Borsuk-Ulam theorem and Stiefel manifolds

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

By Katsuhiro KOMIYA

(Received Nov. 5, 1991) (Revised Sept. 18, 1992)

Introduction.

There are several different, but equivalent versions of the classical Borsuk-Ulam theorem. One of them can be stated as follows:

THE CLASSICAL BORSUK-ULAM THEOREM. Let S^n be the unit sphere in euclidean (n+1)-space \mathbb{R}^{n+1} . If $f: S^n \to \mathbb{R}^n$ is a \mathbb{Z}_2 -map, i.e., satisfies f(-x) = -f(x) for all $x \in S^n$, then $f^{-1}(0)$ is nonempty.

Many authors have been contributing to generalizing and extending the Borsuk-Ulam theorem in various ways (see Steinlein [10]). Recently E. Fadell-S. Husseini and J. W. Jaworowski independently introduced an *ideal-valued co-homological index theory* and extended the theorem to maps of Stiefel manifolds, see [2], [3], [4] and [5].

Let $(\mathbf{R}^n)^k$ denote the cartesian product of k copies of \mathbf{R}^n . Any point of $(\mathbf{R}^n)^k$ is represented by a $(k \times n)$ -matrix. Then the k-th orthogonal group O(k) acts on $(\mathbf{R}^n)^k$ by matrix multiplication on the left. When $k \le n$, the Stiefel manifold $V_k(\mathbf{R}^n)$ of orthonormal k-frames in \mathbf{R}^n can be considered a subspace of $(\mathbf{R}^n)^k$ on which O(k) acts freely. In [2], [3], Fadell and Husseini considered \mathbf{Z}_2^k -maps $f: V_k(\mathbf{R}^n) \to (\mathbf{R}^{n-k})^k$ where $\mathbf{Z}_2^k = \mathbf{Z}_2 \times \cdots \times \mathbf{Z}_2$ (k times) is a subgroup of O(k) which is diagonally imbedded, and they estimated the cohomological size of $f^{-1}(O)/\mathbf{Z}_2^k$ where O is the zero of $(\mathbf{R}^{n-k})^k$. In [4], [5], Jaworowski considered O(2)-maps $f: V_2(\mathbf{R}^n) \to (\mathbf{R}^l)^2$ and estimated the cohomological size of $f^{-1}(O)/O(2)$, where $T = \{A \in (\mathbf{R}^l)^2 \mid \text{rank } A < 2\}$.

In the present paper we will consider more general class of maps of Stiefel manifolds and generalize their results. We will employ $(\text{mod } 2) \text{ cup}_1\text{-length}$, denoted $\text{cup}_1(X)$, as a measure of the cohomological size of a space X. $\text{cup}_1(X)$ is defined to be the greatest number s such that there exist $x_1, \dots, x_s \in H^1(X; \mathbb{Z}_2)$ with $x_1 \cup \dots \cup x_s \neq 0$. The inequality $\text{cup}_1(X) \geq 0$ means X is at least nonempty. When x_1, \dots, x_s can be taken in any positive degrees, the usual cup-length, denoted cup(X), is defined. Then $\text{cup}_1(X) \leq \text{cup}(X) < \text{cat}(X)$, where

 $\operatorname{cat}(X)$ denotes the Lusternik-Schnirelmann category of X. The inequality $\sup_1(X) \ge a \ge 0$ implies $H^b(X; \mathbb{Z}_2) \ne 0$ for all b with $0 \le b \le a$.

Given integers $k_1, \cdots, k_m > 0$, we can diagonally imbed the product $O(k_1, \cdots, k_m) = O(k_1) \times \cdots \times O(k_m)$ into $O(k_1 + \cdots + k_m)$. If $k_1 + \cdots + k_m \leq n$, $V_{(k_1, \cdots, k_m)}(\mathbf{R}^n)$ denotes the Stiefel manifold $V_{k_1 + \cdots + k_m}(\mathbf{R}^n)$ with restricted $O(k_1, \cdots, k_m)$ -action. $O(k_1, \cdots, k_m)$ acts also on a product space $(\mathbf{R}^{l_1})^{k_1} \times \cdots \times (\mathbf{R}^{l_m})^{k_m}$ as product action. Let $T_i = \{A \in (\mathbf{R}^{l_i})^{k_i} | \operatorname{rank} A < k_i \}$. Then $T_1 \times \cdots \times T_m$ is invariant under the action of $O(k_1 + \cdots + k_m)$.

In sections 1-4 we will give some preliminaries on ideal-valued indices and calculate those of relevant spaces. We will show in section 5

THEOREM. Let $f:V_{(k_1,\cdots,k_m)}(\mathbf{R}^n) \rightarrow (\mathbf{R}^{l_1})^{k_1} \times \cdots \times (\mathbf{R}^{l_m})^{k_m}$ be an $O(k_1,\cdots,k_m)$ -map. Suppose

$$l_i < n - \sum_{r=i+1}^m k_r$$

for all i with $1 \le i \le m$. Then

$$\sup_{\mathbf{1}}(f^{-\mathbf{1}}(T_{\mathbf{1}}\times\cdots\times T_{m})/O(k_{\mathbf{1}},\ \cdots,\ k_{m}))\geqq a$$
 ,

where $a=mn-\sum_{i=2}^{m}(i-1)k_i-\sum_{i=1}^{m}\max\{k_i, l_i+1\}\geq 0$. In particular $f^{-1}(T_1\times\cdots\times T_m)$ is nonempty.

If we take m=1, $k_1=1$ and $l_1=n-1$, then the theorem is just the classical Borsuk-Ulam theorem. If we take $k_1=\cdots=k_m=1$ and $l_1=\cdots=l_m=n-m$, then $T_1\times\cdots\times T_m$ consists only of zero and the theorem reduces to the case which Fadell and Husseini considered. If we take m=1 and $k_1=2$, then the theorem reduces to the case which Jaworowski considered. (But the estimation is weaker than Jaworowski's.)

Let $W_j = \{A \in (\mathbf{R}^l)^k \mid \text{rank } A \leq j\}$ for any j. In section 6 we will discuss the cup₁-length of orbit spaces of $f^{-1}(W_j)$ for O(k)-maps $f: V_k(\mathbf{R}^n) \to (\mathbf{R}^l)^k$. In section 7 we will consider $O(k_1, \dots, k_m)$ -maps of products $V_{k_1}(\mathbf{R}^{n_1}) \times \dots \times V_{k_m}(\mathbf{R}^{n_m})$ of Stiefel manifolds. If we take $k_1 = \dots = k_m = 1$, this reduces to the case of products of spheres which is considered in [2], [3]. In the last section 8 we will give some equivalent versions of the Borsuk-Ulam theorem for Stiefel manifolds which correspond to well-known equivalent versions of the classical Borsuk-Ulam theorem.

§ 1. Ideal-valued index.

In this section we will recall the definition and basic properties of ideal-valued index which was first introduced by Fadell and Husseini [2], [3] and independently by Jaworowski [4], [5].

All spaces considered are paracompact and Hausdorff. Let G be a compact Lie group and $EG \rightarrow BG$ a universal principal G-bundle. The G-index of a G-space X, denoted $\operatorname{Ind}^G X$, is an ideal in $H^*(BG; K)$ where $H^*(\ ; K)$ is the Alexander-Spanier cohomology with coefficients in some field K. In this paper we will take \mathbb{Z}_2 as K, and it will be suppressed from the notation. $\operatorname{Ind}^G X$ is defined to be the kernel of the homomorphism $c_X^* \colon H^*(BG) \rightarrow H^*(EG \times_G X)$ induced from a map $c_X \colon EG \times_G X \rightarrow BG$ which classifies the free diagonal G-action on $EG \times X$. If X is a free G-space, then $\operatorname{Ind}^G X$ coincides with the kernel of the homomorphism $H^*(BG) \rightarrow H^*(X/G)$ induced from a classifying map $X/G \rightarrow BG$ for the free G-action on X.

Proposition 1.1 ([2], [3], [4], [5]). If $f: X \rightarrow Y$ is a G-map, then

$$\operatorname{Ind}^{G}X\supset\operatorname{Ind}^{G}Y$$

in $H^*(BG)$.

The property of the G-index described in the following proposition is fundamental in this paper.

PROPOSITION 1.2 ([2], [3], [4], [5]). Let X and Y be G-spaces, and W a G-invariant closed subspace of Y. If $f: X \rightarrow Y$ is a G-map, then

$$\operatorname{Ind}^{G} f^{-1}(W) \cdot \operatorname{Ind}^{G}(Y - W) \subset \operatorname{Ind}^{G} X$$

in $H^*(BG)$, where \cdot represents the product of ideals.

Denote by X_1*X_2 the join of a G_1 -space X_1 and a G_2 -space X_2 , and represent points of X_1*X_2 by $[(t, x_1), (1-t, x_2)], x_1 \in X_1, x_2 \in X_2$ and $0 \le t \le 1$ with the usual identifications. Then X_1*X_2 becomes a $G_1 \times G_2$ -space via the action

$$(g_1, g_2)[(t, x_1), (1-t, x_2)] = [(t, g_1x_1), (1-t, g_2x_2)]$$

for $(g_1, g_2) \in G_1 \times G_2$. We obtain

PROPOSITION 1.3 ([2]). Let X_1 and X_2 be as above. Then

$$\operatorname{Ind}^{G_1 \times G_2} X_1 * X_2 \supset \operatorname{Ind}^{G_1} X_1 \otimes \operatorname{Ind}^{G_2} X_2$$

in $H^*(B(G_1 \times G_2)) = H^*(BG_1) \otimes H^*(BG_2)$.

PROPOSITION 1.4 ([2]). If $G_1 \times G_2$ acts on X_1 by $(g_1, g_2)x_1 = g_1x_1$, then we obtain

$$\operatorname{Ind}^{G_1 \times G_2} X_1 = \operatorname{Ind}^{G_1} X_1 \otimes H^*(BG_2)$$

in $H^*(BG_1) \otimes H^*(BG_2)$.

§ 2. Indices of Stiefel manifolds.

In this section we describe the O(k)-index of an O(k)-manifold $V_k(\mathbf{R}^n)$ along the line of Jaworowski [4], [5]. The orbit space $V_k(\mathbf{R}^n)/O(k)$ is a Grassmann manifold $G_k(\mathbf{R}^n)$. $BO(k)=G_k(\mathbf{R}^\infty)$ is a classifying space for free O(k)-actions, and has cohomology ring

$$H^*(BO(k)) = \mathbf{Z}_2[w_1, w_2, \cdots, w_k],$$

where each w_i is the *i*-th Stiefel-Whitney class of the universal *k*-plane bundle over BO(k). Let $w=1+w_1+w_2+\cdots$ be the total Stiefel-Whitney class and $\overline{w}=1+\overline{w}_1+\overline{w}_2+\cdots$ be its dual class defined by the relation $w\overline{w}=1$ in $Z_2[w_1,w_2,\cdots]$. Let $\tilde{J}(k,l)$ be the ideal in $Z_2[w_1,w_2,\cdots]$ generated by $\overline{w}_{l+1},\overline{w}_{l+2},\cdots,\overline{w}_{l+k}$, and J(k,l) be the image of $\tilde{J}(k,l)$ through the projection $Z_2[w_1,w_2,\cdots] \to Z_2[w_1,\cdots,w_k]$. Then we have

Proposition 2.1 ([4], [5]).

$$\operatorname{Ind}^{O(k)}V_{k}(\mathbf{R}^{n})=I(k, n-k)$$
.

§ 3.
$$O(k_1, \dots, k_m)$$
-indices (1).

Let $0 \le k \le l$ be integers. Let $T = \{A \in (\mathbf{R}^l)^k \mid \text{rank } A < k\}$. Then $U_k(\mathbf{R}^l) = (\mathbf{R}^l)^k - T$ is the space of all (not necessarily orthonormal) k-frames in \mathbf{R}^l , and is invariant under the action of O(k).

LEMMA 3.1. $U_k(\mathbf{R}^l)$ is O(k)-equivariantly deformable to $V_k(\mathbf{R}^l)$.

PROOF. There are well-known identifications:

$$\begin{split} G_k(\mathbf{R}^l) &= V_k(\mathbf{R}^l)/O(k) = O(l)/O(k) \times O(l-k) = U_k(\mathbf{R}^l)/GL(k \; ; \; \mathbf{R}) \\ &= GL(l \; ; \; \mathbf{R})/GL(k \; ; \; \mathbf{R})_* \times GL(l-k \; ; \; \mathbf{R}) \; , \end{split}$$

and

$$U_k(\mathbf{R}^l)/O(k) = GL(l; \mathbf{R})/O(k)_* \times GL(l-k; \mathbf{R}),$$

where $GL(k; \mathbf{R})$ is the k-th general linear group over \mathbf{R} , and

$$H_* \times K = \left\{ \begin{pmatrix} A & O \\ * & B \end{pmatrix} \middle| \begin{matrix} A \in H \\ B \in K \end{matrix} \right\}.$$

The canonical projection

$$p: U_k(\mathbf{R}^l)/O(k) \longrightarrow U_k(\mathbf{R}^l)/GL(k; \mathbf{R}) = V_k(\mathbf{R}^l)/O(k)$$

is a fibre bundle with fibre $GL(k; \mathbf{R})/O(k)$ (see Steenrod [9; § 7]). From the arguments of linear algebra $GL(k; \mathbf{R})/O(k)$ is identified with the k-th positive

definite symmetric matrices, which is homeomorphic to $R^{k(k+1)/2}$. Thus GL(k;R)/O(k) is contractible, and p is a homotopy equivalence. Let $q:V_k(R^l)/O(k)\to U_k(R^l)/O(k)$ be a homotopy inverse of p. Let $\tilde{j}:V_k(R^l)/O(k)\to U_k(R^l)/O(k)$ be the map induced from the inclusion $j:V_k(R^l)\subset U_k(R^l)$. We see $p\tilde{j}=\mathrm{id}$ and $\tilde{j}p\simeq qp\tilde{j}pqp\simeq\mathrm{id}$. By the covering homotopy theorem (Palais [7; 2.4.3], Bredon [1; II.7.3]) we obtain an O(k)-map $\varphi:U_k(R^l)\to U_k(R^l)$ such that $\varphi(U_k(R^l))\subset V_k(R^l)$ and φ is O(k)-equivariantly homotopic to the identity of $U_k(R^l)$. This shows that $U_k(R^l)$ is O(k)-equivariantly deformable to $V_k(R^l)$. \square

We obtain the following by Propositions 1.1, 2.1 and Lemma 3.1.

Proposition 3.2.

$$\text{Ind}^{O(k)}U_k(\mathbf{R}^l) = J(k, l-k).$$

Let d(A) denote the sum of squares of determinants of all k-th square submatrices of $A \in (\mathbb{R}^l)^k$, here A is considered a $(k \times l)$ -matrix. Then we obtain

LEMMA 3.3. (1) d(A) is O(k)-invariant, i. e., d(A) = d(gA) for all $g \in O(k)$. (2) $d(A) \neq 0$ if and only if rank A = k, i. e., $A \in U_k(\mathbf{R}^l)$.

Let k_1, \dots, k_m be positive integers and l_1, \dots, l_m nonnegative integers. For any i with $1 \le i \le m$, let

$$T_i = \{A \in (\mathbf{R}^{l_i})^{k_i} | \operatorname{rank} A < k_i \}.$$

Then $T_1 \times \cdots \times T_m$ is $O(k_1, \dots, k_m)$ -invariant and closed subspace of $(\mathbf{R}^{l_1})^{k_1} \times \cdots \times (\mathbf{R}^{l_m})^{k_m}$. Suppose $k_i \leq l_i$ for all i and define a map

$$\alpha: (\boldsymbol{R}^{l_1})^{k_1} \times \cdots \times (\boldsymbol{R}^{l_m})^{k_m} - T_1 \times \cdots \times T_m \longrightarrow U_{k_1}(\boldsymbol{R}^{l_1}) * \cdots * U_{k_m}(\boldsymbol{R}^{l_m})$$

as follows. For $(A_1, \dots, A_m) \in (\mathbf{R}^{l_1})^{k_1} \times \dots \times (\mathbf{R}^{l_m})^{k_m} - T_1 \times \dots \times T_m$,

$$\alpha(A_1, \dots, A_m) = [(d_1, A_1), \dots, (d_m, A_m)]$$

where $d_i = d_i(A_1, \dots, A_m) = d(A_i)/(d(A_1) + \dots + d(A_m))$. If $A_i \notin U_{k_i}(\mathbf{R}^{l_i})$ then $d_i = 0$ by Lemma 3.3. This shows the above definition is well-defined. Moreover it may be shown that α is an $O(k_1, \dots, k_m)$ -equivariant homotopy equivalence. Thus we see that if $k_i \leq l_i$ for all i then

$$\begin{split} \operatorname{Ind}^{O(k_1, \dots, k_m)} & ((\boldsymbol{R}^{l_1})^{k_1} \times \dots \times (\boldsymbol{R}^{l_m})^{k_m} - T_1 \times \dots \times T_m) \\ & = \operatorname{Ind}^{O(k_1, \dots, k_m)} U_{k_1} (\boldsymbol{R}^{l_1}) * \dots * U_{k_m} (\boldsymbol{R}^{l_m}) \; . \end{split}$$

If for some i, say i=1, $l_1 < k_1$, then

$$\begin{split} (\boldsymbol{R}^{l_1})^{k_1} \times \cdots \times (\boldsymbol{R}^{l_m})^{k_m} - T_1 \times \cdots \times T_m \\ &= (\boldsymbol{R}^{l_1})^{k_1} \times ((\boldsymbol{R}^{l_2})^{k_2} \times \cdots \times (\boldsymbol{R}^{l_m})^{k_m} - T_2 \times \cdots \times T_m) , \end{split}$$

and this has the same equivariant homotopy type as $(\mathbf{R}^{l_2})^{k_2} \times \cdots \times (\mathbf{R}^{l_m})^{k_m} - T_2 \times \cdots \times T_m$.

From the above arguments and Propositions 1.3, 1.4, 3.2 we obtain

PROPOSITION 3.4. Let k_1, \dots, k_m be positive integers and l_1, \dots, l_m nonnegative integers. Then

$$\operatorname{Ind}^{0(k_1, \dots, k_m)}((\boldsymbol{R}^{l_1})^{k_1} \times \dots \times (\boldsymbol{R}^{l_m})^{k_m} - T_1 \times \dots \times T_m) \supset \bigotimes_{i=1}^m J(k_i, l_i - k_i)$$

in $H^*(BO(k_1, \dots, k_m)) = \bigotimes_{i=1}^m H^*(BO(k_i))$. Here we make the convention that $J(k_i, l_i - k_i) = H^*(BO(k_i))$ if $l_i < k_i$.

§ 4.
$$O(k_1, \dots, k_m)$$
-indices (2).

In this section we will discuss the $O(k_1, \dots, k_m)$ -indices of $O(k_1, \dots, k_m)$ -manifolds $V_{(k_1, \dots, k_m)}(\mathbf{R}^n)$ and $V_{k_1}(\mathbf{R}^{n_1}) \times \dots \times V_{k_m}(\mathbf{R}^{n_m})$. We first obtain

PROPOSITION 4.1. If $x_i \in H^*(BO(k_i))$ does not belong to $\operatorname{Ind}^{O(k_i)}V_{k_i}(R^{n-k_{i+1}-\cdots-k_m})$ for all i with $1 \leq i \leq m$, then $x_1 \otimes \cdots \otimes x_m$ does not belong to $\operatorname{Ind}^{O(k_1,\cdots,k_m)}V_{(k_1,\cdots,k_m)}(R^n)$.

PROOF. We will prove the assertion:

$$x_i \otimes \cdots \otimes x_m \notin \operatorname{Ind}^{O(k_i, \cdots, k_m)} V_{(k_i, \cdots, k_m)}(\mathbf{R}^n)$$

for all i.

This will be shown by downward induction on i. When i=m, this assertion is true by the assumption of the proposition. Then we assume

$$x_{i+1} \otimes \cdots \otimes x_m \notin \operatorname{Ind}^{O(k_{i+1}, \cdots, k_m)} V_{(k_{i+1}, \cdots, k_m)}(\mathbb{R}^n)$$
.

There is a fibre bundle

$$V_{k_i}(\mathbb{R}^{n-k_{i+1}-\cdots-k_m}) \xrightarrow{j_i} V_{(k_i,\cdots,k_m)}(\mathbb{R}^n) \xrightarrow{p_i} V_{(k_{i+1},\cdots,k_m)}(\mathbb{R}^n)$$
,

where p_i is the projection to the last $k_{i+1} + \cdots + k_m$ vectors of $(k_i + \cdots + k_m)$ -frames and j_i is the inclusion to the canonical fibre. There is a homotopy commutative diagram

where the vertical sequence on the left-hand side is the fibre bundle induced from the bundle above, α_1 , α_2 , α_3 are classifying maps for corresponding free actions, j is the inclusion to $BO(k_i) \times \{\text{pt}\}$, and p is the projection. Since j^* and α_1^* are surjective on cohomology, \tilde{j}_i^* is also surjective. Thus there exists a right inverse of \tilde{j}_i^* as \mathbf{Z}_2 -module homomorphism,

$$\theta: H^*(V_{k_i}(\mathbf{R}^{n-k_{i+1}-\cdots-k_m})/O(k_i)) \longrightarrow H^*(V_{(k_i,\cdots,k_m)}(\mathbf{R}^n)/O(k_i,\cdots,k_m)).$$

Moreover θ can be chosen so as to satisfy

$$\theta \alpha_1^*(x_i) = \alpha_2^*(x_i \otimes 1 \otimes \cdots \otimes 1)$$
,

since $\tilde{j}_i^*\alpha_2^*(x_i\otimes 1\otimes \cdots \otimes 1)=\alpha_1^*(x_i)$. Applying the Leray-Hirsch theorem [8], we obtain an isomorphism

$$\begin{split} \varPsi: & H^*(V_{k_i}(\pmb{R}^{n-k_{i+1}-\cdots-k_m})/O(k_i)) \otimes H^*(V_{(k_{i+1},\cdots,k_m)}(\pmb{R}^n)/O(k_{i+1},\,\cdots,\,k_m)) \\ & \cong & H^*(V_{(k_i,\cdots,\,k_m)}(\pmb{R}^n)/O(k_i,\,\cdots,\,k_m)) \end{split}$$

given by $\Psi(a \otimes b) = \theta(a) \cdot \tilde{p}_i^*(b)$. From the assumptions of the proposition and the induction we have

$$\alpha_1^*(x_i) \otimes \alpha_3^*(x_{i+1} \otimes \cdots \otimes x_m) \neq 0$$
.

Then we see

$$0 \neq \Psi(\alpha_1^*(x_i) \otimes \alpha_3^*(x_{i+1} \otimes \cdots \otimes x_m))$$

$$= \theta \alpha_1^*(x_i) \cdot \tilde{p}_i^* \alpha_3^*(x_{i+1} \otimes \cdots \otimes x_m)$$

$$= \alpha_2^*(x_i \otimes 1 \otimes \cdots \otimes 1) \cdot \alpha_2^*(1 \otimes x_{i+1} \otimes \cdots \otimes x_m)$$

$$= \alpha_2^*(x_i \otimes \cdots \otimes x_m).$$

This implies $x_i \otimes \cdots \otimes x_m \notin \operatorname{Ind}^{O(k_i, \cdots, k_m)} V_{(k_i, \cdots, k_m)}(\mathbf{R}^n)$.

 $V_{k_1}(\mathbf{R}^{n_1}) \times \cdots \times V_{k_m}(\mathbf{R}^{n_m})$ is an $O(k_1, \cdots, k_m)$ -manifold by product action. We obtain the following proposition by a similar way to the proof of Proposition 4.1.

PROPOSITION 4.2. If $x_i \in H^*(BO(k_i))$ does not belong to $\operatorname{Ind}^{O(k_i)}V_{k_i}(\mathbf{R}^{n_i})$ for all i with $1 \leq i \leq m$, then $x_1 \otimes \cdots \otimes x_m$ does not belong to $\operatorname{Ind}^{O(k_1, \cdots, k_m)}V_{k_1}(\mathbf{R}^{n_1}) \times \cdots \times V_{k_m}(\mathbf{R}^{n_m})$.

§ 5. Maps of Stiefel manifolds.

THEOREM 5.1. Let k_1, \dots, k_m be positive integers with $k_1 + \dots + k_m \le n$, and l_1, \dots, l_m nonnegative integers. Let

$$f: V_{(k_1, \dots, k_m)}(\mathbb{R}^n) \longrightarrow (\mathbb{R}^{l_1})^{k_1} \times \dots \times (\mathbb{R}^{l_m})^{k_m}$$

be an $O(k_1, \dots, k_m)$ -map. If

(5.2)
$$l_i < n - \sum_{r=i+1}^m k_r \quad \text{for all } i \text{ with } 1 \leq i \leq m,$$

then it follows

$$\operatorname{cup}_{1}(f^{-1}(T_{1}\times\cdots\times T_{m})/O(k_{1},\cdots,k_{m}))\geq a$$
,

where

$$T_i = \{A \in (\mathbf{R}^{l_i})^{k_i} | \operatorname{rank} A < k_i \}$$
,

and

$$a = mn - \sum_{i=2}^{m} (i-1)k_i - \sum_{i=1}^{m} \max\{k_i, l_i + 1\} \ge 0$$
.

In particular $f^{-1}(T_1 \times \cdots \times T_m)$ is nonempty.

Note 5.3. (1) When i=m in (5.2), $\sum_{r=i+1}^{m} k_r$ is understood to be zero.

(2) For i with $l_i < k_i$, (5.2) automatically follows from the assumption $k_1 + \cdots + k_m \le n$.

PROOF OF THEOREM 5.1. We see from Propositions 1.2 and 3.4

(5.4)
$$\operatorname{Ind}^{O(k_1, \dots, k_m)} f^{-1}(T_1 \times \dots \times T_m) \cdot \bigotimes_{i=1}^m J(k_i, l_i - k_i)$$

$$\subset \operatorname{Ind}^{O(k_1, \dots, k_m)} V_{(k_1, \dots, k_m)}(\mathbf{R}^n)$$

in $\bigotimes_{i=1}^m H^*(BO(k_i))$. Let $w_j(i)$ and $\overline{w}_j(i)$ denote the j-th Stiefel-Whitney class and the j-th dual class in $H^*(BO(k_i))$, respectively. In what follows j may be negative in the notation $\overline{w}_j(i)$. In this case we make the convention $\overline{w}_j(i)=1$. Let

$$a_i = n - \sum_{\tau=i+1}^{m} k_{\tau} - \max\{k_i, l_i + 1\}.$$

Note that a_i is nonnegative. We see

$$w_1(i)^{a_i} \overline{w}_{l_i-k_i+1}(i) \notin \operatorname{Ind}^{0(k_i)} V_{k_i}(R^{n-k_{i+1}-\cdots-k_m})$$
,

since $\operatorname{Ind}^{0(k_i)}V_{k_i}(R^{n-k_{i+1}-\cdots-k_m})=J(k_i,\,n-k_i-\cdots-k_m)$ is generated by elements of degrees greater than $n-k_i-\cdots-k_m$. Thus it follows from Proposition 4.1

$$\bigotimes_{i=1}^{m} w_{1}(i)^{a_{i}} \overline{w}_{l_{i}-k_{i}+1}(i) \notin \operatorname{Ind}^{O(k_{1},\dots,k_{m})} V_{(k_{1},\dots,k_{m})}(\mathbf{R}^{n}).$$

Since

$$\bigotimes_{i=1}^m \overline{w}_{l_i-k_i+1}(i) \in \bigotimes_{i=1}^m J(k_i, l_i-k_i),$$

(5.4) implies

$$\bigotimes_{i=1}^m w_1(i)^{a_i} \notin \operatorname{Ind}^{O(k_1, \dots, k_m)} f^{-1}(T_1 \times \dots \times T_m).$$

This shows

$$\operatorname{cup}_{1}(f^{-1}(T_{1}\times\cdots\times T_{m})/O(k_{1},\cdots,k_{m}))\geq \sum_{i=1}^{m}a_{i}=a\geq 0.$$

REMARK 5.5. The case of m=1 and $k_1=2$ in Theorem 5.1 is discussed in Jaworowski [4], [5].

REMARK 5.6. Let \mathcal{Q}_m denote the set of all permutations of $\{1, 2, \cdots, m\}$. An $O(k_1, \cdots, k_m)$ -map

$$f: V_{(k_1, \dots, k_m)}(\mathbb{R}^n) \longrightarrow (\mathbb{R}^{l_1})^{k_1} \times \dots \times (\mathbb{R}^{l_m})^{k_m}$$

gives an $O(k_{\sigma(1)}, \dots, k_{\sigma(m)})$ -map

$$f_{\sigma} \colon V_{(k_{\sigma(1)}, \cdots, k_{\sigma(m)})}(\boldsymbol{R}^{n}) \longrightarrow (\boldsymbol{R}^{l_{\sigma(1)}})^{k_{\sigma(1)}} \times \cdots \times (\boldsymbol{R}^{l_{\sigma(m)}})^{k_{\sigma(m)}}$$

for any $\sigma \in \Omega_m$. Since $f^{-1}(T_1 \times \cdots \times T_m/O(k_1, \cdots, k_m))$ and $f^{-1}(T_{\sigma(1)} \times \cdots \times T_{\sigma(m)}/O(k_{\sigma(1)}, \cdots, k_{\sigma(m)}))$ are homeomorphic to each other, we obtain the following [from Theorem 5.1:

If there exists $\sigma \in \Omega_m$ such that

$$l_{\sigma(i)} < n - \sum_{r=i+1}^{m} k_{\sigma(r)}$$

for all i with $1 \le i \le m$, then

$$\operatorname{cup}_{1}(f^{-1}(T_{1}\times\cdots\times T_{m})/O(k_{i},\cdots,k_{m}))\geq a_{\sigma},$$

where $a_{\sigma} = mn - \sum_{i=2}^{m} (i-1)k_{\sigma(i)} - \sum_{i=1}^{m} \max\{k_i, l_i+1\} \ge 0$.

If we take $k_1 = \cdots = k_m = 1$, Remark 5.6 implies

COROLLARY 5.7. Let l_1, \dots, l_m be nonnegative integers and suppose $m \le n$. Let $f: V_{(1,\dots,1)}(\mathbf{R}^n) \to \mathbf{R}^{l_1} \times \dots \times \mathbf{R}^{l_m}$ be a \mathbf{Z}_2^m -map. If there exists $\sigma \in \Omega_m$ such that $l_{\sigma(i)} \le n-i$ for all i with $1 \le i \le m$, then

$$\exp_{\mathbf{1}}(f^{-\mathbf{1}}(O)/\boldsymbol{Z}_{2}^{m}) \geq \frac{1}{2}\,m(2n\!-\!m\!-\!1)\!-\sum\limits_{i=1}^{m}l_{i} \geq 0$$
 ,

where O is the zero of $R^{l_1} \times \cdots \times R^{l_m}$. In particular $f^{-1}(O)$ is nonempty.

NOTE 5.8. In case of $l_1 = \cdots = l_m = n - m$ the above corollary is just Fadell-Husseini [2; Theorem 5.5] and Fadell [3; Corollary 6.7].

REMARK 5.9. In connection with the remark given at the bottom of page

83 of Fadell-Husseini [2], we should note the following.

Suppose $l_i \leq n$ and let $p_i: \mathbf{R}^n \to \mathbf{R}^{l_i}$ be the projection to the first l_i coordinates. Let $f: V_{(1,\cdots,1)}(\mathbf{R}^n) \to \mathbf{R}^{l_1} \times \cdots \times \mathbf{R}^{l_m}$ be the restriction of $p_1 \times \cdots \times p_m: \mathbf{R}^n \times \cdots \times \mathbf{R}^n \to \mathbf{R}^{l_1} \times \cdots \times \mathbf{R}^{l_m}$. Then f is \mathbf{Z}_2^m -equivariant. Let $q_i: \mathbf{R}^n \to \{0\} \times \mathbf{R}^{n-l_i} \subset \mathbf{R}^n$ be the projection to the last $n-l_i$ coordinates. If there exists an m-frame $(v_1, \cdots, v_m) \in V_{(1,\cdots,1)}(\mathbf{R}^n)$ such that $f(v_1, \cdots, v_m) = 0$, then $v_i = q_i(v_i)$ for all i. We can choose $\sigma \in \Omega_m$ such that

$$n-l_{\sigma(1)} \leq n-l_{\sigma(2)} \leq \cdots \leq n-l_{\sigma(m)}$$
.

Then $v_{\sigma(1)}, \dots, v_{\sigma(i)} \in \mathbb{R}^{n-l_{\sigma(i)}}$ and these vectors are linearly independent. This implies $i \leq n - l_{\sigma(i)}$, or $l_{\sigma(i)} \leq n - i$ for all i.

The contraposition of the above arguments shows that the condition $l_{\sigma(i)} \leq n-i$ in Corollary 5.7 is the best possible for \mathbb{Z}_2^m -map $f: V_{(1,\dots,1)}(\mathbb{R}^n) \to \mathbb{R}^{l_1} \times \cdots \times \mathbb{R}^{l_m}$ to have zeros. This also means that we have a partial converse of Corollary 5.7.

If $l_i < k_i$ for all i, then $T_1 \times \cdots \times T_m = (\mathbf{R}^{l_1})^{k_1} \times \cdots \times (\mathbf{R}^{l_m})^{k_m}$ in Theorem 5.1 and Remark 5.6, and thus we have for all $\sigma \in \Omega_m$,

$$mn - \sum_{i=1}^{m} i k_{\sigma(i)} \leq \sup_{1} (V_{(k_{1}, \dots, k_{m})}(\mathbf{R}^{n}) / O(k_{1}, \dots, k_{m}))$$

$$\leq \dim V_{(k_{1}, \dots, k_{m})}(\mathbf{R}^{n}) / O(k_{1}, \dots, k_{m}).$$

We see

$$\dim V_{(k_1, \dots, k_m)}(\mathbf{R}^n)/O(k_1, \dots, k_m) - (mn - \sum_{i=1}^m i k_{\sigma(i)})$$

$$= \sum_{i=1}^m (n - \sum_{r=1}^m k_{\sigma(r)})(k_{\sigma(i)} - 1),$$

and this equals zero if

$$(k_{\sigma(1)}, \dots, k_{\sigma(m)}) = (1, \dots, 1)$$
 or $(n-m+1, 1, \dots, 1)$.

This implies

REMARK 5.10. (1)

$$\begin{split} \sup_{\mathbf{I}}(V_{(\mathbf{I},\dots,\mathbf{I})}(\pmb{R}^n)/\pmb{Z}_2^m) &= \dim V_{(\mathbf{I},\dots,\mathbf{I})}(\pmb{R}^n)/\pmb{Z}_2^m \\ &= \frac{1}{2} \, m(2n-m-1) \,, \end{split}$$

where 1 is repeated m times in the notation $V_{(1,\dots,1)}(\mathbb{R}^n)$ above.

(2) If
$$(k_{\sigma(1),\dots},k_{\sigma(m)})=(n-m+1,1,\dots,1)$$
 for some $\sigma\in\Omega_m$, then

$$\begin{split} \sup_{1}(V_{(k_{1},\cdots,\ k_{m})}(\pmb{R}^{n})/O(k_{1},\ \cdots,\ k_{m})) &= \dim V_{(k_{1},\cdots,\ k_{m})}(\pmb{R}^{n})/O(k_{1},\ \cdots,\ k_{m}) \\ &= \frac{1}{2}(m-1)(2n-m)\,. \end{split}$$

§ 6. Inverse images of matrices with rank $\leq j$.

Considering an O(k)-space $(\mathbf{R}^l)^k$, let $W_j = \{A \in (\mathbf{R}^l)^k | \operatorname{rank} A < j\}$. Then W_j is O(k)-invariant.

THEOREM 6.1. Let $f: V_k(\mathbb{R}^n) \rightarrow (\mathbb{R}^l)^k$ be an O(k)-map.

(1) If $0 \le i < k \le n$ and $i \le l \le n - k + i$, then

$$\mathrm{cup_{i}}(f^{-1}(W_{j})/H_{i+1}) \geqq \frac{1}{2} (k-i)(2n-2l-k+i-1) \geqq 0$$

for all $j \ge i$, where H_{i+1} is any subgroup of O(k) conjugate to $O(i+1, 1, \dots, 1)$, 1 repeated k-i-1 times. In particular $f^{-1}(W_j)$ is nonempty.

(2) If $0 < k \le n$ and $0 \le l \le n - k$, then

$$\operatorname{cup}_k(f^{-1}(W_j)/O(k)) \ge n - k - l \ge 0$$

for all $j \ge 0$.

Here $\sup_k(X)$ denote the longest length of nonzero monomial $x_1 \cup \cdots \cup x_s$ in $H^*(X)$ with degree $x_i = k$ for all x_i .

PROOF OF THEOREM 6.1. (1) If $H_{i+1}=gO(i+1,1,\cdots,1)g^{-1}$ for $g\in O(k)$, the map $f^{-1}(W_j)/H_{i+1}\to f^{-1}(W_j)/O(i+1,1,\cdots,1)$ induced by the action of g is a homeomorphism. Thus it suffices to prove the case of $H_{i+1}=O(i+1,1,\cdots,1)$. Restricting O(k)-actions to $O(i+1,1,\cdots,1)$ -actions and then considering f to be an $O(i+1,1,\cdots,1)$ -map $V_{(i+1,1,\cdots,1)}(R^n)\to (R^l)^{l+1}\times R^l\times\cdots\times R^l$, we obtain from Theorem 5.1

$$\operatorname{cup}_{1}(f^{-1}(T_{1}\times \cdots \times T_{k-i})/O(i+1, 1, \cdots, 1)) \geq \frac{1}{2}(k-i)(2n-2l-k+i-1),$$

where

$$T_1 = \{A \in (\mathbf{R}^l)^{i+1} | \operatorname{rank} A \leq i \},$$

$$T_2 = \cdots = T_{k-i} = \{0 \in \mathbb{R}^l\}.$$

Recalling the proof of Theorem 5.1, we see this estimation of cup₁ from the following fact:

$$\bigotimes_{r=1}^{k-i} w_1(r)^{a_r} \notin \operatorname{Ind}^{O(i+1, 1, \dots, 1)} f^{-1}(T_1 \times \dots \times T_{k-i})$$

in $H^*(BO(i+1, 1, \dots, 1)) = H^*(BO(i+1)) \otimes H^*(BO(1)) \otimes \dots \otimes H^*(BO(1))$, where $a_r = n - k - l + i + r - 1$. This implies

$$\bigotimes_{r=1}^{k-i} w_1(r)^{\alpha_r} \notin \operatorname{Ind}^{0(i+1, 1, \dots, 1)} f^{-1}(W_j)$$

 $\operatorname{since}_{\underline{\cdot}}^{\mathsf{T}} f^{-1}(T_1 \times \cdots \times T_{k-i}) \subset f^{-1}(W_j)$, and hence

$$\sup_{i} (f^{-1}(W_i)/O(i+1, 1, \dots, 1)) \ge \sum_{r=1}^{k-i} a_r = \frac{1}{2} (k-i)(2n-2l-k+i-1).$$

(2) Considering the case of i=0 in (1) above, we have

$$\bigotimes_{r=1}^k w_1(r)^{a_r} \notin \operatorname{Ind}^{O(1, \dots, 1)} f^{-1}(O)$$

in $H^*(BO(1, \dots, 1)) = H^*(BO(1)) \otimes \dots \otimes H^*(BO(1))$, k times, where $a_r = n - k - l$ +r-1, and $O \in (\mathbf{R}^l)^k$ is the zero. Letting a = n - k - l and $w = \bigotimes_{r=1}^k w_1(r)$, we see $w^a \notin \operatorname{Ind}^{O(1, \dots, 1)} f^{-1}(O)$. There is a homotopy commutative diagram

$$f^{-1}(O)/O(1, \dots, 1) \xrightarrow{\alpha_1} BO(1) \times \dots \times BO(1)$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \varepsilon$$

$$f^{-1}(O)/O(k) \xrightarrow{\alpha_2} BO(k)$$

$$\beta_2 \downarrow \qquad \qquad \qquad \downarrow \delta$$

$$f^{-1}(W_j)/O(k)$$

where α_1 , α_2 , and α_3 are classifying maps for corresponding free actions, β_1 and ε are induced from the inclusion $O(1, \dots, 1) \subset O(k)$, and β_2 is induced from the inclusion $f^{-1}(O) \subset f^{-1}(W_j)$. From Milnor-Stasheff [6; § 7] we see $\varepsilon^*(w_k) = w$, where $w_k \in H^*(BO(k))$ is the k-th Stiefel-Whitney class. Since $\alpha_1^* \varepsilon^*(w_k^a) = \alpha_1^*(w^a) \neq 0$, $\alpha_3^*(w_k^a) \neq 0$ in $H^*(f^{-1}(W_j)/O(k))$. Hence

$$\operatorname{cup}_k(f^{-1}(W_j)/O(k)) \ge a = n - k - l.$$

REMARK 6.2. Given a permutation $\sigma \in \Omega_k$, then we have an isomorphism $\varphi_{\sigma} \colon O(k) \to O(k)$ defined by

$$(a_{ij}) \longmapsto (a_{\sigma(i)\sigma(j)})$$
.

There exists $g_{\sigma} \in O(k)$ such that $\varphi_{\sigma}(g) = g_{\sigma}gg_{\sigma}^{-1}$ for all $g \in O(k)$. Thus in Theorem 6.1, H_{i+1} can be taken to be $\varphi_{\sigma}(O(i+1, 1, \dots, 1))$.

The following proposition will give a relation between $\sup_1(f^{-1}(W_j)/H_i)$ $(1 \le i \le k)$.

Proposition 6.3. Let X be a free O(k)-space. If $1 \le i_1 \le i_2 \le k$, then we obtain

$$\operatorname{cup}_{1}(X/H_{i_{1}}) = \operatorname{cup}_{1}(X/H_{i_{2}}) + \frac{1}{2}(i_{2}-i_{1})(i_{1}+i_{2}-1),$$

where H_i is a subgroup of O(k) conjugate to $O(i, 1, \dots, 1)$, 1 repeated k-i times.

PROOF. It suffices to prove

$$\sup_{\mathbf{1}} (X/O(i, 1, \dots, 1)) = \sup_{\mathbf{1}} (X/O(k)) + \frac{1}{2} (k-i)(k+i-1)$$

(cf. the top part of the proof of Theorem 6.1). The space of right cosets, $O(i) \times I_{k-i} \setminus O(k)$, is identified with $V_{k-i}(\mathbf{R}^k)$, where I_{k-i} is the (k-i)-th unit matrix. Then we obtain a fibre bundle

$$(6.4) V_{k-i}(\mathbf{R}^k) \xrightarrow{\iota} X/O(i) \times I_{k-i} \xrightarrow{\beta} X/O(k)$$

(see Bredon [1; p. 113]). We give an action of $O(1, \cdots, 1) = \mathbb{Z}_2^{k-i}$ to $V_{k-i}(\mathbb{R}^k)$ in such a way $V_{k-i}(\mathbb{R}^k) = V_{(1,\cdots,1)}(\mathbb{R}^k)$. $X/O(i) \times I_{k-i}$ has the free \mathbb{Z}_2^{k-i} -action such that its orbit space is $X/O(i, 1, \cdots, 1)$, and then ι is \mathbb{Z}_2^{k-i} -equivariant. There is a diagram

where the vertical sequence on the left-hand side is a fibre bundle given by passing (6.4) to orbit spaces, α_1 and α_2 are classifying maps for free actions, and ι' is the inclusion to $\{pt\} \times BO(1) \times \cdots \times BO(1)$. Then the square is homotopy commutative. $\bar{\iota}^*$ is surjective, since α_1^* is surjective as shown in Fadell-Husseini [2; p. 78] and ι'^* is also surjective. Let

$$\theta: H^*(V_{(1,\cdots,1)}(\mathbf{R}^k)/O(1,\cdots,1)) \longrightarrow H^*(X/O(i,1,\cdots,1))$$

be a right inverse of $\tilde{\imath}^*$ as module homomorphism. Leray-Hirsch theorem gives an isomorphism of modules,

$$H^*(V_{(1,\dots,1)}(\mathbf{R}^k)/O(1,\dots,1)) \otimes H^*(X/O(k)) \cong H^*(X/O(i,1,\dots,1))$$

given by $x \otimes y \mapsto \theta(x) \cdot \tilde{\beta}^*(y)$. Since

$$\mathrm{cup_{i}}(V_{\text{(1,...,1)}}(\pmb{R^k})/O(1,\,\,\cdots\,,\,\,1)) = \frac{1}{2}\,(k-i)(k+i-1)$$

by Remark 5.10 (1), there exist $x_1, \dots, x_a \in H^1(V_{(1,\dots,1)}(\mathbf{R}^k)/O(1,\dots,1))$ such that $x_1 \dots x_a \neq 0$, where a = (k-i)(k+i-1)/2. We may assume $\theta(x_1 \dots x_a) = \theta(x_1) \dots \theta(x_a)$. This implies

$$\sup_{i}(X/O(i, 1, \dots, 1)) = \sup_{i}(X/O(k)) + \frac{1}{2}(k-i)(k+i-1)$$

REMARK 6.5. We have a partial converse of Theorem 6.1: Let $0 \le i < k \le n$ and suppose $f^{-1}(W_i) \ne \emptyset$ for all O(k)-map $f: V_k(\mathbf{R}^n) \to (\mathbf{R}^l)^k$. Then $l \le n-k+i$.

For the proof it suffices to show the existence of an O(k)-map $f: V_k(\mathbf{R}^n) \to (\mathbf{R}^l)^k$ such that $f^{-1}(W_i) = \emptyset$ if n-k+i < l. Considering $A \in V_k(\mathbf{R}^n)$ to be a $(k \times n)$ -matrix, let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be the column vectors of A, i. e., $A = (\mathbf{v}_1, \dots, \mathbf{v}_n)$. If $n \le l$, we define $f(A) = (\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{0}, \dots, \mathbf{0})$, $\mathbf{0}$ repeated l-n times. Then f is O(k)-equivariant and rank f(A) = k. Thus $f^{-1}(W_i) = \emptyset$. If l < n, we define $f(A) = (\mathbf{v}_1, \dots, \mathbf{v}_l)$. Then f is also O(k)-equivariant, rank $f(A) \ge k - (n-l) > i$, and hence $f^{-1}(W_i) = \emptyset$.

§7. Maps of products spaces.

THEOREM 7.1. Let k_i , n_i , l_i $(1 \le i \le m)$ be integers with $0 < k_i \le n_i$, and

$$f: V_{k_1}(\mathbf{R}^{n_1}) \times \cdots \times V_{k_m}(\mathbf{R}^{n_m}) \longrightarrow (\mathbf{R}^{l_1})^{k_1} \times \cdots \times (\mathbf{R}^{l_m})^{k_m}$$

an $O(k_1, \dots, k_m)$ -map. If $0 \le l_i < n_i$ for all i, then we obtain

$$\sup_{i} (f^{-1}(T_1 \times \cdots \times T_m)/O(k_1, \cdots, k_m)) \ge \sum_{i=1}^m n_i - \sum_{i=1}^m \max\{k_i, l_i + 1\} \ge 0$$

where $T_i = \{A \in (\mathbf{R}^{l_i})^{k_i} | \text{rank } A < k_i \}$.

PROOF. From Propositions 1.2 and 3.4 we have

$$\operatorname{Ind}^{O(k_1, \dots, k_m)} f^{-1}(T_1 \times \dots \times T_m) \cdot \bigotimes_{i=1}^m J(k_i, l_i - k_i)$$

$$\subset \operatorname{Ind}^{O(k_1, \dots, k_m)} V_{k_i}(\mathbf{R}^{n_1}) \times \dots \times V_{k_m}(\mathbf{R}^{n_m})$$

in $\bigotimes_{i=1}^m H^*(BO(k_i))$. Let $w_j(i)$ and $\overline{w}_j(i)$ be as in the proof of Theorem 5.1. Letting $a_i = n_i - \max\{k_i, l_i + 1\}$, from Proposition 4.2 we see

$$\mathop{\overset{m}{\mathop{\smile}}}_{i=1}^m w_1(i)^{a_i} \overline{w}_{t_{i^{-k}i^{+1}}}(i) \notin \operatorname{Ind}^{O(k_1, \cdots, k_m)} V_{k_1}(\boldsymbol{R}^{n_1}) \times \cdots \times V_{k_m}(\boldsymbol{R}^{n_m}).$$

Since

$$\bigotimes_{i=1}^m \overline{w}_{l_{i-k_{i+1}}(i)} \in \bigotimes_{i=1}^m J(k_i, l_i-k_i),$$

we see

$$\mathop{\otimes}_{i=1}^{m} w_{i}(i)^{a_{i}} \notin \operatorname{Ind}^{O(k_{1}, \dots, k_{m})} f^{-1}(T_{1} \times \dots \times T_{m}).$$

This implies

$$\operatorname{cup}_1(f^{-1}(T_1 \times \cdots \times T_m)/O(k_1, \cdots, k_m)) \ge \sum_{i=1}^m a_i \ge 0.$$

This proves the theorem.

If we take $k_1 = \cdots = k_m = 1$ in Theorem 7.1, we lobtain

COROLLARY 7.2. Let $f: S^{n_1-1} \times \cdots \times S^{n_m-1} \to \mathbb{R}^{l_1} \times \cdots \times \mathbb{R}^{l_m}$ be a \mathbb{Z}_2^m -map. If $l_i < n_i$ for all i, then we obtain

$$\sup_{1}(f^{-1}(O)/Z_{2}^{m}) \geq \sum_{i=1}^{m}(n_{i}-l_{i})-m$$
,

where $0 \in \mathbb{R}^{l_1} \times \cdots \times \mathbb{R}^{l_m}$ is the zero.

If $(n_1, n_2, \dots, n_m) = (n, n-1, \dots, n-m+1)$ and $l_1 = \dots = l_m = n-m$ in the above corollary, then the corollary is Fadell-Husseini [2; Theorems 5.1, 5.2] and Fadell [3; Corollary 6.2].

§ 8. Several equivalent versions.

We conclude this paper by giving several equivalent versions of Borsuk-Ulam theorem for Stiefel manifolds. Theorem 5.1 (or Theorems 6.1, 7.1) gives the following as a special case:

THEOREM 8.1. If $f: V_k(\mathbf{R}^{n+1}) \to (\mathbf{R}^n)^k$ is an O(k)-map, then $f^{-1}(T)$ is non-empty, where $T = \{A \in (\mathbf{R}^n)^k \mid \text{rank } A < k\}$.

We see from Lemma 3.1 that Theorem 8.1 is equivalent to

THEOREM 8.2. There does not exist an O(k)-map $V_k(\mathbb{R}^{n+1}) \rightarrow V_k(\mathbb{R}^n)$.

Let $f: V_k(\mathbb{R}^{n+1}) \to (\mathbb{R}^n)^k$ be an arbitrary map, and define its average with respect to a Haar measure in O(k), Av $f: V_k(\mathbb{R}^{n+1}) \to (\mathbb{R}^n)^k$, by

$$\operatorname{Av} f(x) = \int_{g \in O(k)} g^{-1} f(gx) dg$$

for $x \in V_k(\mathbb{R}^{n+1})$. Then Av f is O(k)-equivariant, and Av f = f if f is already O(k)-equivariant.

We have one more equivalent version:

THEOREM 8.3. If $f: V_k(\mathbf{R}^{n+1}) \to (\mathbf{R}^n)^k$ is an arbitrary map, then there exists $x \in V_k(\mathbf{R}^{n+1})$ with rank Av f(x) < k.

If we take k=1 in Theorems 8.1, 8.2, 8.3, then the theorems reduce to the well-known versions of the classical Borsuk-Ulam theorem:

- (1) If $f: S^n \to \mathbb{R}^n$ is a \mathbb{Z}_2 -map, then $f^{-1}(0)$ is nonempty.
- (2) There does not exist a \mathbb{Z}_2 -map $S^n \rightarrow S^{n-1}$.
- (3) If $f: S^n \to \mathbb{R}^n$ is an arbitrary map, then there exists $x \in S^n$ with f(x) = f(-x), i. e., (f(x) f(-x))/2 = 0, which is the average on \mathbb{Z}_2 .

References

- [1] G.E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972.
- [2] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorem, Ergodic Theory Dynamical Systems, 8* (1988), 73-85.
- [3] E. Fadell, Ideal-valued generalizations of Ljusternik-Schnirelmann category, with applications, Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 11-54.
- [4] J. Jaworowski, Maps of Stiefel manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc., 32 (1989), 271-279.
- [5] J. Jaworowski, A Borsuk-Ulam theorem for O(m), Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 107-118.
- [6] J.W. Milnor and J.D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton University Press, Princeton, 1974.
- [7] R.S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc., 36, Amer. Math. Soc., 1972.
- [8] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- [9] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951.
- [10] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, Méthodes topologiques en analyse non linéaire, (ed. A. Granas), Sém. Math. Sup., 95, Presses Univ. Montreal, 1985, pp. 166-235.

Katsuhiro Komiya

Department of Mathematics Yamaguchi University Yamaguchi 753 Japan

(e-mail: komiya@ccy. yamaguchi-u.ac.jp)