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This paper is a sequel to [22] and characterizes the geometric 4 manifolds

of type S*XE, S?XE? H?XE? and §\[/,2><E in terms of the Seifert 4 manifolds
over the 2 orbifolds which are either spherical, bad, or hyperbolic. In [22] we
discussed the relations between the Seifert 4 manifolds over the euclidean 2
orbifolds and the geometries of type E*, Nil*XE, Nil*, and Sol*<XE. Here we
call a 4 manifold S a Seifert 4 manifold if S has a structure of a nonsingular
fibered orbifold over a 2 orbifold B with general fiber a 2 torus 72 as in [22].
The topology of S can be described by the Seifert invariants defined in [22].
We will recall their descriptions briefly in §1 and §5 when B is either
spherical, bad or hyperbolic. If all the monodromies are trivial (including one
more case when the base is spherical) we can define the rational euler class e
which is a rational number or a pair of rational numbers (§1 and §5). Then
the main results (Theorems A and B) which provide the complementary part
of Theorems A and B in can be stated as follows.

THEOREM A. Let S be a closed orientable 4-manifold. (1) S is a Seifert 4
manifold over a spherical or bad 2 orbifold whose rational euler class is zero
(resp. nonzero) if and only if S is geometric of type SEXE? (resp. S*XE). (2) S
is geometric of type S*XE if and only if S is diffeomorphic to a bundle over S*
with fiber a spherical 3 manifold. S is geometric of type S*XE*? if and only if
S is diffeomorphic to a nonsingular fibered orbifold with general fiber S* over a
euclidean orbifold B’ where B’ is either the torus T?, the Klein bottle K, the
annulus A or the Mobius band M.

See §3, §4 for the details of the correspondences in [Theorem Al We will
determine exactly when the Seifert 4 manifolds of the above classes admit
complex structures in § 3 [Corollary 9, § 4 [Corollary 13. In we give
the explicit correspondence between the Seifert fibrations and the bundle struc-
tures over S' of the Hopf surfaces since some of them were missing in [9]
(see [10]) and since not every bundle over S' with fiber a spherical 3 manifold
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has a complex structure. On the other hand the situations for the Seifert 4
manifolds over the hyperbolic base orbifolds are somewhat different. Here we
describe the result for the cases with orientable base orbifolds as follows.
(The statements for the general cases will be given in §5.)

THEOREM B. A Seifert 4 manifold S over an orientable hyperbolic base
orbifold B has a geometric structure of type X if and only if S satisfies one of
the following conditions.

(1) All the monodromies are represented by powers of a common periodic
matrix in SL,Z or all the monodromies are trivial and the rational euler class is
zero. In this case X=H?XE"®.

(2) All the monodromies are trivial and the rational euler class is nonzero.

In this case X::S\LJQXE where :S‘\f,z is the universal covering of SL.R.

This implies that if B is orientable and hyperbolic then S is geometric if
and only if S has a complex structure (Corollary 16). In §5 we will see that
every geometric 4 manifold S of type H®*XE? or .§f2><E has a Seifert fibration
over some hyperbolic 2 orbifold (possibly with reflectors) and any such one
does not have a geometric structure of type X with X+ H?*XE?, Sf‘fsz. This
implies that some Seifert 4-manifolds (for example those with nonperiodic
monodromies) are not geometric in the sense of Thurston since the Seifert
fiberings for the cases with hyperbolic base orbifolds are unique ([25], also cf.
[Proposition 14). This is in contrast with the result of in which we stated
that every Seifert 4 manifold over a euclidean 2 orbifold admits a geometric
structure. Thus we have the following list stated in [22], §0.

Type of the bases The corresponding geometries
spherical or bad SEXE®* S*XE
euclidean Et () Nil*xXE Nil* Sol*xXE
hyperbolic H*x E? éz}xE non-geometric

(%) There is one closed orientable euclidean 4-manifold which is not a
Seifert 4 manifold in our sense ([227).

The results of this paper together with and lead us to the follow-
ing corollaries (cf. [Proposition §).

COROLLARY C. The diffeomorphism type of a Seifert 4 manifold S over a
2 orbifold B is determined by its fundamental group =,S unless S is diffeomorphic
to one of the followings.

(1) A bundle over S' with fiber an arbitrary lens space L(p, q) whose mono-
dromy is either the identity or the involution inducing the multiplication by —1
on H(L(p, q), Z).
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(2) An S%-bundle over T® or K with w,S=0 or w,S+0 where w, is the
second Stiefel Whitney class.

COROLLARY D. The diffeomorphism types of closed orientable geometric 4
manifolds of 8 types in the above list are determined by their fundamental groups
except for the same cases as in Corollary C.

The Seifert fibrations corresponding to the above exceptions (which are far
from unique) will be described explicitly in §3 List A-1 and §4 List A-2. The
claim of Corollary D for the euclidean cases is deduced from the rigidity
theorem for euclidean manifolds and the fact that the closed geometric 4 mani-
folds of distinct types are not homotopy equivalent ([23]). Throughout this
paper all the 4 manifolds will be smooth, closed and orientable.

§1. The invariants of Seifert 4 manifolds over spherical or bad 2 orbi-
folds.

In this section all the Seifert 4 manifolds will have the bad or spherical
base 2 orbifolds. The types of such 2 orbifolds are listed in Fig. 1 in which
the cone point of angle 2z/m and the corner reflector of angle =/m are denoted
by m and 7 respectively. The fibering = : S—B of S over B is determined
by the following data which we call the Seifert invariants of S ([22], §1).
Fix the lattice [=R/ZXx*, h=xXR/Z of the general fiber T*=R*/Z* First
suppose that B has no reflectors.

(1) The type (m, a, b) of the multiple torus of multiplicity m over the cone
point p of angle 2zx/m. In this case n~'(D?%/ Z,) for the neighborhood D?*/Z,
of p (p corresponds to 0) is diffeomorphic to (D?*xT?)/Z, where the generator
o of Z, acts on D*XT? by p(z, x, y)=(exp(2ri/m)z, x—a/m, y—b/m) for
x, yvER mod.1 and zeC, |z|=1. Then the curve on dD*xT? represented by
(exp(2rit/m), —ta/m, —tb/m) for 0<t<1 descends to a cross section ¢ of the
meridional curve of p such that mg+al+bh is null-homologous in z~*(D?*/Z,).

(2) The obstruction (a, b) to extending the cross sections ¢’s defined in (1)
for all the multiple tori to the lift of B—\U(the disk neighborhood of the cone
point). A Seifert 4 manifold with obstruction (a, b) is diffeomorphic to the one
with obstruction (0, 0) and with one more (multiple) torus of type (1, a, b).

Thus if B is orientable S is represented by a series of triples {(m,, a;, b1), -
(mp, aw, bp)}. The rational euler class ¢(S) of S is defined by e=(3¥_.a:/m,
Sk bi/mi)e@Q® (mod. the action of GL,Z). When B=P¥n) we have a mono-
dromy matrix A=GL,Z with det A=—1 along the orientation reversing curve
1 0
0 —1

or <(1) _11) Then the Seifert invariants of S are represented by {A, (n, a, b)}

7 in B. By an appropriate choice of / and & we can assume that A-—-(
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Figure 1. Closed spherical or bad 2-orbifolds.

where the type of the multiple torus is given with respect to the cross section
homologous to 7~* for the lift ¥ of 7. In this case put e(S)=b/n. When B has
reflectors take the double covering B of B without reflectors and let S be the
unbranched covering of S induced by the natural! projection B—B. Let ¢ be
the covering translation of S satisfying ¢*=[, che*=h-'in =,S. Take an annular
neighborhood N of the reflector circle C and let Nc B be the inverse image of
N (Figure 2). We fix the lift @ of the curve dN—C which is the boundary
of the cross section over B—N—\(the disk neighborhood of the cone point).
Then every corner reflector p; is covered by a cone point p; of the same
multiplicity. We further take a point p{ which projects to a smooth point on
C. Then we have two kinds of invariants.

(3) The type (my, 0, b;) of the multiple Klein bottle over p;. This is the
type of the multiple torus in S over pi with respect to the cross section g¢;
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around p; such that ¢q;¢~! is conjugate to g;7'.

(4) The euler class (a, b) of the reflector circle C. This is the obstruction
to extending the cross sections \Ug;\Ua\Utac™ to the one over N—uU(the disk
neighborhood of p}), i.e., allgia *'=I[°h® in =,S. (The convention of the
orientation of @ is opposite to [22].) In our case here the monodromy along C
is trivial and hence a=0 ([22]). The Seifert manifold with euler class (a, b)
is the same as that with euler class (0, 0) with one extra (multiple) Klein bottle
of type (1, 0, b) over p,.

We denote the type (m, 0, b) of the multiple Klein bottle by (m, 0, b)
(including the cases with m=1). If S isrepresented by {(m,, 0, a,), -+, (ms, 0, as),
(ny, by, 1), -, (n;, by, c,)}, then we define the rational euler class of S by e=
(D§_1ai/m)/24+ 25 1c;/n;. We adopt the analogous notation for the Seifert 3
manifolds used in [14]. Note that the invariants (m, a, b) make sense even if
m=1 or m<0. If m<0 we assume that (m, a, b) is the same as (|m|, —a, —b).

§2. The diffeotopy groups of spherical 3 manifolds.

In this section we summarize the known results about the diffeotopy groups
of the spherical 3 manifolds and fix the notations of their generators. Note
that in dimension 3 the diffeotopy groups are the same as the homeotopy groups
(cf. §5.8). Let F be a spherical 3 manifold and denote by D*(F) the group
of all orientation preserving self-diffeomorphisms of F modulo diffeomorphisms
isotopic to the identity. The structure of D*(F) was determined by [2], [8],
[1], [18], and [4]. In either case every diffeomorphism of F is isotopic to
a fiber preserving one with respect to one of the Seifert fibrations of F over
some orientable spherical or bad 2-orbifold A. Let f be an orientation-preserving
and fiber-preserving diffeomorphism of F covering the automorphism f of A.
Let ¢ijs and h be the cross sections and the general fiber of F such that
n:qi+a;h=0, 33¢;=0 in H,F for n,=21. If f maps the i-th multiple fiber to the
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j-th fiber and preserves (setwise) the k-th fiber we can assume that (up to
isotopy) f satisfies f(g:)==+¢; and f(g:)=+gs according as f preserves or
reverses the orientation of A. In this case the type of the i-th and the j-th
fibers are the same. Moreover if f fixes every cone point of A and preserves
the orientation of A then we can see that f is isotopic to the identity since
moDiff +(S?, rel. n points)=0 for n<3 (cf. [2] Chapter 4.) Therefore f coincides
(up to isotopy) with one of the following diffeomorphisms, their inverses or
their compositions.

(1) A is arbitrary.

id : the identity.

r: 7 is a reflection along the circle C through all cone points (including
the image of the fiber of type (1, b)) of A (Figure 3).

(2) A=S%n, n), S%2, 3, 3) or S*2, 2, n).

o: o is afiber map of F={(1, b), (n, a), (n, a)}, {(1, b), (2, 1), (3, 1), (3, 1)}
or {(1, b), (2, 1), (2, 1), (n, k)} such that & is a reflection along the circle C’ in
Figure 3 which interchanges the cone points of the same cone angle and which
passes through the extra cone points including the image p, of the fiber of
type (1, b). The composition or=7¢ induces the map 47 which is a rotation
by angle n along the axis A (containing p,) in Figure 3.

(3) A=S%2, 2, 2).

p: pactson {(1, &), (1, b—F), (2, 1), (2, 1), (2, 1)} for arbitrary b, REZ so
that p is a rotation along the axis A’ (containing the images of the first 2
fibers) in Figure 3 which induces the cyclic permutation of the 3 cone points.
The isotopy class of p does not depend on % (cf. [1], [18]).

Then D*(F) is generated by 7, g, p (if they exist) which satisfy the follow-
ing obvious relations: t*=0*=p*=1, to=o07, Tp=pr, p and or form the
symmetric group of degree 3.

In the case when F is a lens space L(p, ¢) which corresponds to {(1, b),

(aly 181)7 (ab 52)} Wlth

(*) p=bajas+a,Bs+asB,, g=ma,+np, for ma,—n(ba,+B)=1, m, neZ
([16], [6] Here if p<0 we assume that L(p, ¢)=L(|p|, —¢q).)

The group D*(F)=Z,XZ, generated by 7 and ¢ if ¢°=1 and ¢+ +1 (modp);
D+*(F)=1 if |pl=1 or 2, and D*(F)=Z, generated by r otherwise ([2], [8].
The isotopy class of the diffeomorphism of F=L(p, q) is determined by its
action of H\(F, Z) ([2], [5]). The involution = on F induces the multiplication
by —1 on H,F=Z, and so its isotopy class does not depend on the fibrations.
On the other hand it is easy to see that L(p, ¢) has the fibration of the form
{1, b), (a, B), (a, B)} satisfying (x) if ¢°=1 (mod. p) and ¢ with respect to this
fibration induces the multiplication by —¢ on H,F. Hence o=1 if ¢g=-1
(mod p) and o=t if ¢=1 (mod p). Note that L(p, —¢) has a fibration {(1, b’),
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(a’, B), (a’, B")} satisfying (*) for (p, —¢) in place of (p, ¢) and 72 on L(p, —¢q)
with respect to this fibration corresponds to 4 on L(p, ¢) with respect to the
original fibration for A=¢ or zo.

If F is not a lens space then the Seifert fibration of F over an orientable
base is unique and we can see that all the relations in D*(F) except for the
obvious relations above come from below (see [1], [18], [4],
for the details). Here we note that every element of D*(F) given above can
be realized by an isometry of F. It is sufficient for our purpose in § 3 to check
this for =, g, 7o, p, 7p. Each of them induces the cyclic action on F such that
the quotient is a spherical 3 orbifold (see the classification by Dunbar and
for the lens spaces). Hence they can be represented by isometries as the
covering translations of F. The following proposition is involved in the classi-
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fication of D*(F') but we give its proof for completeness.

ProposITION 1. (i) If F=1{{,b), (2, 1),2, 1), (n, B)} with nb+1)+k=
+1, then t=id for n even and o=id for n odd.

(ii) If F={{1, -1),(2, 1), (3, 1), (3, 1)}, then c=1id.

i) If F={1, -1, 2, 1),3, 1), &, D} or {1, =1),2, 1),(3, 1),(5, 1)} then
T=id.

PRrROOF. In every case listed above I'=n,F is a subgroup of SU, up to
conjugation in O,. If we identify S® or SU, with the set of unit quoternions
then I” acts on S® as the right multiplication by the elements in S®. Consider
the map s:z+2zj—j(z:+2,7) which preserves the Hopf fibration, and induces
the antipodal map j: A——2"' on S?=C\Uc. Since ;j commutes with the right
multiplication ; descends to the map j’ which preserves the induced fibration
S*/I'—-S?/T" and covers the isomorphism j’ of A=S?/I". Consider the polyhedron
P such that I' is the group of the symmetric transformations of P. Then every
cone point of each base A comes from either the vertices, the midpoints of the
edges, or the centers of the faces of P. Since j’ is induced by the antipodal
map of S? we can see that j'=r (up to isotopy) in the cases (i) for » even,
(iii), and j’=¢ in the cases (i) for n odd, (ii). On the other hand left multi-
plication on S*® by a path 7, from j to 1 in S® also descends to the map 7;:
F—F since 7, commutes with the action of /. The map 7/ gives the desired
isotopy between j’ and id.

§ 3. Geometric 4 manlifolds of type S®XE.

In this section we restrict our attention to the geometric 4 manifolds of
type S®X E and their fibrations. First suppose that S=1"\S*XE where [ is a
discrete subgroup of Isom™(S®XE)=(0(4)xIsom E)* acting freely on S*XE.
Put I"=I""\(The kernel of the projection p: Isom(S*X E)—Isom E) and = p(I").
Then we have a fibering I'\S*—I'\S*xE—I'\E induced from the natural
projection where ’NE=S" and I"/\S*® is a spherical 3 manifold ([23] §2) since
there is no orientation reversing diffeomorphism on /'/\S* without fixed points
([19]) and hence I’ contains no reflections. Conversely let S be an orientable
bundle over S' with fiber a spherical 3 manifold F. Since the diffeomorphism
type of S is determined by the isotopy class of the monodromy 2: F—F, we
can assume by the classification of D*(F') that A is conjugate to one of 1, 7, ¢,
7o, p, Tp which can be realized by an isometry (§2). Hence S is the orbit
space F >1< S* of the Z, action on FXS' (where % is the period of 1) generated

by Alx, 6)=Qx, 0—1/k) for x&F, §cR modl (1=1, 7, 0, 7a, p, Tp). There-
fore every F-bundle S=FXS' over S' has a geometric structure of type S*XE.
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Since 2 induces an automorphism 2 of A the composition of the natural pro-
jection FXS'—F and = : F—A induces a Seifert fibration S—B=A/2. The local
structure of the fibration is given by the following lemma.

LEMMA 2. Let n: S,—D? be the fibration over the 2 disk D* with general
fiber S* such that ==0) is a multiple fiber of type (m, a) with respect to a cross
section q. (1) Let ¢ be the fiber preserving involution inducing the reflection 7 on
D2 (the rotation by angle m of the solid torus). Consider S(,>£<S1 where «(x, 0)=

(¢x, 0—1/2) for xS, 0= R modl. Then the fibration n’: SyXS*—>D?*/7 induced

by the composition of the canonical projection and = gives a neighborhood of a
multiple Klein bottle of type (m, 0, a). (2) Let 2 be an orientation preserving
fiber map of S, mapping q to itself with 2*=1 which induces the rotation 2 of
D* of angle 2r/k. Consider SyX;S' where Ax, 8)=(Ax, §—0b/k) for x&S,,
0=R modl, g.c.d.(k, b)=1. Then the fibration n’:So>§S‘—>D2/§:D2 induced

by the composition of the natural projection and m gives us a neighborhood of a
multiple torus ='~*(0) of type (mk, mb, a) with respect to (q’, I, h) where q' is the
image of q by 2,1 is the S' factor and h is the general fiber of S,.

ProOF. (1) We have an isomorphism SO:D23<S‘ where A4z, @)=
0

(exp(2mi/m)z, p—a/m) for ¢=R modl, z&€C, |z| <1 such that =:S,—D® is
induced by the natural projection D?*xXS'—D? Then S,XS'=(D?*XS'XS")/Dyn

where D,, is the dihedral group generated by 2 and ¢ which act on D?XxS'xS?
by Az, 8, p)=(exp(2ri/m)z, 8, p—a/m), (z, 8, ¢)=(Z, 6+1/2, ¢) for zeC,
|z|£1, 0, p=R/Z. This gives us a neighborhood of the desired form. (2)
The curve in D?XS* represented by (exp(2zit/m), —at/m), 0<t<1 descends to
a cross section ¢ such that mg+ah is null-homologous in S,. Then the action
of 20n S, is induced by that on D*XS!' defined by 2'(z, ¢)=(exp(2ni/mk)z,
¢—a/km). Hence we have a diffeomorphism between S°>f51 and (D*XS'XSY)/2’

where 2'(z, 0, ¢)=(exp(2ri/km)z, 6 —b/k, o—a/km)for (z, 8, ¢)=D*X S*X S* such
that z’ is induced by the projection D*xS'xS'--»D? This gives the desired
representation of the multiple torus =’~*(0).

Now using we will describe the Seifert fibration for each geometric
4 manifold S=F>/1<S1 of type S®xE.

Case 0. For any F={(n,, a,), ---, (n4, ax)} we have
(0) FXSl——_{(nl) O, al)’ Tty (nk, 0: ak)} Wlth B———Sz(nly Ty nk>~
1) F>r<51={(n1, 0, a), -, (n, 0, ap)} with B=D¥#,, -, 7).

Case 1. F=L(p, q) with ¢*=1 (mod. p) A=a, ot with respect to the fibration
of the form {(1, b), (a, B), (a, B)} satisfying
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(%) p=a2B+ab), g=ma+nf for ma—n(f+ab)=1, m, n€Z.
(1-2) L(p, ¢)xS*={{, 0, b), (a, 0, B)} with B=D*a) satisfying (x).

The action of ¢z on {(1, b"), (1, b—0b"), (a, B), (a, B)} yields
(1_3) L(p) Q)XSII{(Z, 1; bl); (27 '—1; b_._.b’), (a; 0’ /9)} With B:'Sz(z: 2; a)

with arbitrary b’ which is equivalent to the case with 4’=0 (change the cross
sections or replace (I, h) by (h, h)).

REMARK 1-4. We note that L(p, q)%S‘:L(——p, q)>2<S1 for A=o0 or ro where

A on L(—p, q)is defined with respect to the fibration {(1, —b), (@, —B), (a, —f)}.
On the other hand L(p, —¢) has a fibration {(1, &), (a’, B"), (a’, B')} satisfying (*)
for (p, —q) in place of (p, g). Then we have L(p, q)>1<51:L(p, —q)>§S1 for

A=¢ or t¢ where 4 on L(p, —¢q) is defined with respect to the above fibration.
Case 2. F={(1, b), (2, 1), (2, 1), (n, k)}.
(2-2) FxS'={{1,0, b), (n, 0, k), (2,0, 1)} with B=D*2, 7).

(2-3) FxS'={(@n, n, k), (2, —1,b), 2,0, 1)} with B=S%2, 2, 2n)

which is equivalent to {(2n, n, k+nb), (2, —1,0), (2,0, 1)} (change the cross
sections or replace (I, h) by (lh, h) as in case (1-3)).
The action of p on {(1, 0"), (1, b—b'), (2, 1), (2, 1), (2, 1)} yields

(2-4) FxS8'={(2,0,1),(,1,¥"), @3, —1, b-0b")} with B=5*%2, 3, 3)
0

which is equivalent to {(2, 0, 1), (3, 1, 0), (3, —1, b)} by the same reason as before.
On the other hand p and 7 act on {(1, s), (1, s), (1,1, (L, t), 1,1, (2,1),
(2, 1), (2, 1)} so that the images of the first two fibers on A are fixed by p,

interchanged by 7 and the image of three fibers of type (1,¢) are fixed by 7
and are permuted cyclically by . Then we have

(2-5) FxS'={1,0,1), 2,0,1), (3,1, s)} with B=D*2, 3), 25+ 3t=b.
Tp

Case 3. F={(1,0b),(2,1),(3,1), @3, &)} with k==1.
(3-2) FxS'={({1,0,b),(2,0,1), (3,0, 1)} with B=D*2, 3), k=1.

(3-3) FxS5'={2,1,0), 4, -2, 1),3,0, )} with B=S%2, 3, 4), k=1.

Note that {(2, 1, b’), (4, —2, a), (3,0, a’)} is equivalent to the one of the
above forms by the same reason as before.

Case 4. F={(1,b),(2,1),(3,1), 4, k)} with k=4+1.

Case 5. F={(1,b),(2, 1), (3, 1), (5, k)} with k==1, +2.
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In Cases 4 and 5 there are at most two fibrations, FxS! and FXxS.

Every example listed above has nonzero rational euler class. Next we will
show that any Seifert 4 manifold S over a spherical or bad orbifold B with
e¢+0 is diffeomorphic to the one already appeared in Cases 0~5. First suppose
that B=S%n., n,, n,) with n;=2. Then by an appropriate choice of the lattice
of the fiber S has the representation of the form {(n,, a:, b,), (ns, as, b2), (ns, as, bs)}
with 3% _,a:;/n;=0. Then by further change of the cross sectional curves we
can see that S coincides with one of the classes in Cases 0~5. For B+
S%n,, n,, n;) we can see that all the possible cases have already appeared in
Cases 0~5 except for the followings which we will treat in the next stage.

(1) The cases with B=S%m, n), P¥n),

(2) {d,0,0),(n, a, b)} with b=D*n), a+0,

3)={(n, 0, d"), (2, a, b)} with B=D*2, 1) with n=2, a+0 (we may assume
that a=1).

PROPOSITION 3. S={(n,, ai, b,), (ns, @3, bs)} with (a,/ny+as/ns, by/ny+bs/ns)
#(0, 0) zs diffeomorphic to L(p, )X S* where p and g are determined as follows.
Let ki=g.c.d.(as, b)), si, ti, ui, vi be the integers satisfying a;s;+bit;=F,,
nust+kvi=1.  Then p=g.c.d.(nk+ni(sias+t:0,), (—abi+aib))/ky), ¢=
— Uiy Fui(S1a2+1:0y).

Note. The signs of p and ¢ are not important since there is an oriented
diffeomorphism betweeh L(p, ¢)XS* and L(p, —q)XS™.

Proor. S is diffeomorphic to a union of two copies (D*XT?),, (D*xT?),
of D*XT? each of which is a tubular neighborhood of a multiple torus. Put
mi=(0D*X*X*);, l;=(xXS*Xx*);, h;=(*X*XS");. Then (m;, l;, h;) forms a base
of H(0(D*xT?®)=H(T® such that (m,, ls, ho)=(my, l,, h;)A for some Ae
GL,Z~SL,Z. On the other hand fix a base of the general fiber /, 42 and a cross
sectional curve ¢; for the /-th multiple fiber such that ¢,=—¢, on H(T®) and

n; % *x
(my, Ly, hi)=(q:, [, h)B; where B, is of the form lai * *]ESLaZ. Then A=

bi**

—100
B;l[ 8 (l) (I)JBZ. Let . be the set of all the matrices in SL,Z of the form

1 % % v
[8 Po] for P,=SL,Z. Then we can replace (m;, [;, h;) by the new base

(mq, I;, h)P for P M since the self-diffeomorphism P of 0(D?*XT?* can be
extended to the one of D*X T2 Hence B; can be replaced by B;P, and A can
be replaced by P’AQ’ for any P, P/, Q' M. We use this fact to reduce the
matrices A, B,, B, to the simpler ones. First note that B;=C;D; with C;=
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10 0 n; * %
0 ¢} —t;| and D;=|k; * *| where k;, s;, t; are defined in the statement of
0 b; s; 0 * =

P 0
and aj=a;/k;, bi=bi/k;. Then D; can be replaced by [ 0]

001
n, —v; ng * * n, * ¥|f1 00
for P,-:(’ ‘)ESLZZ as follows. Dy=|ks % %|=|k; * %||0 y z|=
ke us 0 x 0 x )10 —x w

0 001 001
(;,):——P;’(;). Then by simple calculation we can replace A by the matrix

ng —v; e ng —v; 10 %' p 0
[ki U; f} (for z, weZ with x2+yw=1)— 161 U; f 01 y’'|=|"* 0} for
0 0 1

e * x

100 c * %
—bla,+alb,. Furthermore A is transformed as follows. A—»[g P ]A:[d' ; *}
0 fg

¢ * x|[1 00 c x' Z
(for some P=SL.,Z, d'=g.c.d.(d, e))—+[d’ * [0 Q] [d’ Yy’ w'] (for some
0 fg 0 0 1

10 —z'1c¢ x' 2 ¢ x' 0
QeSL,Z)—-101 —w'l|d v’ w d’ y 0 This implies that D?XT*JD?*xT?*

00 1 00 4
=L(d’, ¢)XS*. This completes the proof.

k %k
of the form [d * *} with c=—un,tvi(sias+4:b:), d=nzk,+n(s,a,+1:b;), e=

ProPOSITION 4. S={A, (n, a, b)} over B=P*n) with b+0 (e(S)+#0) is
diffeomorphic to the Seifert 4 manifold over S*2, 2, |b|) of the form

{(2,0, 1), (2,0, =1), (b, —a, n)} if A= (1) _01) and
{2, -1, 1,20 -1, 0, —a, n)} if A= ((l) .}1)

Proor. First suppose that A-—-((l) _(_)1> Since P*n) is a union of a Moebius

band M, and a disk with a cone point D%*=n), S is a union of 7~ (M,)=NxS!
and 7z~ D¥n)=D*XT? where N is a twisted S* bundle over M, whose fiber
corresponds to h. Let a be the orientation reversing curve of M, and [ be
the other S* factor. Then N is also a twisted I bundle over the Klein bottle
K on which a and ah~! are the orientation reversing loops. On the other hand
N is also a Seifert fibration over D*2, 2). Let h’ be its general fiber and ¢
and g¢; be the cross sectional curves for the exceptional fibers such that
2¢i+h'=2¢;—h’=0 in H(N). Then we have ¢i=ha™, ¢;=a, h'=a® where a?
is the boundary curve of M,. Moreover a and ah~' are isotopic to the exceptional
fibers of N as the fibering over D%*2, 2). Then n~'(D*n)) is attached to NXxS*
in S so that —na®+al-+bh is null homologous in #~'(D*n)). This implies that
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b(gigs)+al’—nh’ is null homologous in D*xT? for (I, h")=(l, a®) and hence

S={2,0,1), 2,0, —1), b, —a, n)}. Next suppose that Az((l) jl) Then S is

a union of n7'(M,) and n-(D*n)) as before. To describe =-*(M,) we consider
the tubular neighborhood U in N of the fiber of N as an I bundle over K
(Figure 4). Remove U xS! from NxS! and reglue DX IXS* so that m—! for
the meridian m of U corresponds to the meridian of the attached D?*XIXxS'.
Then we get a new T? bundle over M, diffeomorphic to =~*(M,). On the other
hand there are two loops a; and «a, near « and ah~! on K isotopic to a® in N. They
correspond to the general fibers near the exceptional fibers in /N (as the fibering
over D%*2, 2)). Then after the Dehn surgery given above a, is identified with
a,+! (Figure 4). Therefore the Seifert invariant (2,0,1) is replaced by
(2, —1,1) with respect to (a,, /). Then the correspondence ¢i=ha!, ¢:=a,
I'=l, h"=a*® gives a diffeomorphism between =~'(M,) and a Seifert fibration
over D*2, 2) with the multiple tori of type (2, —1, 1) and (2, 0, —1). Thus we
get a desired diffeomorphism.
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Figure 4.
By simple calculation and we have

COROLLARY 5. (1) Put Sz{((l) _?1), (n, a, b)}, k=g.c.d.(a, n), a’=a/k,

and n'=n/k. Then S=F XS"' for F={(2,1), (2, —1), (b, k)} if a’ is even and
S=FXS' for F={(b, k), (b, &)} if o' is odd. (2) Let s:{((l) _11) (n, a, b}
(i) If b is odd, S=FXS' for F={(, 1), (b, (k—b)/2), (b, (k—b)/2)} where

k=g.c.d.2a+b, n). (ii) If b=2b’, then putting k=g.c.d.(b’+a, n), n'=n/k, we
have S-—:F3<S1 for F={1, —1),2, 1), 2, 1), %, k} Gf n' is odd) or F=
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1@, =1), @b, k+0b"), (20", k+b")} Gf n' is even).

PROPOSITION 6. Let S={(1, 0, &’), (n, a, b)} with a+0, nb'+2b+0. Put
k=g.c.d.n, a), n’=n/k, a’=a/k. Then S is diffeomorphic to
(L L;‘<S1 for L={(, n'b"), (k, b), (k, b)} if n’ is odd,

(2) FXS' (if b is even) or FXS* Gf b is odd) if n’=2m' where F=
12, 1), 2, =1), (b+b'km’, k). ’

PROOF. Put L={(, b"), -, (L, b"), (&, b), (k, b)}. Then there is a fiber-
preserving self-diffeomorphism g of L which preserves the orientation of the
general fiber, fixes the two exceptional fibers and induces the cyclic permutation
of the first n’ fibers of type (1, b’). There is also an involution ¢ on L which
reverses the orientation of the general fiber and induces the reflection on
S%*(k, k) along the circle through the images of the n’ fibers of type (1, d’).
Extend the actions of g and ¢ to those on LXS' by u(x, 8)=(px, 0+a’/n’),
a(x, 8)=(ax, 0+1/2) for x€L, =R (mod1). Then S is the orbit space of
the group {g, o) generated by p and ¢ acting on L XS'. Note that # commutes
with @.

Case 1. n’ is odd. Then for some s<Z satisfying 2sa’+n’=1 (mod2n’),
¢, 6>=12,,, generated by p’¢ which acts on the S' factor as §—60+41/2n'.
On the other hand g is isotopic to the identity on L since g induces the identity
on Hi(L) ([2], [8]). Hence S=L x S! is diffeomorphic to L xS'.

Case 2. n'=2m’ for some :n'EZ. For some s&Z satisfying sa’=1
(mod.2m’"), <y, 0>=2Z;+Z,n generated by p#™¢ and p’. Here p™ o acts triv-
ially on the S'-factor and L/p™a={(1, b'm’), (k, b)} over P* k). To check the
action of g¢* on L/p™ o consider the original representation of =,S: {¢, A, gl
[g, h1=[gq, #1=1, che*=h"", ¢™*29* pd=1, qeg ¢ *=h"}. Choose u,veZ
such that 2m’v—a’u=1 and put ¢ '=¢™¢*, A=¢“*°, h’=h. Then =x,S=
{, 2, W |PPE=R"PT ™R DR/~ =h'"1, AR A =h', APA~ ' =¢h’~**"}. Here ¢ and h’
generate the subgroup isomorphic to z,(L/u™ o) such that ¢ and ¢h'~! corre-
spond to the exceptional fibers of multiplicity 2 and ¢* corresponds to the general
fiber for the Seifert fibration of L/p™ ¢ over S*2, 2, |b+b'm’k|). On the other
hand # must be odd and hence by the above relation we can see that 7,S=
m(L/p™axS") if b’ is even and nIS:zrl(L/ym’aiisl) if b’ is odd. Since the

bundle structure of S over S* (with fiber fixed) is determined by =x,S (Proposi-
tion 8) we obtain the desired result.

PROPOSITION 7. Let S={(n, 0, b"), (2, 1, b)} on D*2, 7) with n=2. Then S
is diffeomorphic to FxS' if b is even and FXS' if b is odd where F={(2, 1),
@, —1), 0'+nb, m)}.
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Proor. Let L={(1, b), (1, b), (n, V'), (n, ')} and let p be the fiber-preserv-
ing involution of L which preserves the orientation of the fiber and induces the
rotation of angle = on S*n, n) along the axis through the image of the fiber
of type (1, b). Also consider the involution 1 of L which reverses the orienta-
tion of the fiber and induces the reflection of S%n, n) along the circle through
the images of the exceptional fibers. Extend the actions of p and 2 to those
on LXS' by p(x, @)=(px, 0+1/2), A(x, 6)=(Ax, 8+1/2) for x&L, §=Rmod1.
Then S=LXxS'/{p, > where {p, 2> is the group generated by p and 2. We
note that pAd (=4p) induces the identity on the S* factor and the fiber-preserving
map on L such that L'=L/pi={(1, b), (n, b’)} on P*n) which is diffeomorphic
to {(2, 1), (2, —1), (b’+nb, n)}. Then A induces the involution A’ on L’ and S=
L’;gSl where A'(x, )=(A'x, 0+1/2) for xL’, §=S*. On the other hand con-

sider the original representation of 7,S: {qs, g1, ¢, h, [|I=¢%, the*=h"", ¢,qoeq7'e™?
=1, equet=q3", qrh* =1, ¢ih*=1, [qi, I1=[qi, h]=1 (i=0,1)}. Putting 7=
(q0)™*, A=¢, h’=h we have the equivalent representation z,S={7, h’, 2|7*"=
RO AR AT =R, QYA =h"r"Y, yh’r"'=h’'"'}. Then 7 and h’ generate the
subgroup isomorphic to m,L’ such that y and 7k’ corresponds to the exceptional
fibers of multiplicity 2 for the fibration of L’ on S*2, 2, |b’+nb|). Note that
Th'® is conjugate to 7 (for b even) or vk’ (for b odd). Thus we can see that
n:IS:m(L’l>1<Sl) if b is odd and -—-nl(L’>T<SI) if b is even. Since the bundle

structure over S!' with fiber L’ of L’i(Sl is unique (Proposition 8) we obtain
the desired results.

Summarizing the above results together with [Proposition § below we obtain
Theorem A for the geometric manifolds of type S*XE. The correspondence

between such manifolds and the Seifert fibrations can be seen by the above
Propositions and the observations in § 2. We only indicate such correspondences
(up to fiber preserving diffeomorphisms) in the exceptional cases appeared in
Corollaries C and D in the following list.

List A-L
(I) L(p, xS
1) {(ny, ay, by), (ns, as, by)} on S n,, n,) with (Xa;/n;, 2b;/n;)#(0, 0) where the
relations between p, ¢ and the other integers are indicated in [Proposition 3
(2) The cases when L(p, ¢)=L(4k, 2k-+1).

{((1) _(1)), (m'k, 2a’k, 1)} over Pm’k) with g.c.d. (m’, 2a")=1.

{(1, 0, 0), 2n’k, a’k, 1)} over D*2n’k) with g.c.d. (2n’, a’)=1 and a’=+0.
(3) The cases when L(p, ¢)=L(2k, 1).
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{((1) _(1)) (m'k, a’k, 1)} over PX(m'k) with g.c.d. (m’, a’)=1, a’ odd.
{(1,0,0), (n"k, a’k, 1)} over DXn’k) with g.c.d. (n’, a’)=1, n’ odd (if a’=0
then n’'=1).

(4) The cases when L(p, ¢)=L(k, 1) with %k odd.

L1 ,(n, a, 1)} over Pn) with 2=g.c.d. 2a+1, n).
{(0 —1

{A,0,1),(n"k, a’k, —(n"k+1)/2)} over D¥n’k) with g.c.d. (n’, a’)=1 and
n’ odd (if a'=0 then n'=1).

() L(p, 9XS'

IO {1, 0,b), (ay, 0, by), (as, 0, by)} on D*a,, a,) where p=ba,a,+a,b,+asb,, g=
mas,+nb, for m, n=Z, ma,—n(ba,+b,)=1.

(2) The cases when L(p, ¢)=L(4k, 2k+1).
{(£,0, 1), (2, 1,0)} on D¥2, k) with k>1.

(3) The cases when L(p, ¢)=L(2k, 1).
{2, 1,0), 2, —1, 0), (k£ 0, 1)} over S¥2, 2, k).

{((l) _(1)), (n, a, k)} over P%(n) with g.c.d. (n, a)=1, a odd.

{1, 0,0), (n, a, k)} over D¥n) with g.c.d. (n, a)=1, a+0, and n odd.
(4) The cases when L(p, ¢)=L(4, 1).

(G 1) (n @, 22} over PHn) with g.c.d. (a+1, m=1, n odd.

{1, 0, 1), @m, a, 1—m)} over D*2m) with g.c.d. 2m, a)=1.
(5) The cases when L(p, ¢)=L(k, 1) with £ odd.
{2, 1,0), (@2, —1,0), (k 0, —(k+1)/2)} over S*2, 2, k).

{((1) _}) (n, a, B)} over P¥n) with g.c.d. 2a+k, m)=1, b odd.

{(1,0,1), (n, a, (k—n)/2)} over D¥n) with g.c.d. (n, a)=1, n odd and a+0.

() L(p, 9 X S'=L(p, pxS' it ¢=1 (mod. p), L(p, )XS'=L(p, 9)xS" if
g=—1 (mod. p), L(2, 1)3<51=L(2, xS, SS>§SI:S3><51 for any 4. Furthermore
we have L(p, q)>l<S‘=L(p, —q)>§S‘ for Az=0¢ or 7¢ (cf. Remark 1-4).

The following proposition is proved by a direct calculation (cf. [15], [9])
and so we only give the sketch of the proof,

PROPOSITION 8. Let Si:Fi;<_Sl be an Fi-bundle over S* with monodromy 2;

where F; is a spherical 3-manifold (=1, 2). If S, is diffeomorphic to S, or =S,
=r.S, with F,=F, then there is a (weak) bundle isomorphism betweem them.
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Moreover S, is diffeomorphic to S, if and only if m,S;=n,Ss unless S;=L;XS"
or L;XS' for some lens space L; (=1, 2).

SKETCH OF PROOF. Suppose that there is a diffeomorphism ¢ between S,
and S,. Let p;:S;—S' be the bundle projection. We may assume that 4; is
one of the diffeomorphisms appeared in §2. Since the map px«: 7,S;—x,S* in-
duced by p is a canonical map =,S;—H,S;/ Torsions there is a following com-
mutative diagram.

T F 7S VA
l ¢ l P l P
n, Fy 7S, VA

where ¢ is the isomorphism induced by ¢x, gx==id. Then we have a diffeo-
morphism between the infinite cyclic coverings of S; ond S, induced by p,;
which yields an h-cobordism between F; and F,. Hence F; is diffeomorphic to
F, (cf. [15], [9]). Put F=F,=F,. The above diagram shows that there is an
element y=x, F such that 5(x)=7(¢sxdisx5'(x))r* for any x&mx,F where A, is
an automorphism of x,F induced by 4;. If F is a lens space then A;4=A4:;x on
7, F (A1x=2%"' in either case) and hence 4; must be isotopic to A, ([2], [8]). If F
is not a lens space then the general fiber h of the Seifert fibering of F over A=
S%(n,, n,, n,) generates the center of 7, F. Thus we have A1x(h)=A24.+(h)=h* with
e=+1. Conosider F>z<Sl with 1=id, 7, o, 7a, p, Tp (if they exist). Note that

h has order 2 in x,F if and only if F belongs to the cases in [Proposition 1. In
the other cases we can distinguish F >/I<S1 with 2=id, 7o, p from those with

i=t,0,70. If n'l(F>Z<Sl)::7r1(F><Sl) then 2i'=¢sp«3’ on HF for some iso-
o

morphism ¢y of H;F. Thus considering the actions of 2 on H,F explicitly we
can see that F 3< Svs for different A’s listed above have mutually different funda-

mental groups. The above proof is still valid under the assumption 77:1(F12>< SY
1
:nl(F23<S‘) if F,=F, or under the same assumption unless F;, and F, are lens
2

spaces with the same fundamental groups. If F;=L(p, ¢;) and A;x(x;)=x% for
the generator x; of H,(F;)=Z, we can see by the above argument that {i'=t¢,
(mod p). If t;==+1 (mod p) then A;=id or = (up to isotopy). If #;%==+1 (mod p)
then ¢i=g¢i=1(mod p), ¢1, ¢+ *1, and t;==+¢; (mod p) (and hence A;=¢ or 7g).
Therefore ¢,=+¢,(mod p) and Flsz‘ is bundle isomorphic to F2]>§S1 (cf.

Lemma 13). This proves
COROLLARY 9. S=F >/§Sl has a complex structure (and is diffeomorphic to a

Hopf surface) if and only if A preserves the orvientation of the fiber of some Sei-
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fert fibration of F over an orientable orbifold up to isotopy. In this case S is
one of the Followings. The corresponding Seifert fibrations are given by (2-3),
(2-4), (3-3) and the previous propositions.

(1) L(p, q)XS! and extra cases L(p, q)>/1<S1 for A=ta, ¢ (which induces the

multiplication by +q on m L(p, q) if ¢°=1(mod p) (see Remark 1-4).
(2) FXS?', FXS' for F={(1, b), (2, 1), (2, 1), (n, k)} and one extra case FxS*
(14 0

if (n, k)=(2, 1) for every beZ.
3) FxS' if F={(1,b),(2,1),(3,1),(3, &)} with e==*x1 and one extra case
FxS' if e=1 for every beZ.

(4) FXS' for F={(1, b), (2, 1), 2, 1), (4, £1)} for every b= Z.
(5) FxS' for F={(1, b),(2,1), (3, 1), (5, k)} with k==+1, £2, beZ.

REMARK. (1) The Hopf surface of the form FxS' in (2) is missing in
(1
Theorem 9 (see [10]). (2) Every manifold F>/~1<S1 of type S*XE satisfies Wu’s

criterion and so has an almost complex structure.

PrROOF. Any manifold listed above is a Seifert 4-manifold over an orient-
able spherical or bad 2 orbifold S*m,, ---, m,) and is the elliptic surface
L. (my, a;/mi+bw/my) - L, (my, ar/mp+brw/my)P' XE where E is the
elliptic curve of period (1, w) and L, denotes the logarithmic transformation at
x&P'. On the other hand any Hopf surface with abelian fundamental group
is diffeomorphic to (a lens space)xS*' ([9], [11]) and every Hopf surface with
non-abelian fundamental group is an elliptic surface ([11] Theorem 32). Since
every elliptic Hopf surface must be of the above form ([11] Theorem 27) it must
coincides with one in the above list.

§4. Geometric 4 manifods of type S?xE?2,

In this section we discuss the structures of geometric 4 manifolds of type
Stx E? Let S=I'\S*X E® where ['=x,S is a discrete subgroup of Isom*(S?x E?)
=(Isom S? X Isom E*)* acting freely on S?xXE®?. Let [I,=I""(The kernel of the
projection p: Isom (S?X E?)—Isom E?) and I'=p(I"). Then I'y=1 and I'=1I since
I'yC SO, acts freely on S®. Hence S has a fibration over B=1"\FE? with general
fiber S® induced by the projection S*X E®*-E®. Furthermore any nontrivial
cyclic subgroup G.C I’ fixing some point x<E? acts on S?Xx{x} freely. There-
fore G.=Z, which acts on E? as a reflection and an antipodal map on S®>x{x}.
Hence the base B is either T2, K (the Klein bottle), A(the Annulus), or M (the
Mobius band) and the fiber over a reflector point is RP? Hereafter we will
simply call S an S* bundle over B. Let (z, w) be the coordinates of S?XE?
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with zeCUx, weC. We have just two orientable S? bundles S, and S, over
B=T? or K with w,S,=0, w,S,#0 respectively where w, is the second Stiefel
Whitney class ([13]). For the cases with B=A4, M we have

PROPOSITION 10. There is only one S* bundle over B up to diffeomorphisms
if B=A or M.

PrOOF. Let S be such a bundle and let I be an orbifold which is a unit
interval with 2 reflector points. Then there is just one orientable S? bundle N
over I which is diffeomorphic to P*#P* ([19]) and S is an N bundle over S
But = (Diff+ (P*#P?))=Z, whose generator interchanges 2 copies of P*—D? in
P*#P? ([17], Lemma 3.2). Hence there are just two N-bundles over S' one of
which is the S? bundle over A and the other is the S? bundle over M.

Case 1. B*=T?*. In this case #;S=Z? generated by a and 8 whose action
on S*X E? is defined by a(z, w)=(a(z), w+a), f(z, w)=(5(z), w+b) where a, bC
are linearly independent overR (we can assume that a=1, b=7) and @, =SO0;.
Since af=pa either @ and B are the rotations with the common axis or @ and
B have order 2 with the mutually perpendicular axes. Then we can assume
that either

(1-1) a(z)=rz, p(z)=0dz for some 7, dC, |7|=|6]=1 or

(1-2) a(z)=-z B(z)=1/z.

In either case S is diffeomorphic to a ruled surface of genus 1 ([20]). In
case (1-1) @ is isotopic to the identity through the isotopy commuting with j
and § is also isotopic to the identity. Therefore S=T2XxS? Suppose that 7=
exp(2ria/n), 6=1 with g.c.d. (n, a)=1. Fix a’eZ such that ea’=1 (mod n).
Then a”, a*', B generate 7,5 and yields the fibration {(n, a’, 0), (n, —a’, 0)}
(where a™ and B8 form a lattice of the general fiber). Conversely any Seifert 4
manifold of the form {(n, a, b), (n, —a, —b)} is equivalent to that of the above
type. In case (1-2) @ and B generate the group I” acting on S? such that S?/I"
=S8%2, 2, 2) whose cone points correspond to 0 and oo, +1, +7. Hence S=
{2, 0, —1), (2, —1,0), (2,1, 1)}. Here the period of the general fiber is 2 and
2. We have the lift T of the base B of the form 7, ,=(1—t)exp(nis)+
texp(—mis) for 0<s, t<1. Then we can see that T-T is odd and this implies
that w,S=+0 (see [20]).

Case 2. B=K. In this case we can assume that 7,S=n,K={a, flafa =1}
acts on S*XE® by a(z, w)=(a(z), w-+1/2), f(z, w)=(B(z), w+i) where a(z)=
(wiZ—W)/(weZ+W1), p(2)=pz with w;, w.€C, |w,|*+|w.|’=1, p&C,, |p|=1
(take conjugation by some elements in SO;). By the relation af=p"'a we have
the following 3 cases.

(2-1) p=l1, & is arbitrary.
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(2-2) a(z)=p'z for p’<C, |p’|=1, p is arbitrary (w;=0).

(2-3) a(z)=p'z™* for p’'eC, |p'|=1, B(z)=—2z (w,=0).

In case (2-2) replacing z by p’~'/?z we can assume that p’=1. We denote
S in cases (2-1), (2-2), (2-3) by So(@), Si(p), Si(p’) respectively.

PROPOSITION 11. wy(S)=0 if S=Sy(a), Si(p) and wyS)+#0 if S=S(p’).

PROOF. In case (2-1) Sy(&@) is an S®xS! bundle over S' with monodromy
represented by @(z, 8)=(&(z), —8@) for zeC\Uc, §=S'. But @ is isotopic to the
map &z, 8)=(Z, —0). Then the map w—(r, w) for any r&e RCC\Uc gives rise
to a cross section K of Sy(&,) satisfying K2?=0 as the element of H,(S\(&,), Z5)
and hence w,(S)=0. In case (2-2) the self-diffeomorphism f of S*xE? defined
by f(z, w)=(p"™"¥z, w) commutes with @ and f~'8f(z, w)=(z, w+i). Therefore
f induces the diffeomorphism between Si(p) and Si(1)=S(&,). In case (2-3)
putting p'(1)=—exp(itd) for p’=—exp(zd) we have the map f(z, w)=
(p'(2Re w)z, w) with f=Bf and f'af(z, w)=(—Z"}, w+1/2) which induces the
diffeomorphism between S,(p’) and S,(—1). Let K={w=s+ti|0<s<1/2, —1/2
<t<1/2} be the fundamental region of K. Then the map from K to S?XE?
defined by w=s+ti—>((1—2s)expri(t+60+1/2)+2s-expni(—t+8—1/2), w) gives
rise to a cross section Ky of the S? bundle S,(—1). We can see that K, and
K., intersect exactly when =0, s=1/4 at one point 0=C\Uco. Since K,,, is
homotopic to X, the self-intersection number K2 of K, in H,S, Z,) is equal to
K, -K,;,#0. Therefore wy(S,(—1))=0.

Case 3. B=A. In this case we can assume that 7,S==¢""A={a, B, ¢|*=1,
{a, B1=1, tar'=a, (B '=B""} acts on S*XE? by «(z, w)=(—2z"", W), alz, w)=
(a(2), w+1), B(z, w)=(B(2), w+i). By the relation (8¢ '=8"" and the fact that
B¢ must induce the free involution on S* the action of z,S is reduced to that
satisfying a(z)=pz, B(z)=z for p=S'CC. The diffeomorphism type of S does
not depend on p.
" Case 4. B=M. In this case 7,S=3""M={a, B, t|afa'f=1, tar'=pa,
¢Be*=B7*, =1}. Since the antipodal map commutes with every element of O,
we can assume that ¢«(z, w)=(—2z"", W+1i/2), a(z, w)=(&(z), W+1/2), Bz, w)=
(z, w+i) where @a=0,\S0,. The diffeomorphism type of S does not depend
on the choice of &.

Now we describe the structures of the corresponding Seifert 4 manifolds
for each S.

THEOREM 12. Let S be an S? bundle over B with B=T?* K, A, M. Then S
has the structures of Seifert 4 manifolds as follows.

LisT A-TI
(1) B=T? w,S=0.
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1) {(n, a, b), (n, —a, —b)} over S¥=n, n).
(0) B=T? w,S+0.
1) {@,0, -1, 2, —1,0), 2,1, 1)} over S%2, 2, 2).
() B=K, w,S=0.
1) {((1) _(1)), (n, E, 0)} over P¥n) with £ odd.
(2) {(n, k, 0)} over D¥n) with n odd.
(38) {(m, 0, k), (n,0, —k)} over D*#, 7).
(IV) B=K, wyS)=+0.
(1) {1,0, 1), (2n, 2a, n)} over D*¥2n) with n odd.
@) {(1 1) (21, k, O)} over PX2n)
0 -1/
(V) B=A.
(1) {(n, k, 0)} over D*n) with n even.

(2) {(é __(1)>, (n, 2a, O)} over P2(n).

(VI) B=M.
1) {((1) _i) (n, k, 0)} over P%(n) with n odd.

(2) {d,0, —1),(2n, k, n)} over D*2n) with 2 odd.

ProoF. Cases (1) and (II) were already treaded. First consider Case (I).
Choose the action of the generators a, B8 of x,S defined by a(z, w)=(pz™!, W+
1/2), B(z, w)=(z, w+i) where p=exp(2rik/n) with g.c.d. (n, k)=1.

Case (i). n=2m, meZ. Choose a, b Z such that ak+bn=1 (k£ and q are
odd). Then z,S is generated by a®, [=a®*™, h=f where [ and h form a lattice
of T? of period m and 7 and a%=z, w)=(exp(2ni/2m)z~', W+a/2). Then a?®
induces the Z, action on S*XT°? such that S®:XT?%/Z,={(m, a, 0), (m, —a, 0)}.
Furthermore a® induces the involution on S*X T?/Z, acting on S%m, m) as the
antipodal map and preserving (resp. reversing) the orientation of [ (resp. hA).

Thus we have S-:{((l) _(1)), (m, a, 0)}. Conversely every such Seifert 4 manifold

form, asZ, g.c.d. (m, a)=1 with a odd is induced by the above process since
there exist b, k=Z such that ak+2bm=1. This proves I (1).

Case (ii). n is odd. There exist a, b= Z such that 2ak+bn=1 with a even.
Then =,S generated by ¢=a™", ¢=a’* and B=h with (z, w)=E*, T—n/2),
g(z, w)=(exp(2ri/n)z, w+a), h(z, w)=(z, w+i). This yields the Seifert fibration
{(n, a, 0)} over D¥n) with general fiber [=¢%, h. Every Seifert 4 manifold
{(n, a,0)} with n odd is induced by the above process. This proves I (2).
Consider the action of a and 8 of the form a(z, w)=(z, W+1/2), Pz, w)=(pz,
w+i7) where p=exp(2zik/n) with g.c.d. (n, k)=1. For some a, besZ with
ak+bn=1, =,S is generated by ¢=a, ¢=8% h=B" with ¢(z, w)=(exp(2zi/n)z,
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w-+ai) such that /[=¢* and A form a lattice of T2 of period 1 and ni. Consider-
ing the induced action of ¢ on S?xT? divided by ¢, we have S={(n, 0, a),
(n,0, —a)}. Here a attains an arbitrary integer such that g.c.d. (n, a)=1.
This proves II (3).

The other cases can be proved similarly as follows. In either case below
we take the new generators (g, ¢, [, h, ¢, ---) of xS in which the elements / and
h form a lattice of the general fiber T2, Futhermore we can see that every
Seifert manifold in IV~VI is obtained by one of the processes below. By G<a)
we mean the group G generated by a.

Case IV, B=K, w,S+#0 with the action of x,S defined by a(z, w)=(pz?,
w+1/2), Bz, w)y=(—z, w+i) with p=exp(2nik/n), g.c.d. (n, k)=1.

Case (IV(1)). n is odd. Take a, b=Z such that 4ka+nb=1. Put g=a®** g,
t=a", l=a®, h=* with q(z, w)=(exp(2ni/2n)z, w+a+bi), «(z, w)=(Z"", W+n/2).
Then S®XT*/Z,.,{¢>={(2n, —2a, —nb), (2n, 2a, nb)} on which ¢ acts as the in-
volution descending to a reflection of S%2n, 2n) which interchanges two cone
points. Thus we have S={(1, 0, b), (2n, —2a, —nb)} (geqg~'¢'=h® in x,S) which
is equivalent to {(I,0, —1), (2n, 2a, n)} since b is odd (replace g),

Case (IV(2)). n=2m for some meZ. Suppose that m=2m’. (If m is odd we
have the Seifert 4 manifold of the same type as in case (IV(1)).) Put o=a*,
I=a'™ and h=a*™ B! where k’<Z such that kk’=1 (mod 4m’) with ¢*z, w)
=(exp(2ri/2m’)z, w+k’), o(z, w)=(exp(2ri/dm’)z™', W+ k'/2). Then S*XT?/
Zom a®>={2m’, k', 0), @m’, —k’, 0)} on which the involution induced by ¢ acts

so that it yields s:{([l) _i) @m', k', O)} (use o, Wa™=(, Ih™).

Case V. B=A with the action of z,S defined by ¢(z, w)=(—2"*, @), a(z, w)
=(pz, w+1), Bz, w)=(z, w+i) with p=exp(2xik/n), g.c.d. (n, k)=1.

Case (V(1)). n=2m for meZ. Take k'eZ such that kk'=1 (mod 2m).
Put ¢=ca™, g=a*', h=F and also [=a*™=¢®. Then S*XT?%/ Z,,{g>=1{12m, k', 0),
(2m, —k’, 0)} on which ¢ acts as the involution and yields S={(2m, &’, 0)} on
D*(2m).

Case (V(2)). n is odd. Choose a such that 2ak+n=1 (mod. 2n). Put o=
a%, l=a”, h=B with ¢(z, w)=(exp(2ni/2n)z~', W+a). Then S*XT*/Z,{c®=
{(n, 2a, 0), (n, —2a, 0)} on which ¢ acts as the involution and yields S:{((l) _(1) ,
(n, 20)} over P¥n) (use a(l, B)a~'=(, h™").

Case VI. B=M with the action of z,S defined by «(z, w)=(—2"", W+i/2),
a(z, w)y=(—pz', W+1/2), Blz, w)=(z, w+i) with p=exp(2zik/n), g.c.d. (n, k)
=1.

Case (VI(1)). = is odd. Take an odd integer a such that 2ka+n=1 (mod
2n). Put g=a®% [=a®", h=a™ (B=tac'a™) with o(z, w)=(exp(2ri/2n)z"!,
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w-+a/2). Hence S*%XT?*/Z,{¢*>={(n, a, 0), (n, —a, 0)} on which ¢ acts as the
involution and yields s:{((l) ﬁ}) (n, a, 0)} (use a(l, hya~'=(l, Ih™") which comes
from [¢, a®*]=¢*=1) which is equivalent to {(é _}), (n, a—n, O)} (replace ¢ by

cgh).

Case (VI(2)). n=2m for meZ. First preform the parallel translation w—
w-+(m-—1)/4 to get the new representation of 7,S defined by ¢(z, w)=(—2z7",
w+mi/2), a(z, w)=(—pz™', T+(1+0m—1)%)/2), B(z, w)=(z, w+i) where p=exp
(2rik/2m), g.c.d. (2m, k)=1. Then for an odd integer a with ak=1 (mod. 2m)
r;S is generated by g=c(ar)™ ™, g=(ar)?, [=0? h=p. (From the relations (*=
aBa'f=1, B=tac'a"!, we have /=a®" and B "a*"=(ar)®™.) Here ¢(z, w)=
(exp(2ri/2m)z, w+(1—1i)a/2), a(z, w)=(Z', w—m/2). Then S *XT?/Z,,{¢>=
{@m, a, am), 2m, —a, —am)} on which ¢ acts as the involution and yields S=
{@T,0, —a), (2m, a, am)} which is equivalent to {(I,0, —1), (2m, a, m)} since a
is odd.

It is easy to check that every Seifert 4 manifold over the orientable bad or
spherical 2 orbifold with ¢=0 appeared in List A-T in where we
have just six manifolds up to diffeomorphisms distinguished by w, and the
fundamental groups. This class coincides with the class of the closed orientable
geometric 4 manifolds of type S?XE®?. Thus we have proved Theorem A for
the cases of type S®XE®.

COROLLARY 13. A Seifert 4-manifold S in List A-T is diffeomorphic to a
complex surface if and only if S is an S® bundle over T*. (They are the ruled
surfaces of genus 1.)

See for the complex structures compatible with S®2X E®. The first betti
number b,S of any S*bundle S over K, A or M is 1. On the other hand S has
an unbranced covering S which is an S? bundle over T2 with b,=2. But b,S=
b,S (mod 2) if S is a complex surface ([23]). Thus S does not have a complex
structure. We also note that every member in List A-II satisfies Wu’s criterion
and has an almost complex structure.

§5. Geometric 4 manifolds of type H2XE® and SEEXE.

First we describe the invariants of a Seifert 4 manifold S over a hyperbolic
2 orbifold B. Suppose that B has no reflectors. Denote B by X,(m,, ---, my)
(resp. 25(my, -, my)) if the underlying space |B| of B is orientable (resp. non-
orientable) of genus g with %2 cone points whose cone angles are 2x/my, -,
27 /m,. Then if we fix the lattice (/, 2) of the general fiber of S we have the
following representation of #,S. The identity matrix is denoted by I.
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{as, }91» s gy Bes G s ey L hill, h]
=[g:, 11=Lgs, h]1=1, ail, R)a7'=(, B)As, Bi(l, h)B3!
=(l, h)B;, Q?’jlajhbj:l, 1. a; ﬁi]ij]j':-lahb}
if B=3,(my, -+, mys),

{vls Tty vg’ diy "t 5 Qr, l; hl[ly h]
=[gs, 11=[q:, nI=1, vl, hw3'=(, h)A;, qFil%ih%
=1, IIwil,q;,=1*h"} if B=3g(my, -, my).

Here {a:, B:} and {v;} are the sets of the oriented loops projecting to the
standard generators {@;, B:} of H,X, and {7;} of H,X), respectively, g; is the
lift of the meridian §; of the i-th cone point, A;, B; (resp. A}) are the monodromy
matrices along @;, §; (resp. v;) with A;, B,€SL,Z, Ai=GL,Z~SL,Z, T1.[ A;, B:]
=T1:A*=1, (m;, a;, b;) is the type of the :-th multiple torus and (e, b) is the
obstruction to extending g¢is to the cross section over B—\ J; (the meridian disk
of the i-th cone point). If B has reflectors we have extra invariants ([22]).
Let C,, ---, C; be the reflector circles of B, N; be the annular neighborhood of
C; in B, and B,=B—\, int N,. Put 7,=0dN,—C, oriented as in Fig. 5. Over
B, there are the monodromy matrices and the types of the multiple tori with
respect to (/, h) as before: A;, B,&SL,Z (resp. A;eGL,Z~SL,Z), along a;, §;
(resp. 7;) which are the standard generators other than 7,’s of H,B, when B, is
orientable (resp. non-orientable). Over N, choose the lattice (/;, h,) of T2 so that

the reflection ¢, along C. is represented by J= 10 with respect to (/;, h,).
0 —1

Fix the lift 7, of 7, which are the boundaries of the cross section over B,—\J
(the meridian disk for the cone point) extending the lifts ¢,’s of the meridian
circles g,’s for the cone points. Then we have the types (m[;, 0, b.,) of the
multiple Klein bottles with respect to the lifts ¢, of the meridians 7,, of the
cone points on the double cover B of B projecting to the corner reflectors on C,
and the euler class(a?, b7) of C, defined with respect to 7, as in §1. The mono-
dromy E, along C; is =1 and a7=0if E,=Iland a/=—1if E,=—1T (cf. [22]).
Finally we have the coordinate transformations of the general fibers at 7,’s:
(., h)=(, WP, for P,eSL,Z. 1f we take the curves 4,, -+, 3 in B as in
Figure 5 then the monodromy along &, is P, JP;'J with respect to (I, h). We
note that P, can be replaced by —P, and so only the value of P, in PSL,Z
makes sense. (Replace [;, &, and the lift ¢, of &, if necessary.) We can assume
that P.=1. If A,.=B,=P,=1I or A{:(é __(1J>, P,=1I for each ¢, or Al= ((1) _i)
P,=1 for each t we can define the rational euler class e¢(S) of S by e=
(a+2(ai/mi), b+2(bi/my)) (f B is orientable) or e=b+33(b;/m;)+
36y +205bin/mir)/2 (for the other cases). If B has reflectors the above invari-
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ants are defined so that b=0. The following proposition which claims the uni-
queness of the Seifert fibrations over the hyperbolic orbifolds is proved in
when the bases have no reflectors. The proof for the general cases is almost
the same and is omitted (use the fact that for a closed hyperbolic 2-orbifold B
n3"™B has no nontrivial normal abelian subgroup and any automorphism of
n¢"®B is induced by a self-isomorphism of B even if B has reflectors ([12], [26],
corollary 6.6.10)).

Figure 5.

PROPOSITION 14. Let p,;: S;—B; (1=1, 2) be the closed orientable Seifert 4
manifolds over the hyperbolic 2 orbifolds with 7,.S,=mS,. Then there is a fiber
preserving diffeomorphism between S, and S,.

Next consider S=I"~X where [ is a discrete subgroup of Gy=Isom*X act-
ing freely on X=H?*XE? or S’I\,;XE. If X=H?X E? then the identity component
G% of Gyx=UsomH®XIsomE®* is Isom°H?®xIsom°E?, and Gx/Gy=2Z, If X=
SLyxE then Gy=IsomSLyx R, Gy=Isom*SLyx R and G x/Gy=Z, with Isom*SL,
=R>z<§f2R. Here Z is the center of é\f,zR and the R factor acts as the trans-

lations of the fiber of the fibration R—>§z/2—>H 2, In either case Gy preserves
the fibration R*—»X—H? so that the generator of Gy/G% reverses the orienta-
tions of the fiber and the base. The action of /" induces the Seifert fibration
T ~NR*-»I'\X—I'\H* where I'y/=I""\(The kernel of the projection p7: Isom X—
Isom H?) and I'=p(I")([23], [24], §3). Next we determine the Seifert invariants
of the fibration 7 : S—B with B=IH?of S induced by the the above process.

THEOREM B. (1) Let S be a geometric 4 manifold of type H* X E? or SE;XE.
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Then the Seifert fibration of S over the hyperbolic 2 orbifold B induced by the
above process satisfies one of the following conditions up to fiber preserving diffeo-
morphisms.

(I) B is orientable.

(i) X=H?®XE? All the monodromy matrices are some powers of the common

matrix Q, where Q is conjugate in SL.Z to (__(1) (1)> or (_i (1)) If all the mono-

dromies are trivial then the rational euler class e is zero.
(ii) X-—:észR. All the monodromies are trivial and e is nonzero.
(I) B is non-orientable without reflectors.
(i) X=H?*XE? The monodromy matrix Aj; (j=1, ---, g) along the loop v;

is either i((l) (1)) or i((l) _(1)) for every j or Aj; is either i(g (1)>, i((l) _}),

or i(ﬁi (1)> for every j (up to conjugation by a common matrix in GL,Z). If

, (1 0 . , (1 1 : . .
A,~-<0 __1) for every j or Aj—<0 _1) for every j(up to conjugation by a common

matrix) then e is zero.

(ii) X:SrI:XE. A}:((l) __(1)> for every j or A}::((l) _}) for every j (up to
conjugation by a common matrix) and e is nonzero.

(II) B has reflectors. Let Py, A;, B; (resp. A}) be the matrices explained
above.

(i) X=H2XE:. A, B;are either +1I, i(o -1

0 01 L0

) for every j (or Aj is either
1 . : : _ 0 —1 .
i(o _1) or I(_l 0) if B, is non-orientable) and P,=1 or (1 0) (up to sign)

1 0

for every t. If A]:BJ::Pt:I for every jy t; (resp A.::(O __1

7, t if Bq is non-orientable) then e=0.

(ii) X-——S’\’LQXE. A;=B;=P,=1I for every j, t (resp. Aj-:(
every j, t) and e is nonzero.

Conversely in either case every Seifert 4 manifold satisfying the above condi-
tion has a geometric structure of type H*XE*® or §z;><E.

(2) A Scifert 4 manifold S over a hyperbolic 2 orbifold does not admit a
geometric structure if S is not one of the classes listed in (1).

), P,=1 for every

1 0

o _1) Pe=I for

Proof of Theorem B (1) for X=H*®XE"*.

Let (z, w) for zeC, Imz>0, weC be the coordinate of H2X E%, The action
of I" for S=I\H?x E? induces the faithful discrete representations of z¢{°B to
Isom H?® and we have the images @&j, 8j, Dj, §j, d. &, T1» G¢, ¢ Of the generators of
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7¢™B in Isom H*® (Fig. 5). Here &;, 3;, Dj, T, 1, G, §o,x correspond to the cur-
ves with the same symbols explained as before and 7 is the reflection along C,.
Then to determine the action of I” we need to give the action of the lift 7 of
each generator ¥ and the lattice /, & of the general fiber on H2X E®.

Case (1). B is orientable without reflectors (cf. for this case). The
action of I must be given as follows.

Wz, w)=(z, w+c), h(z, w)=(z, w+d) where c=u-+u’i and d=v+v’:

(u, u',v,v"ER) are linearly independent on R. a;(z, w)=(a,2), p,w+w;),
Biz, w)=(Bz), pjw+wj) where p;, pjeS'CC, w,, w;cC. We also deduce
95z, w)=(g3{z), w—(a;c+b;d)/m;) from [q;, {1=[g;, h]=1 and ¢Ti%hr%=1.

Putting R(p):<cosﬂ —sind

sinf  cos 0) for p=exp(70) we have

1) R(o)=PA;P", R(pp=PB,P~ for P=(", "),

)
from the relations a;(/, h)aj'=(, h)A;, B;I, h)B3'=(, h)B;. Furthermore we
duduce from H[aj, ﬂj]HQj:-la'hb

(2) ?(p]———l)w}——§(p}—l)w1~=(a+§} aj/mj)c-{—(b-l—%]bj/mj)d .

From (1) we see that A;, B; are commutative, |trA;|, |trB;| <1 ifA;, B;#+1
and hence A;, B; are periodic. Therefore either p;, p; are the powers of 7 for

every j orp;, p; are the powers of exp(zi/3) for every j. This implies that all

of A;, B; are some powers of a common matrix Q:(_(l) (1)) or (_i (1)) up to

conjugation in SL,Z. Fix c=u+u'i, d=v+v’i satisfying (1). If all the mono-
dromies are trivial (p;=pj=1 for every ;) we must have e=(a+Xa;/m;, b+
>b;/m;)=(0, 0). Conversely any Seifert 4-manifold S over B satisfying the
above conditions have the desired action of z,S on H®*XE® by reversing the
above process. For, if p;#1 or pj#1 for some j, we can put w,=w;=0 except
for wj (if p;#1) or w; (if p;#1) and arrange w; or w; so that it satisfies (2).
Case (). B is non-orientable without reflectors. In this case the action of
I’ is represented by /(z, w)=(z, w+c¢), h(z, w)=(z, w-+d), viz, w)=(T42), p;T+
wy), 95z, w)=(J;z), w—(a;c+b;d)/m;) where c=u-+u'i, d=v+v’; are linearly
independent over R, p,=S'CC, w;=C. Then from v, h)v;'=(, h)A} we have

@) PA;-P'I:R(p,-)G) _(1)) for P:(Z, z)

Therefore A} has order 2 and is conjugate in GL,Z to ((1) __2) or ((1) })

(or equivalently ((1) (1)» Performing the coordinate change w—p7'*w we can

assume that p,=1. Furthermore by some coordinate transformation of (/, i) we
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can assume that A;:((l) _(1)> or <(1) (1)) Suppose that A{:((l) __(1)> Then by (1)

P:<u 2,) Since A;eGL,Z and by (1) we have Agzi(l

0
0 0 _1> (and p;==£1)

i (01 oyt (0 1 _
01; Aj—i<1 O) (and p;==7, u==+v’). Next suppose A_(l O)' Then P=
1 —1 for some t=R up to scalar multiplication. Again by (1) and since A<
GL,Z we have the following possibilities.
(a) A§=i<(l) (1)) for arbitrary ¢, p;==+1,
(b) A}zi—(g (1)) i—((l) _(1)) for t=+1, p,==+1, +i.
01 -1 1 1 0 — .
(c) A}':i(l O)’ i( 0 1), :t(l _1) for t==+1/4/3, p;==+1, +exp(*xi/3),
01 1 1 —1 _
() A}zi(l O), i(o _1), ﬂ;( . (1’) for t=++/3, p;==+1, +exp(=+xi/3).

But (c¢) is reduced to (d) by the conjugation by ((1) _é
from the relation I7villq;=I*h® we have

2) 2p;wi+w;) = (a+23a;/mp)e+(b+2b;/mpd — (p.=1).

Suppose p;=1 for every j. Then we can assume that A}z((l) __(1)) for every

). On the other hand

j(ceR,deRi)or -——((1) _1) for every j (¢c=2v, d=v+v’i for v, v =R). In either
case there are w;’s satisfying (2) if and only if b+33b,/m;=0. This implies
that the rational euler class is zero. Suppose that p;#1 for j=2 (p;,=—1, +4,
+exp(+xi/3)). Then putting w,=0 for £+#1, j, we can arrange w;, w; so that
w,+W,+p;W;+w; is an arbitrary complex number. This proves the claim for
Case (1).

Case () B has reflectors. In this case =x,S is generated by [, i (the lattice
of the general fiber), 7. (t=1, -, s), ¢; (=1, -+, k), ai, Bi(or v;) i=1, -, g),
g, (t=1, -+, s), qir (k=1, ---, 5., t=1, -+, 5), ¢ where 7 is the lift of 7 for any
7 satisfying the following relations (cf. [22]).

(@) U, 1=, ¢d=[h, ¢1=, gel=[h, que]=1,

(b) ¢FiuRI=1,

© ail, Maz'=(, h)A;, Bil, hB7'=U, h)B; or v(l, hw;'=U, h)A},
., hyer'=(, ME,, o, h)ev'=(, h)P,JP'], TIle:, B:1TIg;=TIIz,
or ITvilIg;=Ilz.
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where A,, B,&SL,Z, A,cGLZ\SL,Z, E;=+I, j:((l) _(1)
H[Aj: Bj]:HEc or HA?:HEt (P=1I).

(d) qni*hlt*=1 where (I, h)=(l, h)P,,

), P,=SL,Z with

(e) 2=, the*=h"Y, 2=l,, t;hyt'=h7! where ¢,=ay,c,
() cequtr' =gty - qiaqeiqes = Gueys > C0Gut 0T =qtiyr
(8) Tugu - queyetiie*=18"thy where af=0 if E,=I, a/=—1if E,=—1I.
Fix the representation of n3"°B as before. Then the actions of the gen-
erators of #,S must be of the following form.
oz, w):(z(z), w+w,) (replace the coordinate w if necessary),
l(z, w)y=(z, wt+c), h(z, w)=(z, wt+d), ajz, w)=(@,(z), p;w+w;),
Bi(z, w)=(B(z), pjw+w})) or vz, w)=@42), p;T+w,)
where p;, p;ES!, w;, wiEC, gz, w)=(7{2), w—(a;c+b;d)/m;),
Tz, w)=(T:(2), e,w-+w,;) where ¢;,=1, (if E,;=I)or=—1({f E,=—1), w,=C,
qex(z, W)=(3:x(2), W+ Ye2), 02, W)=(G(2), Aw+W;) with 2,8, y44r, Wi=C.
Next we determine the monodromies. Replacing the coordinate w if neces-
sary we can assume that ¢(z, w)=(2), W+u/2), Iz, w)=(z, w+u), hi(z, w)=

(z, w+vi) for u, veR from (e). Hence the element 7 of the form 7(z, w)=
(Tz, pw+w,), pES', weeC with 1(/, h)r'=(l, h)Q for QESL,Z (r=aj;, Bj, T, 0:)

must satisfy p=+1 and Q==+1, p=7 and Q:i(o _1) according to u==v or

1 0
p=—t and Q———i((l) —(1)> according to u=—v or v. For vz, w)=@,2), p;T+w;)
. (1 0 . ,_ (01 . L,
either p;=+1 and A,-—$(0 _1), p;=¢ and Aj*i<l 0) according to u==+v’,

or p,=—1¢ and A}=i((1) (1)) according to u=—v" or v’. In particular for ¢, we
can see that only the following cases can occur: P,=+17] and P, JP;'J=1I (,=1)
or Pt=i<§) -—(1)) and P, JP;'J=—1I (A,=—1). We can assume that P,=1I in the

first case and Pt::( B ) in the second case (replace ¢, I;, h:, ¢; if necessary).

Now we determine 1the (c)>ther parameters. If 4,=1, P,=1I, we have

(e, )=, ), 0z, w) = (6:(2), w+W7), ¢z, w) = (6,42), W+u/2+07).
From (d) and (e) we see that
(i) Wi=s for some s,=R.

(i1) yea=—(bix/misvi. ((f) is automatically satisfied.)
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On the other hand from (g) we have

(ili) u(ee—1)/2+Wi(e,—1)+ W, — W, —e. (bir/mixi=af u+bjvi.

(a?=0 if ¢,=1 and a/=-—1 if ¢,;=—1.)

If 2,=—1, Pt-_:((l) ’(1)), we have Iz, w)=(z, w+vi), hyz, w)=(z, w—u),
ez, w)=(6,42), —W-—u/2+w;). From (d), (e), (g) we deduce
(i") W{=ei+vi/2 for some ¢,=R,
(ii")  yer=ubtr/mis,
(i) w(l—e.)/24e@;—Wi+ D+ D +e(Sbie/mis)u=alvi—blu.
Therefore fvrom (1), (i"), (ii1), (iii") we deduce

4v) W,=e,+ by +biy/miwi/2 for some e, R if A,=¢,=1,
Wy=e;+ s+ —> b /mirwi/2 for some e, s,=R if A,:=1, e,.=—1,
Wy=sy—(bY +2bi/mi)u/2 for some s;eR if 3,=—1, ¢,=1,
Wi=ej+sii—(bf —2btx/mir)u/2—u/2 for some e, sicRif 4,=—1, e,=—1.
We note that we can arrange e,, s,, ¢, s; arbitrarily by changing @, and ;.

Finally we need to examine the relation (c).
Case (i). |B]| is orientable. From II[a;, B,]11Ig;=IIr. we have

) 2(p;—Dwi—2(p;—Dw;—2au+bvi)/my=¢e,- e 1Ws+ &1 €5 sWs_y+ -+,

where W, is given by (iv).
First suppose that p,=pj=A4,=¢,=1 for every j,t. Then (v) is equivalent
to

(V) Ze+H(Za;/mpu+(2b;/mi+23(bf +2Zbir/mir)/2)vi = 0.
t J j ¢ k

Hence all the parameters can be well determined if and only if the rational
euler class e is zero. For the other cases we can find the parameters satisfy-
ing (v) as follows. Suppose that p;#1 for some ;. Then putting w,=w;=0
except for w; we can arrange wj so that (v) holds for any fixed @, and w;. If
p5#1 exchange the roles of w, and w; to get the desired result. Suppose that
g;=—1 for some {. Then putting w;=wj;=0, ¥,=0 for k+t, we have W,
satisfying —>(a u-+bwi)/n;=¢, -+ e;,,W,. Finally suppose that p;=pj=¢.=1
for every j and ¢t but 4,=—1 for some {. Since A,=1 (we assumed that P,=1)
by putting @,=0 for k+1, ¢, we can reduce (v) to

Sau+bi)/n; = e+ + 201k /miei/2+sii— (b +2bir/mix)u/2 .

Hence we can determine e,, sisatisfying (v).
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Case (ii). |B| is non-orientable. From IIvillg%=IIt, we deduce
(Vl) Z(p,w,—l-w;)—Z‘(aJu+b,vz)/m]=e, 53_1711/3"*" +7I/1

First suppose that p;=e,=2,=1 for any j,t. Then we can arrange
W, to get the well determined representation if and only if e=3b;/n;+
(b +Xbix/nir)/2=0. Next suppose that e,=1=1 for every t but p,#1 for
some k. In this case p,=—1 or +i. Then for any r&R there is a w,eC
satisfying Im (0,@,+w,)=ri. Hence putting w;=0 for j#% we can obtain .,
w; which satisfy (v). If 3,=—1 or ¢,=—1 for some ¢ the argument goes as in
Case (i). This proves the claim of Theorem B (1) for the cases with X:=H?X E?,

Proof of Theorem B (1) for Xzéfsz.

According to [23], §2 we identify §EZXE with H®*XC with coordinates
(z, w) (z, weC,Imz>0). The R-factor of Isom"SLz——-SLz?R acts on X by

translating w by a pure imaginary (the generator of Z acts on X by (z, w)—
(z, w+2n7)) and the other R-factor of Isom“X:Isom"S/Z/sz acts on X by trans-
lating w by a real number. Moreover IsomJf)('/[som")(:Isom"ézlg/lsom"sfz;:Z2
which is generated by (z, w)—(—2, @) ([23], [19]). The action of the element
7:z—(az+b)/(cz+d) in PSL,R lifts to the action 7(z, w)=(7(z), w—2log(cz+d)).
Here if 7 is a hyperbolic element the imaginary part of the second factor is
defined by the parallel translation of the unit tangent vector along the axis of
7. If ¥ is an elliptic element of order m choose the lift 7 of 7 so that 7™=1 in
Isom X (arrange the translation part of 7 if necessary). Now we describe the
action of n,S=I" on X:SZXE for S=I'\X. We use the same notations for
generators of 7,S and #{"’B as in the case X=H®XE®. Then the action of x,S
induces the images of the generators of #{™B in Isom H*® as before.

Case 1 B is orientable. (cf. [23], theorem 7.4.)

The action of =,S is given by I(z, w)=(z, w+c¢), h(z, w)=(z, w+d) where
c=u-+u'i, d=v+v'i are linearly independent over R (u, u’, v, v'ER), ajz, w)=
@z, w)+0, wy), Bz, w)=pFz, w)+(0, w}), gz, w)=§(z, w)+(0, y,) for w;, wj, y;
eC. Then the monodromies Aj;, B; are trivial and y,=—(a;c+b;d)/m; since
qT(z, w)=(z, w+n;y;) and ¢74*h%=1. We can see that TI[a;, §,;]TI§; coincides
with the translation of the w coorinate by 2z:X°"°B where X°7° denotes the
euler characteristic of the orbifold. This follows from the fact the holonomy
angle along the geodesic triangle A is given by the area of A ([19]. §4). Since
the translation along C commutes with the action of the lift of PSL,R, we
deduce from TI[a;, B;11Ig;=I*h®

(1) 2B = (a+3a;/m;)c+(b+2b;/m;)d .
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Since X°"*B+0 we have e=(a+Xa;/mj, b+2>2b;/m;)#(0, 0). Conversely if
e(S)+(0, 0) for the Seifert 4 manifold S we can arrange [, & so that a-+Xa;/m;
=0. Then putting c=u, d=vi, u, vER, we can determine the representation of
.S satisfying (1). Then S has a geometric structure of type SzXE’

Case I B is non-orientable without reflectors.

In this case we can assume that the action of v; is the composition of (z, w)
—(—2, W), (z, w)—é,z, w) for 6,&PSL,R, and the translation along the w-co-
ordinate. Then vz, w)=6,{—2, W)+(0, w}j) and v¥z, w)=v¥z, w)+(0, wi+w})
where 97 is the lift of #j=PSL,R given as above. On the other hand we have
vlv;(z, w)=(z, w+<), v;w3'(z, w)=(z, w+d). Then from v,{, hyw;'=(l, h)A; we
deduce
M pap-r=(3 %) for P=(*, V).

0 —1 u v

Since [I%%11§; is the translation w—w+27i2°"°B by the same reason as in

Case I, we deduce

(2) SN wi+TH+2miX°™° B = (a+Xa;/m;)c+(b+2bj/mjy)d .

Therefore we can assume that either A}:((l) _(1)) for every ;5 (and c¢=u,

d=v'i, u, vV ER) or A;-:((l) _i) for every ; (and ¢=2v, d=v+v’i, v, v ER).

In either case we can define the well determined representation of =,S if and
only if b+3>3b;/n;#0.

Case Wl B has reflectors.

Performing some coordinate transformation we can assume that ¢(z, w)=
(—Z, W+u/2), Uz, w)=(z, w+u), h(z, w)=(z, w+vi) for u,vER from >=I,
the-'=h"'. Define the actions of a;, B, (or v;), ¢; as in Cases I and II. Then
as before we have A;=B;=1 for every j or A;:((l) _?) for every j. (The case
A}:((l) __1) cannot occur since c=u, d=vi.) The action of 7,, ¢, are defined by
t.(z, w)=7(2, w)+0, W), 0.z, w)=d.z, w)+(0, @¢), W, W;=C. Then again all
the monodromies along 7, 6. must be trivial and hence P,=E,=I and ({;, h,)=
(I, h) for every t. The actions of ¢, and ¢;, are given by ¢,(z, w)=6,—2, W)+
0, Wi+u/2), gz, w)=§ur(z, w)+(0, —(bir/mie)vi), Where g, is arranged so that
grtk=1. Consider the decomposition B=B,_\J,N; as in Figure 5. Let N, be
the standard double covering of N, without reflectors. Then over N, we have
T 11qent T ;' =h"t and ¢,77' (2, w):(e/t;{\lc_f/l)(z, w)~+(0, —@,). Then over N, we
have

(1) W — W, +-2mi (N, = (bY+Zbte/misi
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where ]\Nh is considered as an orbifold with two boundaries. Since 2X°7°N,=
2o N, (1) is equivalent to

1”n Wy = e;—2miX°"ON,+(b! +3b, . /mii/2 for some ¢,€R.
On the other hand from II[e«;, 8;]111¢;=IIz. or TIvilg;=IIr. we have
2) 2ri X0 By—(Sa;/mu—(Xb;/mwi = W, or
2ni 20T By 2w+ w5)—(Za;/mju—Cb/mwi = i, .
Then from (1’) and (2) we deduce

e+ (Za;/mpu+{3b;/m;+ (b + bt /mix)/2}vi = 2niX°"°B  or
e+ (Say/mu—25(Rew))+{ b,/ my+3(by +Sbiw/mi)/2}vi = 222°™B

since F°PB=x°T'B,+31x°"°N,. Then we have the well defined representation
of m,S if and only if e=33b;/m;+ (b} -+23bir/mir)/2+0 since X°"°B+0.

The proof of Theorem B is completed by the following proposition.

PROPOSITION 15. Suppose that a Seifert 4 manifold = : S— B over a hyperbolic
2 orbifold B admits a geometric structure of type X. Then X=H®*XE? or SL,XE.

PROOF. It is easy to see that S is not diffeomorphic to a Seifert 4 manifold
over a euclidean 2 orbifold and hence X=+E* (with one exception), Nil*X E, Nil*,
Sol* < E ([22]). If S has a structure of type E* then =, S contains an free abelian
normal subgroup of rank 4. But the subgroup H of x,S generated by the lattice
[, h of the general fiber of S is the unique maximal normal abelian subgroup of
7:.S. Therefore the case X=E* is also excluded. If S=/\X with X=H*XE
then Isom®X=Isom°H*X R and I'y)=I'"\R is the lattice of the radical R of Isom"X
([23], § 2). (Isom*X/Isom*X=Z, which acts as the reflections both on H*® and
E.) Hence S is a fibration over a closed hyperbolic 3-orbifold I'NH® with
general fiber S'=I"\R. In this case [,=Z is the unique maximal normal
abelian subgroup of I" since I” has no such subgroup. Hence we also have X+
H®*xE. On the other hand S is spherical and the euler number of S is zero.

Therefore if X+H*XE?, érsz the remaining possible cases are X=3Sol4, .,
Sol}, Solt ([23], Theorem 6.1. Here we use the notations in [23]. The geometry
F* does not admit a compact model.) Suppose that X=3Sol% ,. Since Sol; ,=
Sol* X E we can assume that m=n. In this case Isom®Sols ,=Solk . (left multi-

plication). Sol} . is the semi-direct product of R® and R such that t=R acts
a 0 0

on R® by rm,n(t)zexptirg 8 0
c

e?, e° are the roots of *—mA®+ni1—1=0. Then if we put I'y=I"'NIsom*X, I')NR?

is a lattice of R® ([23], §2) and I'»\X has the structure of a T° bundle over

where a, b, cR a>b>c, a+b+c=0, and e?,
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S! whose monodromy is conjugate in SL;R to the matrix of the form 7, (%)
above. On the other hand consider the exact sequence 1—»H—+7r15~’i>7r‘{”’B~>1
induced by the Seifert fibration of S. Then I,=p(I",) is a subgroup of =B of
finite index and hence contains a torsion free subgroup /" which is a funda-
mental group of a closed hyperbolic surface. Put I"=p~(/")NI,. Then I"C
Isom®X and hence again I''\X is a T bundle over S* whose monodromy matrix
A is of the above form. Since any eigenvalue of A is not 1, we have b,(I"'~\X)
=1 by the Wang sequence. But the projection p: ["—I" induces the epimor-
phism H,["—H,I" and the rank of H,[" is greater than 1. This is a contra-
diction and hence X+ Sol4 .. Suppose that X=Soli or Soli. If we put [,=
I'NIsom®X and define the subgroup I’ of I, so that p(/") is a surface group
then we can see that /'~ X is an Inoue surface by [23], Proposition 9.1 and

hence b, (/”"~X)=1. This leads us to the same contradiction. This completes
the proof.

COROLLARY 16. A Seifert 4 manifold S over a hyperbolic 2 orbifold B is

diffeomorphic to a complex surface if and only if S is one of the classes in Theorem
B{) with an orientable base orbifold.

PROOF. If S is one of the list in Theorem B(1) S has a geometric struc-
ture of type X=H?*xXE? or s’fsz and 7, SCIsom®’X. Then S has a compatible
complex structure and is an elliptic surface with Kodaira dimension 1 ([23], Theorem
1.1, 7.4). Conversely suppose that S has a complex structure. S has a T2 bundle
over a hyperbolic surface as its finite unbranched covering. Then the Enriques-
Kodaira classification of the complex surfaces ([I1]) shows that S is an elliptic
surface with Kodaira dimension 1 with no singular fibers other than multiple
tori. Then S has a compatible geometric structure ([23], Theorem 7.4) and is
one of the classes in Theorem B (I).
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