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Introduction.

There are several different, but equivalent versions of the classical Borsuk-
Ulam theorem. One of them can be stated as follows:

THE CLASSICAL BORSUK-ULAM THEOREM. Let S™ be the unit sphere in
euclidean (n+1)-space R**'. If f:S"R" is a Z,-map, i.e., satisfies f(—x)=
—f(x) for all xS, then f~Y0) is nonempty.

Many authors have been contributing to generalizing and extending the
Borsuk-Ulam theorem in various ways (see Steinlein [10]). Recently E. Fadell-
S. Husseini and J. W. Jaworowski independently introduced an ideal-valued co-
homological index theory and extended the theorem to maps of Stiefel manifolds,
see [2], [3], [4] and [5].

Let (R™* denote the cartesian product of 2 copies of R™ Any point of
(R™* is represented by a (kxn)-matrix. Then the A-th orthogonal group O(k)
acts on (R™* by matrix multiplication on the left. When 2<n, the Stiefel
manifold V,(R"™) of orthonormal k-frames in R™ can be considered a subspace
of (R™)* on which O(k) acts freely. In [2], [3], Fadell and Husseini considered
Ztmaps f:V . (R")—R"*)* where Zi=Z,X - XZ, (k times) is a subgroup
of O(k) which is diagonally imbedded, and they estimated the cohomological
size of f~'(0)/Z% where O is the zero of (R *)*. In [4], [6], Jaworowski
considered O(2)-maps f: V (R™)—(R"? and estimated the cohomological size of
fYT)/0@2), where T={A=(R")?|rank A<2}.

In the present paper we will consider more general class of maps of Stiefel
manifolds and generalize their results. We will employ (mod2) cup,-length,
denoted cup,(X), as a measure of the cohomological size of a space X. cup,(X)
is defined to be the greatest number s such that there exist x,, -+, x:E
H\(X; Z,) with x,\U --- Ux;#0. The inequality cup;(X)=0 means X is at least
nonempty. When x,, ---, x; can be taken in any positive degrees, the usual
cup-length, denoted cup(X), is defined. Then cup;(X)<cup(X)<cat(X), where
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cat(X) denotes the Lusternik-Schnirelmann category of X. The inequality
cup,(X)=a=0 implies H*(X; Z,)+0 for all b with 0<b<a.

Given integers k,, -, k>0, we can diagonally imbed the product
O(kyy oy k)= 0(k)X - XO(ky) into OCky+ -+ +ky). If kit F+kpn < n,
Vg r @B denotes the Stiefel manifold Vi ,..:,(R®) with restricted
O(ky, -+, kg)-action. O(ky, -+, ky) acts also on a product space (R™)*x - X
(R'™)*™ g5 product action. Let T,={4de®R'")*|rank A<k;}. Then T,X--XTn
is invariant under the action of O(k,+ --- + k).

In sections 1-4 we will give some preliminaries on ideal-valued indices and
calculate those of relevant spaces. We will show in section 5

THEOREM. Let [:V i pp(RD—RM* X o X(R™ ™ be an O(ky, -+, kn)-
map. Suppose

i< n— % k.,

r=i+1

for all i with 1<i<m. Then
cupy(f"H T X =+ XTn)/O(ky, -, kn) Z a,

where a=mn—3", G—1k,— X", maxi{k;, [,+1}=0. In particuar [ (T,X -
XT ) 1S nonempty.

If we take m=1, k,=1 and /,—=n—1, then the theorem is just the classical
Borsuk-Ulam theorem. If we take k,= --- =k,=1 and /,= --- ={,=n—m, then
TyX -+ XT consists only of zero and the theorem reduces te the case which
Fadell and Husseini considered. If we take m=1 and %k,=2, then the theorem
reduces to the case which Jaworowski considered. (But the estimation is weaker
than Jaworowski’s.)

Let W,={A=(R"*|rank A<} for any j. In section 6 we will discuss the
cup;-length of orbit spaces of f=*(W;) for O(k)-maps f:V . (R*)—(RY*. In sec-
tion 7 we will consider O(k,, -+, kn)-maps of products V, (R"")X - XV, (R"™)
of Stiefel manifolds. If we take k,= --- =Fk,=1, this reduces to the case of
products of spheres which is considered in [2], [3]. In the last section 8 we
will give some equivalent versions of the Borsuk-Ulam theorem for Stiefel
manifolds which correspond to well-known equivalent versions of the classical
Borsuk-Ulam theorem.

§1. Ideal-valued index.

In this section we will recall the definition and basic properties of ideal-
valued index which was first introduced by Fadell and Husseini [2], and
independently by Jaworowski [4], [5]-
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All spaces considered are paracompact and Hausdorff. Let G be a compact
Lie group and EG—BG a universal principal G-bundle. The G-index of a G-
space X, denoted Ind® X, is an ideal in H*(BG; K) where H*( ; K) is the
Alexander-Spanier cohomology with coefficients in some field K. In this paper
we will take Z, as K, and it will be suppressed from the notation. Ind®X is
defined to be the kernel of the homomorphism c¢¥: H¥(BG)—»H*EGX¢X) in-
duced from a map cy: EG X ¢X—BG which classifies the free diagonal G-action
on EGxX. If X is a free G-space, then Ind°X coincides with the kernel of
the homomorphism H*(BG)—H*(X/G) induced from a classifying map X/G—
BG for the free G-action on X.

ProrosITION 1.1 ([2], [3], [4], [5]). If f: XY is a G-map, then

Ind®X o Ind?Y
in H¥BG).

The property of the G-index described in the following proposition is
fundamental in this paper.

ProposITION 1.2 ([2], [3], [4], [6]). Let X and Y be G-spaces, and W a
G-invariant closed subspace of Y. If f:X—Y is a G-map, then

Ind® f=*(W)-Ind®(Y —W) < Ind®X

in H¥(BG), where - represents the product of ideals.

Denote by X;*X, the join of a G,-space X; and a G,-space X,, and repre-
sent points of X,*X, by [, x,), 1—%, x,)], x;,€X;, x,€X, and 0<t<1 with the
usual identifications. Then X,;*X, becomes a G,XG,-space via the action

(g1, gLt x1), A—t, x)]1 = [(¢, gux1), (1—1, go%o)]
for (g1, g.)€G,xXG,. We obtain
ProrosiTION 1.3 ([2]). Let X, and X, be as above. Then
Ind%1*%2 X X, o Ind®1 X,RInd% X,
in H¥(B(G1 X Gy)=H*(BG,)QH*(BG,).

ProposITION 1.4 ([2]). If G,XG; acts on X, by (g1, g2)%1=g1X:, then we
obtain
Ind%1%¢2X, = Ind®1 X,QH*(BG,)

in H¥(BG,)QH*(BG,).
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§2. Indices of Stiefel manifolds.

In this section we describe the O(k)-index of an O(k)-manifold V,.(R™)
along the line of Jaworowski [4], [6]. The orbit space V,(R")/O(k) is a
Grassmann manifold G,(R®). BO(k)=G,(R*) is a classifying space for free
O(k)-actions, and has cohomology ring

H*BO(R)) = Z[wy, we, -+, we],

where each w, is the /-th Stiefel-Whitney class of the universal k-plane bundle
over BO(k). Let w=1+4+w,+w,+ --- be the total Stiefel-Whitney class and 0=
14@,+w,+ -+ be its dual class defined by the relation wiv=1 in Z,[w;, ws, ---].
Let f(k, I) be the ideal in Z[w,, ws, -] generated by @Wi,., Wise, -+ » Tiss, and
J(k, ) be the image of f(k, ) through the projection Z,[w;, wsy, -] —
Z[w,, -, w,]. Then we have

ProposiTION 2.1 ([4], [5]).
Ind°®V  (R™) = J(k, n—k).

§3. Ok, -+, kn)-indices (1).

Let 0<k<! be integers. Let T={A=(R")*|rank A<k}. Then U,RH=
(RY*—T 1is the space of all (not necessarily orthonormal) k-frames in R', and
is invariant under the action of O(k).

LEMMA 3.1. U,(RY) is O(k)-equivariantly deformable to V ,(RY).
Proor. There are well-known identifications:
Gr(R) =V, (R)/0(k) = O)/O(R)XO(—Fk) = U(R")/GL(k; R)

=GL(I;R)/)GL(k; R+ xXGL(I—Fk;R),
and

Ur(RY/O(k)=GL(; R)/O(R)xXGL(I—Fk; R),
where GL(k; R) is the k-th genefal linear group over R, and
A ONJAe H
HixK={(; p)l5 e x}
The canonical projection
p:UxRY/Ok) —> Up(R)/GL(k; R) =V (R")/0(k)

is a fibre bundle with fibre GL(k; R)/O(k) (see Steenrod [9; §7]). From the
arguments of linear algebra GL(k; R)/O(k) is identified with the kA-th positive
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definite symmetric matrices, which is homeomorphic to R***b/2. Thus
GL(k; R)/O(k) is contractible, and p is a homotopy equivalence. Let
q:V(RY/O(k)—-U,(R")/O(k) be a homotopy inverse of p. Let 7 V(RYH/0k)
—U,(RY)/0(k) be the map induced from the inclusion j: V. (RHcU,.(R"). We
see pj=id and jp=qpjpgp=id. By the covering homotopy theorem (Palais [7;
2.4.3], Bredon [1; I1.7.3]) we obtain an O(k)-map ¢: U,(R")—U,(R") such that
U (RY))=V(R") and ¢ is O(k)-equivariantly homotopic to the identity of
U.(RY). This shows that U,(R") is O(k)-equivariantly deformable to V.(RY). O

We obtain the following by Propositions 1.1, and Lemma 3.1.

PROPOSITION 3.2.
Ind°® U, (RY = J(k, I—Fk).

Let d(A) denote the sum of squares of determinants of all .-th square sub-
matrices of A=(RY)*, here A is considered a (kX/)-matrix. Then we obtain

LEMMA 3.3. (1) d(A) is O(k)-invariant, i.e., d(A)=d(gA) for all g=O(k).
(2) d(A)=0 if and only if rank A=Fk, i.e., AU (R".

Let &y, -+, kb, be positive integers and [y, ---, [,, nonnegative integers. For
any ¢ with 1<:<m, let

T:={Ae R"*|rank A < k;}.

Then T,X -« XT, is O(ky, -+, kp)-invariant and closed subspace of (R'™*x
- X(R'™*™  Suppose k;<[; for all i and define a map

a: (RN o XR'™™—T X oo XT o —> Uy (R4 -+ %U,  (R'™)
as follows. For (4;, -, Ap)e@®H¥x - X(R'™*m—T,X «++ XTm,
a(Aly tty Am) = [(dl, Al)y Tty (d‘m: Am)]

where d;=d;(A;, -, An)=d(A)/(d(A)+ - +d(A). If A& U,ei(R"') then
d;=0 by Lemma 3.3. This shows the above definition is well-defined. More-
over it may be shown that @ is an O(ky, ---, kn)-equivariant homotopy equi-
valence. Thus we see that if 2;<![; for all 7 then

Ind? M ER (RN e X R M =Ty X o XTn)
= Ind®* U, (R - xU, (R'™) .
If for some 7, say =1, [,<k,, then
R o XR'™"—T X oo XT
= RYHIX(RHX -+ XR'™* ™" —TyX - XTw),
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and this has the same equivariant homotopy type as (R'®)*2X --- X(R'™*™—T,
N XTm.
From the above arguments and Propositions .4, we obtain

PROPOSITION 3.4. Let ky, -+, by be positive integers and Iy, -+, ln non-
negative integers. Then

IndOCkt = Am((RUY ¢ oo S (RMY M —T 5¢ ooo X T) D & J ks, Li— ko)
i=1

in H¥(BO(ky, -+, bn)=QT", H¥BO(k;)). Here we make the convention that
Jky, Li—R)=H*BO(kY) if I,<k;.

§4. O(ky, -+, kn)-indices (2).

In this section we will discuss the O(k,, .-+, kn)-indices of O(ky, -, kn)-
manifolds Vs, x,,»(R™ and V, (R*)X -+ XV, (R™m). We first obtain

ProroSITION 4.1. If x,€H*BO(k;) does not belong to Ind°*»V, (

Rr-*Fivr=km) for all i with 1<i<m, then x,Q - Qxn does not belong to
IndO(kl""’ km)V(kl,-«. km)(Rn)'

Proor. We will prove the assertion:

%@ Qxm & IndOFeEmV o (R
for all 7.
This will be shown by downward induction on 7. When 7=m, this asser-
tion is true by the assumption of the proposition. Then we assume
%04:1Q - @xp & IndOFitr kmV (R

There is a fibre bundle

Ji i
Vki(Rn_ki+1_-'-_km) - V(ki.---. km)(Rn) — V(ki+1.-~-. km)(Rn) ’

where p; is the projection to the last 2;,,+ -+ +kn vectors of (k;+ - +Fkn)-
frames and j; is the inclusion to the canonical fibre. There is a homotopy
commutative diagram

ay

V(R Fivi—kmy/O(k)  ———> BO(k)

7l i

43
Vergo (B0, v, b s BO(E)X - XBO(kn)
55il l?

asg
Virjorm b md B/ ORis, -+, km) BO(kiy)X --- XBO(kw),
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where the vertical sequence on the left-hand side is the fibre bundle induced
from the bundle above, a,, a., as are classifying maps for corresponding free
actions, j is the inclusion to BO(k;)X {pt}, and p is the projection. Since j*
and a¥ are surjective on cohomology, 7% is also surjective. Thus there exists
a right inverse of ;¥ as Z,-module homomorphism,

0: H¥V (R *iv17 7k m) /O (k) —> HXV (e by R™/O (R, =+, k).
Moreover @ can be chosen so as to satisfy
Oat(x;) = af (2, Q1R --- K1),

since j¥a¥(x,Q1® - @)=a*(x;). Applying the Leray-Hirsch theorem [§], we
obtain an isomorphism

U : H¥V (R 417 km) [ O(RD))QH*V gy, ey BT/ O(Risry -+ k)
= H*(V(ki,-..,km)(Rn)/O(ki; Tty km))

given by ¥'(a®b)=0(a)-p¥(b). From the assumptions of the proposition and
the induction we have

aT(xi)®a§(xi+l® ®x7n) #0.

Then we see
0 = ¥(at(x)Qaf(%:14:Q -+ QXm))
= Oat(xy) pras(xin® - Qxm)
= af(1;®1Q - VWD -af(1®x:4:Q -+ Oxm)
= a¥(x;Q - Qxm) -
This implies x;® -+ @xp&EInd0Fe mV 4 S(R™). O

Vi, (R*")X -+ XV, (R"™) is an O(k,, -+, kn)-manifold by product action.
We obtain the following proposition by a similar way to the proof of Proposi-
tion 4.1.

PROPOSITION 4.2. If x,H*(BO(k,))) does not belong to Ind°*¥V , (R™) for
all i with 1<i<m, then x,Q - @xn does not belong to Ind*r " mV, (R™)X
. XVkm(an)°

§5. Maps of Stiefel manifolds.

THEOREM 5.1. Let ky, -, kn be positive integers with ki+ - +k,<n,
and 1y, -+, I, nonnegative integers. Let

f: V(kl,...,km)(R") —_— (R“)klx x(le)km
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be an O(ky, -+, kn)-map. If
(5.2) L, <n— 3k, for all i with 1<i<m,
r=1+1
then it follows
cupl(f—l(Tlx XTm)/O<k1; Tty km)) 2 a,
where
T,={A € (R*"*|rank A < &k},
and
0 =mn— 3 G—1Dk— S max |k, 41} =0.
) i=1

In particular [~ (T,X -+ XTn) is nonempty.

NoTE 5.3. (1) When i=m in (5.2), 3%.;., k. is understood to be zero.
(2) For i with [;<k,, (5.2) automatically follows from the assumption &;+
oee +km§n-

PROOF OF THEOREM 5.1. We see from Propositions [.2 and B.4

(5.4) IndP¢k e #m> FHT 3 o X T o) & J (e, L)
Tml
< Indo¢® 1 km)V(kl_..., km)(Rn)
in @, H¥(BO(k,)). Let w,(#) and iw,() denote the j-th Stiefel-Whitney class
and the j-th dual class in H*(BO(k,)), respectively. In what follows j may;be

negative in the notation ,(z). In this case we make the convention @ ,(i)=1.
Let

a;, =n— i k.—max{k;, [;+1}.

T=1+1
Note that a; is nonnegative. We see
Wy ()% ;g 11(8) & IndOFOV  (RPFiv1—mkm)

since Ind®*oV, (R™-*i+1=~km)=J(k;, n—k;— --- —ky) is generated by elements
of degrees greater than n—k;— --- —k,. Thus it follows from [Proposition 4.1

'@ W) 14— g 341(5) & IndOFrFmdV (o S(R™) .

Since

X3

Wi;-r,0100) € (% J(ki, Li—ky),

i

1
-

implies
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@ wy(@)*s ¢ IndOekm f-HT, X - XT)
i=1
This shows

cups(f Ty X - XTw)/ Ok, Eu) = Sla,=a = 0. 0

i=1

REMARK 5.5. The case of m=1 and %2,=2 in Theorem 5.1 is discussed in

Jaworowski [4], [5].

REMARK 5.6. Let £, denote the set of all permutations of {1, 2, ---, m}.
An O(kb Tt km)'map

f: V(kb--'»km)(Rn) — (Rl1)k1x X(le)km
gives an O(ksay, ***» Rocmy)-map
fo: V(ko'(l)""'ka(m))(Rn) —> (Rtow)kowyx ... X (Rtomy)tom)

for any ¢=Q,. Since f U T:X - XTn/O(ky, -, kn)) and f7'(ToayX - X
T emy/ OBy, =, Bocmy)) are homeomorphic to each other, we obtain the follow-
ing}from Theorem 5.1:

If there exists o =82, such that

la(i) <n— 2 ka(r)

r=t+1
for all i with 1<i<m, then
CuPl(f_l(Tlx XT'm)/O(ki; "ty km)) Z a,,
where a,=mn— 21, (E—1Dkeqy— 21=1 max{k,, {;+1} =0.

If we take k,=--- =k,=1, Remark 5.6 implies

COROLLARY 5.7. Let [y, ---, 1 be nonnegative integers and suppose m=n.
Let f:Va..nR)—R1X -« XR'™ be a ZF-map. If there exists 6=, such
that ly,y=n—:i for all ¢ with 1<i<m, then

cup,(f(0)/ZT) = 5 mn—m—D)— $1, 20,
where O is the zero of R X --- XR'm. In particular f~*(0) is nonempty.

NoTte 5.8. In case of /,= --- =[,=n—m the above corollary is just Fadell-
Husseini [2; Theorem 5.5] and Fadell [3; Corollary 6.7].

REMARK 5.9. In connection with the remark given at the bottom of page
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83 of Fadell-Husseini [2], we should note the following.

Suppose /;<n and let p;: R"—R' be the projection to the first /; coordi-
nates. Let f: V. .. n(R*)—R1x .-« XR'm be the restriction of p;X -+ X pu:
R*X .- XR*R“X --- XR'm. Then f is ZPT-equivariant. Let ¢;: R*— {0} X
R"“icR™ be the projection to the last n—/; coordinates. If there exists an
m-frame (vy, -+, Un)EV ... n(R™) such that f(v,, -+, v,)=0, then v,=¢;(v;) for
all 7. We can choose ¢=£,, such that

n—loy S N—loe < - T —loem) -

Then vy, -, ey ER™ P9 and these vectors are linearly independent. This
implies 1<n—1,uy, Or loey<n—i for all 7.
The contraposition of the above arguments shows that the condition /,,,<

n—i: in is the best possible for ZP-map f: Vg, ..n(R®)—RU1X -

X R'm to have zeros. This also means that we have a partial converse of

Corollary 5.7,

If [;<k; for all 7, then T X -+« XT n=(R1)*1X --- X(R!m)¥m in Theorem 5.1
and Remark 5.6, and thus we have for all c=2,,

mn— % ik oy < APV oy 6y (R7)/ Oy, -+, b))

Sdim Ve, ryB)/O(ky, -+, kn) .
We see

dim V(kl,m.km)(Rn)/O(klr oy Rp)—(mn— Xiik,q))

i=1

Ma

1

(n_ glkv(r))(ko(i)—l) )

1]
—

and this equals zero if
(Bocrs s Roemy) =, =+, 1) or (n—m+1,1, -, 1).
This implies
REMARK 5.10. (1)
cupi(V, .. s(RM/Z%) = dim V.. ,(R™)/ ZT

1
= ?m(2n~—m——l),

where 1 is repeated m times in the notation V .. ,(R"™) above.
@2) If (ke Bocmy)=(n—m+1, 1, ---, 1) for some o2, then
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Cups(V e g, ) (R™/OCky, o, b)) = dim Vg oy (B™)/ Oy, <o+, o)

= —;—(m—l)(Zn—m).

§6. Inverse images of matrices with rank < j.

Considering an O(k)-space (RY*, let W,={A=(R"*|rank A<j}. Then W;
is O(k)-invariant.

THEOREM 6.1. Let f: V. (R™)—(RY* be an O(k)-map.
(1) If 0<i<k<n and i<I<n—k-i, then

cup.(f W )/ Hews) Z - (k—i)@n—2l—kti—1) 2 0

for all j=i, where H;,, is any subgroup of O(k) conjugate to O(i+1,1, ---, 1), 1
repeated k—i—1 times. In particular f~'(W;) is nonempty.
(2) If 0O<k<n and 0ZI<n—Fk, then

cup(f*W)/Ok)) =2 n—k—1 =0
for all 7=0.

Here cup,;(X) denote the longest length of nonzero monomial x,\U -+ Ux,
in H*(X) with degree x;=*% for all x,.

PrOOF OF THEOREM 6.1. (1) If H;,,=g0@G+1,1, -+, 1)g™* for g=0O(k),
the map f~*(W,)/Hisi—f*W;)/0G+1, 1, -+, 1) induced by the action of g is
a homeomorphism. Thus it suffices to prove the case of H;,,=0@G+1, 1,
.-, 1). Restricting O(k)-actions to O(+1, 1, ---, 1)-actions and then consider-
ing f to be an OG+1, 1, -, I)-map Vyp ., n(RM)—-(RY*HIXRY X -+ XRY, we
obtain from Theorem 5.1

cups(f (T X -+ XT-)/0G+1, 1, -+, 1) = %(k—i)(Zn—-Zl—k—i-z'—l),

where
T,= {4 € (RY*'|rank A < ¢},

T2 = e :Tk—i = {0 = Rl}.

Recalling the proof of Theorem 5.1, we see this estimation of cup, from the
following fact:

@ i) & I b FHT,X e X Ty

in H*BO(G+1,1, -, 1)) = H¥BOG+1)QH*BOL)R --- QH*(BO(1)), where
a.=n—k—[{+i+r—1. This implies
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Qwi(r)*r ¢ Indos 0 f47)
sincel [T, X -+ XT - )< f'(W}), and hence
Cp(f W/ OGHL, 1, +, 1) 2 5, = 3 (k—i)en—2—k+i=1).
(2) Considering the case of /=0 in (1) above, we have
@) ¢ Indo= 1=4(0)

in H*BO(Q, ---, D)=H*BO1)R -- QH*BO()), k times, where a,=n—k—I
+7—1, and O=(RY* is the zero. Letting a=n—k—! and w=Q%", w,(#), we
see we&Ind?® 1 f-1(0). There is a homotopy commutative diagram

£0)/0Q, -+, 1) — 5 BO)X - xBO()

8, l
v a

FN0)/O(k) —— 5 BO(k)

B: /
v Qas

W )/0(k)

where a;, a,, and a; are classifying maps for corresponding free actions, B,
and ¢ are induced from the inclusion O(l, -+, 1)cO(k), and B is induced from
the inclusion f~'(0)c f*(W;). From Milnor-Stasheff [6; §7] we see e¥(w,)=w,
where w,<H*(BO(k)) is the k-th Stiefel-Whitney class. Since a¥e*(wg)=a¥(w?)
#0, a¥(w®)+0 in H*(f*(W,;)/0(k)). Hence

cup.(fT*W)/0k) Z a=n—k—I. O

REMARK 6.2. Given a permutation ¢=2,, then we have an isomorphism
@t O(k)—O(k) defined by
(a;;) — (@scr0() -

There exists g,=0(k) such that ¢,(g)=g,gg5* for all g=O(k). Thus in Theo-
rem 6.1, H;,, can be taken to be ¢,(0(i+1, 1, ---, 1)).

The following proposition will give a relation between cup,(f~'(W,)/H;)
A<i<h).

PROPOSITION 6.3. Let X be a free O(k)-space. If 1<i,<i, <Pk, then we
obtain
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cupy(X/He) = cupy(X/Hi+ 3 Ge= it i —1),
where H; is a subgroup of O(k) conjugate to O(s, 1, ---, 1), 1 repeated k—i times.
ProoF. It suffices to prove
cup(X/0@, 1, -, D)= CUDl(X/O(k))-f-—;—(k—i)(k-i-i—l)

(cf. the top part of the proof of [Theorem 6.1). The space of right cosets, O(z)
% I._;\O(k), is identified with V,_,(R*), where I,_; is the (2—7)-th unit matrix.
Then we obtain a fibre bundle

¢ B
(6.4) Vi-i(R*) —> X/O@X i —> X/0(k)

(see Bredon [1; p. 113]). We give an action of O(l, -+, )=Z%* to V,_,(R*)
in such a way V,_;R =V .. oR*. X/0@G)XI,_; has the free Z} *-action
such that its orbit space is X/0(, 1, ---, 1), and then . is Z% *-equivariant.
There is a diagram

Ve n®/0(, -, 1) — s BOW)X - X BO)
X/0G, 1, -, 1) O BOG)x BOM)X - x BO()
7l

X/0(k)

where the vertical sequence on the left-hand side is a fibre bundle given by pas-
sing to orbit spaces, @, and a, are classifying maps for free actions, and
¢/ is the inclusion to {pt} X BO1)X --- X BO(1). Then the square is homotopy
commutative. #* is surjective, since a¥ is surjective as shown in Fadell-
Husseini [2; p. 78] and ¢/* is also surjective. Let

6: H*Vq,..n(R")/0(Q, -, 1)) —> H*X/0G, 1, -, 1))

be a right inverse of 7* as module homomorphism. Leray-Hirsch theorem gives
an isomorphism of modules,

H*V ¢,..,5R?)/0Q, -, D)YQH*X/0(k)) = HXX/0(G, 1, -, 1))
given by x®y—0(x)- f*(y). Since

cupi(V o y(BY/O(, -+, 1)) = —;—(k—z‘)(k il D)
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by Remark 5.10 (1), there exist x,, =, x, €H'V ... n(R*)/0(1, -+, 1)) such that
Xy .70, where a=(k—0)(k+i—1)/2. We may assume O(x, - x4)=80(x,) -
0(x,). This implies

cup(X/0@, 1, -+, 1)) = Cupl(X/O(/e)H%(k—i)(k+i—l) a

REMARK 6.5. We have a partial converse of [Iheorem 6.1:
Let 0<i<k<n and suppose f*W)+=D for all Ok)-map f: V. (R™)—(R")*.
Then I<n—k—+i.

For the proof it suffices to show the existence of an O(k)-map f:V.(R™)
—(RY* such that f*(W,)=@ if n—k-+i<l. Considering A<V ,(R") to be a
(kX n)-matrix, let v, -+, v, be the column vectors of A, i.e., A=(vy, -+, Un).
If n<l, we define f(A)=(,, -, U,, 0, -~-, 0), 0 repeated [—n times. Then f
is O(k)-equivariant and rank f(A)=%k. Thus f'(W,)=@. If I<n, we define
flA)=(v,, -, v:). Then f is also O(k)-equivariant, rank f(A)=k—(n—10)>1,
and hence f'(W,)=0.

§7. Maps of products spaces.
THEOREM 7.1.  Let ky, ny, I, (1<i<m) be integers with 0<k,<n,, and

f: Vkl(Rnl)X XVkm(an) - > (Rh)hx X(le)km
an O(ky, -, kn)-map. If 0={;<n, for all i, then we obtain

M3

cup(f T X - XTw)/ Ok, b)) = S n— 3 max ik, l,+1} =0,
i=1

=1

-,
i

where T;={Ac(RY)*i|rank A<k,}.
ProoF. From Propositions [.2 and B.4 we have
IndOCsm fHT 5 o XT o)+ 6 J ki, L)
< Indo*rFm ¥V, (R™M)X - XV, (R™™)

in Q% H¥(BO(k;)). Let w;(z) and ;i) be as in the proof of Theorem 5.1.
Letting a;=n;—max{k;, I;+1}, from [Proposition 4.2 we see

éu/l(l‘)aiwn‘ki+l(1) §é Ind0<k1,...,km>Vk1(Rn1)>< XVkm(an) .

Since

@

Tig-ri(2) E {%](ki, li—ky),

.
1]
-
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we see
éwl(i)ai ¢ IndO e km f3 T, o X T .
This implies
cupi(f AT -+ XT)/Olks, -, ku)iZ 3 a2 0.

This proves the theorem. O
If we take 2,= -+ =k,=1 in Theorem 7.1,{we]obtain

COROLLARY 7.2. Let f:S™7'X .- XS*mn'sRUX --- XR'm be a ZP-map.
If 1.<n; for all i, then we obtain

cup.(f~0)/Z}) = % (n—l)—m,

where O=R1 X --- XRm is the zero.

If (ny, ng -, 0p)y=(m, n—1, -+, n—m+1) and [,=---=Il,=n—m in the
above corollary, then the corollary is Fadell-Husseini [2; Theorems 5.1, 5.2]
and Fadell [3; Corollary 6.2].

§8. Several equivalent versions.

We conclude this paper by giving several equivalent versions of Borsuk-
Ulam theorem for Stiefel manifolds. Theorem 5.1 (or Theorems 6.1, 7.1) gives
the following as a special case:

THEOREM 8.1. If f:V . (R"Y)—R™* is an O(k)-map, then f~YT) is non-
empty, where T={A=(R™)*|rank A<k}.

We see from Lemma 3.1 that Theorem 8.1 is equivalent to

THEOREM 8.2. There does not exist an O(k)-map V .(R**")—V .(R™).

Let f:V,.(R"")—(R™* be an arbitrary map, and define its average with
respect to a Haar measure in O(R), Av f: V (R"*)—(R™)*, by

AV =\ ¢ f(gniz

€0¢(

for xV  (R**"). Then Av f is O(k)-equivariant, and Av f=f if f is already
O(k)-equivariant.
We have one more equivalent version:

THEOREM 8.3. If f:V.(R*Y)—(R™* is an arbitrary map, then there exists
xEV(R™) with rank Av f(x)<k.
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If we take £=1 in Theorems 8.1, 8.2, then the theorems reduce to the

well-known versions of the classical Borsuk-Ulam theorem:

(=

(1]
£z]

[3]

(4]
(5]

[6]
£7]
[8]

[9]
[10]

1) If f:S*>R" is a Z,-map, then f72(0) is nonempty.

(2) There does not exist a Z,-map S™—S"L.

@B3) If f:S*>R"™ is an arbitrary map, then there exists xS™ with f(x)=
x), i.e., (f(x)—f(—x))/2=0, which is the average on Z,.
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