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1. Introduction.

Let Gg be a connected real semisimple linear algebraic group. In [11],
Kashiwara gave a conjecture that for a Harish-Chandra module V with a trivial
infinitesimal character there is a Gg-equivariant object whose character cycle
is the distribution character of V.

CONJECTURE 1.1 (Kashiwara, [11]). For a Harish-Chandra module V with
a trivial infinitesimal character, let @y be the global character of V, and set
M=DxQrx. 05V, F=DR(M)=R Homg (O, M) and F°€Dey(X) the corres-
ponding object by the Matsuki correspondence for sheaves. Then the corresponding
cycle cc(Oy) equals to ch(F?®) in H§l s (p7'(GR), orep); k

cc(@y) = ch(g?).

Several unexplained notations in this conjecture are given in §2. The main
theorem of this paper is the following.

THEOREM 1.2. Conjecture 1.1 is true.

We give a proof of in §5. To do this, we write both sides
of the above formula in terms of local cohomologies with respect to Schubert
cells on the flag variety. In §3, we deal with the left hand side cc(@) using
the Osborne conjecture and the Beilinson-Bernstein intertwining operator. In
§4, we deal with the right hand side ch(?) using the shrinking space introduced
by Kashiwara-Schapira.

W. Schmid and K. Vilonen announced a different proof of the Kashiwara
conjecture [17]. They formulate the conjecture for representations having an
arbitrary infinitesimal character and do not use the Osborne conjecture to prove
the Kashiwara conjecture.

Acknowledgements. The author would like to express his gratitude to Pro-
fessor M. Kashiwara, Professor H. Matumoto, Professor T. Oshima, Professor
T. Uzawa for their encouragement and helpful discussions.
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2. Preliminaries.

2.1. Groups and spaces. Let Gy be a connected real semisimple linear
algebraic group, G, a connected complexification of Gz, X the flag variety of
Ge, Ge,, the set of regular semisimple elements of G., and for a subset A of
Gc we will set A,s=ANGc,,. Take a maximal compact subgroup Kp of Gg,
and @ denote the corresponding Cartan involution. Let Hy be a #-stable Cartan
subgroup of Gg. For Gpg, Kg, Hg, denote the corresponding Lie algebras by
8o, %, o and their complexifications by g, I, § respectively. According to Cartan
decomposition g=tPp, we have §,=1,Da,.

Let Hc=Zs,(h) be the Cartan subgroup of G¢ containing He. If yeh* lifts
to the character of H,, we denote it by ¢ H;,"=Hom(H,, C*). We use the
same notation, e, for the restriction of ¢ to Hz. Since Hr=(HrpN\Kg)eXxp a,,
we have Hrp/Hp°=(HpN\Kg)/(Hr"\Kg)*. Here for a Lie group M, denote the
connected components of the identity by M°. The group Hz/Hz’ is known to
be a 2-abelian group (Z/2Z)" with some integer /. We regard a character s<
(Hr/Hz%)" as an element of Hg™. Then any character of Hy is of the form
e’ec Hp” for some e H,:" and ¢e=(Hp/Hr)". For a semisimple Hg-module M
and ¢’s=Hg", we denote the isotypic component by M, .=Hompyg(e’s, M), we
often write M. =M, ..

Denote the root space by g(f), a)={xcg; [k, x]=a(h)x for all h<}}, the
root system by A(g, §))={ash*— {0} ; gh, a)+0}, and the set of real roots by
Ag(g, D)= {a<sA(g, §); a|:=0}. For any hy=Hpz,, there is a positive system
A*=A*(g, H)cA(g, ) such that

e(hy) & {xeR; x =1} for all a & A*.
We fix such a A*. Define
Hg = {h€ Hg; ¢e*(hy) & {x = R; x =2 1} for all a € A*},
Hz= {h € Hpg; e*(h) <1 for all a € A*(g, H)N\Ag(g, H)}.

Then we have Hz"cHzN\Hg,,. Using this, we define
n= Daeat 60, @), 1= Daeat g, —a),
b =hHPn,
N =expnc Gg,
B = H¢N = Ng(b); a Borel subgroup,

W= W(Gc, He) = Ncc(Hc)/Hc,
l: W—Z,,; the length function with respect to A*

b



Characters and character cycles 585

wy, € W ; the longest element.

We realize the flag variety X as a quotient X=G./B using this Borel subgroup
B, and denote x,=¢B/B&G.;/B=X the origin of X under this realization.

We set Goe={(g, x)EGsxX; gxr=x}, p: Gc—G¢ the restriction of the first
projection G¢XX—G¢. There is an isomorphism

GeXsB—> Ge, (g, b)—> (gbg™, gB),

where G¢X 3B is the fiber bundle associated to the B-principal bundle G — X
with the adjoint action of B on B. We set écﬂz;b“’(Gc”), and p,s: 50”-»
Gc,, the restriction of p. This is a finite map and each fiber is parametrized
by the Weyl group W. In fact, there is an isomorphism

Ge/HexHe,,—> Ge,,, (g, ty— (glg™, gB).

The Weyl group acts on G¢/He X He,, by (g, Hhw=(gw, w™'tw), here weNg (Hc)
is a representative of weW. Then the quotient map by W gives p,s. For
heHe , p{ (W)= {(h, wxo)lweW}=W. ,

Denote the restriction of p to p~'(Gg) by pr: p"'(Gr)—Gg. Let pry: GgX
X—X be the second projection and p: GepXxXX—X the multiplication; prx(g, x)
=x, u(g, x)=gx.

For a manifold M, denote the corientation sheaf (with coefficients C) be ory.
We denote the set of one point by {pt}. For a topological space M, ay:
M — {pt} be the adjunction, wy=a}C be the dualizing sheaf. Here f'is the
twisted inverse of a morphism f in the derived category of sheaves. For an
R-constructible sheaf F&D%_ (M), DF=DyF=Hom(Z, wy) denote the Verdier
dual of &.

2.2. Characters. We summarize the results on the characters and the
character cycles by [7], [8], [11].

First we review the results for holomorphic solutions. In this paper we
only use the analytic category. Let #, denote the 9Dg,-module for invariant
eigendistributions. Hence M, is a (left-)9¢,-module generated by a section u
with relations

(Adg)u =0, Pu=0 for Pe Z(@g)N\U(g)s.

Here Ad(g) is the image of g—I"(G¢, 9¢,.) derived by the adjoint action of G¢
on G¢ and Z(g) is the center of the universal enveloping algebra U(g) con-
sidered as the space of biinvariant differential operators on G¢. Then we have

PropPOSITION 2.1. (1) M, is a regular holonomic Dgg-module.
(il) R Hom(HM,, O¢c)=R p+Csz.
(iii) M, is the minimal extension of Prex(CGE,s)-
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Here Ogg,_ is the de Rham system (a left D-module), and prsx is the direct
image in the category of (left) D-modules.

To be more precise, we take a holomorphic function ¢ on 50732 p (Ge,)s
d(g, x)=det(l—g, TEX)"  for (g, x) € Go,,.

This gives a Dg,,, -isomorphism H,i¢c,,— Prsx(OF¢,,) by Pu—Pg, PeDge, s
Next we deal with the distribution solution. Since ¥, is regular holonomic,
the distribution and hyperfunction solutions coincide:

R Homggc(ﬂp, Distgp) = R Homg;Gc(ﬂn,,, Beg) -

Here Distg, denotes the sheaf of distributions on Gr, and B, that of hyper-
functions.
We can transform this as follows.

R Homo, (M, Bep) = RHomg, (Mo, RI6,06,Q0rczQorec)[dimGr]
= RI6xR Homg;GC(JMp, O6¢) Q076 g0t 6)[dimG g]
= RI'¢xR p+C5:Q07cpQore [dimGg]
= RI6xR pswzzQorep[ —dimGr]
= R Pra@p-1:6ppQ07cp[ —dimGe]
= RpreRI p-16ppWopx x Q07 [ —dimG ]

= RppxRI p-1ep pr¥'ox .
Then we have

I'(Gg, Homg)ac('ﬂ’lm -‘BGR)) = H Y™CR(p~Y(G), Op-1:6ppQ07cp)

dlmGR(p 1(GR); OrGR)

Here HZY is the i-th Borel-Moore (or infinite) homology group. Remark that
p~'(Gg) may not be smooth but is the union of the finite number of smooth
submanifolds with dimensions dimGg. In fact, we decompose X into Gg-orbits,
X=I1,S%, take a representative x;=S%, and denote the isotropy by Gsz, then
P GRNPrz (S9)=GrX aijGsz.

For 0" (G, Homgg (M, Dip)), We call the corresponding element cc(6)
eHdlmGR(p“(GR), orcgp) by the character cycle.

PRrROPOSITION 2.2 (Harish-Chandra, [8, 9]).

(1) There is no singular invariant eigendistribution. This corresponds to
the fact that the restriction map

dlmGR(p Y(Gpr), OT’GR) —— demGR(p_1<GR,.s); 0?’GR>
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1S injective.

(2) An invariant eigendistribution is real analytic on the set of regular
semisimple elements Gg,,. This corresponds to the fact that there is a canonical
isomorphism

H(p7 (Gg,,), C) —> HdlmGR(p—l(GRTs): 07gp) -
For any {&p (G, and oeHd,mGR(p“(GR), o0rcg), 0() denotes the multi-
plicity of the component containing { in ¢. In other words, ¢({) is the image of

dmeR(.b I(GR), OTGR> E—— Ho(p_l(p(@), C) I C)

| (l i)

H(p7(Gr,,), C) —> H(p7'(pQ), C) —> H ({C}, C).

Remark that the element oeHdlmGR(p“(GR), orgy) is determined by the values
o) for L& p '(Hr,,), where Hg, , runs over all #-stable Cartan subgroup of Gg.
For geGp

s’

6(g) = Ce 2 g)CC(@)(C)sb(C)-

For heHg_ , weW,
— —p—a\~-1 —
Glh, wr) = T (1—e (k)

(_1)l(ww0)ewwop

Iaea+(e®?—e= %)

(h).

Then we have
(=D ec(@)(h, ww,x,)e™?
Tlaca+(e®?—e~212)

Oh= X (h).

2.3. Trace. Let Dg,(X) (resp. Dk (X)) be the equivariant derived category
on X introduced by Bernstein-Lunts [16], [15]. By the definition, for an g%
Dgy(X) there is an element ¢<&Hom(p ', pry'9®) which gives a Gg-equi-
variance. Let 0: X—»XX X be the diagonal embedding, s=(g, prx): GeXX—
X% X, and X denotes the exterior product. We have

Hom(g*, %)
= HY(X, 3(F°RDF®)
—> HY(X, 8' Rsys ™ (F*RDF)
= HYRI p-1c6p(CrX X, p'F*Qpry' DF))
s HYRI-16p(Grx X, pry g @priDF))
> HYRI p-16p(GrX X, pri‘wy))
H&%6p(p7 (GR), 07gg).

Here we use the following Cartesian product:
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p7HGr) —> GpX X

Lo s

X— XxX.

We denote the image of the identity idge by ch(%)€ Hilnep(p~*(Gr), orey) and
call this the character cycle of g* [11].

2.4. The Kashiwara conjecture. In [11], Kashiwara gave a conjecture
that for a Harish-Chandra module V with trivial infinitesimal character there
is a Gg-equivariant object F°&Dg,p(X) whose character cycle is the distribution
character Oy of V in HiMuez(p7(Gr), 0r6p);

2.4) cc(@y) = ch(g%).

He gave a proof for any discrete series V. He constructed % using the
Beilinson-Bernstein correspondence, the Riemann-Hilbert correspondence, and
another conjecture of his [10], so called the Matsuki correspondence for sheaves,

proved by [15].

PROPOSITION 2.5.
(i) The Beilinson-Bernstein correspondence [2], [4].
The category of Harish-Chandra modules is equivalent to those of Kc-equivariant

Dx-modules on X. A Harish-Chandra module V corresponds to a Kc-equivariant
Dx-module M by

V=X, M) and H=Dxy K V.

I'x,92p

Such an M is always regular holonomic. Functors I'(X, ) and Dy Qrex. 95
are exact.

(ii) The Riemann-Hilbert correspondence.
The derived category of Kc-equivariant Dyx-modules is equivalent to Dy (X). A
Kc-equivariant Dx-module M corresponds to an F=Dg (X) by F=DR(M)=
R HOI’IIQX(@X, ﬂ’l).

(iii) The Matsuki correspondence for sheaves [10], [15].
The categories Dg (X) and Dep(X) are equivalent. An F&Dy (X) corresponds
to an F*&Dgp(X) as follows. Consider the following diagram.

Prx r q
X<~——GR><X——>GR§<X—>X.
R

Here q(g, x)=gx, and r is a natural projection. For any F&Dg (X), there is
an & D%(GrXgpX) such that p—'F=r"'F. Define F°=Rq.F.
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3. Formula for cc(O).

In this section we give a formula for cc(@) using the Euler-Poincaré charac-
teristic of some geometric object.

3.1. Now we quote the Osborne conjecture for a maximal nilpotent subal-
gebra n.

LEMMA 3.1 (Osborne Conjecture, [6, Theorem 7.22]). For a Harish-Chandra

module V, the global character © of V satisfies the following formula on HzN
Hg._,.

(I 1=e)60 = 3 (~D*Oup(Hilr, V).

acA+
Here Oy (Hi(n, V) is the character of Hg on H;(n, V). More explicitly, for a
Harish-Chandra module V with a trivial infinitesimal character, we have

O xp(Hi(m, V))(h) = = dim(Hi(, V)pswp, e "0 (h)e(h).

ec(HR/HP ~, weW
3.2. Now we localize the n-homology. Let 9, be the sheaf of twisted
differential operators acting on the invertible sheaf On={f<0¢.; f(ghn)=
e®?~?(h)f(g) for heH;, neN, g&G¢}. When w=¢, we have 0,=0y and 9,=

9Dx. Remark that I'(X, D.,) = U(@)/U(@)(Z(g)NU(g)g), then V is I'(X, Du,)-
module.

LEMMA 3.2 ([19, Theorem 4.1]). For a Harish-Chandra module V with a
trivial infinitesimal character, we have

L
—_ i
Homb(Hl(nl V)’ Cp-wp) - m@w(@wrcx%w)vr Ow)xo
as Hgr/Hg’-modules.

3.3. For a fixed weW, let X,=BwB/BcXbea Schubertcellon X, Y ,=
{(gB, gwB)eXXX; geG¢t be a Ge-orbit on XXX through (eB, wB), and
XEYwﬁX projections p.(x, ¥)=x, p.(x, y)=y. The isotropy subgroup of
G¢ at (eB, wB)eY, is (BNwBw™). Let .L‘:{fEOGC; f(ghn)zewP'P(h)f(g),
for hne BNwBw™'} be an invertible sheaf on Y ,=G./(BNwBw™). Denote
ﬂw:g)w®§l‘(,¥.9w>v-

LEMMA 3.3 ([8, Theorem 12]). For a weW, we use the notations above.
We have

HMw = P(Pr HMRLI—1(w)].

Here p.x or p: is a direct or inverse image in the derived category of
(twisted) 9-modules.
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3.4. Now we give a formula for cc(@). For a bounded complex C* of
vector spaces, we denote the Euler-Poincaré characteristic of C* by XZ(C )=
Too(— 1) dimHYC").

THEOREM 3.4. For a Harish-Chandra module V with a trivial infinitesimal
character, let O be the global character of V, and set H=M=DxQ@rcx.05V,
F=DR(M)=R Homg ,(Ox, M). Then for a heHzgNHg, , and weW, we have

cc(O)h, wxy)= 3 ARy, (X, F))e(h).

c€(HR/HR~

PrOOF. By §3.3, we have
Exth,(HMuw, Ow)z,

:..‘lEXtiQX(Ow®_1 @ﬂw, OX)J;O

=1H(R Hom o y(pusx s H[—1()], Ox)s,
=IH*(Dx p1x P DR(M)[{(w) —dimpX ]):,)
="H(RT'y (X, F/*[l(w)—dimgX ])

= HAmRT-ln-i(RTy (X, &)).

i,

Xw*—)Yw

D P b

{X} — X X.

iz,
We have already known the following.
2.3),3.1); cc(O)(h, wwyx)(—1)H® = (—1)‘A+'§(—1)i dim(H;(m, V) prwe,s)e(h).
(3.2); dim(H;, V)p-wp,s) = dim Exty, (Hw, Ow)zy.e-
3.3); dimExth, (HMw, Ow)z,e = AIMHIPRI-LW-YR, (X, F)),.
Summing up the above with —p=w,p, we have the result. m

REMARK 3.5. We]Juse here the de Rham functor DR = R Homg (O, -)
instead of the solution functor R Homg, (-, Ox) = (DR(:)*). Here (:)*=
RHom¢ (-, Cx)=Dx(-)[—2dim¢X]. Even if we use the solution functor, we
have the same results. In fact, for a K¢-orbit ScX, an embedding j: S X
and an irreducible Kc-equivariant local system E on S, we define j,,E the
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direct image of the DGM-extension of E; j,,E=/«("E), j: S—»X. Remark that
the elements of the form ;,,E generate the Grothendieck group of Dy (X).
Since we have (j,E)*= Dy ,E)—2dimX]=j,,.DsE[—2dim¢X]=j,E[—2
codimo(ScX)], we conclude that ¥ and * are equal in the Grothendieck
group of Dk (X) for any & € Dk (X). Then we have URI[x, (X, F*))=
XRI'x, (X, F).), we have Hom¢y(E, Cs)=E, then F=j . E is self dual, F=9*.

4. Formula for ch(g%).
In this section, for an F*<Dg,(X), we give a formula for ch(g%).

4.1. We quote a lemma from [11, Proposition 2.8.1]. For a complex C:
of vector spaces, and ¢=Hom (C, C*), we set tr(p; C) = X7-(—1)" trace(¢;
HYCY)).

LEMMA 4.1. For F°cDgp(X), heHz™ and weW, we have
(ch(F*)(h, wx,) = tr(h; RIx (X, F9)).

We give a proof of in Appendix, which uses the shrinking
space as the proof of Proposition 2.8.1 in [11]. To be more precise, since
Xo=(NNwNw-YwB/BcX, we have

Tw X=wiw?= 3 g0, a),

acwA-

waon = lUﬁW'lf\It = 2 g(fb a) .

acwh-nA+
Then for h=Hg,
e!(hyeC—{xeR; x=1} for a € wA~NA*,
e*(hyeC—{xeR; 0x<1} for a € wA-NA".
Hence X, seems to play the role of the shrinking space V, in [13, Proposition
9.6.14].
4.2,

LEMMA 4.2. For an 9° € Dgg(X), the function tr(h; RI'x (X, %)) is a
locally comstant function in heHg. Especially, we have

tr(h; RI['x (X, %) = s275(1[?1}10(?(, F*)e)e(h).
PROOF. For an F°€ Dyp(X), we have i,9° € Dyyp(Xuw), RIx (X, %)=

Ra«i,F*€ Dy ({pt}), that is an Hg-equivariant constructible sheaf on a point.
R

Ty
Here X« X, 5 {pt}. Hence the only component group Hgr/Hz° acts on
RIx, (X, 9%). m
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Hence we have the following corollary by the two lemmas above.
COROLLARY 4.3. For an 9°&Dgp(X), aheHg™ and weW, we have

ch(F)(h, wx) = X UR[x, X, F))e(h).

eSCHRIHp~

5. Proof of Theorem 2.
The purpose of this section is to prove the following theorem.

THEOREM 5.1. If F€Dg(X) and F*&Deyp(X) correspond to each other by
the Matsuki correspondence for sheaves, then we have

MR x (X, F)e) = URT 5, (X, F9)o).

Remark that this theorem implies by the help of
and Corollary 4.3.

5.1. In this subsection, we prove in the case w=e, that is,
X.={xo}. Since both sides of the formula are additive, so we may prove only
for an element €Dk (X) of a basis of Grothendieck group of Dx,(X). Hence
we can restrict the situation as follows.

Let S or S* be a K¢- or Gg- orbit on X, and assume that S and S® cor-
respond by the Matsuki correspondence. We write the embedding j: S— X,
7%: S*—>X. Let E or E® be a K- or Gg-equivariant local system on S or S¢,
and assume that E|s~sa=£%|s~se. We set F=Rj, E[codimcS]€Dg(X), then
the corresponding F*&Dgp(X) is given by F°=RjUE*®;* C x)[codim, S] (see
[5).

The left hand side of the formula:

YR x (X, F)e) = X7, F)e)
= X((Z75F)e) (Remark 3.5)
= X(iz;Rj, E[codim,S]).)

= X(Rj{ 75 E[codimS])e) .
Here

-/

i%,
{xe} NS —> S

J"l Eo lf
{x} — X.

If x,&S, then X(RI (X, 9))=0. If x,=S, then

URI g (X, F)e) = X(17;' E[codimST).)
= X((E { xo)e [COdin]CS]) .
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The right hand side of the formula:

MR g (X, F%).) = (@5, RHE*®;*'C x)[codimST).)

= X((Rj$' % (E*®5*'C x)[codimS]).) .
Here

z‘ll

(2} NSe —% e

je l O i Je

Zro

{xo} — X.
As before, if x,&S?, then X(R[x (X, F%).)=0. If x,&S%, then
YR x (X, F%).) = (%, (E*Qj*'C x)[codimS]).)
= U@ B Q%) 1/C ) codimeST))
= X((E®| z,[codim¢S—dimgX ]).)
= X((E*| z,LcodimS]).) .

593

Since x,&S and x,<=S5* are equivalent, we have X(RI'x (X, F))=X(RI[ x, (X, F%).).

5.2. General case.

LEMMA 5.2. For a fixed weW, we recall the notation in §3.3. Let Y be
a Ge-orbit on X X X through w, denote projections X«ﬁYw?—iX, given by

pl(x’ y)=x7 pz(x: y)=3’~

If F€Dg (X) and F*&Dgg(X) correspond to each other by the Matsuki
correspondence for sheaves, then R pispy F[—Il(w)]E€Dg(X) and R pix pr F*[—I(w)]

&Dgp(X) correspond to each other by the Matsuki correspondence for sheaves.

PrROOF. Consider the following diagram.

x <L Gaxx ;G,;?RX Lx
) o nl o ) o nl
Y <2 GaXY¥ o — G XVu sV,
nl ol o | oonal

P r q
X <« GgxX ——>GR;{<X — X .
R

From the definition of the Matsuki correspondence for sheaves, there is an

E?ED?;R(GR% X) such that p'g=r"'Gd, F°=RqxG. We have
R
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PR Pk D2 F = P'RPp1xpr FQorgp[—dime Gr]
= Rpixp2' p'F Qorgpl —dimp Gr] -
= Rpixps' p7'F
= Rpupi'r G
=r'Rpixp?'d .
Hence R p,4p2F corresponds to Rg«R p7«p%'&F, which is nothing but R pixph R« F
=Rpix 2T M

We have the action of the Weyl group W on the Grothendieck group
K(Dg (X)) (or K(Dgg(X))) of the equivariant derived category.
shows that the Matsuki correspondence for sheaves is W-equivariant between
K(Dg (X)) and K(Dggp(X)) ({15, Remark 6.7]).

Now we finish the proof of for a general weW. For anwe
W, we use the notation in the proof of [Theorem 3.4. We have

Rrxw<.X, ff) = Ra*ifwaf
= Ra*z"p'sz
= 14 Rpu P2 F
= RI'x (X, Rp:1xp:F).

{xO} B — Xw

12y D i in

X < D Y. Ds . X

The same holds for ¥¢. Then and the proof in §5.1 imply The-
orem 5.1.

Appendix. A proof of Lemma 4.1.

Since the object & is not conic, we cannot apply Proposition 9.6.14 in
directly, but almost all the arguments are repetitions of those in [13].
(@) Let V=T, X and V=T, X,. We have an isomorphism ¢

t: V=wiw?> A (expAwx, €« wNB/Bc X
U U
s = wiw N1 _— Xuw,



Characters and character cycles 595

and denote u the linear endomorphism on V' corresponding to g by ¢. Then u
is a semisimple operator without zero eigenvalue. We set the pull back =
¢RI w5z ,(F%), then F&Di_(V), the number of strata is finite and each stratum
is an algebraic set. We denote the corresponding action of 2 on & by ¢
Hom(u'4, 4). By [13, Remark 9.6.7],

(Ch(F)(h, wx,) = (Ch(RI w2 (FNI(h, wxo) = ch(F)(u, 0) = Colp),

where we use the notations in [13, Chapter 9].

Let V. denote the complexified space V®RzC, and for A=C, denote by V&
the eigenspace of V. with eigenvalue A. Consider the decomposition V=V @
V_ with:

V+=( Vé)mV, V-=(@Vé)mv

12121 1211

and choose a metric on V such that |u(x)|=|x] on V., |u(x)|<|x| on V..
Let ¢: V—V, be the projection and 7_: V_—V the inclusion. Set Zq,=
(x€V,; |x|<a} x{xsV_; | x| <b}, then u Y (Z,5)NZ 4, is closed in Z,, and
open in u~'(Z,,). Applying [13, Proposition 9.6.9], we find

Colp) = tr(lz,,(¢), RI'z,(V, F)).

Now we want to take limits ¢—0 and b—oo. We apply [13, Lemma 874.7]
for Rz 1< F€D%_(V) and ¢, then for V6>0, Ja,>0, 0<Va<a,,

qu—l((iz+I§a.})(Vy Rz 1<nF) = RFq—1<ux+|=o))(V, Rz 1< F).
Hence we have

RI'z,(V, )= RI'v_(V, R (z_1<uF)
= RI{xeV_; |x|<b}, iy_F).

Set V_={(x, )eV_XR; |x|*+2=1} and embed V_ into V_ by Ji x>
(x/vVIF]x]% 1/~/IF]x[%). Then V_ is an open subset of V_ defined by #>0.

CLAIM. Rjxiy & is R-constructible.

PrOOF OF CLAIM. There exists a finite covering V_=\U,c;X; by algebraic
sets such that for all j=Z, all i=1, the sheaves H’(iy_'Dy9)|x, are locally
constant. Remark that s(X;) is also an algebraic set in V_. If we set X_,=
V_—i(V.)), V_=Uieri(X:)\UX_, is a finite covering by algebraic sets such that
for all j€Z, all ieIN{-—1}, the sheaves H/(Rjiy_"'DyF)|x, are locally con-
stant. That is Rjgy_"'DyF < Di_«(V.). Since iy_'DyF = Dy_iy_F by [13,
Exercise VIII. 33ii)], we can apply [13, Exercise VIII. 3(ii)] for G=i,_ge&
D% o(V.), we have Rjsiy_FeDh (V). m
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We can apply [13, Proposition 8.4.331)]1, for 3b,>0, Yo >b,,
RI({| x| <b}, i},_9)

1 -
= RI({> s> Ri-9)
= RI'({t>0}, Rjxiy_9)
=RIv_(V, 9).
Then we have (ch(F*))(h, wxo)=tr([v_(¢), RIv_(V, F)).

(b) Let W = @oc1<a V&NV the minimum shrinking space, and V, be a
shrinking space. By the previous step, it is enough to prove

tr(RIw(p), RI'w(V, 9)) = tr(RIv (¢), R['v (V, 6))

since it will in particular imply tr(RI'w(p)) = tr(RI'v_(¢)). By distinguished
triangle, it is enough to prove

tr(RIv,-w(p), Ry, _w(V, 9))= 0.
Take a u-stable subspace W’ of V, such that V,=W@W’. Remark that no

eigenvalue of » on W’ is contained in [0, co).

Next we define compact manifolds W, W’ and maps constructing the follow-
ing diagram.

i ™~ Fo A
V e—— V—W —— [xW

l )

—{0y — W

l -

Set W={(x, )eW XR; | x|*+£=1} and embed W into W by x— (x/~IF|x]%
1/VIFTx[®. Set W={(x, 5, s, )eWXWXRXR; |x|*=1—|y|’=s"=1—2, tx
=sv, x-y=si} and embed W’— {0} into W’ by x—(x/~IF x5 x/(| x| v1F]x]?),
x| /vVIF1x]% 1/~/IF]x[%). Set Sw={xcW’; |x|=1} and define a map W’
onto Sy by (x, v, s, —y/t if t+0, x/s if s#0. Then for

z. .
Ve VoW —s W

|

SW',
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we have RpiRjxi'FeD%_(Sw) as the step (a). Hence we have

tr(Ry -w(@), RI'v,—w(V, F))
= tr(pxdv,-w(p), RI'(Sw:, RpsRjx1'F)) =0

by [13, Proposition 9.6.2] since u has no fixed point on Sy.. ®
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