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   Introduction. 

   There exist precise criterions to decide whether a given C1 flow ¢ on an 
m dimensional closed manifold M admits a cross-section. For example, one 
has the asymptotic cycles [Sc] as well as homology directions [Fr]. Both of 
these make use of the first real homology group of M. On the other hand, 
there does not exist a general criterion to decide whether a flow admits a 
transverse foliation. However, in the case of a three manifold this problem is 
solved for certain types of flows, like flows whose orbits are compact [Mi], [Wo], 

[E-H-N], Morse-Smale flows [Gol] and Smale flows [Go2]. In this paper we 
treat the problem of extending the result of Goodman's criterion to a general 
vector field on a three manifold. We found that the natural extension should 
be in terms of what we call "homotopy direction" [An2]. Using this notion we 
define the set .'(M) of vector fields whose flows are homotopically linked (~ 2). 
Although we were not completely successful, we obtained unexpected properties 
which are described in the theorems below. 

   Let M be a smooth three dimensional closed manifold. We assume that M 
is oriented and for convenience we shall fix a Riemannian metric. Every flow 

c appearing henceforth is generated by a vector field c in NSX (M), the space 
of C1 non-singular vector fields on M endowed with the C° topology and every 
foliation if is a codimension one transversely oriented foliation on M given by 
a C1 coordinate systems. We denote by (-h(M) the topological subspace of 
NSX (M) of vector fields whose flows admit a transverse foliation and by -(M) 
its closure. 

   0.1 THEOREM. The sets fi (M) and £(M) are open and not dense in NSX (M) 
and satisfy the inclusions 

                 h (M) c -C(M) rha?). 

   We construct a flow to show the following 
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    0.2 THEOREM. ~(M) 

    As a by-product we have 

    0.3 COROLLARY. ((M) Int -h(M). 

    The above example of flow has a foliation which is "non negatively trans-
 verse" to it. Thus we are lead to the problem about when the flow under 
 this circumstance has a transverse foliation. To do that we study the frontier 

 of fi (Efl, the set of vector fields positively E'-transverse. 

    0.4 DEFINITION. Let c~ fi(b). A point pEM escapes from by c 
 provided there exists a point q on the positive 0-orbit of p such that ¢(q) is 

 positively E"-transverse. 

    0.5 THEOREM. Let If each point in the Birkhoff center of 0 
 escapes from by ~S, then $(M).                        ~ fi

Finally we also obtained the invariance of the set 1-h(M) under topological 
 conjugacy (~ 3 Theorem 3.3). 

    0.6 REMARK. We don't know if £(M)=Int(h(M). However S. Matsumoto 
 and A. Sato [M-S] working with the C1 topology in NSX(M) have shown that 

 £(M) Int fi (M). They proved that a vector field tangent to the Hopf fibra-
 tion on the three sphere S3 lies in the Int(-h(S3). On the other hand, the 

 corresponding flow is not homotopically linked. 

    The author wishes to thank S. Goodman for useful conversations and he 
 also thanks the referee for valuable advices. 

    § 1. Background. 

    a) The chain recurrent set. 

    Let ¢ be a flow on M. A point p EM is called chain recurrent for 0 if 
 for any E > 0 there exists a sequence 1= { p = p°, p,, , p n = p, t t,, . . . , to _,, pi 
 EM and tti>1} such that d(~50 (pi), pi+,)<e, for 0<_i<n-1. The set of chain 

 recurrent points is called the chain recurrent set and will be denoted by 2. 
 It is a compact c invariant set [Co] and cannot be exploded in the following 

 sense : 

    1.1 THEOREM. [An1] Let ~~ be the chain recurrent set of the flow 0. Then 

 given a neighbourhood U of ~¢ in M there exists a C° neighbourhood V of ~5 
 in NSX(M) such that cU for every NEV. 

    Now, the condition that a flow has a hyperbolic chain recurrent set is
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equivalent to Axiom A and the no cycle property [F-S]. Therefore is the 
union of a finite number of disjoint, compact, invariant pieces called basic sets, 
each of which contains a dense orbit. We say that ~5 is a Smale flow if the 
set Rp is one dimensional, has a hyperbolic structure and the flow satisfies 
the transversality condition. In particular, a Smale flow whose chain recurrent 
set consists of finitely many closed orbits is called a Morse-Smale flow. 

    b) Lyapunov functions and filtrations. 

    Denote by f the set of critical points of the C°° map f : M-~R and by 
c(f)p its c directional derivative at p ~M. We say that f is a Lyapunov 
 function for ~5 provided 

   a) c(f) p < 0 for any p 
    b) 2=f            ~

c) If r f C R ), then f -1(r)nt ¢ is a connected component of ¢. 
    By using a combination of results from [Co] and [N-S], we show that 

 there always exists a Lyapunov function for ~b. So, taking regular values of 
 f, say --oo=ro<rl< <rk=oo and riEf (M) (1<i<k), the collection of sub-

 manifolds {M1; Mi= f -1(-oo, r]} L is a filtration for c, i. e. 
     a) {}=MOCM1c•••cMk=M 

    b) dim Mi = dim M Vi 
    c) c t [Mi] c Int M~ Vt > 0 and d i 

    d) c is transverse to the boundary dMi, 1 < i < k . 
 Conversely, any filtration is obtained from a Lyapunov function by the above 

 method. 

    1.2 DEFINITION. A block system for ~S is a family 2= {N1}0 of compact 
 connected submanifolds of M, called blocks, satisfying 

    a) NflR. {} Vi 
    b) N2nN,=dNtindN; if i~ j 

    c) { } =NocN1cN1UN2c cNJ UNk=M is a filtration for c. 

    A Smale flow ~5 admits a block system 2 = {N~} k=o where each block Nz 
 contains only a basic set A i and those blocks containing an attracting or repel-

 ling periodic orbit are diffeomorphic to the solid torus D2 X S1. The topological 
 structure of a block containing a basic set which is neither an attractor nor a 

 repellor is described in [B-W]. The periodic orbits of a basic set A are in 
 one to one correspondence with the periodic orbits of a semi-flow on the knot-

 holder (see too [Go2]). 

    c) Homotopy directions. 

    Given a block N for ~5, let [S1, N] be the set of homotopy classes of con-
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tinuous maps r : S1--+N. For [r] [S1, N] and k ~Z+ we denote by [r]k the 
homotopy class of the map a(z)=7(z'). 

   Take a point p~c~nN and s>O. An Ep-sequence is a sequence 

                                                    i 1}            Tep = {p=p°, ... , Pn-P, to, .. ' , to-1 ~ PiEc~nN and t> 

such that d(c5ti(pi), Pi+1)<~ for i=0, ..• , n-1. Recall that there always exists 
an £p-sequence since =ff?1,q [Co]. If is small enough then each sp-
sequence gives rise to an ep-closed orbit of ~5, i. e., a loop [0, T]--~N such 
that 
        r([0, T]) = U O' {(the trajectory from pi to ~5ti(pi)) 

                   +(a minimal geodesic from ~(p) to p,+1)}. 

To define the closed path r~p we arrange by turns the parametrization of the 
~S orbit segments [pi, cbti(pi+1)] with the geodesic parametrizations and con-
struct the continuous function [0, T]-*N. By using the exponential map 
ET: [0, T]-~S1, ET(t)=eZ~it/T, we define a class in [S1, N]. A class [r] 
[S', N] is said to be an s-homotopy direction for ~5 provided that [r] m = [rE p] n 
for some Ep-closed orbit r~~ and some m, n ~Z+, Denote by H,N the set of 
all s-homotopy directions for ~5 in the block N. One can easily see that Ha/N 
is a non-empty set and that [r]k EHi,N for every [r] EH,N and k Ob-
serve that the set of E-homotopy directions detects all closed orbits of ~S in the 
block N. Let P0/N consist of those E-homotopy directions defined by closed 
orbits of 0. Again we have [r] k ~P0,N for every [r] EPO/N and k On 
the other hand, it follows from the definition that if 0<8<s then a op-closed 
orbit is an gyp-closed orbit. Therefore we have the following inclusions 

                       P0/N C H¢/N C HMI N . 

   1.3 DEFINITION. Set H0/N=f~>°H/N, An element [r] EH¢/N is said to be 
a homotopy direction for c in the block N. 

   Recall that a block N for ~S is also a block for any flow ~b C° close to ~z5 
because there do not exist R explosions. So, by a straightforward adaptation 
of the method used in [An2] one can prove the next two theorems. 

   1.4 THEOREM. Let . = {N}0 be a block system for a flow ¢ on M. Then 
d~>0 there exist a 0>0 and a C° neighbourhood V of c in NSX(M) such that 
for every ci' V the following hold 

   i) . is a block system for c 
   ii) H~,NcH /N for each NEE.a. 

   1.5 THEOREM. Let .B= N1}0 be a block system for a flow 0 with a hyper-
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bolic chain recurrent set. Then the following hold 
    i) H¢/N=P~/N for each NcB 

   ii) There exists a neighbourhood V of ¢ in NSX (M) such that for every 
cb' v, B is a block system for ~b and H~/N=Hc/N for each N~ B. 

   § 2. Homotopically linked flow. 

   In this section we prove Theorem 0.1 and Theorem 0.2. 

   Let ~5 be a C1 flow on a three manifold M. We say that c satisfies the 
weak linking property if there is a periodic orbit o of ~5 which bounds an im-
bedded 2-disk D in M then the interior of D must intersect a periodic orbit. 
Observe that if ¢ admits a transverse foliation F, then ¢ satisfies this property 
since the Novikov's result [No] asserts that a 2-disk whose boundary is trans-
verse to F must intersect some Reeb component N which contains a c closed 
orbit [Go2]. On the other hand, the weak linking property is not, in general, 
sufficient to insure that ¢ E fi (M). For example, a flow tangent to a Hopf 
fibration S1-~S3-~S2 satisfies the weak linking property but is not transverse to 
any foliation, since any foliation on S3 has a Reeb component N and the boun-

dary aN cannot meet any closed transversal. However, for a Morse-Smale flow 

~5 the weak linking property is also a sufficient condition for c fi (M) [Gol]. 
Notice that K. Yano proved a similar result in an equivalent terminology [Ya]. 
Now, to extend the above result to Smale flows ~b requires a stronger property. 
We say that ~5 satisfies the linking property if there is a periodic orbit r of ~5 
which bounds an imbedded 2-disk D in M then the interior of D must inter-
sect an attracting or repelling periodic orbit. A Smale flow ~b satisfies the 
linking property if and only if c fi (M) [Go2]. To enlarge the concept above, 
we introduce the following 

   2.1 DEFINITION. A flow ~5 on Al is said to be homotopically linked provided 
there exists B= {NJk=1 a block system for ~S such that for each 
NAB. 

   Recall that [*] denotes the null homotopic class of [S1, N], where N is a 
submanif old of M. 

   Let £(M) be the set of NSX (M) consisting of vector fields whose flows 
are homotopically linked. Proposition 2.2 below shows that these two notions 
are the same for Smale flows. 

   2.2 PROPOSITION. Let ~5 be a Smale flow on M. The following are equivalent 

   (i) S satisfies the linking property 
   (ii) S admits a transverse foliation
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   (iii) ¢ is homotopically linked. 

   PROOF. (i)H(ii) This is S. Goodman's result [Go2]. 
   (ii)-(iii) Suppose that ~b is positively S'-transverse. Take a family of sub-

manifolds 2= { { } =N°, Ni, ... , Nk 1, Nk, Nk+l, ... , NT} where ATi (resp. N ) 
denotes the Reeb components for which the flow is exiting (resp. entering), 
Nk is the closure of the exterior of the union of all the Reeb components 
and M=NlU ... UNkU ... UN~ . Since the boundary of each N~ does 
not meet the chain recurrent set of the Smale flow q5, it is easy to show that 
.B is a block system for ~5. Now, let HO/N be the homotopy direction for 
c5 in a given block N. From Theorem 1.5 Hp,N consists of those homotopy 
directions defined by closed orbits. If N=Ni (resp. N~) then each [U] ~H¢,N 
clearly represents a nontrivial element of the fundamental group 2r1(N) Z. 
Therefore [a] * [*]. If N=Nk, then no [o] ~H¢,N can be the null homotopic 
class in N, otherwise there could be a positive power of a closed orbit of ¢ 
null homotopic in N and by Novikov's theorem there exists a block Ni or N; 
inside N which is a contradiction. Therefore [a] * [*] and we have proved 
that ¢ is homotopically linked. 

   (iii)-+(i) First of all we recall Corollary 3.3 in [Go2]. Let N be a block 
for a Smale flow ~5 containing a unique component A O of the basic set. If no 
closed orbit in ° is null homotopic in N then there is a ~S transverse foliation 
EF tangent to the boundary 6N. Therefore if [*] HO,N the same conclusion 
holds because H /N =P~,N (Theorem 1.5). Now suppose that ~z5 is a homotopically 
linked Smale flow. Let 2= {N1}L be a block system for 0 such that the null 
homotopic class is not a homotopy direction for ~5 in any block N~ 2. If there 
exist blocks containing more than one component of the basic set of 0, one 
can use a Lyapunov function f : M-R to define the filtration { } =N0 c N1 c 
N3UN2C ... cM and break these blocks and construct a new block system 
Q'= {Ni} where each Ni contains only one component of the basic set. It 
is easy to see that [*] is not a homotopy direction for 0 in any Ni. So there 
exists a ~S transverse foliation. 

   2.3 LEMMA. Let N be a block for ~5. I f [r] Hc,N then there exists a C° 
neighbourhood V of $ in NSX(M) such that N is a block for ~b and [r] c H~,N 
for every (E V . 

   PROOF. Recall that H¢,N=(1e>OHi/N. So if [Y] H¢,N then there is an 
s0>0 such that [?'] Hi,N. From Theorem 1.4 one can find a U0>0 and a 
neighbourhood V of c such that H NCH , N for every c c V. Thus [T] H1                                                                        1 N 

for every ~ E V. 

   PROOF OF THEOREM 0.1. Take a homotopically linked flow 0. Let 2=
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N1}0 be a block system for ~S such that [*] H~1N for each NAT. From 
Lemma 2.3 it follows that there exists a neighbourhood V of $ such that [*] 

 H!,,N for each N~ 2 and for every ~b ~U. This shows that £(M) is open. 
   Of course -(M) is an open subset of NSX (M). Let us show that -h(M) 

is dense in £(M). Take c -(M) and suppose that ~S is positively S'-trans-
verse. Consider the family of submanifolds . = { { } = N0, Ni, • • • , Nk 1, Nk, 
Nk}1, • • • , N~ } as described in Proposition 2.2. Observe that the chain recurrent 
set does not intersect the boundary of aNk. Otherwise if p crnd Nk, choose 
an gyp-sequence T7Ep= {p=poi ••• , pn=p, t°, ••• , to-1, Piand ti>1}, consider 
the corresponding sp-closed orbit rEp : [0, T]-+M. For s>0 small enough we 
can guarantee that pi and pi+1 belong to the same coordinate system of the 
foliation which allows us to construct a closed E'-transverse curve meeting a 
boundary component of aNk. This is a contradiction, since each boundary 
component of aNk is the boundary of a Reeb component. Now it is easy to 
show that .B is a block system for ~5 and by using the argument of Proposition 
2.2 one can show that [*] H¢,N for each N~.cB. Thus we have the inclusion 
- (M)cC(M) . The density follows from C° density of Smale flows [O1] and 
from Proposition 2.2. This also shows that £(M)c fi(M). 

   In order to prove that (-h (M) is not dense we use a well known result 
which says that the exterior of the union of all the Reeb components is an 
irreducible manifold, i, e., any embedded two sphere bounds a three ball. 

   Given a C°° Smale flow ~5 on M, let N be a block for 0 diffeomorphic to 
the solid torus S1 X D2 containing only an attracting basic set in its core. We 
modify the flow c to obtain a new Smale flow ~b which agrees with ~5 outside 
N and has two basic sets contained in the block. These new basic sets are 
an attracting closed orbit o and a saddle orbit Q,2, each of which bounds in N 
an embedded two disk without intersection [As]. Of course does not satisfy 
the linking property, therefore ci, 1-h(M). Let us show that a vector field C° 
close to ~ does not admit a transverse foliation. First of all choose disjoint 
compact tubular neighbourhoods V1, V2 of Q1, c2 respectively, of small radius to 
insure that the following conditions hold : (a) V1u V2 c N; (b) cii is transverse 
to the disks of the tubular neighbourhoods ; (c) cJ' is also transverse to the torus 
dV1 toward c1. Now consider a C° neighbourhood V of cf' in NSX(M) such 
that for every ~V, the flow satisfies the conditions (b) and (c). Moreover 
we may assume that N is a block for and that the chain recurrent set / N is 
contained in V 1UV2 [Theorem 1.1]. The next step is to show that Vn - (M)= { } . 
By contradiction, suppose that EE V is positively SF0-transverse. From the 
density property [O1], we may assume that E is a Smale flow. Since satisfies 
conditions (b) and (c), given a disk D2 of the tubular neighbourhood V1, one can 

 define the first return map for e, r : D2-~D2. Observe that r must have a fixed
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point and that each fixed point corresponds to a closed orbit of contained in 
V1. On the other hand, the fixed points of r are isolated because has a 

hyperbolic chain recurrent set, so one can show by using an index argument 

that some fixed point is a source or sink, i. e., there exists an attracting or 

repelling, closed orbit contained in V1. Now we can "turbularize" the folia-
tion Fp near those closed orbits to construct a new a-transverse foliation 1 

with Reeb components inside the tubular neighbourhood V1. From the fact 

that there is an embedded two sphere which bounds a three ball D3 contained 

in the interior of the block N and such that V1cInt D3, it follows that the ex-

terior of the union of all Reeb components of EF1 is not an irreducible manifold. 
That is the contradiction. Thus r (M) is not dense in NSX (M). Since fi (M) 

is dense in £(M), we conclude that £(M) is not dense.

   PROOF OF THEOREM 0.2. First of all we construct a vector field on the 

manifold V=R X S' X S' whose flow is homotopically linked but does not admit 

a transverse foliation. Notice that S'=R/Z and that {a/at, 3/9x, a/ay} is the 
canonical global frame on V. Let ,u be the C' unit vector field on V tangent 

to the tori T1= {t} X S1 x S' defined by 

                     p(t) = cost a + sent a .                       '~ ax a y 

By standard methods, construct a C" function A : R-+[0,1] such that 2-'(0)= 

L0, 7r] and that 2-'(1)=(-oo, -2r]U[2'r, oo). Now, consider the C" non singular 
vector field on V defined by 

                  (t, x, y) = A(t) a +(1-A(t)) '(t)                          at ~ 

The main properties of are the following (a) e-a/at on V 1=2 '(1) X S' XS'; 
(b) is transverse to the tori T t on V 2=A1((0, 1]) X S' X S' ; (c)_ on V3= 
A''(0) X S' X S'. So, the chain recurrent set ke is the manifold with boundary 
V3. Note that the vector field=,u rotates in the positive direction from a/a y 
to -a/ay when t goes from 0 to ~r and that the a/ax-coefficient of is always 
non negative on V3. This behavior forbids the existence of a transverse folia-
tion. Indeed, by contradiction suppose that is transverse to on V3. Let 
2t be the C' oriented one dimensional foliation on the torus T,= {t} X S' X S' 
defined by the intersection of leaves of with T,. We can construct a triviali-
zation for F in the following sense : there exists a C' cliff eomorphism F: [0, 7r] 
X S' X S'-3 [0, 7r] X S' X S' such that F*()= [0, 7r] X Q, and that F*(~t)= {t} x e,. 
For this consider the projection 7r,: R X S' x S'--+R, ~r(t, x, y)=t and take the 
vector field i tangent to F on a neighbourhood of V3 such that at each point 
(t, x, y) is projected under the derivative d7r1 onto a/at. If zt is the semi-flow
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of i define F(t, x, y)=(tlzt(O, x, y)). Now, let ro be a vector field on To tan-

gent to Q0. So, from this trivialization we conclude that {t0 , a/ay} and {ro, 
-a/ay} define the same orientation on To which is a contradiction. Thus 

does not admit a transverse foliation on V3. 
   Now we shall show that is a homotopically linked flow. Let B_ {V} be 

the trivial block system for . Given s >O and p=[0,r] X S1 X S1, consider 
an sp-sequence, say FEp={po=p, pl, ..• , p=p, to, .•. , t1, pcr and t>1} 
and the corresponding sp-closed orbit rE p : [0, T]--~ [O, ~r] X S' X S1. Recall that 

       rEp(Co, T])=U o {(the trajectory from p~ to ~5ti(pi+1)) 

                +(a minimal geodesic from ~ (pi) to p~+1)}. 

To prove that r~p cannot be null homotopic, we show that ~r j 7 is not null 
homotopic, where ~r : [0, 7c] X S1 X S1-* {0} X S1 X S1 is the natural projection along 

the t-axis, or equivalently that the lifted curve 'romp to R2, the universal cover-
ing of {o} X S1 X S1, is not a closed curve. We may assume that the lifted curve 
.ti 

2roTEp starts at (0, 0). Observe that the trajectory from pi to ct1(p1) gives rise 
to a line segment from 2r(pi) to rr(~tt(pti)) of length equal to ti>1 and that the 
x-coordinate of 2r(~ti(pi)) is not less than the x-coordinate of ir(pi) because the 
a/ax-coefficient of =p is non negative on V3=~~. On the other hand, the 
distance between the points 2r~5ti(p1) and 2r(pz+1) is less than s. So, for s=1/3 
it is not hard to show that the end point of 7rorsp is a point with integral 
coordinates (m, n) satisfying m2 + n2 > 1/9. So ~ror~ p is not a closed curve on 
R2 therefore r~p is no null homotopic on V. Since H~=nE>0H and [*] H'3 
we have shown that is a homotopically linked flow. 

   Let us show that fi(M) -C(M). Given a C°° Smale flow ~5 which is homo-
topically linked we may construct a block system for ~b, .B _ {N1} L such that 
each block contains one and only one basic set of c. Moreover, [*]H~ for 
every NEB. Since q5 is a Smale flow there exists an attracting closed orbit 
o'. Let us assume that r is contained in the block Nk which is diffeomorphic 
to the solid torus S' x D2. Note that the boundary of Nk is cliff eomorphic to 
the torus S1 X S1 and the flow is transverse to d Nk, by using ~5 we can define 
a C°° cliff eomorphism F: R X S1 X S1-~M such that F(-1, x, y) EaNk and that 
F*(a/at)=c. Now we modify c by F G) inside the submanifold F(V1) and con-
struct a C°° vector field c on M. We claim that the flow ~b is homotopically 
linked. Indeed, consider the block system for c , .'_ { { } =No, N1, ..., Nk_1, 
Nk, Nk+1} where N=F(V1) and N+1 is the closure of Nk/Nk. Since is 
homotopically linked on V 1 and Nk /Nk contains in its core the closed orbit a 
it follows that ¢ E..C(M). Since does not admit a transverse foliation on V 1 
then c does not admit a transverse foliation on F*(V1). Thus c fi(M).
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   § 3. Conjugations. 

   Denote by 8¢ the one dimensional oriented foliation given by the orbits of 

the flow ~5, for ~ENSX(M). A foliation 8~ is conjugate to 8~ if there is a 
homeomorphism h : M-->M which carries leaves of 8. homeomorphically onto 
leaves of B¢ and preserves the orientation. The homeomorphism h : M-~M is 
said to have a C° positive c derivative if for each p EM, the path ap(t)= 
h(ar(p)) is C1 and ap(0)=~(h(p))~1(h(p)) for a continuous function A : M-~R. 
Set ap(0)=cb(h)p. 

   3.1 PROPOSITION. I f B~ is conjugate to B~ by a homeomorphism h : M--M, 
then 8~ is conjugate to B¢ by a homeomorphism k : M--~M having a C° positive 
~b derivative. 

   Before the proof of Proposition 3.1 we fix the following notation. For o, 0 
<a<1/2, denote by Ia the cube in RZXR defined by 

           Ia = : {(x, y) R2XR; o<x1<1-a and b<y<1-~}. 

Consider the two foliations induced from RZ X R into Ia, namely : the two dimen-
sional horizontal foliation JC transverselly oriented by the canonical vertical 
vector field 6/ay and the one dimensional foliation 8a,ay oriented by a/ay. A 
flow box for a flow ~5 is a C1 diffeomorphism f : UcM--HIS such that f *(~3)=a/ay. 
Since ~~ is a C1 vector field, there are flow boxes around any point p EM. On 
the other hand, a C1 coordinate system for 8~ is a C1 diffeomorphism f : UcM 
--HIS such that f *(Ba,ay)=8~• 

   3.2 LEMMA. Let h : IE--~RZ X R be a homeomorphism onto the image which 
preserves the vertical foliation Ba,ay. Then given <5<1/2 and any C1 function 
~: IE-~[0, oo) such that 8 '(0)=IE\Is, there exists k : I,-+RZXR a homeomorphism 
onto the image which preserves the vertical foliation 8a,ay and satisfying 

   a) k-h on IE\Ia 
   b) k has a C° positive =jSa/ay derivative on IS. 

   PROOF. From the hypothesis, h(x, y) =(h,(x), h2(x, y)) and for a fixed x 
the function h2(x, ) is an increasing real function. Now, given <5< 1/2 and 
any C1 function j3: I,-->[0, oo) such that J-1(0)=IE\Io, consider the flow on I, 
generated by the C1 vector field E=pa/ay. Define a function k : I,--~R2XR, 

1 k(x, y)=(kl(x, y), k2(x, y)), by setting k,_h, and k2(x, y)= h2( t(x, y))dt. Of 

° course k preserves the vertical foliation Ba,ay. Since-0 on I,~IS, it follows 

easily from the definition of k2 that k2-h2 on IE~IS. This proves (a). In order 

to prove (b) we observe that
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       k2(e8(x, y))-k2(x, y) = 1+s hz(t(x, yDdt- 8 h2(t(x, y))dt . 
                   s s ~ o 

By taking s-*0, one obtains (h2)=h2o1-h2 which must be positive on Ib be-
cause is a non constant vertical flow there and h2(x, •) is an increasing func-
tion. Since (k)=e(k2)8/ay, part (b) is proved. It remains to show that k is 
a homeomorphism onto its image. Recall that k preserves the vertical folia-
tion, so from (a) we need only show that k2(x, •) is a homeomorphism from 
the vertical segment Qx=[(x, o), (x, 1-o)] onto the vertical segment h(o). 
Indeed, the images by h2(x, •) and k2(x, •) of each end point of i have the 
same values and k2 is an increasing function in the interior of the segment i. 
So, k2 is a homeomorphism from Q to k(Q). 

   Notice that we have adapted Kakutani's proof which approximates con-
tinuous real functions by functions having flow derivative [Sc, p. 272]. 

   PROOF OF PROPOSITION 3.1. Let c, ~i' be two C1 non singular vector fields 
on M. Suppose that there exists a homeomorphism h : M--~M conjugating 8~ 
to B,. Given {g3: W;-*Ip1}, a family of flow boxes for c whose domains 
form an open cover of M, consider {f1: V -*I1} ti , a family of flow boxes for 
~b so that V1} , is an open cover of M and h(V1) is contained in some W;. 
Now, choose si, 0<8i<si, such that { f i1(IEi)} , is another open cover. Recall 
Isiclai. Let 1=~ ij3i be a C°° partition of unity subordinate to {Vi} , satis-
fying jSi -1>0 in f ;'(I) i 1=1, • •• '~                 F , n. Let ~'=/9i~i'• Observe that f(j3i~i')= 
/io f 71(a/ay) is a C1 vector field on hi. So from Lemma 3.2, starting at k°=h 
and working successively inside each V1, we may obtain a homeomorphism 
k,: M-~M from the homeomorphism k,_,: M--+M conjugating 6~ to B¢ and hav-
ing a C° Positive l=1St~derivative on Ul- fi-1(I,i). Of course km: M- >M                ~ i-1 
has a C° positive cf' derivative since { f ti 1(IEi)} , is an open cover of M. 

   Recall that a transversely oriented Lyapunov foliation on M is a pair (S', c) 
satisfying the following condition 

   i) c is a C° vector field which is uniquely integrable 
   ii) There exists a collection of C° real value function {f,: W i c M--R} i=, 

such that (a) U2=iWi=M; (b) fi has a C° positive ~5 derivative, i=1, •••, k; 
(c) The level set of f i describe the foliation F on W,. 

   If there exists a transversely oriented Lyapunov foliation (E', ci') then there 
exists a C 1 foliation transverse to c [En]. 

   3.3 THEOREM. The set fi(M) is invariant under topological conjugacy. 

   PROOF. Suppose that 8~ is conjugate to O, where cf', ~5ENSX(M). From 
Theorem 3.1, we may assume that the foliations are conjugate by a homeo-
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morphism k : M-~M having a C° positive ~b derivative. If there is a foliation 

F transverse to ¢ we consider the C° foliation k*(EF). Now, it is easy to show 
that (k*(F), cf') is a transversely oriented Lyapunov foliation. From [En], there 
is a C 1 foliation transverse to c f'. Thus ~ -h (M). 

   Next we prove Theorem 0.5. 

   Let - (JC) be the set of all C1 vector fields on the unit cube I° of R2 X R 

positively transverse to the horizontal foliation JC and such that the one dimen-
sional foliation 8~ agrees with the vertical foliation 6a,ay on I°\IB, 0<a<1/2. 

Notice that 8~ can be extended to the closure I° by using the orbits of a/ay. 

We use the same notation for the extended foliation. 

   3.4 LEMMA. Given a vector field cEr-ho(iC), there exists a vector field ~L'E 
fis,3(~C) satisfying the following properties 

   (a) The leaf of B~ on I° starting at (x, 0) ends at (x, 1) 
   (b) 8¢ agrees with B~ except on a parallelepiped Rs, namely, R¢= {(x, y) 

El; a<xi<1-a, 1-(2/3)a<y<1-(1/3)b, i=1, 2}. 

   PROOF. Given ~ -h JC). Let I°U fl° be the double compact unitary cube 
whose glue map is the identity of the top face of I°. Of course I°U fI° is 
canonically diffeomorphic to K= {(x, y)ER2XR; 0<xi<_1, 0<y<_2, i=1, 2}. 
Now we consider the double foliation B~ on K oriented by a C1 vector field 
positively transverse to 4C. Since the leaf of the double 8, starting at (x, 0) 
ends at (x, 2), we may complete the proof by constructing a C°° diffeomorphism 
k : K-~I, k(x, y)=(x, k2(y)) where k,: [0, 2]-[0,1] is a C°° diffeomorphism 
such that k2(y)=y for a<y<1-a, and which conveniently maps [1-a, 2] onto 
[1-a, 1]. Now we consider c=k(e) which satisfies the properties required. 
   Given 2 a codimension one transversely oriented foliation on the unit open 
cube I°i let v be a normal vector field positively transverse to 2. We say that 
a/a y is non negatively transverse to 2 provided <a/t9y(x, y), (x, y)>0 for 
every (x, y) E I°, where C> denotes the canonical inner product on R2 X R. Let 

Js be the parallelepiped in I° defined by Ja= {(x, y) E I° ; a <y<1-b}, for 
0<_a<_1/2. 

   3.5 LEMMA. Let 2 be a two dimensional transversely oriented C1 foliation 

on the cube I° which agrees with the horizontal foliation ~C on 10\J5. If a/ay is 
non negatively transverse to 2, then there exists a C°° diffeomorphism k: 1°--J0 
satisfying 

  (a) k(x, y)=(x, y) for every (x, y)EIo\1~13 
   (b) k*(2) is transverse to °E on Ib 

   (c) k*(Q)=2 on I°~h.
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   PROOF. Let ,i be a C°° unitary vector field on Io positively transverse to 
g and j3 : Ia-*[O,1] be a C°° function so that j3-1(0)=I \Is. Since the vector 
field ~=6/dy+jS~ belongs to na(1C), from Lemma 3.4 there exists c~E fl (C) 
such that the leaf of 8~ starting at (x, 0) ends at (x, 1) and that 6~ agrees 
with 9~ except on the parallelepiped R= {(x, y)~Io; o<xti<1-o, 1-(1/3)o<y 
<1-(2/3)5} . By construction cf' is a C°° vector field transverse to horizontal 
foliation g', so the ~b holonomy map h y from the bottom face of Io to the hori-
zontal leaf l cx, y) is a C°° diffeomorphism, namely h y : [0,1]2 X {0} -- [0,1]2 X { y} , 
h(x)={[O, y1]2 X {y} } n {b orbit starting at (x,0)}. Hence k : Io--~I0, k(x, y)= 
(hy(x, 0), y), is clearly a C°° diffeomorphism which maps the foliation Batay onto 
the foliation O. Property (a) follows from the facts that c=a/ay on Io/Iaf~ 
and that the ~l' orbit starting at (x, 0) ends at (x, 1). Since k*(B~)=eaiay and 
~b is transverse to Q on Ia(=k(Ia)), then statement (b) holds. Now, for k*(4C) 
=lc and from the fact that Q=*C on 10\J5 one can easily show property (c). 

   We denote by w~s(p) (resp. a¢(p)) the w-limit set (resp. a-limit set) of a 
point p M under the flow ~5. Recall that the Birkhoff center C(~b) is the 
closure of the set { p EM; p ~wc(p)r' ap(p)} which is a compact ~5-invariant 
nonempty set. Any compact ~5 invariant set contains points of C(~5). 

   PROOF OF THEOREM 0.5. Let ~ be a vector field on the frontier of d1) 
such that every point p E C(~5) escapes from F0 by ~5. First of all we observe 
that every point p ~ M escapes from SF,. Indeed, since C(O)nwc(p) is non 
empty there exists a point gEw(p) such that ~(q) is positively transverse to 

 ,, so for some ttp>0 we can insure that O(p) is so close to q that c(~(p))                                                              tp

is positively transverse to S'0. By using a similar argument we prove that 

there is some s,<0 such that ~($,(p)) pis positively transverse to EF,. 
   Consider the compact set K= {p M; c(p) is tangent to F } . From the 

paragraph above, given p E K there exist real numbers s p, tp, s p <0 < t p, such 

that the vector field c is positively transverse to F, on a neighbourhood of the 
end points of the orbit segment i = [~ (p), ~5(p)]. Since c is a flow without 
fixed points we may assume that o is an embedded segment. Otherwise, o p 
is a closed orbit which is transverse to F, at some point q. So, we may choose 
sp, tp, with sp<sp<0<tp<tp such that the orbit segment op=[c,' (p), c ;(P)1 
is embedded. Now we construct a tubular neighbourhood V p of o and a C1 
system of coordinates of O, f p : V p-i, such that the induced foliation on the 
cube Io, ~p= f pl(EF) agrees with the horizontal foliation ~C on a neighbourhood 
of the top and the bottom of I o. Note that d /a y is non negatively transverse 
to gyp. From the compactness of K, there exists a finite family of those coordi-
nate systems say {f: V1-- I0} m 1 whose domains form an open cover of K. 
Choose b>0 small enough to insure that { f 1(Ia)} m 1 is another open cover of
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K and that the induced foliation Qi= f i 1*(EF) is the horizontal foliation on I°\ Jo. 
For i=1, let k1: I°-~I° be the C°° diffeomorphism constructed in Lemma 3.5 i, e., 
k (Q) is transverse to on Ia. From property (a), the C1 diffeomorphism 
h, : V1-V,, hi=f, 11°k1°f , can be extended as the identity outside V,. From 
property (b), the foliation F1=h 1(F) is transverse to 8~ on f *(Io) and from 
property (c) F1 agrees with F° outside f T1(16). Applying Lemma 3.5 repeatedly 
one can construct a C1 diffeomorphism h.: M->M such that Ei=h*(F _,) is 
transverse to 6¢ on f j1(Ia)U Uf ~1(IS) and that i agrees with EFi_1 outside 
this open set. Since { f 1(Io)} m , is an open cover of K, we construct a folia-
tion n transverse to ~5. Consequently c E fi (M). 
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