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Introduction.

For a finite group G, we say that rank,G=n if n is the maximal number
of rank of elementary abelian p subgroups of G. Let BP*(BG) be the BP-theory
and H*(BG) be the ordinary cohomology theory with coefficient Z,, of the
classifying space BG. Define the Chern subring Ch(G) (resp. Chpp(G)) to be
the subring of H®*"(BG) (resp. BP*-subalgebra of BP*(BG)) generated by
Chern classes of complex representations. When G are metacyclic groups and
some other rank,G=2 groups, we get [T-Y 1, 2], [Thl, 21, [H 1, 2] BP*(BG)=
Chpp(G) and BP*(BG)Rsp+Z (py=H**"(BG), and hence Ch(G)=H*®***(BG). How-
ever we see in that BP*(BG)xChgp(G), H®*"(BG)=Ch(G) for other
- rank,G=2 groups for p=5. These groups also give counter examples of
Atiyah conjecture about filtrations on the complex representation ring R(G).
Let Tre(G) be the subring of H*(BG) generated by the correstriction (transfer)
of the Euler classes (top Chern classes) of complex representations. Hopkins-
Kuhn-Ravenel define that G is good if K(n)*(BG)=Trex)(G) where K(n)*(—)
is the Morava K-theory, and they show that if G is good, then so is Z/pIG
where 2 is the wreath product [H-K-R]. In this paper we see;

THEOREM. If G is a p-group of p=5 and rank,G=2, then BP*(BG)=
Tregp(G), BP¥( BG)Rpp:+K(n)*=K(n)*(BG), BP* BG)QppZ py=H®**(BG), and
hence K(n)*(BG)=Tregwm(G), H®*"(BG)=Tre(G).

Moreover we know explicitly generators of BP*(BG) as a BP*-algebra.
Using these arguments we decide H*(BG) for rank,G=2 groups of class 3,
i.e., [G, [G, G]]=1. '

This paper builds on joint works with Ian Leary and Michishige Tezuka.
It is pleasure to thank them for arguments and comments. The author also
thanks very much to Dr. Charles B. Thomas who introduced him to the study
cohomology of rank,G=2 groups.
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§2. Groups of rank,G=2.

When p=5, Blackburn classified rank,G=2 p-groups as one of the following
(2.1)-2.3) ([Th 3], Satz 11.2 in Il [Hp]).

(2.1) metacyclic groups, those are groups such as
Ca, blaP®=1, a®* =b?", [a, b]=a*"*, with 2P" =1 mod p%, p* (k—1)=0 mod p*
2.2) C(r+2)=<a, b, c|a?=b"=c?"=1, ¢ = Center, [a, b]=c?"
(2.3) G(r+3, e)=<a, b, cla?=b?=c?""'=[b, c]=1, [a,b7"]=c?"%, [a, c]=),
ex0 mod p)

Remark. When p<3, the situation is quite different (12.5 Bemerkungen
[HpD.

Cohomology groups of (2.1)-(2.2) are studied by Huebschman, Lewis, Leary
and Thomas [H 1, 2], [Ls], [Ly], [Th 1, 83]. In particular Ch(G)=H®**(BG)
for these groups. However for the group (2.3) Ch(G)xH®**(BG) by Leary-
Yagita [L-Y]. Brown-Peterson cohomology and Morava K-theory for groups
(2.1)-(2.2) are studied by Tezuka-Yagita [T-Y 1, 2].

§3. Brown-Peterson cohomology of (2.1)-(2.2).

Let BP*(—) be the Brown-Peterson cohomology theory with the coefficient
BP*=2Z [y, vs, -], |v:|=—2(p*—1). Recall that BP<{n)>*(—) (resp. P(n)*(—),
K(n)*(—)) is the BP*-module cohomology theory with the coefficient BP{n)*=
Z py[vs, =+, va] (resp. P(n)*=Z/plva, vasy, =1, K)*=Z/plvg, va™'D).

It is well known BP*(BS")= BP*(CP~)= BP*[[u]], |u|=2. The usual
product map m: S*xS'—S! induces the map

m*: BP*(BS') —> BP*(BS'XBS') = BP*[[ui, u,]]

and defines the formal group laws m*(u)=u,+zpu, of BP-theory. Therefore
we get

3.1 BPXBZ/p")= BP*[[u]l/[p"I(w)

where [p"](u) is the p”-product u-+pp--- +5pu, in particular [ pJ(w)=pu+v,u?
4+ oo +v,uP"+ ... This shows BP*(BZ/p") satisfies the condition of Land-
weber exact functor theorem [La 1], that is,

(3.2) BP*(BZ/p") is p-torsion free,
BP(BZ/p™)/(p, v1, **+, Vn_y) IS v,-torsion free.
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Hence BP*(XBZ/p™)=QgspBP*(BZ/p%) [La 1].

First we study metacyclic groups. Consider exact sequence

(3.3) 1 (ay G by/<bP?y —> 1

and induced spectral sequence
(3.4) E,**= H*BZ/p®; BP¥(BZ/p*) =— BP*(BG).

In [T-Y 2] we see E,“**=(0 and hence E.=ZFE, Moreover E,"*=
BP*(BZ/p*)® is generated as a BP*-module by elements u(z) such that u(z)=
p*7%u* mod (vy, vy, +-+) where k—1=4p7, and 7=2A’'p*(4, A’%0 mod p). Let p,:
G—G/{a)—C* be given by b—exp(2xi/pf), and let &: <(a, b**">—C* be given
by a—exp(2zi/p*), b—1 and y=Ind {a, b**7")¢(&). Then BP*(BG) is generated
by ¢i(p), 1=i<p* 7 and ¢,(p;) as a BP*-algebra. Using Theorem 2.6 in [T-Y
2], we see

LEMMA 3.5([T-Y 2]). If k=BP, BP{n)>, P(n), K(n), n=1, and G is a meta-
cyclic group, then

(i) R*BC) = k*Qpp«BP*(BG) = Chx(G)

(ii) H®*™(BG) = Z ,»Qpp«BP*(BG) = Ch(G).

According to Hopkins-Kuhn-Ravenel [H-K-R], we define Trex(G) to be a
k*-submodule of 2*(BG) generated by transfer (correstriction) Tr(e(p)) of the
Euler class (top Chern class) of complex representations p. Note that Tre.(G)
is k*-subalgebra (Corollary 7.6 in [H-K-R].

LEMMA 3.6. If k and G are the same as Lemma 3.5, then
(i) E*BG)= Tre,(G)
(ii) H®*"(BG) = Tre(G).

ProoFr. First note that, <a?*"7, b) is abelian. Let & : <a?*”7, bp—C* be
the representation with a?* 77— exp2xi/p"), b—1, and let

ns = Ind<a?*7, b)<a®*77"’, b)(&).
Then e(nd)=cps(ns)=u?" mod (v,, ---). By double coset formula
Cora?®7*, u%(cp* (5)1<a?* ™) = p*7*u?* mod (v, -+-).
Since 7.-;/, p: are representations of G, we get
Corea?® 7% (el ns D Na-rDk o)) = Cor®(cp *(n))cpa-r (na-rY c:(p2)*
make a BP*-module generator. g.e.d.

Secondly consider the case G=C(r+2). Consider the exact sequence
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3.7 1—=4<, ¢ G {a) 1
and induced spectral sequence
(3.8) E**= H¥BZ/p; BPXB(Z/pDZ/p")))=— BP*BG).

Then E,°*%*=0( and hence E.=FE, ([T-Y 2]). Let p,: <a>—C*, a—exp(2xri/p)
and p, :«Kb)—C*, b—exp(2ri/p). Let &: <c, by—C*, c—exp(2ni/p"), b—1 and
n=Ind,»%(&). Then BP*(C(r+2)) is generated as a BP*module by (§4 in
[T-Y 2]) ci(pcp(nY, 1Si<p—1, ci(p)*ei(o2) cp(n).

LEMMA 3.9. For G=C(r+2) (i), (ii) in Lemma 3.5 and Lemma 3.6 also
hold.

Proor. The statement in is proved in [T-Y 2]. Let &:
{c?, by—C*, cP—exp(2ri/p™"), b—1. Then we easily see that

Cor?, »%(e(i&'@jn) and e(kp,Dlp.Djn)
are generators of BP*(BC(r+2)) as a BP*-module. g.e.d.
For the next section, we give here another expression of BP*(C(r+2)).

LEMMA 3.10. (For r=1 [T-Y 1].) Let p=3 and let us write y;=c,(0:)
and c;=c;(n). Then there is a BP*-algebra isomorphism

BP*(BC(r+2)) = (BP*[[y1, 3.1I®BP*{cy, -, cp-11)[Lcpl]
/Lp1(y1), [P1(pe), yznzez/p(%‘l'BP[l]yz),

other relations containing ¢;, 1<i<p—1).

Proor. (See [T-Y 1] for r=1 case, note that in that paper most arguments
work with mod (v,, ---), while omitted there.) The central extension

1 e G {a, b —>1

induces the spectral sequence

E**= H*(a, by; BP*({c))) == BP*BG)
where

E*,,*N{Z/[yl, . IQA@RBP*[[u])/[p7](w) for ' >0 |a| =3,
© P Iw cor w0,

The first differential is d,u=a and the next differential is

d2p-1(up-1®a) = Bpl(a:xxyz—xzyl) = 9P 9= 919, (here .Bxi'—' Vi)

by the Kudo’s transgression theorem and the naturality of the spectral sequence.
Hence we get
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Esp**= BPXZ L, pu, -, pu~YBZ/ 31, ysT—{11)/(3:" ya— 3:7:7)
®RZ[w"1/([p"1w)Y

where ([p7](uw)) is the intersection of [p"](x) and its above BP*-algebra.
Since E,, is generated by even dimensional elements, E,,=FE.. The relation
is invariant (except units) under the automorphism of G. The automorphism
a—ab?*, induces y,—7y,+5p[A]y:, which shows the relation contains y,. q.e.d.

§4. BP*BG(r+3, o).
In this section we always assume G=G(r+3, ¢) and p=3. The extension

4.1 1—><a, b, c?> G {c> 1

induces the spectral sequence
4.2) E.**= HXBZ/p; BP*BC(r+2)))= BP*(BG).
The action c¢* induced from is given by

c*c; = ¢y, c*y =y,
4.3)

c*y, = Ye—pBPY1-

Let us write w=TIT:e./p(¥2+5p[A](31))=.P+ ---. Then note y,'w, i=0 are in-
variant under the action c¢* since y,w=0 in BP*(BC(r+1)) from Lemma 3.10.

LEMMA 4.4. The invariant BP*(BC(r+1)) is multiplicatively generated
by elements

1! Y1, €1y =t Cpy yziw, 0 _S_Z__S_ p—]..

PrROOF. Let x&BP*(BC(r+1)). Since [p](v:)=0, py.*=0 mod (3, y.*w).
By taking off the above invariant from x, we may consider the case

4.5) x=yz"ylscp‘+ ey 1<7:< p—-1.
However
(4.6) (1—=c*)x = ((y2+apy)' — 1)y cp'+ -

=1y, 7yt e+ e 0.
Therefore x is not invariant. g.e.d.
Let N=1+4c¢*+ .- +¢*?P~', Then note E,*'*=Ker N/Im (1—c¥).
LEMMA 4.7. Ker N/Im (1—c*) =0.
ProoF. If x|<b, ¢?>=%=0, then Nx|<b, ¢c?>=pX. Since BP*(b, c?>) has
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no p-torsion p%=0. Hence x&Ker N. Suppose x|<b, ¢?>=0. Then from
the fact that collapses and from x is expressed as but
0</<p—1, s=1. From [4.6), if ixp—1, then y,*y,’c,'+ --Im (1—c*). Taking
of elements in (1—¢*), we may only consider the case i=p—1. But this case

(48) Nx = Elezlp(y2+2y1)p—lcpt
= —y, P+ o0 mod (p, vy, ). g.e.d.

COROLLARY 4.9. E.=FE, and BP*BG)=BP®*(BG) and all elements in
BP*(C(r+1))°=E,** are permanent cycles.

Let ﬁ(n)*(—) be the cohomology theory with the coefficient ﬁ(n)*:
Z (»[Vas Uns1, =], that is, ﬁ(n)*/p:P(n)*. If sz’(n) n=1 or BP<{n) n=2,
then almost all arguments in their proof of work and E.=F,=
E, ™ * for the spectral sequence of k-theory. Hence we get

(4.10) E*¥BG) = k*QpmBP*(BG).

Moreover this formula also hold for k=P(n) and K(n) by Theorem 2.6 in
[T-Y 2].

LEMMA 4.11. For k=BP<{1), E;°¢%*x0. However d,.E;**™*=0 and E°%% *
=0 and (4.10) also holds for this case.

PrOOF. All arguments in the proof of are still true except
that BP<1>*(B<b, c?}) is p-torsion free. Hence we may assume x=7y,'c,"+---.
Let §=E,°?%* be an element which corresponds x|<b, ¢?) in Ker N/Im (1—c*)=
Ker N in the spectral sequence induced from

1—<b, > —><b, ¢ —> () —> 1.

But BP°%%({b, ¢))=0. Hence d,7=0 for some r. By the naturality an element
ye E,°?%* which corresponds x&Ker N/Im (1—c*), has non zero differential d,.

g.e.d.
COROLLARY 4.12. H®**(BG)=BP*(BG)Qpp+Z (p -

PrOOF. From and the Sullivan-Bockstein exact sequence the
corollary is immediate. g.e.d.

Now we consider Ch(G) and Tre(G). BP*(BG) (resp. H®*"(BG)) is BP*-
algebraically (resp. multiplicatively) generated by

4.12) Ly, yofw, ¢y, v, Cpy §

where 7 is an element corresponding at a non zero element in E,*°. We can
take as 7, c,(p2) where p,: G—G/<a, b, c?>—C* by c—exp (2ni/p). Let £:<b, ¢>
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—C* with ¢—exp@ri/p™*"), b—1 and np=Inde, %(6). Then we can take ¢;=
Ci(77)-
LEMMA 4.13 (Lemma 1 in [L-Y]).
C0r<b.c>G(up"‘yz")l<b>=—yz"'”" mod (vi, Vs, *°).
PrROOF. By the double coset formula, the lefthand side above formula is
o, 56 COT g =10, evg ey’ 8XUP T 35t [ B> g7<b, > Q)
=307 (uP ™ y,1)|<b>
=3utjey)? (3o +7pu)|<by  (see (4.12) in [T-Y2])
=y, P mod (vy, Vs, ).
COROLLARY 4.14. Trezp(G)=BP*BG) and Tre(G)=H*®**"(BG).

PROOF. Corg, %(e(p—1)é+ip,) represents 7°w and Cor,,%(e(3§)) represents
¢; mod (¢q, v, €;-1) Tor 1575 p—1. q.e.d.

Next we consider in H*(BG). Recall H*(B<b))=Z/p[y.] for = >0.

LEMMA 4.15. H¥BG)|Kb)=Z {1} DZ/p{y*™", y7, 77, -},

PROOF. Let j: <b> G G be the inclusion. Then ;*(y,)=0, j*(y.'w)=y,**?
J¥e)=0; 1<i<p—2, j¥(c)=y."; i=p—1, p. q.e.d.

Since |G/<b, ¢)| = p and <b, ¢) is an abelian group, the dimension of
irreducible representations are 1 or p. Therefore ¢;(p)|<b>=0 except for /=
p—1, and =p for all irreducible representations.

LEMMA 4.16. Let us write t,=Corg, °(e((p—1)§+(+1)psz)). Then t;&Ch(G)
for 1<i<p—-3.

PrROOF. The restriction is ¢;|<bp=—y?*Y, which is not the products of
y.P7' and y,P. g.e.d.

COROLLARY 4.17. Let A=<b, ¢*">=Z/pDZ/p. Then H*BG)| A+
H*(BA)N6“ where Ng(A) is the normalizer of A in G.

PROOF. Let us write by v~/ 0 the ideal of nilpotént elements. Then

H¥BAYeD /[0 = Z/p[ye, uP—3:."'ul < Z/ [y, ul.
But
H*¥BG)/V O A= Z/p[y. P, uP—y,Pu; i>0]. g.e.d.

Here we recall the Atiyah conjecture [[A]. Let 2i(x) be the i-th exterior
power of representation x< R(G) and A,(x)=32%(x)t!. Let us denote A;;;-,(x)=
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7.(x)=X7%x)t*. Grothendieck defined the py-filtration on R(G) by using this
r*(x). If this y-filtration is equal to the filtration defined geometrically identify-
ing R(G)"=K°BG), then, by using splitting principle and multiplicative property
of 7.(x), we can easily see that [c.(p)]=[r"(p—dim p)] for each representa-
tion p, in the F.-term of the Atiyah-Hirzebruch spectral sequence

E,*= H¥BG; Z)== K“(BG)= R(G)".

Therefore Ch(G) maps epic to the E.-term if both filtrations are equal. Atiyah
conjectured the equality. Leary-Yagita give the counter example for p-groups

(for non-p groups examples are given by Weiss [Th 2]).

THEOREM 4.18 ([L-Y]). For G=G(r+3) and p=5, Ch(G) does not map epic
to the E.-term, and hence Atiyah conjecture does not hold.

PrROOF. Let us consider the connected K-theory E(n)*(—) with the coef-
ficient E(n)*= Z p[va] and K(n)*(—)= E(n)*(—)[v,"*]. The complex K-theory
localized at p is the direct sum of A (1)-theory. Since there are natural (Thom)
maps p: BP—»E(I)—»HZ(m, we see f; in H¥(BG) is a permanent cycle in the
spectral sequence E,**=H*(BG, k(1)*)=k(1)*(BG). Comparing another spectral
sequence E,* *=H*(B{b); k(l)*):}ﬁ(l)*(B(b>), we know ¢; is non zero after
localized by v, and is not represented by element in Ch(G)=p (ChgpG) in the
E.-term for 1<:<p—3. g.e.d.

REMARK 4.19. It is wellknown that K(1)*(BG)=Chg,(BG) for all finite
groups (Landweber [La 2]). Indeed, [p](y.) = py:+v:3.°> =0 in E(L)*(BbY),
hence y,?* =07 (pyi*)eChray(G)|<bY. However for K(n)-theory, [#1(y2)=py:
+v,3.?" and we know, if n=2, then Chzm,(G)S K(n)*(BG) and Chgay(G) S
K(n)X(BG).

§5. H*(BG(r+3, o).

In this section we always assume p=>5 and compute H*(BG(r+3), ¢). For
ease of notations, let us write G=G(r+3, ¢) and E=C(r+2), and H*BG) by
H*(G). We consider the exact sequence and induced spectral sequence

®.D E*=HXZ/p; HXE)) == H*G).

REMARK. From and |Corollary 4.12, there is the epimorphism
(B: in (4.2)Q5peZpy) — (Bt *n in [5.1). In particular E.0¢%°¢4=(0 and
Emeven,o_:(Ezeven,O in (4-2))®BP*Z(17)-

We recall the cohomology of E by Theorem 3 in [Ly]. Let us write
Z/p"a]=Z[a]/(p"a) and write
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Y = Z/p[y1, 9:1/(3:° 92— 3:19:7)
(5.2) C=2Z/p"HalBZ/p" (s, -, Cril
Co=Z/p""[c,].
Then H*"(E)=(YPC)QC, with the multiplication
Cp-i® = Y P4y PP =y PP cplide = 90, Cperdi = 907
{cic,-ZO mod p, 154,75 p-2.
(For details see Lewis or Leary [Ls], [Ly].) The odd dimensional part is
(5.3) HotHE) = (Y {dy, do} /(31d2— 321, 317da—3:7d1))QCp, |d:|=3.
The action induced from is (same as
c*e; = ¢y, c*y, =
(5.4) {
c*Y2 = Yo 1.
By the arguments similar to (4.4) we can know the invariant parts. Let
Yi=2Z/ply:l
{ Yo=Y, {w}=2Z/ply.1{w}  where w= 3,°—,""'y,.
Then we get
(5.5) He(E)Y? = (V@Y wDO)RCHp.
Next consider image N. By the reason similar to
NC = pC, NC,= pC, and
Nysiys :{ 0 1< p—1
9P = p—1.
Therefore we have
(5.6) HeMEY?/N = Y1/ 3:."7'BY wBC/PRCH/p .
The Ker N is computed
Ker NICQCp = o(CQCp) = Z/p{(p"cs, p77'Ca, =+, p" 'ep-r)es?, P75’}
Ker NIlYQC, = ¥ =Y {y."'HRC,.
The image (1—c*) is computed as
A=c®) o'y’ = i3 79" -

and hence (1—c¥Y ={y,*y,**'; iz p—1}. Therefore
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6.7 Ker N/(1—c*)™" = p(CRQCIB(Z/ p{32, =5 3.7 DY w)RCp .
Now we will consider odd dimensional case. The c*-action is given
(5.8) c*d, = d, since d,|<b, ¢?> =0
¢*dy, = dy—d, since y.d, = y.d,.
First we study the invariant under c*. Since
A=cN(ye' 3’ +)de = (Ba—y ) Y1t Ndo—d)— (32" y:* 4+ )de
= ((+1)3""y, et e,

we see for 1<:<p—2, y,*y,°+--- is not invariant under c*. It is easily checked
that d,=(y.?"'—y,?"!)d, is invariant;

c*dw = ((Pe—y0)7 =37 do—d1) = (3P + 2P 2 yu+ -+ 3. 9.7 7)(d—d)
= 9P dy— Y. 3:7 7%, = d o, since y,d, = y.d,.

By v.?d,=y,?d,, y,d»,=0 and hence Y,d, is also invariant,

(5.9) HEY® = (Y DY )d:BDY :d)RCp
= (Y 1d:PY2d »)RCp, since Y,d;=0.

The image N is computed as

0 ix p—1
Nyziy1sd1 = . .
y.t+id, i= p—1
Nyzidz = Ek(yz-‘ky1)i(dz—kd1)
; _ P %dy 1= p—2
= 23( : )Ek(ksdz_ksﬂdl)yzl_s%s = { .
S 0 1£:< p-3
Therefore
(5.10) H?YEYO/N = (Y /3.77%d,BY:d »)RC,.

The Ker N is given from above computation

Ker N=(Z/p{L, y2, -+, 3" Y1 diDZ/ L, 35, =, 327 7°} DY 2dw)RCp.
The image (1—c*)Yd,={y:'y,**!|i>=p—1}d,. Hence
(5.11) Ker N/(1—c*)°%¢ = (Z/p{1, 32, -+, 327} doDY2d )RCp.

To study differential of this spectral sequence [5.1), we study differential
of other ones. Consider exact sequences
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(1) 1—<LP)—><b, ) —>Kb, c)/Lc?) —> 1

I N n
(5.12) (2) 1—<LK?>—> G —>Ka, b, c)/{c?> —1
U U

I
@) 1—<c?>—><a, b, "> —><a, b) —>1

and induced spectral sequences, in particular

(5.13) E;** = H*(C(3); HXZ/p")) = H*(G)
~ { Z/pTAQHACE); Z/p7)  # >0
| BHxC®)) «=0.

Let us use notations with 7, &, d in H*(C(3)) instead for ys, ¢;, d,, for example,
J=H*(c>/{c?)). Moreover ¥*€H(cy; Z/p"), x1€H'(Ka); Z/p) are the non
zero elements corresponding 7 and y, respectively. Then we have

§5.14) d,u = d,, since dul(3) = x1y:—%291.
Since d(%u)|(1)=3* and d(%u)|(3)=0, we have
(5.15) d(Zu) = §*+AC>.

Let z=Jx,—y.% in H¥C@3); Z/p"). Then pz=0 and ze= H*(C(3); Z/p),
moreover B(z)=0 and z|<{a)> = z|<{c)>=0. Hence z=0 in H*(C(3)). Therefore
yid(Fu)=735d(x,u). Hence

(5.16) d(x,u) = 3, 5+2C,.
We will consider another exact sequence
1 —><b, ") —><b, ) —> ey —> 1
and induced spectral sequence
6.17) Er* =HXZ/p; HNZ/p"DZ/p) == HXZ/pDZ/p"™")
Z/plul®Z/ pLy:1RQA(dIRZ/ pLFIQA(E) " >0
{ Z/pl5] ¥ =0.
For this spectral sequence
(5.18) dy(de) = 3:5,  do(Zds) = :5%,
d-(3)=0  for all r.

Now we return to the first spectral sequence [5.1). Let us write by 7 the
element in E,*° corresponding the same letter j=H®(<c)/{c?)) and %a the
element in E,* for a=Ker N/Im (1—c¢*). Note that ¥a does not mean the
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product of ¢ and %, while some restrictions may be its product for some sub-
groups.

First assume r=2, that is the cases ¢,>0. From (5.14)-(5.16) H*G)=
Z/p{d}. From and 3-dimensional elements in E, are in Z/p{d,,
%5, ¥pc1}. Since Xy,1<b, cy=d |<b, ¢), ¥y, is the only permanent cycle. Hence

(5.19) ds(Xper) = 3
(5.20) d.(dy) = y15+4¢,F since ¢,/<a, b, ¢?>=0.
By the naturality and we get
(5.21) do(¥2°dw) = y2'wF, do(3:°%ds) = 3.°75X, d(3.°%dw) = y.'w5 .
From [5.19), we see ¢;5*=0 in E,**, and we know
(5.22) ds(pc:X) = ¢ 3.
We compute Es-terms. From [5.10) and [5.6)

dz : Eze'oen,odd 5 Ezeven. even
Ul Ul
{ Y1/ 9:P72d:1BY 2d)QCp even >0  (Vi/3:P7'BY ,DOYRC,/ D
Y1d:14+Y2du)RQC, even = 0.

Hence from (5.20) and (5.21)

Egevem0td = even >0 Egevemeven = (CRC,)/p even >0
{ E"0% =Y ({9,272 d} QCy { E,> o = (VDY »DCO)RCop .
From and

dz: Ezodd,odd > Egodd,even
Ul U
(Z/ D11, 32y p 327 de@®Y 2d w)QCp ((CRCBAZ/ p{ya, -+ 327 DY u))RChp.

Hence from (5.21)

(5.23)

(5.24) Et00e =,
(CRCyp) odd =3
((CROC)DZ/ p{yz, -+, 3Pt DY w))R®C, for odd =1.
The differential shows
(5.25) ES* = (Y. BY wBCDY {37 2d:})RXC,
Er*=(Z/p{ys, -, 2" DY )QCp- %
EF*=({I}BOR(C,/p)-F

Esod d, even — {
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Er*=0 for 7=3.
Therefore we get
PROPOSITION 5.26. E,=E..

We will consider the extention problem of E.. First we see odd parts.
Since Y, is p-torsion, we only need to see {y,?%d,}, but there is no other ele-
ment in E., of degree 2p—1, and hence all odd dimensional elements are exactly
p-torsion. Next we consider even degree parts. Since Y, is the image of cor-
restriction of p-torsion (4.13), Y, is also p-torsion. To see the exponent of
¢;, we use the restriction to BP*(B{c))=BP*[[u]]/[p" " 1(u). Since [p](u)=
pu—+v,u? mod (v,p) we have

(5.27) [p7*(w) = p™uv, PH P u?™™ mod (v1p).
First note that we can take
ci|<e> = put mod [p"I(w) for 1<Z:i< p—1
¢pl<c>=u? mod [p"](u).

Since p" !¢y |<c>=p"u>x0 mod (v,), hence p""'¢,%0. Therefore p" 'c, must be
§ by dimensional reason. For 2=i<p—1, we see

j)rci l <C> = p'r +1ui — __v11+---+p1'upr+i+i_1

Therefore p7¢;>0 and p"c;=,c¢;-,§ by dimensional reasons. The similar fact
p
DT ep=pCp-1§ also holds.
At last we consider the case r=1. By the similar arguments, we get

(5.27y dsc.¥ = 7°  instead of [5.19).
Using this, we can show
Eg&*=E,>* in (5.25) for 05752
E&*=0
1 E* = (Cyp/)- 7

Eb*=0 for i=5.

(5.28)

This case we write § by ¢,. Then we get the following theorem except for
the extension problem of E. for r=1.

THEOREM 5.29. Let G=G(r+3, ¢) and p=5. Then there is an additive
isomorphism
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He*"(BG) = (VDY . DCHRCy
H?YBG) = (YV,d,DE)QCy
where
(1) C'= Z/pr {Cl} @Z/prﬂ {CZ’ T cp-l}
Ch=Z/p"*{cy} leil =2

@) Y.=Z/ply] | 3] =2
Yo=1{n'wlsz0 =Z/ply.1{w}  |3'w|=2(s+p)
@) ldil =2p—1

E=27Z/ples, -, ép—n ep}@ywel les| = 2i41
with multiplications we,= y.* ‘we,.

We can also decide the multiplicative structure of H*(BG), by using argu-

ments of Leary [Ly 2].

Take generators such as

(5.30) c; = Corgy, %(u?) 1<igp—1
t; = Corg, % (¥t ' uft) 0=,
LEMMA 5.31.
pu’t 1< p—1

1) ¢’1<b, e = { )
puP-t—y,P1 1= p—1

2) Hl<b, > = — 37"t

PRrOOF. (Compare 4.13.) The conjugation action a* in H*(<b, ¢)) is given
by
{ Ur—>uU+ey,
a*
Yo Yo +DTu
and hence
{ ur—> u-tkey,+k(k—1)/2)ep u
a**

Yo Yo tkpTu.
Therefore

Sa**(u’) = Zh(u+keyy) +k(k—1)/2-iep"u’

= Stua( | )w DAy ) D —1)/2-dep

{ put4G/2X(p(p—1)2p—1)/6—p(p—1)/2)p"u* i< p—1
puPt—y,7! i=p—1.
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By the double coset formula and p=5, we have (1)
¢i’1<b, ¢ = Cor (u?)|<b, ¢) = Ja**u’.
Using similar arguments (compare we get (2). q.e.d.
Now we see the multiplication. Let ixp—1. Then
cic; = Cor (u*) Cor (u?) = Cor (Cor u*|<b, c>-u’)
= Cor (pu**?) = p Cor (u'**’)
{ PCivs i+7 < p

PCisi-pCp  i+j =P, since cp[<b, > =u”.

(6.32) =

Next consider the case i=j=p—1.
(5.33) Cp-1Cp-1 = Cor (pu? 2+ yPuP-1y = pcp_sCp+ip_s.

Thus the extension of E. for =1, that is (1) in has also proved,
since ¢;¢;%0 from [(5.28).
Since y,[<b, c>=0, we get

(5.34) yic;=0 and 4, =0.
We easily see that
(5.35) titj = Cor(—y2”+iy2j+‘u”‘1) = _ti+j+p .

If ixp—1, then ¢;t;=Cor(py,’*'u**?-'). By the arguments similar as the proof
of Lemma 5.31, we see

Cor (97 ut*?-1)[<b, ¢) = Da**(y /M ut*?~1) =0.
Since each element in Ker Res (H*(Kb, ¢))—=H*(Kb, c?))) is p-tosion, we see
(5.36) citi=0  for ixp—1.
Cp-1ly = Cor (pyo? M uPP 2 — 3, P Ul = —1, ;.
At last we consider odd dimensional elements. Define
(%.37) 1= Corca,5,P,%(3:272ds),

since di|<a, b, c?)=3c** (3,7 %ds)=v,""%d, from [5.9). In the E.-term [5.25
(5.28), odd dimensional elements in E.** /=2 are all zero. Hence we get

(5.38) yie; =0 tie; = tiyj61
0 1=k < p—1
cre; =1 tiie k=p—-1, 254

—e, k=p—1, i=1.
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Now we study the product by di. From we know that if
odd dimensional element x satifies x|<a, b, c?>=x|<b, ¢>=0 then x=0. Note
t,dil<a, b, c?) = (t:3:.""*)|<a, b, c">d1=0.
By the double coset formula

d11<b, ¢> = Corg, 2y (3.2 2d,|<b, c?)).
Here

03 do|<b, ¢?> =deHNZ/pBZ/p") = H(Z/p"; HNZ/p)=HYZ/p"; Z/D)
identifying from the spectral sequence induced by
1—Z/p—<b, ?) —Z/p" —> 1.
We know that
(5.39) Core?,(d)=e=x0in H'(Z/p"*'; Z/P)
by the definition of the corestriction, that is, identifying d€Hom(Z/p"; Z/p)
Corr?d(n) = X82th(n, i) = —n mod p
where n+i=7+h(n, 7)p mod p* with 0=z, 7< p—1(See Lewis [L] 1.2). Therefore
di1<b, ¢> = —y,P %, where 0= e e H¥, ¢).
Hence we get
(5.40) t,di = —ti pser.
Since ¢;|<a, b, c?>=Corp, 5% > (y?), we know
cidil<a, b, c?> = Corg, », > P(u'y,*~*|<b, ¢*))d,=0 and
lsi< p—2

0
cidi|<b, ¢> = {
_yzp—lyzp—Ze 1= p—l .

Hence we get

0 1<i<p—2
(5.41) cidi =

tp_Sel Z:p_—]_.
THEOREM 5.42. H*(BG(r-+3, e)) is multiplicatively generated by y., tj, ¢;;

1<i<p—1, ¢, and di, ey, -+, ey_y, €, With the relation (5.32)-(5.36), (5.38), (5.40)-
(5.41). In particular it is independent of e.

REMARK 5.43. When p=3, H(BG(r+3, e)) is completely computed by Leary
and it is independent on choice of ¢ for »=2. also holds
this case but for we need some changes for relations.



Cohomology for groups of rank 2 643

Therefore we know H*(G) for rank,G=2 groups except for metacyclic
groups. For metacyclic groups cases, see Huebschmann [H 2]. From
3.5, H®**(G) is multiplicatively generated by c¢;(n) 1=<:i<p*7 and c,(p,)=7.
Here we only note about H*(G)/+/0. Quillen’s main theorem for the mod p
ordinary cohomology is;

THEOREM 5.44 ([Q]). The induced map from restrictions
r: H¥BG; Z/p) —> Liminv H*(BA: Z/p)
AeIE

is an F-isomorphism (i.e., injective modulo ~/ 0 and for all x in the righthand
side module, there is m such that x?™<Imr) where IE is the set of conjugacy
classes of elementary abelian p-subgroups of G.

THEOREM 5.45. Let G be a metacyclic group (2.1) with k—1= 2p" (A=0
mod p). Then there is a ring isomorphism
H*BG)/V0 = Z/plcya-r(n), 7]

ProoF. First note that |G|H*(BG)=0 and hence pH*(BG)c+ 0. The
conjugacy classes of maximal elementary abelian p-groups of G is only one

M={C, AB> where C=a?""', A=a?*""", B-*=b?""", and
H*BM; Z/p)/V0=H*BM)/~0=Z/plu, y].
We want to know the Chern class ¢()| M for the representation given for
Lemma 3.5. By the double coset formula
NI M = Indea,o?* ,9(E) | M = Dosispa-r(b**(EIM)).

Since b~lab=a?"*, b-'Ab=A"""'=CA or =A if a’+7y=a or a’+7>a respec-
tively. If a’47>a, then 5| M=p*7&| M and c¢(9)| M=1+u)**"7, hence c¢,(n)|M
=0 for 1<i<p*7—1 and ¢,*7(n)|M=u?*"". Therefore theorem holds this
case. Suppose a’+r=a. Then n|M=@;p* where p is a 1-dimensional nonzero
representation of <AB). Hence
(5.3) c(IM) = Tlosispe—r (L+u+iy)

= (14w —y? (14

— 1+ycp—1)p+(up__yp—lu)pa—r—l .

Since y=H*(BG)| M, we also have the theorem. g.e.d.
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