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Introduction.

Graded Lie algebras (abbreviated as GLA’s in the sequel), even those of
finite dimensions, play important roles in many fields in mathematics. In this
article we shall always assume that Lie algebras are defined over R and are
finite-dimensional. Let g=3,cz8, be a semisimple GLA. Then there exists
an integer y=1 such that g.,>(0) and g,=(0) for |2|>v. In this case we say
that the GLA g is of the v-th kind. The family of the subspaces (g)-vsrsy 1S
called a gradation on the Lie algebra g. Classifying GLA’s is obviously equi-
valent to classifying gradations on each Lie algebra. We use the word “classi-
fication” in two ways. By a weak classification (or simply a classification), we
mean the construction of a bijection between the set of isomorphism classes of
gradations on a given Lie algebra g and a certain set which is more easily
accessible. By the strong classification we mean a weak classification plus the
explicit determination of the subspaces g, of gradations. In our previous paper
[11], we gave a classification of gradations on a semisimple Lie algebra g in
terms of its restricted fundamental root system. The same problem was treated
also in Djokovi¢ [5] from a slightly different point of view (See also Z. Hou
[7]). Among semisimple GLA’s, those which are most important for applica-
tions are GLA’s of the first kind and of the second kind. In this direction,
Kobayashi-Nagano gave the strong classification of classical simple GLA’s
of the first kind and a classification of exceptional simple GLA’s of the first
kind. The strong classification of exceptional simple GLA’s of the first kind
was made by O. Loos [13]. J.H. Cheng gave a classification of simple
GLA’s of the second kind under the condition that dimg_,=1. Afterwards, we
gave in [11] a classification of classical simple GLA’s of the second kind (with-
out any assumptions) and determined the subspaces g-, for each case.

In the present paper, we give the strong classification of classical simple
GLA’s of the second kind and a classification of exceptional simple GLA’s of
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the second kind (Theorems [3.2, and Table I). For that purpose, we give a
method how to read off the semisimple part of the (reductive) subalgebra g,
by means of the Satake diagram of g and the restricted Dynkin diagram of g
(Theorem 2.4). Our classification contains the afore-mentioned result of J.H.
Cheng. Also Kobayashi-Nagano’s one can be perfectly reproduced within our
framework, although we do not perform it here. The resulting pairs (g, go)
give the infinitesimal classification of a class of homogeneous symplectic mani-
folds, called simple parakdhler coset spaces of the second kind ([10], [16]). In
§3, we study how to determine the semisimple part of the subalgebra g.,=
g_.-+8,+g, of a (effective) semisimple GLA g=3-_,9, (Theorem 4.2), and give
the list of the pairs (g, g.,) for each simple GLA of the second kind (Table II).
The pairs (g, g.,) form a class of simple (affine) symmetric pairs. It seems to
be interesting to study the geometric properties of the affine symmetric spaces
associated with such pairs.

NOTATIONS. g€ denotes the complexification of a Lie algebra (or a vector
space) g. {['}r denotes the F-span of a subset /' in a vector space, where
F=R or C. X* denotes the transposed conjugate of a matrix X. E, denotes
the unit matrix of degree n.

§1. Real forms of regular semisimple subalgebras.

1.1. Let g be a real semisimple Lie algebra, r be a Cartan involution of
g and g=f+p be the corresponding Cartan decomposition, where z|¢=1 and
t|,=—1. Let a be a maximal abelian subspace of p and § be a Cartan sub-
algebra of g containing a. Y is written as j=%*+a, where §)*=h)Nt. Consider
the complexifications g¢ of g and §¢ of §. )¢ is a Cartan subalgebra of g°.
Let 4 be the root system of (g¢, §¢). The root space in g¢ for a«=4 is denoted
by §. The Killing form {,> of ¢¢ is positive definite on the real part §,:=
5~ of §°. We shall identify 4 with a subset of §, with respect to {,>.
7 is extended to the conjugation of g¢ (denoted again by 7) with respect to the
compact real form g,=f+ip of g°.

1.2. Let 4’ be a closed subsystem of 4 satisfying the condition that —4’'=4",
that is, —acd’ for any a=4’. We then have a regular complex semisimple
subalgebra (cf. Dynkin [6]):

(1.1) g’ = {4} e+ 2 37,

acy’

where {d’}¢ is the C-span of 4’ in §¢. {J4’}¢ is a Cartan subalgebra of g’¢ and
4’ can be regarded as a root system for (g’¢, {4’} ¢).

LEMMA 1.1 Let I’ be a fundamental system of the root system 4. Then
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the Dynkin diagram of I’ (or of ¢’€) can be obtained by taking the inner pro-
ducts between any two roots in I’ with respect to {,>.

PrOOF. Let <{,)’ be the Killing form of g’¢. Choose the root vectors
X.<=3* in such a way that

1.2) T Xe =X_0a, [Xo, Xoo] = —a.

Since r leaves g’¢ stable, its restriction to ¢’¢ is a Cartan involution of g’¢

(Borel, Harish-Chandra [2]). Hence it follows from that <X,, X_.>'<0
for a=4’. Let @, f=4’. Then we have (cf.

(1.3) —a, B =<B, [Xa, X-oD' =<[B, X, X-o" =<a, B)<{Xa, X-o>'.

Therefore <a, f>=0 if and only if <@, 8)’=0. On the other hand, it is seen
[6] that the two inner product {,)>” and {,>, restricted to each simple factor
of g’¢ is proportional to each other. Thus we have the lemma. g.e.d.

1.3. Let ¢ be the conjugation of g¢ with respect to g. Assume that g’¢
is o-stable. Then the intersection g’=g’“ g is a real form of g’¢. We will
consider how to get the Satake diagram of g’. By the condition —4'=4", ¢’
is r-stable and has the Cartan decomposition ¢’=%-+p’, where ¥'=¥"\g’ and p'=
pNg’. The intersection §)’=hNg’ is a Cartan subalgebra of g’. In fact, the
complexification §’¢ is written as §’°=%)°Ng’¢, and hence, by [L.I), §¢= {4}
holds. Since Y’ is r-stable, we have

(1.4) b =549,
where §)’*=h’N¥ and §'~=h"Ny’.

LEMMA 1.2. (1) 9~ is a maximal abelian subspace of p’. (2) The R-span
{4’} g is a-stable and coincides with By :=if’*+9'~.

ProoOF. (1) Let H;~ be an abelian subspace of p’ containing §’-. By the
conjugacy of maximal abelian subspaces in p, one can assume f);i"a. Then
b +h-ch*+a=Y, and so H*+hi~ is an abelian subalgebra of g’ containing %’.
Since §’ is maximal abelian in g’, one has §;-=§’-. (2) We have {4'}r=
{4} eNBe=D"CNhe=79"*+9~=85. 9’ and §, being o-stable, {4'}x is o-stable.

qg.e.d.

Since the subset 4§, is o-stable, we see from (2) that 4’ is
g-stable. ¢ is equal to —1l on7§’* and 1 on §’~. Therefore, in view of
1.2, one can introduce in 4’ a o-order in the sense of Satake [14]. Let 1T’ be
the ¢-fundamental system of 4’ with respect to this g-order. Then one can
construct the Satake diagram of the ¢-fundamental system i’ (which amounts
to the Satake diagram of g’ (cf. Lemma 1.2(1)), by taking the inner products
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between two elements of II” with respect to the Killing form {,)> of g€ (cf.
Lemma 1I.1).

From the above arguments, we have

LEMMA 1.3. Suppose that the c-fundamental system i’ of 4’ is a subset of
a o-fundamental system I of 4. Then the Satake diagram of i’ (or of ¢') is
obtained from that of 11 by deleting the vertices not belonging to 11" and the rods
and arrows emanating from those vertices.

§2. Determination of g,.

2.1. We go back to the situation in 1.1 to recall some results in [11]. Let
g be a real semisimple Lie algebra, and = be the Cartan involution in 1.1. We
extend it to the conjugation (denoted again by 7) of g¢ with respect to g,=
t+ip. Let o be the conjugation of g¢ with respect to g. Then the root system
J of (g%, ¥°) is o-stable. Let Jg denote the set of roots a=4 satisfying the
condition ¢(a)=—a. Let w be the orthogonal projection of §, onto a with
respect to <,>. If we put d=w(d—Je), then 4 is the root system for (g, a).
Choose a ¢-fundamental system = {ay, -, as} of 4. Put ﬁezﬁmﬁe. Then
7 ::m’(ﬁ—ﬁo) is a fundamental system of 4 (=a restricted fundamental sys-
tem of g). Consider a partition of I

(2.1) H - Hg__U_Hl .

Let II={r,, -, 7+}. A root y=4 can be expressed as an integral linear com-
bination of 7,’s: 7=X7-1m.(y)7r:. For the partition [2.1), we define an integer-
valued function 2y, on 4 by

2.2) h (1) = Zren,m(r).
Let & be the dominant root of 4 with respect to I7, and let v="h; (). Let
(2.3) dy={red: hy () =k}, —v=<k=<y.
Then we have a partition of 4
(2.4) 4= 13-_.4,.
Consider the following subalgebra g, and subspaces g, of g:
8o = (@) +2req,8",
gr = 2re4,8’, —V=k=y, kx0,

(2.5)

where c¢(a) is the centralizer of a in g, and g7 is the root space in g for y=4.
Then g can be expressed as a GLA of the y-th kind ([11])
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(2.6) g = 2%=-»8¢ -

A GLA 8=3,c20, is said to be of type a,, if 3:2:8., are generated by .,
where e=+ or —.

THEOREM 2.1 ([11]). The family of the subspaces (8r)-vsrsy i1 (2.5) is a
gradation of type a, on g. Conversely, every gradation of type a, of the y-th
kind on g is obtained (up to isomorphisms) in the above manner, starting from a
partition (2.1).

For the GLA [2.6), we define an element Z<a by
i, 2>=0, riell,
<T]';Z>:1y Tjeﬂl-

Z is the characteristic element ([11]) of the GLA [2.6). 4, is characterized
by Z as

(2.8) de={resd: &, Z2)="F}, —v=k=Zy.

(2.7)

2.2. Let us put

dy= (w'dNd)Ude,

dy=wdnd, —v=<k=<y kEx0.
Then 4, (—v<FE=<y) is characterized by (cf.

2.9)

(2.10) di=lacsd:<a, Z) =k},
and we have

(2.11) A= 13 _,4,.

Let

i1, = (wIT)NUlle.
I, = wT)NIT .

Then IT admits a partition (NEN))

(2.12)

(2.13) n=1rui,.

By the definition, 4, is a closed subsystem of J satisfying —4,=4,. The
complexification g§ of g, can be written as

(2.14) 85 =5+ aey,3° .

Let us consider the regular semisimple subalgebra of g§:
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(2.15) QC(Z’O> = {ZO}C‘l‘EanO@a .

LEMMA 2.2. Let {d}*={X<§:<X, 4>=0}. Then the Levi decomposition
of the complexification g§ is given by

(2.16) 8¢ = g°(d)D{do}*,
where g€(d,) is the maximal semisimple ideal of ¢S and {do}* is the center of g€.

PrROOF. First note that §¢={d,}c@{d.}+. Therefore, by [2.14) and [2.15),
we have gS={d,}*+g°(d,) (vector space direct sum). Let X={d,}* and let
E.c3%, a<d, Then[X, E,]J=<a, XD)E,=0, which implies the inclusion {4,}*
C3(gS), the center of g§. To prove the converse inclusion, let X<3(g§) and
write X=X,+X,, X,={d,}*, X,=g°(d,). Let a=d,. Then 0=[X, §*]=[X,, §*].
For an element YE{ZIO}C, we have 0=[X, Y]=[X,, Y]. Hence X, lies in the
center of g¢(d,) and so X,=0, from which we get the inclusion 3(g§)c {4} *.

qg.e.d.

d, is o-stable. In fact, let a=d, Then, noting that 4 is o-stable, we
have

(2.17) lola), Z) =<a(a), a(Z)) =<a, Z) =0,

which implies a(a)ed, (cf. [2.10). Hence g€(d,) is o-stable and the intersec-
tion g(dy)=g¢°(d)Ng is a real form of g¢(d,).

LEMMA 2.3. The semisimple part g§ and the center 3(g,) of the reductive
subalgebra g, are given by

(2.18) g6 = Q(Zo) ’ 3(80) = {Z’o}lﬂgo .

PrROOF. Since g¢ and g€(4,) are g-stable, (2.18) follows from (2.16) by tak-
ing the intersection of each member in (2.16) with g. q.e.d.

The following theorem enables us to describe the semisimple part of g, for
a semisimple GLA g=3%__,g: of type a, (cf. [Theorem 2.1)).

THEOREM 2.4. Let g be a real semisimple Lie algebra and ¢ be the con-
jugation of g€ with respect to g. Let IT be a o-fundamental system of g, and I
be the restricted fundamental system of g obtained from II. Then the Satake
diagram of the semisimple part g§ of the subalgebra g, in the gradation on g
corresponding to a partition (2.1) of Il is obtained from the Satake diagram I
of ¢ by deleting all the vertices whose w-images lie in II, and by deleting all
the rods and arrows emanating from those vertices.

PROOF. Since 7|5,=—1, 7 leaves g5=g(d,) stable. Therefore the arguments
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in 1.3 can be applied to the subalgebra g(4,). We have that 170 is a o¢-funda-
mental system of 4, viewed as a root system of g¢(4,). From and
it follows that the Satake diagram of I7, (=the Satake diagram of g(d,))
is obtained from that of I7 by deleting all vertices of I, and by deleting rods
and arrows emanating from those vertices. Let a; 1. Then, by (2.12), a; eﬁl
if and only if w(a,)<!l,. qg.e.d.

EXAMPLES 2.5. (1) Let g=FEesw,. Then I7 and I (=BC,) are given by :

17 /4
‘/’/—\
oO—@ L 2 O o0——=>0
Az I Qa; g Ip)
a,

In this case, w(a,)=7, and w(a,)=w(ay)=r,. 9=2r,+2r,. Case I. Let II,=
{r.}. Then hp (§=m,($=2, and consequently the corresponding gradation is

of type a, of the second kind. implies that 77, is given by:
. e e

Therefore we have g§=8u(l,5). Case II. Let II,={r,}. The corresponding
gradation is also of type a, of the second kind. By we have

that ]70 is given by:
Therefore g§=380(1, 7).
(2) Let g=FE¢s. Then Il and Il are given by:

~

n I
o—e I ——0 o——o0

o, as I8! Te

In this case w(a,)=7; (=1, 2). I9=r,+7.. Casel. Let II,={r.}. Then h; (9
=m,($)=1 and so the corresponding gradation is of the first kind. By Theo-
rem 2.4, we have that I/, is given by:
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]

Therefore g§=380(1, 9). Case II. Let II,={y,, 7:}. Then hy (H=m(P+myF)
=2, and so the corresponding gradation is of the second kind. By
2.4, we have that I/, is given by:

-

§3. Semisimple GLA’s of the second kind (Classification).

Therefore g§{=350(8).

3.1. Let 8=38, be a GLA. @ is called effective, if &, contains no non-
zero ideal of ®. Suppose that & is not effective. We then choose the maxi-
mal ideal M of & which is contained in &,. It follows that the quotient alge-
bra/G/N has a natural graded Lie algebra structure (induced from that of )
which is effective. Therefore we can assume that the GLA @ is effective.
The following lemma can be proved analogously as for [8].

LEMMA 3.1. Let g=2X%--.8: be an effective semisimple GLA of the v-th kind,
and let g=g'P --- Pg® be the decomposition of g into simple ideals. Then each
simple factor g* is a graded ideal of the pi-th kind, where 1<p;<y, and g is
the direct sum of the graded ideals g*, ---, g°.

By Lemma 3.1], the classification of (effective) semisimple GLA’s of the
second kind is reduced to that of simple GLA’s of the first and the second
kinds. The simple GLA’s of the first kind were classified (up to isomorphisms)
by Kobayashi-Nagano (see also [11]). In we have classified classical
simple GLA’s of the second kind and determined the subspace g, for each
gradation. In the sequel, we will give more perfect determination of real
simple GLA’s of the second kind. First of all, we use the following notations
for Jordan triple systems.

M, .(F)  the space of nXm matrices with entries in F,

where F=R, C or H (=quaternions),
H(n, F) the space of F-hermitian nXn matrices, where F=R, C or H,
SH(n, F) the space of F-skew-hermitian nXn matrices, F=C or H,
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where F=R or C,

Sym,(C) the space of nXn complex symmetric matrices.

are_classified (up to isomorphisms) as follows:

(cl)

(c2)

(c3)

(c4)

(c5)

g=28l(n, F), n=3, F=R or C,

II'={ry, -, 1a-s} of type Anoy,

I = {1, Tp+dd, 1= p=[n/2], 1 = ¢ < n—2p,
8o = 8l(p, F)+8l(q, F)+8l(n—p—gq, F)+F+F,
-1 = Mp o(F)X Mg n-p-o(F),

8-2 = Mp, n-p-o(F).

g.;=28l(n, H), n =3,

I, I, the same as in (cl) with the same conditions,
g, = 8l(p, H)+8l(¢q, H)+8l(n—p—q, H)+R-+R,
8-1 = My ((H)X Mo, n-p-o(H),

8-2 = My, n—p-o(H).

g=58u(p, ¢, l=p<gor3=p=y,

II'={ry, -, 1p} of type BCp (p<q), or type C, (p=9),
II=1{r}, 1Sk=spif p<g or lSk=<p—1if p=g,
go = 8I(k, C)+8u(p—Fk, g—k)+R+iR,

8-1 = M, pig-2:(C),

g-. = H(k, C).

g=2%0(p,q, 2=p<g ord=<p=gq,

II = {ry, -, 15} of type B, (p < q), or type D, (p =),
II={r}, 28k <pif p<qor 25k p=2if p=y,
go = 8l(k, R)+80(p—k, g—k)+R,

-1 = Mk.p+q—2k(R)’

g, = Alt,(R).

g=28p(n, F),n=3, F=R or C,

II = {7y, -+, 72} of type Co,

I, = {1}, 1€k < n—1,

9

the space of nXn skew-symmetric matrices with entries in F,

THEOREM 3.2. Classical real simple GLA’s ¢g=%_.a, of the second kind
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(c6)

(€7)

(c8)

b)

(c9)

S. KANEYUKI

go = 8l(k, F)+38p(n—k, F)+F,
8-1 = My an-22(F),
g-o = Sym,(C) if F=C, or Hk, R) if F =R.
g=28p(0, 9, 1=p<q or2=5p=y,
II'={ys, -+, 15} of type BCp (p <), or type C, (p =),
I={r}, 1skspif p<qorlsk=sp-lif p=g,
g0 = 8L(k, H)+3p(p—Fk, g—k)+R,
8-1 = My, prg-2:(H),
g-2 = SH(k, H).
g = 80%(2n), n even =6, or n odd = 5,
IT'=A{ry, =, Ttaread of type Crasen (n even), or of type BCras (n 0dd),
II, = {7:}, 1Sk<[n/2]—1 if n even, or 1 <k < [n/2] if n odd,
go = 8l(k, H)+80*(2n—4k)+R,
8-1 = M, n-2e(H),
g_. = H(k, H).
g=28(n,n; F), F=R or C,
II' = {ry, -, 12} of type Dy,
II = {tn-1, 12} (n 2 9),
g = 8l(n—1, F)+F+F,
81 = Mu_1,o(F),
g2 = Alt,_(F).
II,={r, 172} (n25),
8o = 8l(n—1, F)+F+F,
8-1= My, »i(F)X Alt,(F),
g, = Fn 1,
=380(n,C), n odd =5, or n even = 8,
IT'={ry, -+, Ttnraak of type Biaszy (n 0dd), or type Dyups (n even),
II,={r:}, 225k < [n/2] if n odd, or 2< k < (n/2)—2 if n even,
go = 8l(k, C)+8o0(n—2k, C)+C,
8-1= M;, -2:(C),
g_, = Alt,(C).
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PRrROOF. Since a simple GLA of the second kind is of type a, (Tanaka [15]),
one can apply to determine g,. In order to determine g_, and g_,,
we have to choose a nice realization adapted to the gradation for each simple
Lie algebra. We give the proof only for the case g=3u(p, q), p<g. Other
cases can be done analogously. We use the following realization of g=38u(p, ¢):

@.1) su(p, 9 = {X gl(p+g, C): X*Ap o+ Ap X =0},
where
0 0 iE,
Apoe=| 0 Eip O
—iE, 0 0

Then X<38u(p, ¢) if and only if
Xu X1z Xis

(3.2) X ={Xu Xoy —iX%|, X Xa€ H(p, C), Xy, = 8u(¢—p).
Xa —iX% —X%

If we put 7(X)=—X*, then r is a Cartan involution of g. Let

(3.3) a= {X=diag(xy, -+, Xp, 0, -+, 0, —xy, =+, —xp): x; € R}.

Then a is a maximal abelian subspace of p. The root system 4 of (g, a) is
given by

(3.4) 4= {x(xxx) (1=i<j<P), £x4 £2x; (1Si=D)},

which is of type BC,. A fundamental system I/={y,, -+, 7p} of 4 is chosen
to be

(3.5) Ti=xim—x; (1Si£p-—1), o= —%p.

The restricted dominant root & is given by 27,4 -+ +27,, and hence Ay ($=2
if and only if II,={r:}, 1<k<p. Therefore, by 2.1 and 2.2, every gradation
of the second kind in g arises from II,={yr,} for some 2 (1<k<p). The cor-

responding partition 4=11%._.4; in is given by ((11])
dy={x(x;—x;) 1Si<jSk), £(xixxy) (R+1Ki<TD),
+x4, £2x; (R+1ZiSP)),
(3.6)
A—l = '—Al = {xiin (1§Z§k, k+1.§]§1)); Xi (lélgk)},
4= -4y = {x;+x; A<i<jZk), 22 1Sigk)}.

By using (3.2), and one can determine the root space g’<g for each
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root y=4. Thus it follows from (2.5) and (3.6) that
3.7 g1 =My prg-2:(C), g, = H(k, C).

The Satake diagram of IT and the restricted Dynkin diagram II of 8u(p, ¢) are
given by:

a, QAp-1 Qp Ay a,

1
Aprg-1 Aprg-k a,
I8 Tk Tp
I o— OO0 srrere e —O==0

Therefore one has

(3.8 g =8I(k, C)+3u(p—=~, g—k).

Let 3(g,) denote the center of g,. Then it follows from and that
dim 3(g,) = dim g,—dim ¢ = dim g—2(dim g_,+dim g_,)—dimg§ = 2,
dim (vector part of 3(g,)) = rkggo—rkrgl = rkgg—rkgrgi =1,

where rkr denotes the real rank. Therefore we have that g,=gi+3(g,)=
8i(k, C)+3u(p—Fk, g—k)+R+iIR. g.e.d.

THEOREM 3.3. Exceptional real simple GLA’s §=2)3-_28: of the second kind
are classified (up to isomorphisms) as listed in Table I.

PrOOF. We give only the sketch of the proof. By looking into the co-
efficients m,(9) of the restricted dominant root 4, we can find all possible
choices of partitions IT=1II,11 II, which yield gradations of the second kind in
g. Then we get the partitions (2.4) of 4 with v=2. The dimension of g_.
(k=1, 2) can be computed by the formula dimgg.,=Z;cs,dimg’ (cf. (2.5));
dim g"=m(y) (=the multiplicity of the restricted root 7) can be determined by
finding the w-image w(a) for each a=4. g§ is determined by the method given
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in [Theorem 2.4. Then we can go along the same line as in the proof of
to determine g, itself. We will show the details only for g=
E¢c_1y treated in Examples 2.5(1). In this case II={r,, 7.} is of type BC,.
We then have m(y,)=6, m(y,)=8 and m(2y,)=1 (cf. Araki [1]). Let II,={rs}.
Then, by (3.6), we get 4_,={x,, x;} and 4_,={x,+x,, 2x,, 2x,}. Then, con-
sidering the action of the Weyl group on 4, we have from and (2.5) that
dim g_,=m(x))+m(x,)=16 and dim g_,=m(x,+ x,)+m(2x,)+m(2x,)=8. Hence
we get dimg,=30. But we know by Examples 2.5 that g§=8o(1, 7). There-
fore dim 3(g,)=2. Furthermore rkzg,=rkzg=2 and rkrgi=1, and hence rkg3(g,)
=1. Thus we conclude that g,=8o0(1, 7)+R+iR. g.e.d.

In Table I we are adopting the numbering of simple roots as in Bourbaki
for exceptional simple Lie algebras.

REMARK 3.4. The GLA’s (c3) k=p<q, (c7) n odd and k=[n/2] and (e7)
are the GLA’s of infinitesimal holomorphic automorphisms of irreducible sym-
metric Siegel domains of the second kind.

Table I.
g I 11, 8o dimgg_, dimgg-.
(el) Esor Es {73} gl(5, R)+3l(2, R)+R 20 5
(e2) Eeoro  Es {72} 36, R)+R 20 1
(e3) Esoy Es {rured 804, H+R+R 16 8
(ed) E¢oy, F {r:} au(@3, 3)+R 20 1
(e3) Esoy Fi {r & (3, 5)+R+iR 16 8
(e6) E¢-1y BC, {ri} gu(l, 5)+R 20 1
(€7) Es¢c1s BC,  {1s} 8o (1, 7)+R+iR 16 8
(e8) Eoesy As {772t 80(@)+R+R 16 8
(€9) E.., E, {re 30 (5, 5)+81(2, R)+R 32 10
el0) E,., E, {r.} 30 (6, 6)+R 32 1
ell) E,., E; {r.} 31(7, R)+R 35 7
(el2) E..s, F {rd  80*(12)+R 32 1
el3) E,.s F {r. 80(3, N+5u(2)+R 32 10
(el4)  E,cu C, {r.} 30(2, 10)+R 32 1
el5)  Eicg Cs {rs} g0(1, 9)+81(2, R)+R 32 10
(el6) Egwy Es {73} E:»n+R 56 1
el7)  Egs  Es {r.} 87, H+R 64 14
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(el8) Es oy Fi {ri} E:+R 56 1
(el9) Eg-ssy F, {rs} 80 (3, 11)+R 64 14
(e20) Fiw F, {r.} gp@3, R)+R 14 1
(e21) Fiw Fy {74} 803, 4H)+R 7
(e22) Fisy BCy {1} g (M)+R 8 7
(e23) Gaca G, {72} 812, R)+R 1

dimeg_;,  dimeg-.

(e24)  EY E; {7s} gL(5, C)+81(2, C)+C 20
(e25)  EY Es {72} 81(6, C)+C 20
(e26)  EY E¢ {ri,7d 808, C)+C+C 16 8
(e27)  Ef E, {re} g0 (10, C)+31(2, C)+C 32 10
(e28) Ef¢ E, {72} g0 (12, C)+C 32
(e29)  EY E; {ra} 817, C)+C 35 7
(e30) E§ Eq {73t E{+C 56
e31) Ef Eq {r} a0 (14, C)+C 64 14
(e32)  F¢ F, {r1} &p (3, C)+C 14
(e33) F¢ F, {74} go(7, C)+C 8 7
(e34) G¢ G, {72} 812, C)+C 4 1

§4. The subalgebra g.,.

Let g=3)%__,3, be an effective semisimple GLA of the second kind, and
consider the graded subalgebra

“4.1) Gev = G280 182 .

By Cemma 3.1, the GLA g is of type @, since each simple factor of g is a
graded ideal of the first or the second kind. Consequently we may go back to
the situation in § 2 (cf. [Theorem 2.1). Let z be the Cartan involution in 2.1.
r extends to the conjugation of g¢ (denoted again by 7) with respect to g,=
f+ip, as in 2.1. Thus the gradation (g:)-.<z<. is viewed as the one correspond-
ing to a partition of II. From (2.11), we have

4.2) 4=} _ods.
Let
(4.3) Zeu = Z—zUZoUZZ .
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One sees easily that 4,, is a closed subsystem of 4 with —4,,=4,, There-
fore we have a regular complex semisimple subalgebra of g¢:

4.4) gc(zev) = {Z’ev} C‘f‘Zae'ng@a .

To the partition there corresponds the complexified graded subalgebra
of g¢

(4.5) g% = g% +g§+6f =9+ 20e7,, 8¢ -

g°(der) is a subalgebra of gf. Let {d,}* be the totality of elements X<=§¢
such that <X, 4,>=0. Then, as for Lemma 2.2, we have the Levi decomposi-
tion

(46) ggv - gc(Zev)@ {Zev} * ’

where ¢°(d,,) is a semisimple ideal and {4,,}* is the center of gS. 4., is -
stable. In fact, as was proved in [2.17), 4, is o¢-stable, and analogously we
have that 4., are o-stable (cf. [2.10). Hence g°(d..) is o-stable and the inter-
section g(d..)=8°(d..)Ng is a real form of ¢°(4,,). As in Lemma 2.3, we have

from that the semisimple part g%, and the center 3(g.,) of the reductive
subalgebra g,, are given by

@.7 6% =9de),  3(8er) = {de} *Ng .

Let ]7-—-{0(1, -+, a5} be a o-fundamental system for 4 chosen in 2.1. b1}
admits the partition [2.13). Let ay=—9, where 9 is the dominant root in J
with respect to II. Let

(4.8) I,y = {aoy I, .

LEMMA 4.1. 176,, is a o-fundamental system of 4., (viewed as the root system
for g% ).

PROOF. Since —dep=Jcy, (4.0 is z-stable and so is g(d.,). Therefore we
can apply the argument for g’ in 1.3 to the real form g(d..), and hence the
same assertion as in is valid for {d.,}z. II, contains ITe and is a
o-fundamental system for 4,. Let ac=d_,. We claim that it can be written as

(4.9) a = Qy+2a;ef il ny=0.

In fact, @ can be written as a=a,+>,,cfin;a; with n;=0. Hence one has
—2=ALa, Z> =Lay, Z>+Zaeinay, Z> = —2+FaeffNi 5

which implies [4.9). ﬁw is thus a fundamgntal system for 4., and 4_, con-

sists of positive roots with respect to //,. As was noted before, d_, is a-
stable, and so we conclude that the linear order in 4., defined by II,, is a o-

order, or equivalently, 176,, is a ¢-fundamental system for 4,,. q.e.d.
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We obtain the extended Satake diagram of I by adding the white vertex
a, to the Satake diagram of I/ and by joining it with appropriate vertices of
Il in the usual way.

THEOREM 4.2. Let g=3)i_-.8: be an effective real semisimple GLA of the
second kind corresponding to a partition II=II,11II,. Then, under the same
notations as in Theorem 2.4, the Satake diagram of the semisimple part ¢S, of Geo
is obtained from the extended Satake diagram ITU{a,} of g by deleting all the
vertices whose Tw-images lie in I, and by deleting all rods and arrows emanat-
ing from those vertices.

PROOF. As a subset of J,, I, is a subset of ITU {a,}. Therefore, by
Lemmas (4.1, [.1 and (4.7), the Satake diagram of g$, is the diagram of the o-
fundamental system ﬁw which is viewed as a subdiagram of the extended
Satake diagram of g. By we have ﬁev:(ﬁu{ao})——ﬁl. Hence, by the
same reason as in [[heorem 2.4, we conclude the assertion of the theorem.

qg.e.d.

ExXAMPLE 4.3. Let g=38u(p, ¢q), p<<gq. Then the extended Satake~ diagram
II'U{a,} is given by:

a, QAp- (29 A+ ap

Aprg-1 %,

The restricted fundamental system I/ was given in the proof of Theorem’3.2.
Let I1,={r:}. Then Il,, is given by:

a,

Apig-1 a,
Therefore we conclude that g$,=3u(k, k)+8u(p—=~k, g—k).

Let g=31;-_.3» be a semisimple GLA, and Z be its characteristicelement.
Put e=AdexpziZ. Then the triple (g, ge, ¢) is a symmetric triple (cf.5[97).
The pair (g, g.,) is called a symmetric pair associated with the GLA¥3=}__.a,.
By using we get
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THEOREM 4.3. The symmetric pairs (8, 8e) associated with simple GLA’s of
the second kind are all given, as listed in Table II. (The symbols for simple
GLA’s (e.g. (cl), -+, etc.) are the same as in Theorem 3.2 and Table I.)

Table II.

(97 ge’u)
(cl) (8l(n, F), 81(n—q, F)+38l(q, F)+F), F=R,C
(c2) &Un, H), 8((n—q, H)+38l(q, H)+R)
(c3) (8u(p, q), su(k, k)+su(p—~k, g—k)+iR)
<C4) (Qo(p, Q), §D<k’ k)+§0(]>_k’ q—k))
(¢5) (&p(n, F), 8p(k, F)+3p(n—k, F)), F=R,C
(c6) @p(p, 9), 8p(k, R)+3p(p—Fk, g—F))
(c7) (80*(2n), 80*(4k)+80*(2n—4k))

(c8 a. (8o(n, n), 801, D+38o(n—1, n—1))
. (80(nm, n), 8l(n, R)+R)
a. (8o(2n, C), 80(2, C)+80(2n—2, C))
b¢. (Bo(2n, C), 8l(n, C)+C)

(c9) (8o(n, C), 80(2k, C)+80(n—2k, C))
(el) (Escey, 81(6, R)+81(2, R))
(e2) (Eecey, 81(6, R)+81(2, R))
(e3) (Escer, 80(5, 5)+R)

(ed) (Eecy, 8u(3, 3)+81(2, R))
(e5) (Esw, 80(4, 6)+:iR)

(e6) (Eec-105, 8u(1, 5)+81(2, R))
(e7) (Eg¢c-103, 80(2, 8)+iR)

(e8) (Eec-205, 80(1, 9)+R)

(€9) (Ercny, 80(6, 6)+381(2, R))
(el0) (Eq1y, 80(6, 6)+381(2, R))
(ell) (Ereny, 81(8, R))

(el2) (Eq¢-5y, 80*(12)+381(2, R))
(el3) (Eq¢-5y, 80(4, 8)+8u(2))
(eld) (Erc-2sy, 80(2, 10)+381(2, R))

(el5) (Erc-20, 80(2, 10)+81(2, R))
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(el6) (Esr, Ern+81(2, R))

(el?) (Esesy, 80(8, 8))

(el8) (Esc-200, Eqc-25+8L(2, R))

(el9) (Egc-24, 80(4, 12))

(e20) (Fiw, 89(3, R)+31(2, R))

(e2D) (Ficsr, 80(4, 5))

(e22) (Fuc=20, 80(1, 8))

(€23) (Gaeoy, 812, R)+31(2, R))

(e24) (EE, 816, C)+381(2, C))

(e25) (EE, 81(6, C)+381(2, C))

(e26) (E€, 8010, C)+C)

(e27) (E¢, 80(12, C)+81(2, C))

(e28) (E€, 80(12, C)+381(2, C))

(e29) (E¢, 81(8, C))

(e30) (EE, ES+81(2, C))

(e31) (ES, 80(16, C))

(e32) (F{, 8p@3, C)+31(2, C))

(e33) (F¥, 80(9, €))

(e34) (G§, 8l(2, C)+81(2, C))
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