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   1. Introduction. 

   The main purpose of this paper is to investigate algebroid solutions of 

some algebraic differential equations in the complex plane with the aid of the 
Nevanlinna theory of meromorphic or algebroid functions. Throughout the 

paper the term "algebroid" or "meromorphic" will mean algebroid or mero-
morphic in the complex plane. 

   Let a;k (j=0, 1, •.., n ; k=0, 1, •.., qj) be entire functions without common 

zeros such that aogo * 0 and a nq,i * 0. We put 

                  Q1(w) _ ~' ajkwk, qj = degw Qj 
                                         k=0 

(j =0, 1, , n) and consider the differential equation 

n (1) Q1(w)(w')' = 0 
                                          ~=o 

under the condition 

(2) qn+n > q,+j (j=1, 2, n-1) . 

   We suppose that (1) is irreducible over the field of meromorphic functions 

and that it admits at least one nonconstant algebroid solution. 

   We say that a transcendental algebroid solution w=w(z) of the differential 

equation (1) is admissible if it satisfies 

                        T (r, ajk/angn) = S(r, w) 

for all ajk. For example, any transcendental algebroid solution of the differ-
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ential equation (1) is admissible when ajk are polynomials. 

   Our differential equation (1) under the condition (2) is a generalization of 

the binomial differential equation 

(3) Q(w)(w')n = P(w), 

where Q(w) and P(w) are polynomials in w with entire coefficients. There are 

many interesting results concerning the differential equation (3) with mero-

morphic or algebroid solutions (see [1], [3], [6], [7], [8], [9], [12], [17], [18] 

etc.). 

   We would like to generalize those results to the case of our differential 

equation (1) under the condition (2). We shall often add the following condi-

tion to (2) : 

(4) q + n > q,. 

We put 
                      max {qj+ j : j-=0, 1, •.., n--1} = ~, 

then the conditions (2) and (4) imply qn + n > p. 
   A few years ago, we proved the following 

   THEOREM A. Suppose that all ajk are polynomials and that qn+n> p. 

Then, any algebroid solution of the differential equation (1) is algebraic ([13], 
Theorem 3). 

   As a generalization of this theorem, we would like to prove the problem : 

   PROBLEM A. Is any algebroid solution of the differential equation (1) inad-

missible when qn+n > p ? 

   This is a generalization of the conjecture of Gackstatter and Lame ([3], 

p. 266) : 
   "The differential equation with meromorphic coefficients 

m 

                       (w')"= a;w' (1<m_<_n-1) 
                                           j=0 

does not possess any admissible meromorphic solution". 
   This was positively proved by He Yuzan and Lame ([6], Corollary 2). 

   The purpose of this paper is to give a generalization of Theorem A, which 

is a partial positive answer to our Problem A, and to generalize some results 
in [14] to the differential equation (1). We shall also give a result on the 

growth of algebroid solutions to the differential equation (1) with constant co-
efficients under the conditions (2) and (4). 

    We denote by E, E1, E2, • • subsets of [0, oo) for which m(E) < oo, m(E;) < oo 

(j=1, 2, •.), • E may be different at different occurrences and K, K1, K2, • • • posi-
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tive constants in this paper. We use the standard notation of the Nevanlinna 

theory of meromorphic functions ([4]) or of algebroid functions ([10], [15], [16]). 

   2. Lemmas. 

   We shall give some lemmas in this section for later use. Let w=w(z) be 

a nonconstant algebroid solution of the differential equation (1) under the 
condition (2). 

   LEMMA 1. Let di (i=0, 1, •• , s) be meromorphic functions such that d8~O. 

Then, we have 

                                3 3 

             m r, d~ w2 sm(r, w)+ m(r, dj-FG(1). 
                                   i=o i=a 

   This lemma follows by a simple inductive argument. 

   LEMMA 2. If qn+nqo, the poles of w are contained in the set of zeros of 

anon ([13], Theorem 1). 

   LEMMA 3. Suppose that angn is a polynomial and qn+n> p. Then, 

       min {n, qn+n- p} log+M(r, w) <_ K~ log 7tI(r, ajk)+O(log r)                                                      - 
j• k 

for rE E ([13], Theorem 2). 

   Let f (z) be a nonconstant entire function and T 0(r, f) be the Ahlfors-

Shimizu characteristic function of f ([4]) : 

                     T0(r, f) = r `4(t, f) dt. 
                                               o t 

   LEMMA 4. For 0 <_ r < R 

     log M(r, f) R+r {TO(R, f)+ 1 log (1+ f (O) 2) (see [5]) .                - R -r 2 

   This is a revised inequality of (9.3) in [5]. We can easily prove this in-

equality by the method given in [5], p. 257-p. 258, but not the original one, 

so we use this lemma in the followings. 

   Let G be a measurable set contained in [1, cc) and we put 

         G(r)== Gn [1, r] (r>1). 

The lower logarithmic density of G is defined by 

                A(G) = liminf 1 dr /log r. 
                                                      r-+oo 0(r) r
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It is clear that A(G)=0 if m(G)< co. 

   LEMMA 5. Suppose that f 1, , f m are nonconstant entire functions. Then, 

we have the inequality 

      m m 

1 

    E tog ~I (r f i) Ke tTo(r, f i)+2A(r, f)+ log (1+ I f(0) i12) 

          i-1 ' i=1 2 

on a set G of r having positive lower logarithmic density. 

   PROOF. Substitute f = f i in Lemma 4 and add the inequalities for i from 

1 to m. We then have for 0 <_ r < R 

        m R+r m 1 
       J log ill (r, f i) R _r [T0(R, f)+ 2 log (1+ I f (0)2) 

As in [5], we put r=ex, R=ex+h and write 

                                 in ( 

               T 0(r, f)+ 1 log (1+ f i(0) 2) = g(x) 
                            i=1 2 

Then, g(x) is nonnegative, increasing and convex for x>0 and 

                                                  m in 

(5) g'(x) = r d ] T 0(r, f i) _ J A(r, ft).                                       dr i=1 i=1 

Further, applying the method used in the proof of Theorem 6 ([5]) to our case, 
we can easily obtain our lemma. 

    LEMMA 6. Suppose that f1, • • • , f m are nonconstant entire functions such that 

the lower order of 

m 

                                T 0(r, f i) 
                                                       i=1 

is finite. Let G be any subset of [1, ca) having positive lower logarithmic den-

sity. Then, there is a sequence {ry} in G such that 

     (i) rv-~cxc as L->oo; 
              m rn 

    (ii) A(ry, f i) = G T 0(r, fi) for v-- oo. 
              i=1 i=1 

    PROOF. Suppose that there is a Go c [1, cia) having positive lower logarithmic 

density such that 

                           m m 

               lim ( A(r, f1))/ T 0(r, f i) _ c 
                                   G0~r-goo i=1 i=1 

Then, for any arbitrarily large M, there is an ro in Go such that 

                         m m 

                 ~ A(r, f1))/ T 0(r, f1) >_ M                                          i=1 i=1
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for r>_ro and re G0. This inequality reduces to the inequality 

m 

             liminf (log J T 0(r, f.))/log r >_ M2(Go) 
                                        r-oo i=1 

by using (5). Since M is arbitrarily large and A(G0) is positive, the lower order 

of ~m 1 T 0(r, f i) must be infinity. This contradicts with our hypothesis. 

   LEMMA 7. The absolute values of roots of the algebraic equation 

                                Zn+alzn-1+ ... +an = 0 

are bounded by 

             max {n 1 a1I, (n 1 a2 )1'2, ... , (n i an )1~n} ([11]). 

   3. Theorems. 

   Let w=w(z) be a nonconstant algebroid solution of the differential equation 

(1) under the condition (2). 

   THEOREM 1. Suppose that angn is a polynomial and that 

(4) qn+n > qo 

If the lower order of 

                           ~T(r, a)k) 
                                               j, k 

is finite, then w=w(z) is not admissible. 

   PROOF. Suppose that w is admissible. Then, since w is transcendental 

and angn is a polynomial, we have 

(6) T (r, ajk)/T (r, w) --> 0 (r-> co, r E E) 

for all ajk by the definition of admissibility of the solution. 
   Let f1, • • • , f m be the nonconstant functions in {ajk } . Applying Lemma 5 

to f', , f m and using Lemmas 2, 3 and 6, there is a sequence {ry} c E'n G 

such that 

    (i) rv -> oo ()-~ co) ; 
   (ii) T (r, w) <_ min (n, qn+n- p) log M(rv, w)+0(log rv) 

               = O(~ T (r, a .1k)) (y-goo) 
                               j, k 

since limr+,, T 0(r, f )/T (r, f)=1 (see [4], p. 13) and A(E)=0. This is a contra-

diction to (6). w= w(z) can not be admissible. 

   COROLLARY 1. Under the same hypotheses as in Theorem 1, if the orders 

of all ajk are finite, w=w(z) is not admissible.
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   In fact, it is trivial that the lower order of 

                                T (r, ajk) 
                                                j, k 

is finite in this case. 

   With respect to meromorphic solutions of (1), we recall the following result, 

see Eremenko [2] : 

   THEOREM B. If the differential equation (1) admits an admissible meromor-

phic solution, then 

                     qj 2(n-j) (j=0, 1, ..., n). 

   Taking this theorem into consideration, we are able to give the following 

problem which is a special case of Problem A but contains the conjecture of 
Gackstatter and Lame given in 1. 

   PROBLEM B. Is any meromorphic solution of the differential equation (1) in-

admissible when 

                qn = 0 and qj <_ n- j-1 (j=0, 1, ... , n-1)? 

   This question was settled when all ajk are polynomials ([13]). As a gener-

alization of this case we have the following from Corollary 1. 

   COROLLARY 2. Suppose that angn is a polynomial and that 

                qn=0, qj n-j-1 (j=0, 1, n-1). 

I f the orders of all ajk are finite, the differential equation (1) does not possess 

any admissible meromorphic solution. 

   As a special case of Theorem A, we can give a sharp estimate of the 

growth of algebroid solutions of (1) with constant coefficients under the condi-
tions (2) and (4). 

   THEOREM 2. Suppose that the coefficients of the differential equation (1) are 

constants and that qn+n >p. 

   Let w=w(z) be a nonconstant algebroid solution of the differential equation 

(1). Then, there exists a positive constant ro such that 

(7) { min (n, qn+n- p)+max (0, qn- p)} log M(r, w) <_ n log r+O(1) (r>_r0). 

   PROOF. We first note that w has no poles by Lemma 2 since angn is con-

stant and qn+n >qo. It is clear that there is an rl such that 

                          M (r, w) >_ 1 (r>_ rl)
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and w has no branch points in z >_r1 since w is a nonconstant algebraic solu-

tion of (1) by Theorem A. We put 

                                     gn 

                    U(z) = ankwk+l/(k+1) 
                                              k=0 

where w= w(z). Then, 

(8) U'(z) = Q(w)w' 

and 

n (9) Qj(w~~Qn(w)n-j-1(U'(z))' = 0 
                                j=0 

since w= w(z) satisfies the equation 

n 

                    Q(w)Q(w)n _j..1(Qn(w)w')' =0. 

We here note that Qn(w(z))0 since w is not constant. 

   Applying the method used in the proof of Hilfssatz 7.2 ([9]) to obtain the 

inequality (7.10) ([9], p. 82) to our U, we have 

(10) M(r, U) _< K1-FK2rM(r, U') (r?r1) 

Let zr be a point such that 

               M(r, U') = I U'(zr) I, 1 zr I = r (r?r1) 

Then, applying Lemma 7 to (9) at z=zr we obtain 

(11) M(r, U') < K3M(r, w)max(h j:j=o, 1, , n-1}, 

where hj= (qj+qn(n- j-1))/(n- j), since 

                 

I Qj(w)Qn(w)n-'-11 C K i'vJ (r, w)0,+qn(n-j-1) 
As 

         M(r, U) > inLM(r, Qngw)gn+l__KbM(r, w)n (r?r1),                _ (
qn+1) _ 

we have from (10) and (11) 

(12) M(r, w)qn+1 K6{Mfr, w)Qn--rM(r, w)max(hj: j-o, 1, , n-1}} 
                    C Ks{M(r, w)qn+rM(r, w)qn+(p-gn)ln} (r>r1) 

since hj<qn+(p-qn)/n (j=0, 1, , n-1). Dividing the inequality (12) by 

                              M(r, u,)max(gn,gn+(P-qn)/n) 
we have for r>_r1



712 N. TODA 

(13) M(r, w)min(1, (qn+n-p)/n) Ks {l +r/M(r, w)max(o, (qn-P) /n)} 

since qn- max (qn, qn+(p-qn)/n)<-0, qn+(p-qn)/n - max (qn, qn+(p-qn)/n) = 

min (0, (p-qn)/n) and M(r, w)>_1 for r>_rl. As qn+n- p>0, there is an 
ro(>_rl) from (13) such that 

                    r/IV1(r, w)maxco, (qn-p)/n) > 1 (r>_ro) 

This gives us the following inequality by calculating log+ of the both sides of 

(13) for rro. 

           min(1, (qn+n- p)/n) log M(r, w) 

                log r-max (0, (qn- p)/n) log i%i(r, w)+0(1) , 

which reduces to our inequality to be proved. 

   EXAMPLE 1. w=2z"2 is a nonconstant algebroid solution of the differential 
equation 

                             ww'-1= 0 

with constant coefficients. 

   This example shows that Theorem 2 is sharp. 

   We next generalize some results obtained for binomial differential equations 

with polynomial coefficients in [14]. We suppose that the differential equation 

(1) under the condition (2) admits at least one admissible algebroid solution 
w= w(z). 

   THEOREM 3. Suppose that angn is a polynomial, the orders of all a;k are 

finite and that 

                      q0> max (qj +j) 
                                                      i<_j~n-1 

in (1). Then, the following three statements are equivalent. 

   1) o(co, w) > 0 

   2) qo = qn+n 

   3) oo is a Picard exceptional value of w. 

   PROOF. (i) Suppose that 8(co, w)>0. If qo>qn+n, we obtain from (1) 

                                  1 n q0-1 
                wq0 = - 

a Q5(w)w'(w'/w) - aokwk                                               aqp ` J .-

and by Lemma 1 

   gom(r, w) < (q0-1)m(r, w)+ m(r, ajk)+Km(r, w'/w)+m(r, 1/aogo)-FO(1) 
                                             j, k 

which reduces to



                            Algebroid solutions 713 

                           m(r, w) = S(r, w) 

since w is admissible. This means that 

        o(oo, w)=0, 

which is a contradiction, It must be qo<qn+n. If go<gn+n, then p<qn+n 

and w cannot be admissible by 'Theorem 1. We have 

                               = qn+n. 

   (ii) Suppose that qo=qn+n. Then, by Lemma 2, oo is a Picard exceptional 
value of w since a q71 is a polynomial. 

   (iii) Suppose that oo is a Picard exceptional value of w. Then, it iss clear 
that o(cc, w)=1 since w is admissible and so it is transcedental. 

   To obtain a similar result to this theorem for a finite value t, we define 

the nonnegative integers qj(z) by the following way : 

   (i) When Q, ~ O, 

N 

                      Q(w) = (w-Z~4jQj(w), 

N where Q;(w) is polynomial in iv with coefficients which are linear combinations 

N of a;9, , a;43 with constant coefficients and Q;(v) ~ 0. It is trivial that 

                       0 < q,(z) c q3. 

   (ii) \Vhen Q;=o, we put for convenience 

N 

              q;(T) = max (qn+2n, q0)-2j and Q j = 0. 

   We have the relation 

(14) g0(z)g1(z) ... qn(T) = 0 

since (1) is irreducible over meromorphic functions. 

   We suppose that the differential equation (1) possesses an admissible alge-

broid solution w=w(z) under the condition (2). If we transform' w to v by the 

relation 

(15) w-z=1/v, 

v is a nonconstant algebroid solution of the following differential equation : 

n (16) vmax(4n+2n,q~)~ w)(v~~j = O                                            jl ,                                   j =0 

where 

N 

              Re(v) -- (-1),vq~_~~~z'Qj(z-1-11v) (j-O, 1, ... , n). 

   It is clear that (16) is irreducible over meromorphic functions as It is so
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with (1). We put for j=0, 1, ..•, 
                                                  pi 

                             vmax(gn+2n,go)x v b v' 
                                                             k=0 

where p,=max (qn+2n, q0)-2 j-q,(r). Then, b,k are linear combinations of 

a,0, , a,q1 with constant coefficients. We here note that 

                                                      

,y N 

               b0p0 = Qo(r) * 0 and bnpn = (--1)nQn(r) ~ 0 

since Q0 * 0 and Q n * 0. Further b, k have no common zeros, because, if they 

have common zeros, a,k have common zeros since a,k are linear combinations 

of b,k with constant coefficients by substituting v=1/(w-r) into (16) and this 

contradicts with our hypothesis that a,k have no common zeros. 

   PROPOSITION 1. v is an admissible algebroid solution of the differential 
equation (16). 

   PROOF. For any b,k 
                            qj qn 

         T (r, b1,,/b) C LJ T (r, aji/angn)+ T (r, ani/angn)+O(1) 

                     = S(r, w) = S(r, v) 

since T (r, w)=T (r, v)+0(1). 

    PROPOSITION 2. Suppose that an0, , angn are polynomials, the orders of 
all other a,k are finite and that 

(17) q1(r) > n-f (j=1, ... , n-i). 

Then, 

                          0<_q0(r)<n. 

   PROOF. When q0(r)=0, there is nothing to prove. Suppose now that q0(r) 
>0. Then, by (14) end (17), qn(r)=0 and (16) satisfies the condition (2) since 

  pn+n = max(gn+2n, q0)-n > max(gn+2n, q0)--j--q1(r) = p~+j 

by (17). Further, bnpn is a polynomial since we have 

             bnpn _ (-1)T Qn(r) _ (_1)nQn(r) = (_'1)n ~' ankrk 
                                                                              k=0 

due to q(r)=O. 
   As v is admissible and the orders of all b,k are finite , it must be 

                          p0 pn+n 

by Corollary 1. This means that
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                 max (gn+2n, g0)-go(r) > max (gn+2n, q0)-n 

  and we have 

                            go(z) n. 

      THEOREM 4. Suppose that anp, •••, angn are polynomials, the orders of all 
  other a;k are finite and that 

                        q,(z) > n-f (f=1, •••, n--1) . 

  Further, we suppose that the differential equation (1) undr the condition (2) has 

  an admissible solution w= w(z). Then, for a finite value z, the following three 

  statements are equivalent. 

    1) o(z, w) > 0 
     2) qo(z) = n 

     3) z is a Picard exceptional value of w. 

     PROOF. We transform w to v by the relation (15) and we obtain (16) from 

  (1). It is trivial that 

                           o(z, w) = b(oo, v) . 

    (i) Suppose that o(r, w)>0. If q0(r)<n, then po> p;+ f for all f ~0 and 
  we have as in (i) of Proof of Theorem 3 

                           m(r, v) = S(r, v), 

  which means that o(oo, v)=0 since v is admissible by Proposition 1. This is a 

  contradiction. This shows that q0(r)=n by Proposition 2. 

   (ii) Suppose that q0(z)=n. Then, as in the proof of Proposition 2, (16) 
  satisfies the condition (2), bnpn is a polynomial and po=pn+n. By Theorem 3, 

    is a Picard exceptional value of v and so z is a Picard exceptional value 

 of w. 

     (iii) Suppose that z is a Picard exceptional value of w. Then, it is trivial 
 that o(z, w)=1 since w is transcendental. 

     COROLLARY 3. Under the same assumption as in Theorem 4, 

             q0(v)<n i f and only i f o(z, w)=0. 

    REMARK 1. Proposition 2 and Theorem 4 contain a generalization of Theo-

 rem 2 ([14]) proved for the differential equation (3) with polynomial coefficients. 

     At the end of this paper, we give some examples. 

    EXAMPLE 2. The differential equation 

                           4w2(w')2+w4-1= 0.
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    In this case, the coefficients are constants, 

                     n=2, q2=2, q1= O and qo = 4 . 

 By Theorems 3 and 4, for any transcendental algebroid solution w= w(z) of 

 this equation, 

    1) 00 is a Picard exceptional value 

    2) o(z, w)=0 (T ~ oo). 

    This equation has 2-valued transcendental algebroid solutions 

                    w1= (sin z)"2 and w2 = (cos z)1//2 . 

    EXAMPLE 3. The differential equation 

             (w2-1)2(w')2+2w2(w2-1)w'+w2(w2+zw+1)2 = 0. 

    In this case, the coefficients are polynomials, 

                     n=2, q2=4, q1=4 and qo=6 

and the condition (2) is satisfied. 

    For any transcendental algebroid solution w=w(z) of this equation, 0 and 

   are Picard exceptional values by Theorem 4 and Theorem 3 respectively. 

   This equation has 2-valued transcendental algebroid solutions 

                   w1= (sin z-z+((sin z-z)2-4)112)/2 

and 
                   w2 = (cos z-z+((cos z-z)2-4)12)/2 . 

   EXAMPLE 4. The differential equation 

                  pnwn(p-1>(w')n = (cosnz)(sln z)(wr~-1)n , 

where n and p are integers such that n>_1 and p>_2. 
    In this case, angn= pn is a constant and 

              qn = n(p-1), q; = 0 (1_< j <n-1), qo = n p . 

It is obvious that the condition (2) is satisfied. For any admissible algebroid 

solution w= w(z) of this equation, 

   1) 00 is a Picard exceptional value by Theorem 3. 
  2) the roots ~o, yl, •., • of the equation w-1=0 are Picard exceptional 

values and 
   3) 8(r, w)=0 (r oc, ~; (j=0, ... , p-1)) by Theorem 4. 

   This equation has an admissible algebroid solution 

                     w = (exp(sin z)(n+'~'n+1)'
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