(f, 75(g, h), 1) = 0.

By a little complicated calculation, we have

(4.10) C7a.a(fg, ht) = —-;)—@(1+034)(1+012)<f, <t, g, )™ Dan
1 o 1
= g(t, fr<g O™ >21+1_'3‘<fy <t <g, W7D Dam
1
<t <8, <, i 548, b <fo i
1 e 1 e
+_§'<h’) <f) <g) t> > >2l+1_§'<f’ <h} <g; t> > >2[+1

<k, <8, <fo D= <G, By <F it
We see by that
<, LSy <8 Dm0 —<f, < <g, BT D
= —g, 7, <& POuatRalt, f, mi(g, h)).
Substituting these to (4.10), we have

WI)  ©m5n(/g, h) =5 Rult, f, 718, W) +5 Rulzitt, 1), 5, 1)

5 Rult, 8, 73(f, )+ Rulmilt, @), £, 1)

=0,

because R,=0 by Corollary 3.4. [Proposition 4.2 is thereby proved.

§5. The construction of meven.

The goal of this section is as follows

THEOREM 5.1. Assume (H.1)~(H.3) for m=2k. There exists m,,&SC¥a)
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such that 33i.j=0:0:7;=0, and ms, is a bidifferential operator of order 4k.

Notice at first that several existence theorems which will be given in what
follows for monomials x%, x? etc. are evenly valid for monomials (x—x(p))?,
(x—x(p))? etc. for any peg* by usual parallel displacements.

5.1. Induction for constructing =..,.
To construct 73, we work at first on monomials of x;, ---, x,, ---. We set

(5.1) w(xy, x;) =0, (k=1).

For multi-indices @, 8, we construct z$(x%, x?) inductively.

Assume the following:

(B)s 7i(x®, xf) are obtained for any x%, x? such that |a+f|<s, and these
satisfy and whH(x%, xB)=nH(x?, x%).

In what follows, we put unknown quantities #5(x®, x#) by wh(x%, x?) for
la+Bl=s+1. Under (B);, we want at first to obtain @w#(x,, x7) for [r|+1=

s+1.
Use the following notation:

(x%) € x*, (x%, x3 x7) e x#, etc.,

if there exist x%, x% such that x*x%=x# x%x?x7x% =x*, etc..
Now, for any (x;, x%, x;) such that x,x;x*=x*, (3.10, (a)) is read as follows:

(5.2) Wh(Xs, X2x;)—wh(x;, x°x;) = Epp(xy, x5, xj),

where E,, is defined by [3.12). Set the right hand side of [5.2) by A;;(=—A4,).
Under the assumption (B);, A;;’s known quantities.

5.2. Left extremals.
We now assume that x# is fixed as |[p|=s+1. wH(x;, x’x,) depends only
on ; such that (x;)ex#. Set

(5.3) T: = wh(x,, x°x;).

Then, is nothing but an over determined linear system
T,—T;= Ay for (x;, x;) € x~.

This can be solved if and only if A;; satisfy

(5.4) A+ Ai+An =0 for any (x;, x;, x,) € x*.

First of all, we remark the following:

PROPOSITION 5.2. For any fixed x* such that |p|=s+1, the solubility con-
dition (5.4) is satisfied.
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Proof is seen in Appendix 6.2.

By Proposition 5.2, T; is given by
1
(5.5) T, = T#)‘ ;Au‘i'sz(x#),

where n(y) is the number of (/) such that (x;)ex#, and

K,,(x#) = arbitrary element of C>(g*) depending only on x#.

We choose simply K,,=0 in what follows.
For a fixed g such that | ¢|=s-1, we define a set of pairs of multi-indices by

Sp=A{la, B); a+B=p, lal =21, |8] = 1}.

For any :, /=1, we denote <{>=(0, ---,0,1,0, ---). An element (&>, p—<))
(resp. (p—<>, <z>)) will be called a left extremal point (resp. a right extremal
point) of S,.

For a fixed x#, set p(@)=p—<2>, p(, ))=p—<>—<s> for any (x;), (x;, x;)
x#. Then, we have by

Wixi—x(p), (x—x(p))*®)
(56) 1 E 2, §) *
= WEJ] 21(X;—x,(P), (x—x(p)) , X;—x;(P) Vp e g*.
LEMMA 5.3. Let L(f)(p) = Za@(x:—x(p), (x—x(p)*Np)0*f(p) by using
wa(Xi—x(P), (x—x(p))*) obtained by (5.6) for any (x;—x(p), (x—x(p))*). Then,
L; is a linear differential operator of order 4k—1 for any i.

PROOF. Replace wih(x;—x(p), (x—x(p)*)p) in L;(f)(p) by the right hand
side of (5.6) and remark that E,(x;—x;(p), (x—x(p))* <>, x;—x;(P))(p) involves
only the terms <{, >*, >&. Since <, >*, >3 is a 3-differential operator of order
4k by the assumptions (H.1)-(H.3), L, satisfies that at every peg* that

(X, (x—x(P)NP)=0  for |a|>4k—1.

By using the similar criterion of for 3-differential operators
<, >%, >%&, we have that there is an integer s such that

3 lwdlxg, (x—x(P)ENP)|2A72* < o0,

1pi<ak

Similarly, for any >0, and for any peg* there is a neighborhood V, of
p and an integer s>0 such that for any ¢V,

S wilrs, (r=2(9))g) = wix, (X —2(PYUPIT < e

Now, assume that
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(1) For a fixed integer /[—1 and an arbitrary ¢, there is s=s(/—1, ¢) such
that

2 DI —x(D), (x=x(P)APIETIE < oo

Iri=t-1

(2) For any >0, t, and for any peg*, there is a neighborhood V, of p
and an integer s=s(/—1, t, V,) such that for any ¢&V,,

mE S Th(xs, (x—x(@)")NQ—0TE(xs, (x—x(P)UP) AT e

We shall show that same inequalities as (1), (2) hold for [. Recall [3.11),
and we see that (07E,.(x;—x(p), (x—x(p))%, x;,—x{p))(p) involves the partial
derivatives d#w3 up to only |B|</—1. Hence, the assumptions (1), (2) can be
applied. Other terms are written as <<, >*, >3. By using the similar criterion
as in for 3-differential operators <{{, >*, D%, we obtain the lemma.

O
5.3. Bridges.

Using the left extremal points, we shall construct w3(x?, x#) for the pair
of multi-indices (a, B) with a+8=g,

DEFINITION 5.4. For pairs of multi-indices (a, 8) and (a’, §’) such that
¥ there is y with a’=a+7, f/=B—7, and a+pB=a’+p'=p. The bridge relation
(Br); from (a, B) to (a’, B’) is the following:

(Br)i’ w;k(xa', xﬁ')_m"{k(xa’ xﬂ) = -_E2k(xay xT; xﬁ'>,
where
Eqp(x, x7, xF') = mf(xe, aN)xF —xomfi(x?, xF')
+x®, X, 2B —<x, (xT, 2B
—<xr, <x, 2B h (of. [B12).

If (a, B), (@, B’)ES, have the bridge relation (Br);, we denote by (a, ‘B)Jva»
(@, B)) (or (x%, xF)wmr(x’, xF),

Note that if (a, B)wws(a’, B7), then (8’, a’)-wws(8, @), which is called the
dual bridge relation to (a, ﬂ)J\ATN»(a’, B7). The following lemma shows that
any chain of bridges from a point of S, to another can be replaced by a direct
bridge :

LEMMA 55 For (a, B+71+7'), (a+7, B+7), (a+7+r B)ES,., the relations
(a, ﬂ+r+r’)w(a+r, ﬂ+r’) and (a+7, ﬁ+7’)4ww+(a+r+r B) generate the
relation (a, 18+r+7’)JWW>(a+r+r B

PROOF. Let f=x% g=x7", h=x"', k=x? for the simplicity. By
2.2, we see that 6,Q,,=0. Using (3.6) and Corollary 3.4, we have
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(.7) Q::(a, b, ¢) =<a, <b, >"HH—LKa, b*, u+<b, <a, &> Hu-

The bridge relations (Br);, (Br)y, (Br);.;» are written as follows:
—frilg, h)+wi(fg, h)—ThH(f, ght)+rh(f, ght = Qui(f, g, ht),
—fgnflh, H+wh(fgh, H—wh(fg, ht)+7i(fg, Mt = Qu(fg, b, 1),
—frilgh, O+wi(fgh, H—wi(f, ght)+rh(f, ghit = Qu(f, gh, 1).

Computing —(Br);—(Br)y+(Br);.y, We get

f@ondi)(g, h, )+@ndu)(f, g, M)t
= —Q:(f, & h)—Q::(fg, h, )+Q:2:(f, gh, V).
By the assumption (B);, we have
Bom3)(g, h, 1) = —Qur(g, h, 1), omi)(f, & h) = —Quul(f, g, ).
Hence, (5.8) is
—fQa(g, h, )=Qux(f, g Mt = —Qui(fg, b, )+Qui(f, gh, )—Q::(f, g, ht).
This holds because of 6,Q.,=0. O ’

(5.8)

Note that by [5.7), we see easily that
(5'9> E Q2k(f; gy h) = 0'
f. 8 h)
By a similar manner, we have

LEMMA 5.6. If there are relations

r 7
(&G, p=3G) s (a, B), (1), p—<5>) s (a, B),

then the computation of WiH(x®, x#) does not depend on (Br), and (Br);, where
the initial conditions for the bridges are given by (5.3), (5.5).

PROOF. One may assume that 7s=j. Since there are bridges, (x¢, x#) must
be given in the shape (x;x;h, xf). We set t=x# for simplicity. Then, (Br);,
(Br); are written as follows:

(5.10) wHh(x:x;h, t) = Wh(x;, x;h)+x,75(x 0, )—n(x,, X0+ Qor(xy, X0, 1),
(6.11) wgk(xjxih, h)= w;k(xj, xiht)_*—xjﬁ;—k(xih; t)—‘”'z"k(xj, xih)t+Q2k(xj; x:h, t).

We have only to show the right hand side of (5.10)-(5.11) vanishes. Note that
wi(x;, x%) satisfies [5.2). By [5.2), we have

W%, htx;)—w3(x;, hix,)
(5.12)

= —x;m3i(ht, x)+wH(x,, ht)xj_QZk(xiy ht, x;).
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Using (5.12), we compute the right hand side of (5.11). So, the right hand
side of (56.10)-(5.11) is
(5.13) x (73 ;h, H)—nH(ht, x;))

+x(Th(xy, ht)—7rH(xh, 1))

+H(mgu(x;, x h)—aH(x;, x;h))

4+ Q:2i(xs, xih, 1)—Qor(x;, x:h, )—Q2i(x4, ht, x;).
By the assumption (B);, (5.13) is

x:Qor(x;, h, 1)—x,;Q0x(x4, h, 1)—1Qs:(x;, h, x;)
+Qar(xy, X0, D+Q2i(t, x:h, x;)+Qs(x,, hAt, x;).

Recalling the definition of 8,Q,, and using [5.9), we see that the above
quantity is

(5.14) (00Q:21)(x4, x5, by )—(00Q2)(x;, x4, A, 1) =0. O

5.4. Right extremals.

As we have shown in 5.2, we have obtained w3(x;, x) for a+<id>=p, |y
=s+1. Next, we shall determine w3,(x%, x;) for a+<>=p, |pl=s+1. Given
(x%, x;), there are a pair (x,, x%) and a multi-index 7 such that (x;, xﬁ)-NCv»
(x%, x;). Thus, we can get Wi(x?%, x;) by (Br),. BylLemmab5.6, wi(x?, x,) is
independent of the choice of 7 and (x,, x¥). We now show that w#(x;, x%)=
WH(x?, Xi).

First of all, we easily have

LEMMA 5.7. For any i, j and a multi-index a, we have
(5.15) WX xq, X;) = Wh(x;, x7x;).

PrROOF. Consider a bridge relation (), a+<j>)4v3vx->(a+<z'>, {7>) and we
have

(5.16) Wa(X%%;, X;) = WXy, x°%;)—Eqyp (x4, X, X;)
by (Br)e. On the other hand, we write down for (x;, x%x;):
(5.17) Wh(X;, x%%x;) = Whix, x%x;)+A;.
Combining with [5.17), we have [5.15). O
Using we have:
LEMMA 5.8. wih(x;, x*)=wh(x*, x;) for any ¢ and a.

5.5. Determination for w3(x?, x7).
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To determine wi(x% x#), we choose a left extremal point (x;, x°) such
that (x,, x‘*)-/\;/v»(x“, xf). Thus, we put wiH(x% x#) by (Br),, which also does
not depend on the choice of y and (x;, x%).

We now prove

PROPOSITION 5.9. Under the assumptions (HE.1-3), wi(x?®, x#) can be con-
structed so that they satisfy (Br)y, Wi(x®, xP)=whH(x?, x%), and wh is a bidif-
ferential operator of order 4k.

Proor. Using the bridge relation

w;k(xr+<i>: xﬂ)—w;k(xiy xT*‘ﬁ) = _E2k<xi’ XT’ xﬁ):
(5.18)

WH(TE, x )= H(xP, a7 D) = —E,p(xF, 27, x1),

Hence, we have wi(x?, xP)=wh(xf, x%) for |a+B|=s+1. This implies that
for any e, B, 7 with a+p+7y=p, the equation (Br), is equal to that of
substituted by f=x% g=x", h=xf. Then, we get the first and the second part
of Proposition 5.9. This construction can be applied for monomials (x—x(p))%,
(x—x(g))®, etc..

To prove the last part, remark that

WH(x—x(p))?, (x—x(D))F)
= WH(xs, (x—x(PNHE- D) —Egu(x;, (x—x(p)*~P, (x —x(p))F),
for an (x;,)ex%. By a similar proof as in [Lemma 5.3, we have the desired

result. Namely, we obtain by induction that w3, satisfies that for any /[, ¢,
there is an integer s=s(/, t) such that

B, T I0wh((r—x(p)", r=x (D) )PIFTZHD < oo,

171=1 a
and that for any >0 and [, ¢, there is a neighborhood V, of p in g* and s
such that for any ¢V,
.rfgk glﬂlarm’é*k((x~x(1)))“, (x—x(PNEN D)= wal(x—x(q))*, (x—x(g))*)(@)|*
Xzzt}'l—?s(a+ﬂ) < €. D
We now put mi(x%, x®)=whH(x?, xf). The symmetricity of =3, is obtained

by the polynomial approximation theorem and [Proposition 5.9 is
thereby proved, and we obtain Theorem A.

§6. Appendix.

6.1. Proof of Lemma 3.1.
If 6,Q0=0, then J,(1+0,)Q=0 by Lemma 2.3 Set Q*=(1/2)(1+0,)Q. Note
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that 50-01—— 0% by Lemma 2.3, (ii). Thus, we have (03—03)Q*=0{Q*. Using
Lemma 2.3, we have (05—09)3=c}(09—03). So, we get
(05—09)3Q* = —c303Q™.

Hence,
(6.1) (63—09)(1—cs+3)Q* = 63Q* — (03 —09)c;Q* —363Q™* .
Evaluating the right hand side of (6.1) at (f, g, h, t), we have
(6.2) f-Q%g, b, )—Q*(f-g, h, )+Q*(f, h, 1)- g

A

—2-Q*@, f, W+, f, g-h)—Q*(h-t, f, +Q*(h, f, g)-t

—t-Q*(f, h, ©+Q%(g, h, 1-)H—Q*(g, h, - f,
A

where f-g=m,(f, g). The terms marked by A are trivially cancelled. Use
0:Q"=0Q", 0,0=0, to the underlined terms of (6.2). Then, these terms are
changed into Q*(g-f, h, )—Q*(g, f-h, t). Hence (6.2) is

—Q*(g, f-h, )—g-Q*(, f, H+Q*, f, g-M)—t-Q*(f, h, 9+Q*(g, h, t-f).

Using ¢,Q*=Q"* to Q*(g, h, t-f), we see that (6.2) is —(0,Q*)¢, f, h, g)=0.
O

6.2. Proof of [Proposition 5.2,

We shall show that (5.4) is satisfied under the assumptions (H.1-2). For
that purpose, we shall investigate [3.11) more precisely. For any fixed (f, g, h),
(3.11) can be regarded as a linear system with unknowns 7m5(f, gh), (g, hf),
nsh, fg):

TH(f, gh)  malg, hf)  whh, fg)

1 0 —1 G Eu(f, g h
—1 1 0 P Ea(g, h, f)
0 —1 1 P En(h, f, 9

The solubility condition of the above linear system is satisfied by virtue of
RZk:O. Set

(63) S’k(fy =%} h) - (f,§ » zgk(f) gh)'

Then, S,,=SC%a). By using [3.12), the solution of the linear system is written
as follows:

1
(e20) 7/, B0 = - Sulf, & W+ 37, Ot 5 RA7, Wg—5 (788, )
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1 2
+%<<f, %, Wit 3, 17, D= 58, b, i

1
+%<<f, O, Wik 3, b7, D

All others are obtained by the cyclic permutation of (f, g, A). Note also that
the above formula can be applied for 7j, such that m<2k—1.
Suppose (x;, x;, x,)=x#, i.e. there is a monomial g such that x;x;x,g=x*.

By we have
(6.4) A+ Ap+An = (i j‘En) [73u(Xs, @Xp)X;— (X, GXn)Xs
+Lxy, gxn)*, xpH—<KX;, 8XadT, X%

+Lxy, X507, §Xndae)

= (1)+(2)+(3),
where

(D= T xi{mdlxs, gx;)—nmilx;, gxp)t = B x;Eu(xn, g, X))

(4, §» ) (i, jv h)
2) = Eh gy {Xn, gET—L%;, 8Xn0" D%
NS
B)= T Kxyy X7, gXn -
(i j h
Recalling |(3.8)| and using for the term (3), we have
(6.5) (3) = Bxnlxs, 07, Eome

+ Xy, 207, 807, Xnoa— DXy, X7, {g, Xn> m,
where we used

DXy X907, X007, o= > IWZ(Rb(xi, X5 Xa), &) =0.

a+b=2k,a,bz

From (3.12), we have
(6.6) (1) = Bx {xn, &7, x5~ Kxy, &7, Xndst
F+ DX LXn, X;07, &2

Note that in (1)+(3) the last term of and the first term of (6.5) are can-
celled out. Use (3.11-12) to (2), and remark that R,=0. Then, we see

(6.7)
A+ Ajn+Ang
= TKg, xw>", Xy, xR T B X, X507, 87, Xk
+Bx {xn, &7, x0H—<x;, @, Xndht + B, xXn, @Vx;—KX;, 8T X R
+ By, Lxn, @F, x0T —x;, F, X0 OHH B, Xny X307, 7%
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Note that the second term and the last term of the right hand side of (6.7) are
cancelled out. We now use (g,,) to the second term of the second line in (6.7).
After a little complicated rearrangement of the terms, we have

(6.8)
Aij+An+An
= Px;Lxn, &F, xpHn—8x,-Kx;, g0, Xt TG, x>, X4, XD Dne
+Bi<xy, x;, {xn, @2 DH—Bxy, (x4, {xj, &> %
1 1
+—3—@a+b2=2k5a(xi, i (X, 9, xj)~§@‘a+§:2k5a(xi, mi(x; &), Xn)
* *
1 + + 1 +\ 4+ 2 - +N+
+§E<xi, Xt X, & +'§.@.'xj'<xi, {Xn, & >zk—§‘§li'<x1, {Xn, 8)70%
A
1 + N N+ 2 N+
“g@@h‘, Xt L%y g —g,@xh'@t’i, {x; 8> >2k+“3—ﬁxi'<xm (x5, 807 sk
A
1 + +\+ 1 N+ +
+§'E<<xi, X%, {xpn, 8 >2k+§‘.@:<<xi. {Xn, 8707, X0%
¢ 2
“§@<xi, {x;, {Xn, g%
1 + RN 1 N NF
—_§E<<x1y xh> » <xjy g> >2k——§_@<<xi’ <xj; g> > s Xnosk

¢ 2

+§‘@<x¢, {Xp, <xjy 850 0%

1 _ ! e _
+—?;§<<Xi, X7, {Xn, & >zk+'§@<<xi, {Xn, 8707, X0

—%@«xi, x>, <1, g>+>;k—§ﬁ<<xi, @, Xndie,

where A*-B* means X, p=22.0.0:1A6BF. The terms marked by A, %, & are
cancelled out respectively. Since

BixiLxn, @7, X5 = Bx:i-<xy, {Xn, 8 s = Bxn-{xy, <Xy, @7,
the six terms involving - of (6.8) are cancelled out. Note also that
(6.9) DILxy, x5, @, xwdde = Blxy, <x;, {Xn, £27> ik
Pixs, xa07, x5, @ n = — B xy, 207, {Xn, £ n-
Finally, (6.8) is reduced to the following:
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(6.10)
1 1
“§E<<xi, X7, Xa, g>+>2—k+§‘@:<<xi, {Eny 8007, X0

_%§<<xi: {xj 807, Xndm

= ——51,)— B (s, 257, Xy @S5, &% X7, %05
(i, 4, h)
+{Lxq, x5, D7, Xudmt
1

= —7 > D Ru(xy, x5 mwi(xs, g)=0.

3 a+v=2% a,021¢. 7. 1)
So, wik(x;, x*) is obtained by [5.5) for any (x;, x®) such that x;x*=x#. Thus,
IProposition 5.2 is proved. []
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