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Introduction.

Many specialists believe that the rank of the hypergeometric system
E(n+1, m+1; A) is equal to (m;z'l) for sufficiently generic complex parameters

A=y, -+, Ams1). (For the definition, see §2.1.) Although this fact is funda-
mental in studying the hypergeometric functions, no explicit statement with
rigorous proof is known. In a paticular case E (3, 6; 1), [M-S-Y, p. 64,
Theorem 1.8.3] gave explicitly 6 solutions of the form yf3li,ez¢ A(n)y™ where
Y=(Y1, Y2» Y3, ¥o) and p=(p1, Pz, ps, p«).- Also [G-Gr, p. 13] gave 6 solutions
of E(3, 6); but it is not clear under which conditions the solutions are linearly
independent.

In this paper, we shall give a proof of the fact under a very simple non-
integral condition 1;&C—Z. Our proof is based on the theory of twisted
rational de Rham cohomologies and twisted homologies; we make use of the
perfect pairing of those associated with the hypergeometric integral of type
(n+1, m+1). Since the theory of twisted cycles is very important in the study
of hypergeometric integrals (see [K]), we shall give a concise introduction to
the theory in §1.

Let f(u)=zo;+2%-12:;u; L<j<m) be m real linear polynomials of n varia-
bles; we consider a many-valued function U=T]",f%. Then the hypergeometric

integral F(4, z) is defined as F(4, Z)ZS Udu,\---ANdu, where ¢ is a twisted
n-cycle associated with U. We suppose the configuration determined by hyper-
planes f;=0 (1=7<m) be in general position. Then it determines r::(mgl)

relatively compact chambers in the real u-space R”. In §1.7~1.8, we construct
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r twisted cycles g,(1<y<r) associated with the chambers, which form a basis
of twisted n-dimensional homology associated with U, provided that the non-
integral condition stated above holds (Theorem 2). This basis is crucial in
writing the Wronskian of our hypergeometric integrals in a closed form. We

show in §2 that » hypergeometric integralsg UduiN\ - Ndu,(1=Zv<r) are

linearly independent solutions of the hypergeometric system E(n+1, m+41; 4).
In [M-S-T-Y], this fact is essentially used to determine the monodromy of the
system E(n+1, m+1; 2). By making a proper choice of partial derivatives of
the integrals, we see that the Wronskian of the » integrals turns out to be a
product of minors of the matrix (z;;) and the determinant of the matrix

(Sg U-¢<jy -+ J'n>>
where we set

OJus s Jar = dff.“ AR AdeJ—"—, (I=/i<<jps=m—1);

J1 Jn
these n-forms from a basis of the twisted rational de Rham cohomology associated
with the integral. Since the pairing is perfect, this determinant is non-zero
and hence we can conclude that the Wronskian is non-zero under the condition
,eC—Z(1<7<m) and 37,A;€C—Z (Theorem 3). On the other hand, this
determinant turns out to be the one which A.N. Varchenko studied in [V1, 2].
He evaluates the determinant as the product of I'-factors and critical values
of the functions f% on the compact chambers. Using this result, we write the
Wronskian in a closed form (Theorem 4).

§1. Twisted rational de Rham cohomology and twisted cycles.

1.1. An intuitive explanation. Let X be an n-dimensional connected com-
plex manifold and =: X — X be the universal covering of X. Let #,=X and
u,=n(fl,)=X be base points. We shall consider a many-valued holomorphic
function U(u) on X such that w:=dU/U is a single-valued holomorphic 1-form
on X. Let &% be the sheaf of smooth p-formson X; then for any p=I"(X, &%),
Ug can be viewed, on one hand, as a single-valued p-form on the universal
covering manifold X, on the other hand, as a many-valued p-form on X. Since
Ue is single-valued on )?, the usual Stokes theorem holds for U¢ on X but
not on X. We explain our situation by illustrating some examples:

ExAMPLE 1. Let C be an oriented path in X with starting point p and
end point ¢ and let C be a lift of C by the map = : X—X. The Stokes theorem
on X reads
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(1.1 [, dwte) = v@w@-Udep  for peI&, ep.

We shall interpret (1.1) in terms of quantities defined on the manifold X: let
#heC such that n(¥)=v, and let U,, be the function element of the many-
valued function U(u) corresponding to that of n*U at #,. Then we see that

U(g) = the value at ¢ of the function element obtained by analytic

continuation of U, along v.q.

Since Ugp is many-valued, d(U¢p) has no meaning on X. So we use a formula
d(Ue)=UV,¢p on )?, where the operator V, is defined on functions on X by

Voo=dop+w/A¢. Then the integral Séd(Ugo) can be interpreted as the integral
SCUthp where U is the single-valued function on C obtained by analytic con-

tinuation of the function element U, along C. In order to show up the assig-
nment of the branch of U, we write the integral by

UVu0p.

S coUy,

We do not explain here what is CQU,, since a rigorous definition might
disturb the flow of thought; see the next subsection. Now (1.1) is rewritten as

the value at ¢ the value at »
of the element of the element
1.2) S UV,¢ =| obtained by analytic |¢(g)—| obtained by analytic |p(p).
oel, continuation of U, continuation of U,

along v.q along v,p

In view of (1.2), we define 0,(CQU,,) by
0.(CQRU,,) : = q®U,— pQU

where U, is the element at ¢ obtained by analytic continuation of U,, along
vog and U, the similar one at p. Then the Stokes theorem (1.1) on X is
rewritten as

— . 0
SC@UUOvago - Saw(C®UUO) U SD for §0 S F(-Xy 8X) .

ExAMPLE 2. We suppose that X is triangulated and to each simplex 4 is
assigned the barycenter vs. Let 4 be the lift of 4 corresponding to the element
U,,. For simplicity we suppose that 4 is a 2-simplex; then for p=I'(X, &),
we have '
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SSMUDAU.V('@ = SSZd(UgD) - SBJUQD = S01®0%1+02®U%2+03®Uvﬂ3U(P

where we use the following notations: (i) integration over 4QU,, means in-
tegration over 4 on which values of U are determined by the function element

U,, and its analytic continuation. (ii) U,,, is the analytic continuation of U,,
along a path in 4.

v,,, ol

Figure 1.
Hence we define 9,(4QU,,) by

0.(dQUy,) = 61QUs,, +02QU,,,+03QU,,,

where ¢i’s have the orientations indicated in Figure 1, and we paraphrase the
Stokes theorem as follows:

SSAM,,AU'V‘"QD = SawcdsaUvA)U

1.2. Definition of twisted cycles. We call

CX; U):=(

finite sums of cAQU,, )
where ceC and 4 are g¢-simplices

the g-dimensional twisted chain groups. We define the boundary operator

0o: CoX; U)—> Cor(X, U),
by

8,(4QU.) = 3 (~1Y0i®UL,,
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where (i) 4 is an oriented g-simplex (p,p: - p,) and oi is the -th oriented
face (po---py-- Py of 4; (ii) U,,, is the analytic continuation of U, along a
path in A It satlsﬁes 0,-0,=0 and determines the twisted homology groups
H(X; U), (¢=0, 1, --).

EXAMPLE. X=C—{0, 1}, Uw)=u*(1—u)".

[8, 1_5:]
0 1/2 1
Si0) Si1)
Figure 2.

For the following twisted 2-chains

S:0RQU., L&, 1-e]l®Uip,  SiDQUi-e,

we have
0.(SHORQU.) = (e****—1Xe)RU:,
0.([e, 1—e]QU1s) = 1= QU —<>RU.,
0,(SIHQU,-e) = (e —~1){1—e>QU, . .
Setting

1 1
4w):= W52(0)®U5+[e, 1—5]®U1/2—W5§(1)®U1—s,

we get 0,4'(w)=0 and hence 4'(w)sH,(X; U).

1.3. Let S, be the complex local system of local solutions V,p=0 where
¢s&%. Since Y, is integrable, the sequence

Y A
0—> Sy —> Ef —> Ef —> - —> &F" —> 0

is exact; €% being fine sheaves, we have
1.3 H?(X; So) = HY(I'(X, €), Vo).
By the analogue of de Rham’s theorem, we have a perfect pairing
Hy(X; UyxH(I'(X, &), Vo) —> C
(g, <p)k——*g U- so

In view of (1.3), henceforth H,,(X U) will be written as Hy(X, S,,,) vvhere S
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is the dual complex local system to S,.

1.4. From this subsection we shall suppose that
X= C"—-J‘U=1 {f;=0}

where fj(u)=a,;+au,++au, (1<7<m) are hyperplanes of C" in general
position. Let 2% be the sheaf of rational p-forms on C™ which are holomorphic
in X ; then by the Grothendieck-Deligne comparison theorem, we have

HY(I'(X, €x), Vo) = HY(I'(X, 2%), Vo),
and hence we obtain a perfect pairing

Hp(X, So)XHY(I'(X, %), Vo) —> C

(@, 90— | U-0.

We call the complex (I (X, 2%), V.) twisted rational de Rham complex whose
cohomology 1is denoted by HP(X,V,) 0<p<n). Then we have the following
fundamental theorem:

THEOREM 1 ([A2], [KN, p. 153, Theorem 6]). Let U=TI%, f;(u)*/ where
fiu) A<7<m) are hyperplanes in general position and set w=dU/U. Suppose
that

LeC—Z (1<j<m and ilzjeC—Z;
p

then we have
H?(X,V,)=0  for p+n,

(( 41 /\.../\d—f_iz’—l l_S_J'1<"'<J."§m))

i7 ;
Hn(X’ vm) = 1 n
df; df;. - ) _
w/\(( fjll AN fjn_ll ]1_§]1<...<]n_1§m>>
and
dim H™(X, vw>=(m;l )-
Set

I=1{1, --,m} and

o) = @<{j1, 5 Jad> = A A for J={j, -, ja} = I.
fJ1 f]n

Since =X 2,(df;/f;), we have the following fundamental relations among
©{Ju 5 Ja» In H™(X, V,):
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An@lj1, =5 Jn-1, MY = _.jel\(h-gjn-l:m)zj(P<jl, y Jn-1f?
for any {5, -+, Ja-ib I\ {m}.
Therefore we obtain the following
COROLLARY. {o<{J>|J<(I\{m}) and #]J=n} is a basis of H™(X, V,).

1.5. It is known (see for example [H]) that
(i) By the Poincaré duality, the following pairing is perfect:

H?(X, Su)xH?" (X, 85) —> C
I I
HP(I'(X, &x), Vo) XH" (X, €x), V-0) —> C

09— | on¢

where I'(X, €x) is the C-vector space of global sections of €y with compact
support and HJ(X, S;) is the g¢-th twisted cohomology with compact support.

Using the universal coefficient theorem for twisted cohomology and the
Poincaré duality, we have that

(ii) HF(X, So) is dual to the homology HY/(X, Si) of locally finite chains
with coefficients in S.

In view of (i) and (ii), we see that

1.4) HY (X, S,) = H?(X, S3)° = H*" %X, S,).
Under the assumption of [Theorem I, it follows from that
HY(X,S;)=0 for p#n

and
HY (X, So) = H*(X, Sa) = H,(X, Su)”;
hence
~1
. L “_(m
(1.5) dim HY(X, S) = ( N )

1.6. We suppose that f;(1<7<m) are real linear polynomials:
fiu) € Rluy, -+, un] for 1<;7<m.
Let 4;’s be the relatively compact connected components of
XNR® = R*— J {/ =0} .
We set

D:= Q {f;=0} U {the hyperplane at infinity} ;
Jj=
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then D and DUII, 4, are closed subset of the n-dimensional complex projective
space CP™. For the triple (CP", D\UII4,, D), we have a cohomology exact
sequence with coefficient in S, (see for example [H]):

(1.6) —> H*Y(DUI14,, D) — HYCP™, DUI14,) —> HYCP", D) —>
—> HY(DUI14:, D) —> ---.
We have the following isomorphisms:
HY(CP"—D, S;) = H(CP"—D, S,)” (by
=~ HYCP™", nbd. of D; S,)”
(since CP™ is compact and D is closed)
= HYCP", D; S,)”

(since D pbssesses fundamental system of
neighbourhood of which D is retract:)

Similary we have

Hfzf(DUITIAl—D; Say) = H‘I(DUIIIAL, D; 8,),

Hflf(CP"——DUITIA;; Sa) = HYCP™, DUIlLdl; Su)” .
Since we set X=CP™—D, (1.6) yields the following exact sequence:
(L7 — HY(X—114,, $5) — HY (1145 82 —>

— HY/(X; So) — HY (X—114,, $3) — H%{-I(Illdl; So) —> .
By [1.4), we see that
H}zf(X—Il_'[Al, So) = HZ"“I(X——ITIA,, Sa) -

Since X—II.4; is homotopic to X=C"—\UT,{f;(u)=0} where f,(u)=371a;;u,,
we get

(1.8) H? (X114, S3) = H*™YX, S3)
l

where Sz is the local system determined by the connection form @=34;df,/f;.
On the other hand, we have

LEMMA 1 ([K-N Theorem 2, p. 138]). Suppose that
S ,eC—Z;
j=1

then
HYX, Sz3)=0  for all q.
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By virtue of (1.7), and Lemma 1, we have
H%J’_I(X—LZIA,, S)=10 and Hi,f(X——LlIA,, Sa)=0
and hence we obtain
(1.9 Hi,f(IlIA,, Sa) = HY (X, Sa).
Since each 4; is homeomorphic to R, we have
H%[(IZIA,, Sa) = ;[AJ@C.

Using and we know that the number of relatively compact chambers

4, is equal to (mn—l) Summing up, we obtain

LEMMA 2. If 3%, 4;,&C—Z, then

m—1

HYX, s = 33 [41QC:

is words, {[Aljllglg(mn"l)} is a basis of HY(X, S).

1.7. Construction of a twisted cycle 4(w) associated with a compact
chamber 4. For notational simplicity we assume that a compact chamber 4

is determined by » hyperplanes H,, ---, H,. We assume also ;€C—Z, 1</
7). Put

HI = ﬂHz fOI' IC {l: Ty T}, AI = A/"\HI,

il
U.(I)=¢-neighbourhood of 4; for a sufficiently small ¢>0.

After giving R™ the standard orientation induced by the ordering of the coor-

dinate system (uy, ---, #,), on 4 we assign the orientation induced by that of R*.
We set

c(0) = A\kIjUS(I)

with the orientation on 4. For each point p=dd, there exists a subset /<
{1, ---, 7} such that

f)EAI\ U AJ.
JrI

Then we can choose a local coordinate system (w,, -, w,) on a neighbourhood
of W(, p) of 4; satisfying the following conditions: v

1) The standard orientation of R* coincides with the orientation on. WNR™®
induced by the ordering of the local coordinates (wi, -+, wx).
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2) Wi, p={welC'llwl =1 (A=5j=n)},
W, p)Nnd = {w € R*"|0 S w; < 1(1<i<k), |w;| SL(R+1=Z7<n)},
W(I, p)Nnd; = {weR™ w, = 0(1=<i<k), |w;| S1(k+1=57<n)},
W, p)NU) = {weW(l, p)llw|<e(l=isk)}.
As in §1.2 let S}(0) be the positively oriented circle about the origin with

radius ¢ and with the fixed starting point ¢ in C. We define an n-dimensional
chain ¢(I, p) in W(I, p) as

¢, p) = (& u—1)71SH0)X - X (¥ s —1) ' SHO) X [—1, 11X X [—1, 1]

with product orientation where {w, =0 in W(I, p)} = H;;"\W(l, p) and H;, =
{f;,=0}. Using the uniqueness of tubular neighbourhood (see [M, p. 21]), we

can patch together c¢(I, p) at each point p=d,\Us2;U(J) to get a twisted
chain ¢(I).

Wo We

< 11
§ O W
i ()W c(0)W

- L“ [

s R

c(i, p) N

~£0—— ON

T L > \ w,
' c(i, 7; p) B
W=W(@; p) W=WG@, j; p)

Figure 3. Figure 4.

Set

Aw) = cO)+ 3 ).

1 I1=1 1

LEMMA 3. 0,4(w)=0.

Proor. We compute d,4(w)=0 on each neighbourhood W(I, p). We proceed
inductively on the number {I|. In case |I|=1, we may suppose I=1{1}. For
simplicity set W=W(, p); then we have (see Figure 3)



Hypergeometric functions in several variables 655

cONW = [, 1I1x[—1, 1IX--X[—1, 1]
and

c(HNW = ezﬂ%l—Si(O)x[—l, 11x--x[-1, 1].

In W, we have the following boundaries of ¢(0) and c¢(1).

0.,(c(ONW) = —<ed)X[—1, 11x---x[—1, 1],
du(c(HNW) = (> X [—1, 1]x---x[-1, 1].
Hence 0,4(w)=0 modulo a chain with support in oW.
In case |I|=2, for simplicity we may suppose /={l, 2} and set W(l, 2; p)
=W. Then we have (see Figure 4)
cONW = [e, 11X [e, 11X[—1, 11X --x[—1, 1]

c(HNW = e—l———Si(O)X[e, 1}%---x[-1, 1]

271'1:&1_1

(1.10) c@NW = [¢, l]X—ez—,,u}leSKO)X[—l, 11x--x[-1, 1]

1 1
e, DOW = —z SHOX g SHOX [ =1, 11X X [~1, 1.

Here notice that, by definition, ¢(2)N\W is expressible as

1
WSKO)X[—L 13x--x[-1, 1]

in the coordinate system (w,, w,, ---, w,) and hence in the coordinate system
(Wy, Wey *+, Wa), c@NW is written as [1.10). In W, we have the following
boundaries of ¢(0) ~ ¢(1, 2) where for simplicity we set I**=[—1, 1]X--X
[—1,1]:

0,(c(ONW) = —<e>X[e, 1IXI"2+[e, 1ITX<e>XI™2,

1

0u,(c(DNW) = (&> X [e, 1] ><I”‘2——W:_—1Sé(O)><(—<£-:>)><I"'2 ,

0u(c@)NW) = —<Lep X ?}%jsi(o)XIn_z—[S, 1Ix<eyxIm-2,

0,(c(A2XNW) = (&> X TL——SKO)X I»-?

27”:“2__1

! 1 SH0)x<eyxI™2.

- eZ,‘L'ial_

Hence 0,4(w)=0 modulo a chain with support in 6W. Doing such computation
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for 0,4(w) on all the W’s and patching their boundaries, we can show 0,4(w)=0.

1.8. Since {[Ay]ugyg(’";l)} is a basis of HY(X, Sy), the following
mapping
v: HY (X, S3) —> H.(X, S3);

[Au] -_—> Av(w>

determines a well-defined homomorphism from HY/(X, S;) to H.(X, Si). On
the other hand, there is a natural map

v: H,(X, Sa) — HY (X, Sa).

From the construction of twisted cycle 4,(w) it follows that the support of
vr(d,)—4, is contained in a union of e-neighbourhood of f;=0:

Supplyr(4,)—4,] = ﬁ}l U.j)  for arbitrary ¢>0;

hence

SW(A,)—A,,U'(P =0 for any ¢ e (X, €D).

By 1.5, (ii) we have vr(d4,)—4,=0 in HY (X, Sg); thus vr=1 on HY (X, S2).
Since dim H,(X, Sy)=dim H 5{ (X, S,), the homomorphism ¢ and v are isomor-
phisms. Putting these results together, we obtain the following.

THEOREM 2. If 3;e6C—Z(1<jsm) and TA;€ C—Z, then the relatively

compact chambers {A,[lglg(mgl)} form a basis of HY (X, Sg) and the homo-
morphism
HY (X, 83) —> Ha(X, S2)

is an isomorphism. Hence {4, (w)] lgug("’n—l)} is a basis of H,(X, S3). Moreover

it holds that for arbitrary Jc {1, ---, m} with |J|=n,

[,uen=0, v i Rea>0gjzm).
COROLLARY.
det(Ly(w)U-gzK INEX.

where 1§u§<m;l) and J<{1,2, -, m—1} with |J|=n.
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§2. The Wronskian of the hypergeometric function of type (n41, m+1).

2.1. The hypergeometric function of type (n+l, m+1). We recall the
definition of the hypergeometric function of type (n+1, m+1) following [G],

[GG] and [S]. Let Wyy1 mei(n<m) denote the space of (n+1)X(m+1) com-
plex matrices

woo wol ------ w.Om
W=| Wy Wn e M(n+1, m+1; C)
Wno Wap oo Wam

such that rank of w is n+1 and each column vector of w is non-zero. Let

[ty: £, : +--: t,] be homogeneous coordinates of the zn-dimensional complex pro-
jective space P™ and define an n-form = on C*** by

T= g(—l)"tidto/\ e AABNA - Ndty.

For a set of complex numbers 1=, 4;, -, An)=(C—Z)™*' with the property

@.1) ézﬂ-n +1=0
and for a point wEW 41, m41, the n-form

m n lj
2.2) i ( ) wijti) o

can be seen as a many-valued n-form on P™ by the condition [2.I). Then we
take a twisted n-cycle ¢ associated with n-form and define a function by
the integral

2.3) O, w) = gajf:[o(gw“ti)“.r

which will be called the hypergeometric integral of type (n+1, m+1). (In a
previous paper [K], it was called the Aomoto-Gelfand hypergeometric function.)
The integral is homogeneous under two kinds of group action. W,.,1 m.:
admits the left G(n+1, C)-action: w—g-w(geGL(n+1, C)), under which the
integral @(4, w) changes as

(i, g-w) = (detg) 'O, w).

On the other hand, the Cartan subgroup H,,,, consisting of diagonal matrices
of GL(m+1, C), acts on W,,1 . ms1 On the right. Under the action, @i, w)
transforms as

oG, why= 3 hys-0(, w)
p
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where h=diag[ho, hy, -+, hm]. It is easy to see that our integral @(i, w),
viewed as a function on W,y m.1, satisfies the following system E(n-+1, m-+1;
A) of differential equations:

% wzp——aaq) = 1,0, 0Zp=m (Hn.: homogeneity) ;
i=0 Wip
m 0 ..
E(n+l, m+1) Zwipg —= —0,;0, O0=Zi j=mn
- Jp

(GL(n+1, C)-homogeneity)
0*d 0*0

= ’
0w ,0Wjq 0w 0Wjp

04, 57=mn, 0<pg=m.

Suppose that weW ., .1 satisfies the condition that any (n-+1)-minor is non-
zero. By using both the left GL{(n+1, C) and the right H,,,-actions, we can
reduce w into the following form:

1 1 e 1 1
(2.4) 1 . Z.l,n-{-l 21, m-1 "‘1 = M(n+1, m+1; C)-
Tl Znngy e Zomer —1

We introduce the non-homogeneous coordinate system (u,, -+, #,) by setting
u;=t;/t,(1<i<n) and put

filwy=u;, (QLiZn)

f =1+ Fzm,  (+l<j<m=D)

Faulw) =1— 3 us.
i=1
Then the integral @(i, w) can be written as
(2.5) UA; 2)= S“In:Il fiw)iduy A -+ Ndu,

where A=(4;, -+, An)E(C—Z)™. In case ¢ is the twisted cycle 4™(w) associated
with the n-simplex 4= {ueR"|0<u,; (1<i<n), Su; <1} where w=d log {I1%.u;*
-(1—3X7%-,u;)*»}, we obtain the following power series expansion of ¥4, z):

_ 2iali+]; BTG ) DT (—= 25 D) Y
¥a 2= c; (—2%=1hi—An—n; 2, Vi ! z

where summation is taken over veM(n, m~n-—1, Z.,), and

_ Il D) -T A1)
T (StokFAntn D)
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This series is a generalization of the Gauss, Appell F, and Lauricella Fp hyper-
geometric series.

In the following subsections, we shall use the reduced matrix and the
integral expression in order to plug into the results of §1, which are
written in terms of inhomogeneous coordinates u,, :++, U,.

2.2. To make the idea of this subsection clear, we begin by illustrating
some important examples. In the following, instead of [2.5), we shall consider
the hypergeometric integral

F(Q4, 2= gj]:ifj(u)leD(l e nd

where we set, as before,

_duy  du,
<P<l"'71>——u1 FANRERIVAN I
ExAMPLE 1. E(2, 4).
1 01 1
(0 L _1)eM<2,4,R).

Suppose 1<—1/z and set

fi=u, fe=14zu, fi=1—u, Uu): = fil1frrefts,
w = d logU, o<y =dfi/fs.

We consider the hypergeometric integral
F@ = U-pw>

where o= H,(X, S;) is a twisted cycle. Notice that

d Az
SF@ =" U-e.

Z

Let a,, 0, H,(X, S;) be the twisted cycles associated with the segments [0, 1]
and [1, —1/z], respectively. We take two solutions

Wi = SdlUgoG}, Wy = S02U¢<1>

of the Gauss hypergeometric system E@2,4; 4); the Wronskian of the two
solutions
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is, by the above formula, equal to (4,/2) det(w;;) where
Wiy = S Ueplid, G, j=1,2).

By [Corollary] to [Theorem 1, {¢<1), ¢<2>} is a basis of H'(X, V,); Corollary] to
[Theorem 2 asserts that the above determinant det(w,;) is non-zero. Therefore
the Wronskian W0 and hence the two solutions w,; and w,, of E2, 4; 1) are
linearly independent if 4,&€C—Z, (=1, 2) and 2,€C—Z.

EXAMPLE 2. E(2, 3+0).

(1 011 1
01 2z 2z —1

)EMQE, 3+, B,  z=(z, -, 2).

Suppose z;’s satisfy the condition 1<~1/z,< -+ <~1/z; and set
fi=u,  fo=l4zw, -, fin=1+zw, fu.=1-u,
U=Tf w=dlogl, eb=df/f (=1, 142),
0, =0/0z,, (1Z£kZ).

We consider the hypergeometric intégral

F@)={ Upt>
where o= H(X, S;) is a twisted cycle. Notice that

22 Zl+1
;—SUU-go(Z), ey aF= SU U+1>.

1

a;Fz

Let o4, 65, -+, 01, =H(X, S;) be the twisted cycles associated with the
segments [0, 1], [1, —1/z,], ---, [—1/z:-y, —1/2;], respectively. We take /+1
solutions

Wy = S”jU°go<1>, (1<) <I+D)

of the hypergeometric system E(2, 3+[; 2); the Wronskian of the /+1 solptions

W =|0wy, 01w, 1+1
01wy weevveees 01W1, 141
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where we set

wij=§ Uiy, (=i j<I+]).
7

By [Corollary| to [Theorem I, {¢<1), ¢<2>, -+, <l+1)} is a basis of H'(X, V,);
[Corollary| to [Theorem 2 asserts that the above determinant is non-zero. There-
fore the Wronskian W=+0 and hence wy,, ---, Wy, ;.1 are linearly independent
solutions of E2, 3+1; 2) under the condition A;,€C—Z, 1<7<5142) and J4;€
c—-27.

EXAMPLE 3. EG, 6).
1 1 1 1
1z 2z —1|€MGB 6 R), z=(zu Z)
221 R22

1 2z 2z —1
Set

fi=uy, fo=uy fe=1lduzutusze, fo=1l+tuzietuszee, fo=1—u—u,,
U= f]‘_lf,.if, o= d logU,
]:

¢Cify = df{i N dfij (=i</=0,

aIel_—-—a/azkl, (k’ l':l, 2)'
We consider the hypergeometric integral
F(z) = SGU¢<12>

where o= Hy(X, Sg) is a twisted cycle. Notice that

— _ A = A
duF=—2t U-@3),  9uF= | v,
duF=22{ Upaz,  duF=21[ Uity

21 Zs1Je ’ 22 25 )0 »
22 |
0,100, F = d__—est; SdU-'§0<34> .

Since z;; are real, the 5 real lines f;=0 determine 6 relatively compact con-
nected components 4;(1<;7<6) of R*—\U}.,{f;=0}. Let o,€H,(X, S) be the
twisted cycles associated with the chambers 4;.

We take six solutions

Wy = S U-pl2y, (1=j<6)
gj
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0 fi=0 \

Figure 5.

of the hypergeometric system E(3, 6; 1); the Wronskian of the six solutions

wll ............ le
allwll ......... allwle
W P [
azzwll --------- a22w16
auazzwn """"" auazzwle

is, by the above formula, equal to

(As40)°
H%, j=174;" det z

X det (wij)

where we set
wy=| U,  wy={ Upas, wy=| veaw,
95 ] 75

wo={ Ue@®,  wy={ U@, wy={ Ueap.
J

By [Corollary] to [Theorem 1, {<12), ¢<13>, ¢<14>, ¢<23), <24, 34>} is a
basis of H?*(X, V,); [Corollary| to [Theorem 2| asserts that the above determinant
is non-zero. Therefore the Wronskian W0 and hence the 6 solutions w,;(1=<
7<6) of E(3, 6; A) are linealy independent if z;;#0(1=i, 7<2), detz+0, 4,
C—Z(1<j5<5) and 2;,€C—Z.

ExXAMPLE 4. E(4, 8).
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211 212 213
e M4, 8, R), Z=| 221 222 Zas3

231 <23z Z33
1 2z 2z 253 —1)

Set
filwy=u; 1 <73, Favsu) = 14 uzytusze;+uszy; 17 £3)
i) = l—us—up—u;, U= f[lf,.lj(m, o= dlogU,
j=

dfs 4/, dfs

ek = AT AT

1i<j<k<20),

i g Zir il
Z( ):det( ), aij:-a/azi,- (1;—<—_Z) ]§_3)
251

Zjk
We consider the hypergeometric integral
F(z)zg U123

where o= Hy(X, Si) is a twisted cycle. Notice that

9., F = ig U-9<2,3 3+ (1<i<3),

1j
duF = —21{ U.001,3,3+j>  (=js3),
225 Jo

Z3+j

37

a:;;F =

SGZ]-gD(l, 2,3+5> (1<j<3),

b uF =220 o3 347,340 Asj<is3),

(; 1)

0,05 F = —————]3(1’2;“ SUU-¢<2, 3+, 3+ (A=5<1£3),
2zl =
71

Ay ihss . .
9,05 F = %T’SOU@G, 347,340 (l<j<i<3),
2l 4
7!

AsAsAs
auazzasaF = :

det z

SUU-<p<456>.

Since z;; are real, the 7 real lines f;=0 determine 20 relatively compact
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connected components 4;(1<7<20) of R*—\UJ.,{f;=0}. Let o,=Hy(X, S;) be
the twisted cycles associated with the chambers 4,; then by

{6;(1£7<20)} forms a basis of H,(X, S.). We take 20 solutions Sg _ng<123>
(1<7<20) of the hypergeometric system £(4, 8; A); let !

S U@LI23Y wovvremniesinsaicinea SU Up<123>
a”SJ U@I23) -vveevmneaneninninnannnn. 311‘5 Up<123)
IV:: L PR PPR PP 2 .0
5pk3ngq U123y -ovvvmeemmmeeencnneene apkanga Up123)
3113223335 U123y «oeeeemrneneneenns ananaaag Ugp<123)
791 20

be the Wronskian of the 20 solutions where 14, <3, 1Z£p<¢<3, 1£k<IZ3.
Then we see that

1

2.6) W = Q22" det(ga U-ifky)

z(g 3)-det z v

i, j

3

111 Zij-ls]-;[ﬁs
B 1572058
where 1<y=<20 and ¢<{ijk)> runs over the basis {¢<ijk>|1<:<j<k =6} in some
order, which is easily seen from the Wronskian by using the above formula.

Corollary| to [[heorem 2 asserts that the determinant is non-zero. Therefore
the Wronskian W0 and hence 20 solutions S Up<123> (1<7<20) of £4, 8; A)
7

are linearly independent if all minors of order 1,2 and 3 in the matrix z=(z,;)
are not zero and ,;€C—7Z (1<;<7), Z4,eC—Z.

2.3. General case F(n+1, m4-1).
1 1 | 1

1 0 21, n+1 Zi,m-r —1

e M(n+1, m+1, R).

1 Zn.n+1 " Bn,m-1 "-]-J
We set

Zl,n+1 21, m-1
z:( : )eM(n, m—n—1, R)

Zn,n+1 7" Zn,m-1

and for simplicity we write minors of order p as follows:

Z( gy iy ):det Fuky | Fuky U Enkp )
By by ko ‘



Hypergzometric functions in several veriables 665
Set fi(w)=u;(1=i<n), f;(w)=1+21z5u(n+1s7Sm—1),
fuw)=1-u,— - —u,, X=0C"— ]‘\2 {f;=0}, Ulu)= j]iLIlfjxj(u), = d loglU.

For simplicity we write an n-form df;/f; N~ ANdf;,/f;, bY @y, =+, Ju2-
Let A=, -+, An) €(C—Z)™ and e¢;(1Zi<m) be the vector (0, -+, 1, -, 0)
where 1 is in the /-th entry. We set F(4, 2)=F(4, z, 1---n):= SUU-¢<12 e ny
where = H,(X, S;); then by simple calculations we have

0F/0z;,=A, F(A+e,—es, z) where 1<i<n, n+1<ksm—1,

'azilkl ”'azipkp = 'Z’H kaF(lz‘l‘eil“" +éip—‘€k1 -ekp; Z)

where 1<4,< - <ip,<n, n+1<k < - <k,<m—1.

Set
I= {Z‘b "';Z.p}; [{: {kl, Ty kp}) H: {n+1’ "'7m}\1{,
L=l -, nNT={ly, -, lhp}
where we suppose 1</, < -+ <[, ,<n. Then we get
D
o°F = A, Ae S I ufit Hu GTL fRtEt TL St
aZixkl"‘aZipkp gicl keK heH
dul LY du
Uy Uy
:Akl...lkng Hu zHu Xllnkalnthdn
giel leL
( 1
= Ap, - A U- d™u .
. kﬁ-\ﬂ ieru TlrexSe
Since
dullf\ ’//\‘duln—o//\dfkl/\ /\dfk
= dull’/\ /\a’ul ,p/\Z( kl k >du FANRRE: /\duip
I 2 ... )
=z([{)sgn< I3 )d
we have
1 2 - g
P F Sgn( LI )
@.7) - szg U-o(LK>.
azilkl”'azipkp Z<}[{> keK G
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On the other hand, since
1§l1<"'<ln—p§n; n+1§k1<<kp§m_ly

{oLK}>} is a subset of the basis {¢<{j, -/ >I1 << < j, Em—1}; by
Corollary| to [I'heorem Il and the formula

G H=(0),

we conclude that the set {¢{LK>} coincides with the basis {¢<j: - j.>}. Let

g, -+, 0, be the twisted n-cycles associated with the r:(mn_1> relatively
compact chambers, which form a basis of H,(X, S;) by [Theorem 2. Set

ﬂ(z,x):g Uplloony  (1<v<r);
then by [27),

2.8) det(

47F, sen(* 7 77
0Zi5, 321,,;;17 >y1,=1<1""' r 1K 2(}1;)
x det (g U-g<LK>).

Using a formula

R e )

we can rewrite (2.8) as

0’F,
29)  det( PR P )TKI,..._ .
Sgn(l 2 n)

m—2 L I
= (A1 2m—1)(n ! II.—;{ z([é,)

ince det <0< > )50 by [Corollary| to [ heorem 2, we obtain the following.
Si d U-p{LK b il (Theorem 2 in the following

-det(go U-o<LEKY).

THEOREM 3. Let o, (1§v§<m;1)) be the twisted cycles associated with

the (mn—l) relatively compact chambers of XNR™ and set

B, x)= ga U-¢<l - n3, (1§v§< mn—l )) where U:jlilj;fj:j.
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We suppose that A,&cC—Z, (1<7<m) and 2F4,€C—Z. If all minors of z of
order 1, -+, n are not zero, then the Wronskian of the hypergeomeiric system
E(n+1, m+1; A) is not zero:

0°F,

aZi1k1 azipkp

det( )#0

where 154, <--<ip<n, n+1=k,;<--<k,<m—1and 0 p<n. Hence the (m;l)
solutions F,(A, z) of E(n+1, m4+1; A) are linearly independent and we have

rank E(n+1, m+1; 2) = ( m;1 )

2.4. In [V1, 2] A.N. Varchenko evaluated the determinant of the hyper-
geometric integrals det (S U -go(LK)). His result is stated as follows: Let
Ay(1§v§(m;1)) be the relatively compact chambers of XNR"™; for each f;

we fix an argument of f; on 4,, which determines a branch of the many-valued
function f% on 4,. Let ¢(f¥, g,) denote the value of f% which is maximum
in absolute value on the compact chamber 4, corresponding to ¢,. Then the
determinant is written as follows:

LeMMA 4 ([V1, 2]). If each of the numbers 2;(1<j<m) has positive real
part, then

m (M2')
det(S U-g0<LK>)=i 1 ——BII II c(f¥%, a.)
7y (4, "‘Zm-l)(”'l) jo1oaei

where
B= (1 7a+0/r(3 2,+1)) 50,
Using (2.9) and we can write the Wronskian in the following closed
form:
THEOREM 4. Let F,(3, z)——-govap(l e my (1§u§(m;1)). If Re(4;)>0(1<
j<m), then the Wronskian of the hypergeometric integrals F, is written as

0*F, )

azi1k1 azipkp

det(

. (")
= = e B I e, 0
(- 2) ML 2( )

where the product is taken over the I and K such that I= {i;, ---, ip}, K=
{ky, -y kpt, 1S6,< - <ipEn, n415k,< - <kp=m—1, 0= p<n and we set
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B= (]_Iiilr(zj+1>/r(]§ 3,+1))F.
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