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1. Introduction.

Let $\Delta(\alpha)=\{z;|\arg z|<\alpha\}$ . We consider the Bergman space

$B_{\Delta Ca)}=$ { $F;F$ is analytic on $\Delta(\alpha),$ $||F||_{B_{\Delta(\alpha)}}<\infty$ },
where

$||F||_{B_{\Delta}}(a)= \{\int\int_{\Delta_{C^{\alpha)}}}|F(x+iy)|^{2}dxdy\}^{1/2}$

In the case of $\alpha=\pi/4$ we showed that $||F||_{B}^{z_{\Delta(a)}}$ is represented as a series of
weighted square integrals of the derivatives of the trace of $F$ on the positive
real axis ([2]). The proof included two different ingredients: an integral trans-
form and a heat equation on the positive real axis. Both of them required
rather deep and lengthy arguments which worked only in the case of $\alpha=\pi/4$ .

Here we present a general result for $0<\alpha<\pi/2$ by a completely different
proof with minimum prerequisite knowledge. We shall show

THEOREM 1. Let $0<\alpha<\pi/2$ . If $F\in B_{\Delta(a)}$ , then

(1) $\int\int_{\Delta_{(\alpha)}}|F(x+iy)|^{2}dxdy=\sin(2\alpha)\sum_{j=0}^{\infty}\frac{(2\sin\alpha)^{2j}}{(2j+1)1}\int_{0}^{\infty}x^{2j+1}|\partial^{j}f(x)|^{2}dx$ ,

where $f$ stands for the trace of $F$ on the positive real axis. Conversely, if $f$ is a
smooth function on the positive real axis for which the right hand side of (1) is
finite, then $f$ has an analytic continuation $F\in B_{\Delta(\cdot)}$ and (1) holds.

It is natural to consider a counterpart of Theorem 1 for the Szeg\"o space

$S_{\Delta(\alpha)}=\{F;F$ is analytic on $\Delta(\alpha),$ $| \theta_{1<}asup\int_{0}^{\infty}|F(re^{i\theta})|^{2}dr<\infty\}$ ,

which is normed by the square root of $\int_{\partial\Delta_{(a)}}|F(z)|^{2}|dz|$ with $F(z)$ being the

nontangential boundary values of $F$ on $\partial\Delta(\alpha)$ . We shall prove
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THEOREM 2. Let $0<\alpha<\pi/2$ . If $F\in S_{\Delta(\alpha}$ ), then

(2) $\int_{\partial\Delta_{(a)}}|F(z)|^{2}|dz|=2\cos\alpha\sum_{j=0}^{\infty}\frac{(2\sin\alpha)^{2j}}{(2j)!}\int_{0}^{\infty}x^{2j})\partial^{j}f(x)|^{2}dx$ ,

where $f$ stands for the trace of $F$ on the positive real axis. Convers$ely$ , if $f$ is
a smooth function on the positive real axis for which the right hand side of (2)

is finite, then $f$ has an analytic continuation $F\in S_{\Delta(a)}$ and (2) holds.

Let us note that there are results, corresponding to Theorems 1 and 2, for
the Bergman and the Szeg6 spaces over a strip $S(\alpha)=\{w: {\rm Im} w|<a\},$ $i$ . $e.$ , the
square power of the Bergman or the Szeg\"o norm of an analytic function $G$ on
$S(\alpha)$ is represented as a series of weighted square integrals of the derivatives
of the trace of $G$ on the real axis (see [3] and the following (3) and (6)). One
might think that Theorems 1 and 2 can be deduced from those results by means
of the conformal mapping $z=e^{w}$ in a straightforward fashion. However, it is
not the case. Under the mapping, the derivatives of $f$ are transformed into
complicated forms (see [2; Section 5]), from which one can hardly imagine the
right hand sides of (1) and (2).

We shall overcome this difficulty by making use of Mellin transform and
certain expansions of $\sinh(2\alpha z)/z$ and $\cosh(2\alpha z)$ (see the following (5) and (8)).

These expansions implicitly appear in fromulas for Gauss’ hypergeometric series
(cf. [1]). We shall, however, provide an elementary proof for the selfcontained-
ness. As remarked at the beginning, a special case of Theorem 1 was proved
in conneciton with the heat equation. Since an approach from the heat equa-
tion parallel to that in [2] does not seem to work for the Szeg\"o space even if
$\alpha=\pi/4$ , it may be interesting to consider reflections of the method in this paper
to the heat equation conversely.

We would like to thank Professor K. Oikawa for giving a hint which led
us to formulas for Gauss’ hypergeometric series.

2. Proof of Theorem 1.

We collect several preliminary facts to be used in the proof. As in the
introduction we let $S(\alpha)=\{z;|{\rm Im} z|<\alpha\}$ and

$B_{S(\cdot)}=$ { $G;G$ is analytic on $S(\alpha),$ $||G||_{B_{S(\alpha)}}<\infty$ },

where $||G||_{B_{S(a)}}= \{\int\int_{S(a)}|G(x+iy)|^{2}dxdy\}^{1/2}$ For $G\in B_{S(\cdot)}$ we write $g_{y}(x)=$

$c_{(X}\perp iy)$ . If $y=0$ , then we write $g$ for go; this is the trace of $G$ on the real
axis. By Cauchy’s theorem we have $\hat{g}_{y}(\xi)=e^{-y\xi}\hat{g}(\xi)$ (see $e$ . $g$ . $[4$ ;p. 99]), where
$\hat{g}$ stands for the Fourier transform $\int_{-\infty}^{+\infty}e^{-ix\xi}g(x)dx$ . Hence the Plancherel theo-



The Bergman and the Szego spaces 197

rem and Fubinl’s theorem yield

(3) $||G||_{B_{S(a)}}^{2}= \frac{1}{2\pi}\int_{-a}^{+\alpha}dy\int_{-\infty}^{+\infty}|e^{-y\xi}\hat{g}(\xi)|^{2}d\xi=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{\sinh(2\alpha\xi)}{\xi}|\hat{g}(\xi)|^{2}d\xi$ .
Conversely, suppose $g$ is a function on the real line for which the last integral
of (3) is convergent. Then it is easy to see that this function

$G(x+iy)= \frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{i_{C}x+iy)\xi}\hat{g}(\xi)d\xi$

is analytic on $S(\alpha)$ and belongs to $B_{S(\cdot)}$ . We have (3) again in this case.
Next we recall some fundamental properties of the Mellin transform $\mathscr{M}f(\xi)$

$= \int_{0}^{\infty}f(x)x^{\xi-1}dx$ . The Parseval-Plancherel identity is

$\int_{0}^{\infty}x^{2k- 1}|f(x)|^{2}dx=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\mathscr{M}f(k+i\eta)|^{2}d\eta$ ,

where $k$ is a real number. The Mellin transform of derivatives is calculated
by means of integration by parts. If $\lim_{xarrow 0}x^{k+l-j}\partial^{l}f(x)=\lim_{xarrow\infty}x^{k+l-j}\partial^{\iota}f(x)=0$

for $l=0,$ $j-1$ , then $\mathscr{M}(\partial^{j}f)(k+i\eta)=(-1)^{j}(k+i\eta-1)\cdots(k+i\eta-j)\mathscr{M}f(k+i\eta-j)$ .
In particular, letting $k=j+1$ , we obtain $|\mathscr{M}(\partial^{j}f)(j+1+i\eta)|^{2}=(j^{2}+\eta^{2})\cdots(1^{2}+\eta^{2})$

$|\mathscr{M}f(1+i\eta)|^{2}$ , and hence from the Parseval-Plancherel identity

(4) $\int_{0}^{\infty}x^{2j+1}|\partial^{j}f(x)\}^{2}dx=\frac{1}{2\pi}\int_{-\infty}^{+\infty}(j^{2}+\eta^{2})\cdots(1^{2}+\eta^{2})|\mathscr{M}f(1+i\eta)|^{2}d\eta$ ,

provided $\lim_{xarrow 0}x^{l+1}\partial^{\iota}f(x)=\lim_{xarrow\infty}x^{l+1}\partial^{\iota}f(x)=0$ for $l=0,$ $\cdots$ , $j-1$ , where $(j^{2}+\eta^{2})$

... $(1^{2}+\eta^{2})$ is understood to be 1 if $j=0$ .
Let us consider a Fr\’echet space $U=$ { $f\in C^{\infty}(0,$ $\infty);||f||_{U_{j}}<\infty$ for $j=0,$ 1, },

where

$|1f$ llb$j= \int_{0}^{\infty}x^{2j+1}|\partial^{j}f(x)|^{2}dx$ .

We shall show that (4) holds for $f\in U$ .
such that

$\psi(x)=\{01$ $forfor0<x\leqq 1/2x\underline{\geq_{-}}1$

,

For $0<\epsilon<1$ put

$\varphi e(x)=\{$

$\psi(\frac{x}{\epsilon})$

$\Psi(\epsilon x)$

Suppose $f\in U$ . Take $\psi,$ $\Psi\in C^{\infty}(O, \infty)$

$\Psi(x)=\{01$ $forfor0<x\leqq 1x\geqq 2$

.

for $0<x\leqq 1$ ,

for $x>1$ .

We observe that $\varphi_{\epsilon}(x)=1$ for $\epsilon\leqq x\leqq 1/\epsilon$ and $\varphi_{\epsilon}\in C_{0}^{\infty}(0, \infty)$ . In particular, $\varphi_{\epsilon}$

converges to 1 uniformly on every compact subset of $(0, \infty)$ as $\epsilonarrow 0$ ; if $j\geqq 1$ ,
then $\partial^{j}\varphi_{\epsilon}$ converges to $0$ uniformly on every compact subset of $(0, \infty)$ as s–0.
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Moreover,

$x^{j}\partial^{j}\varphi_{\epsilon}(x)=\{$

$( \frac{x}{\epsilon})^{j}\partial^{f}\phi(\frac{x}{\epsilon})$ for $0<x\leqq 1$ ,

$(\epsilon x)^{j}\partial^{j}\Psi(\epsilon x)$ for $x\geqq 1$ ,

and so
$|x^{j} \partial^{j}\varphi_{\epsilon}(x)|\leqq\sup_{0<t<\infty}t^{j}|\partial^{j}\psi(t)|+_{0}\sup_{<t<\infty}t^{j}|\partial^{j}\Psi(t)|<\infty$ .

Therefore, letting $f_{\epsilon}=\varphi_{\text{\’{e}}}f$ , we obtain from Leibniz’s formula and the dominated
convergence theorem that $||f_{\epsilon}-f||_{U_{j}}arrow 0$ for $j=0,1,$ $\cdots$ , as $\epsilonarrow 0$ . Thus $C_{0}^{\infty}(0, \infty)$

is dense in $U$ . For $f\in U$ we can define the Mellin transform $\mathscr{M}f(1+i\eta)$ in the
sense of mean convergence, $i$ . $e$ .

$\mathscr{M}f(1+i\eta)=1.i.m.\mathscr{M}f_{\epsilon}(1+i\eta)\text{\’{e}}arrow 0$

Since (4) applies to $f_{\epsilon}$ , it follows from Minkowski’s inequality and Fatou’s
lemma that

$|( \int_{0}^{\infty}x^{2j+1}|\partial^{j}f_{\text{\’{e}}}(x)|^{2}dx)^{1/2}-(\frac{1}{2\pi}\int_{-\infty}^{+\infty}(_{J^{2}}+\eta^{2})\cdots(1^{2}+\eta^{2})|\mathscr{M}f(1+i\eta)|^{2}d\eta)^{1/2}|$

$\leqq(\frac{1}{2\pi}\int_{-\infty}^{+\infty}(j^{2}+\eta^{2})\cdots(1^{2}+\eta^{2})|\mathscr{M}f_{\epsilon}(1+i\eta)-\mathscr{M}f(1+i\eta)|^{2}d\eta)^{1/2}$

$\leqq\lim_{\epsilon’arrow}\inf_{0}(\frac{1}{2\pi}\int_{-\infty}^{+\infty}(j^{2}+\eta^{2})\cdots(1^{2}+\eta^{2})|\mathscr{M}f_{\epsilon}(1+i\eta)-\mathscr{M}f_{\epsilon’}(1+i\eta)|^{2}d\eta)^{1/2}$

$= \lim_{\epsilon’arrow}\inf_{0}||f_{\text{\’{e}}}-f_{\epsilon’}||_{U_{j^{-}}}||f_{\epsilon}-f||_{U_{j}}$ .

Hence, letting $\epsilonarrow 0$ , we obtain (4).

Finally we present an expansion of $\sinh(2\alpha z)/z,$ $0<\alpha<\pi/2$ , into successive
polynomials $(j^{2}+z^{2})\cdots(1^{2}+z^{2}),$ $j=1,2,$ $\cdots$ , which may be of interest on its own.
We have for $0<\alpha<\pi/2$

(5) $\frac{\sinh(2\alpha z)}{z}=\sin(2\alpha)\{1+\sum_{j=1}^{\infty}\frac{(2\sin\alpha)^{2j}}{(2j+1)!}(j^{2}+z^{2})\cdots(1^{2}+z^{2})\}$ .
Prof. K. Oikawa suggested a nice trick–replacement of arguments and param-
eters–, by which we can reduce (5) to a well-known formula for Gauss’ hyper-
geometric series. We denote by $F(\alpha, \beta;r;z)$ Gauss’ hypergeometric series

$\frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)}\sum_{f=0}\overline{\Gamma(\gamma+j)}\overline{j1}$

$\infty\Gamma(\alpha+j)\Gamma(\beta+j)z^{j}$

It is known $(e. g. [1; 15.1.16])$ that

$F$($1+z,$ $1-z; \frac{3}{2}$ ; $\sin^{2}\alpha$ ) $= \frac{\sin(2\alpha z)}{z\sin(2\alpha)}$ .
Replacing $z$ by $iz$ and developing the left hand side into the series as above,
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we obtain (5). However, one should note that, in many books, $F(\alpha, \beta ; \gamma;z)$ is
taken as the analytic continuation, which is not represented by the original
series in general. In fact, (5) does not hold if $\alpha\geqq\pi/2$ . Therefore it is worth-
while to give an elementary proof of (5) (see Appendix).

PROOF OF THEOREM 1. Let $F\in B_{\Delta(\alpha)}$ and let $f$ be its trace on the positive real

axis. In view of Cauchy’s integral formula $|\partial^{j}f(x)|$ $(j $!/2\pi r^{j}$ ) $\int_{0}^{2\pi}|F(x+re^{t\theta})|d\theta$

for $0<r<x\sin$ a. Hence

$| \partial^{j}f(x)|\leqq\frac{2}{x\sin\alpha}\frac{j!}{2\pi}\int_{(1/2)x\sin a}^{x\sin\alpha}\frac{dr}{r^{j}}\int_{0}^{2n}|F(x+re^{t\theta})|d\theta$

$\leqq\frac{j!}{\sqrt{\pi}}(\frac{2}{x\sin\alpha})^{j+1}(\int\int_{|u+iv-x|<x\sin\alpha}|F(u+iv)|^{2}dudv)^{1/2}$

by the Schwarz inequality. Since $|u+iv-x|<x\sin\alpha$ implies $|u+iv|/(1+\sin\alpha)$

$<x<|u+iv|/(1-\sin\alpha)$ , it follows from Fubini’s theorem that

$\int_{0}^{\infty}x^{2j+1}|\partial^{j}f(x)|^{2}dx\leqq\frac{(j!)^{2}}{\pi}(\frac{2}{\sin\alpha})^{2j+2}\int_{0}^{\infty}\frac{dx}{x}\int\int_{|u+iv-x|<x\sin\alpha}|F(u+iv)|^{2}dudv$

$\leqq\frac{(j!)^{2}}{\pi}(\frac{2}{\sin\alpha})^{2j+2}\log\frac{1+\sin a}{1-\sin\alpha}\int\int_{\Delta_{(}\alpha)}|F(u+iv)|^{2}dudv$ .

Therefore $f\in U$ and (4) holds.
Put $G(z)=e^{z}F(e^{z})$ . Then a simple calculation shows $G\in B_{S(\cdot)}$ and $\hat{g}(\xi)=$

$\mathscr{M}f(1-i\xi)$ , where $g$ is the trace of $G$ on the real axis. Hence (3), after the
change of the variable $\xi=-\eta$ , leads to

$\int\int_{\Delta_{(a)}}|F(x+iy)|^{2}dxdy=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{\sinh(2\alpha\eta)}{\eta}|\mathscr{M}f(1+i\eta)|^{2}d\eta$ .

By (4) and (5) we see that the right hand side is equal to that of (1).

Conversely, suppose $f$ is a smooth function on the positive real axis for
which the right hand side of (1) is finite. Then $f\in U$ and (4) holds. $Defi\dot{n}e$

the smooth function $g$ on the real line by $g(x)=e^{x}f(e^{x})$ . Since $\hat{g}(\xi)=\mathscr{M}f(1-i\xi)$ ,
it follows from (4) that the last integral of (3) is equal to the right hand side
of (1), and in particular, is convergent. Hence $g$ has an analytic continuation
$G$ to $S(\alpha)$ and (3) holds. By $\log z$ we denote the single valued branch of the
logarithm of $z$ on the sector $\Delta(\alpha)$ which assumes real values on the positive
real axis. We see that the function $F(z)=G(\log z)/z$ is the analytic continua-
tion of $f$ to $\Delta(\alpha)$ and (1) holds. The theorem is proved.

3. Proof of Theorem 2.

Since the proof of Theorem 2 can be carried out in a way parallel to that
of Theorem 1, we shall give only a sketch.
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SKETCH OF PROOF OF THEOREM 2. Let uS COndider the SZeg\"o SpaCe $S_{S(\alpha)}$

$=$ { $G;G$ is analytic on $S(\alpha),$ $\sup_{|y|<\alpha}||G(\cdot+iy)||_{2}<\infty$ } on $S(\alpha)$ . We have

(6) $\int_{\partial S_{(}\alpha)}|G(z)|^{2}|dz|=\frac{1}{\pi}\int_{-\infty}^{+\infty}\cosh(2\alpha\xi)|\hat{g}(\xi)|^{2}d\xi$ ,

where $g$ is the trace of $G$ on the real axis. Let

$V= \{f\in C^{\infty}(0, \infty);\int_{0}^{\infty}x^{2j}|\partial^{j}f(x)|^{2}dx<\infty$ for $j=0,$ 1, $\}$ .
If $F\in S_{\Delta(\alpha)}$ , then

$\int\int_{\Delta}|F(u+iv)|^{2}\frac{dudv}{|u+iv|}\leqq 2\alpha\sup\int_{0}^{\infty}|F(re^{t\theta})|^{l}dr<\infty$ ,

so that it follows from Cauchy’s integral formula that the $tracef$ of $F$ on the
positive real axis belongs to $V$ . The Parseval-Plancherel identity corresponding
to (4) is

(7) $\int_{0}^{\infty}x^{2j}|\partial^{j}f(x)|^{2}dx=\frac{1}{2\pi}\int_{-\infty}^{+\infty}((j-\frac{1}{2})^{2}+\eta^{2})\cdots((\frac{1}{2})^{2}+\eta^{2})|\mathscr{M}f(\frac{1}{2}+i\eta)|^{2}d\eta$

for $f\in V$ , where $((j-1/2)^{2}+\eta^{2})\cdots((1/2)^{2}+\eta^{2})$ is understood to be 1 if $j=0$ . We
expand $\cosh(2az)$ , $0<\alpha<\pi/2$ , into successive polynomials $((j-1/2)^{2}+z^{2})\cdots$

$((1/2)^{2}+z^{2})$ to obtain

(8) $\cosh(2\alpha z)=\cos\alpha\{1+\sum_{t=1}^{\infty}\frac{(2\sin\alpha)^{2j}}{(2j)!}((j-\frac{1}{2})^{2}+z^{2})\cdots((\frac{1}{2})^{2}+z^{2})\}$

(see [1; 15.1.18] or Appendix). Since a member in a Szeg\"o space is a “half
order differential”, the transform $G(z)=e^{z/2}F(e^{z})$ gives an isometry between $F\in$

$S_{\Delta(\alpha)}$ and $G\in S_{S(\cdot)}$ . Hence

$\int_{\partial S(\alpha)}|G(z)|^{2}|dz|=\int_{\partial\Delta_{(a)}}|F(z)|^{2}|dz|$ ,

and $\hat{g}(\xi)=\mathscr{M}f(1/2-i\xi)$ , where $f$ and $g$ are the traces of $F$ and $G$ on the posi-
tive real axis and on the real axis, respectively. Therefore (6)$-(8)$ altogether
yield (2). The converse part of the theorem can be proved easily. The proof
is complete.

4. Appendix.

In this section we give an elementary proof of (5) and (8). Since they can
be proved similarly, we show only (5).

PROOF OF (5). Replacing $z$ by $iz$ , we reformulate (5) as

(9) $\frac{\sin(2\alpha z)}{z}=\sin(2a)\{1+\sum_{j^{=}1}^{\infty}\frac{(2\sin\alpha)^{2j}}{(2j+1)!}(j^{2}-z^{2})\cdots(1^{2}-z^{2})\}$ .
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Since the right hand side converges on the whole $z$-plane, it is sufficient to
show the equality on the strip $-1<{\rm Re} z<1$ . Hereafter we let $-1<{\rm Re} z<1$ .
Using the Gamma function, we rewrite the right hand side as

(10) $\frac{\sin(2a)}{\Gamma(1-z)\Gamma(1+z)}\sum_{j=0}^{\infty}(2\sin\alpha)^{2j}\frac{\Gamma(j+1-z)\Gamma(j+1+z)}{\Gamma(2j+2)}$

$= \frac{\sin(2\alpha)\sin(\pi z)}{\pi z}\sum_{j=0}^{\infty}(2\sin\alpha)^{2j}B(j+1-z, j+1+z)$ .
By definition

$B(j+1-z, j+1+z)= \int_{0}^{1}t^{j- z}(1-t)^{j+z}dt=\int_{0}^{1}\{t(1-t)\}^{j}(\frac{1-t}{t})^{z}dt$ .

Since $0<\alpha<\pi/2$ , it follows that

$\sum_{j=0}^{\infty}(2\sin\alpha)^{2j}\{t(1-t)\}^{j}=\frac{1}{1-(2\sin\alpha)^{2}t(1-t)}$

where the series converges absolutely and uniformly for $0\leqq t\leqq 1$ . Hence inter-
changing the integral and the summation, we obtain

$\sum_{j=0}^{\infty}(2\sin\alpha)^{2j}B(j+1-z, j+1+z)=\int_{0}^{1}\frac{1}{1-(2\sin\alpha)^{2}t(1-t)}(\frac{-t}{t})^{z}dt$ .

Changing the variable by $s=(1-t)/t$ , and then applying the residue theorem,
we find that the right hand side is equal to

$\int_{0}^{\infty}\frac{s^{z}}{s^{2}+2s\cos(2a)+1}ds=\frac{\pi}{\sin(2\alpha)}\frac{\sin(2\alpha z)}{\sin(\pi z)}$

for $0<\alpha<\pi/2$ . This, together with (10), shows (9).
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