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§1. Introduction.

This paper gives a simple reduction theorem for Painlevé equations near
the fixed singular points of the second kind in the framework of Hamiltonian
mechanics.

It is known that each Painlevé equation P, (J=I, ---, VI) is equivalent to a
Hamiltonian system: di/dt=0H,/dp, dp/dt=—0H,;/dA, where the Hamiltonian
function H,=H,(t, 2, 1) is a polynomial of 4 and ¢ of which the coefficients
are rational functions of ¢ ([14]). We call these Hamiltonian systems Painlevé
systems. Then the fixed singular points are formally classified as follows: a
fixed singular point of a Painlevé equation is of the first kind or of the second
kind if Poincaré rank of the corresponding Painlevé system at the point is zero
or positive respectively.

We want to construct a 2-parameter family of solutions of each Painlevé
system at each fixed singular point, in other words, to obtain a local biholo-
morphic transformation which reduces it to a solvable system. As is well
known, concerning the construction of an n-parameter family of solutions of
an n-system at a fixed singular point, we have a general theorem by J. Malmquist
under the so-called Poincaré’s condition ([12], [8]). However, we can not apply
the theorem to Painlevé systems because Poincaré’s condition is completely
violated for them.

Recently, having been stimulated by the idea of M. Iwano ([9]), several
authors have obtained 2-parameter families of solutions of Painlevé systems at
the fixed singular points of the second kind ([16], [15], [19], [20]). Their
works especially those by S. Yoshida explain, from a general point of view,
the reason why the formal transformations for Painlevé systems without
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Poincaré’s condition are convergent.

On the other hand, for fixed singular points of the first kind, the present
author gave a reduction theorem for general Hamiltonian systems containing
Painlevé systems which shows the convergence of the formal canonical trans-
formation in an unbounded domain is derived from the boundedness of the
Hamiltonian function in a similar domain ([17]). In this paper, we give an
analogous result in the case where the fixed singular point is of the second
kind. We note that each P; (J=I, ---, V) has a fixed singular point of the
second kind at the point at infinity, whereas all fixed singular points of Py
and the origin of Py and Py are of the first kind.

We can verify that each Hamiltonian function H, (J=I, ---, V) associated
with Painlevé equation P; is reduced to a Hamiltonian in a normal form as

H(t,q, p)= Zof];b‘H—li E_lh“(t)q“"p“‘

at the fixed singular point of the second kind. Here
(i) A, is a nonzero constant,
(ii) h4y(t)'s are holomorphic for |[¢|>R,
(i) i, jz-1hif(B)g*H p7*! converges absolutely and uniformly for
[tI >R, gl, [t7'p], lgpl < p
and represents there a bounded holomorphicy function. Note that Poincaré rank
of the system is one. ‘

Considering the above fact on Painlevé systems and other applications, we
now formulate our problem. Let A(¢) be a polynomial of degree o—1 as

(L.1) i) = kg‘ At0EN 200,
Set
(1.2) A(t) = S:Z(t)dt — 2/ )+ - 4 Ayst.

We say that (0) is a singular direction of A(t) if
(1.3) cos(c@-+arg ,) = 0.

A half line through ¢=0 with argument @ satisfying is called a singular
line of A(t). Remark that Re A(t)=[(|4.]/a)cos(a@-+arg )] |t|°+0(t°"), where
f=argt, O denoting Landau’s symbol.

Let

S, 0, R :={teC | |t|>R, §<argt<d},
D@, 4, R, p):={(t, q, p)=C* | te5(8, 8, R), lql, |t7'pl, lgp| <p}.

For a function f=f(¢, ¢, p) holomorphic in D=D(4, 4, R, p), we say that f has
singularity of the first kind at t=o with respect to D if tf is bounded in D.
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Let f be such a function with |[¢tf|<M in D, Rp=1 and let tf(, q, p)=
i fi()g T p*t be the Taylor expansion in ¢ and p. Then f;,(¢)’s are
holomorphic in S=S5(8, §, R) and satisfy

(1.4) | fii()] < M|t|-0-D7F/pmaxc.n+r) teS

where at*=max(q, 0) for a=R.
In this paper, we study Hamiltonian systems with Poincaré rank ¢ where
Hamiltonian functions are of the form

(1.5) H(t, q, p) = A(t)gp+H'(t, q, p).

Here A(¢) is a polynomial as and H'’ is holomorphic in D=D(4, 4, R, p)
having singularity of the first kind at =<0 with respect to D. We assume,
moreover, that the coefficients £;,(f)’s in the expansion

(1.6) LH'(t, ¢, )=, 2 hult)g™ p*!

admit asymptotic exparnsions in powers of ¢! as t—oo, t&S(6, §, R). Remark
that the Hamiltonian system with Hamiltonian A(¢)gqp is one of the simplest
systems with Poincaré rank ¢. We may say that our Hamiltonian [1.5) is a
perturbation of the A(#)gp with a perturbation term having singularity of the
first kind.

We suppose the following assumption :

(A) S8, 8, R) contains one and only one singular direction of A(t)=S:2(t)dt and

neither 6 nor 0 is a singular direction of A(t).

Our main result consists of two parts: the formal one (Theorem 1)) and the
analytic one (Theorem 2).

THEOREM 1. Let H=H(t, q, p) be a function stated above expressed as
wn H(t, g, )= Ap+17" 3 helt)g'*p7™.

If (A) is satisfied, then there exists a unique formal canonical transformation of
the form

(1.8) ¢g=3 a.,(O)P+Q X a:if(1)Q' P, p =2 bi,(D)Q*+P 3 bif(t)Q' P’
jzo 1,jz0 120 i,j520

which changes (H):dq/dt=0H/dp, dp/dt=—0H/dq to (H.):dQ/dt=0H./0P,

dP/dt=—0H./0Q with

(1.9) Heo = A0)QP+17" 2 his(=0)QP).

Here, a;(t)’s and byi(t)’s are holomorphic in S=S(@, 0, R’) having asymptotic
expansions in powers of t7' as t—co, t€S with
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(1.10) Aoo(00) = bgo(0) =1

(1.11) Qij, byy = O(t~G~DF-8ij-a-dipay

0:; being Kronecker’s delta, provided R’ (= R) is sufficiently large.
Set

(1.12) 7 = hoo(o0),
(1.13) h(w) = iZZl(l"l‘l)hii(oo)wi,

then h(w) is holomorphic for |w|<p. The general solution of (H.) is given by
(1.14) Q(t) = c e exp A(t), P(t) = ¢yt~ exp(— A(1)),

¢, and ¢, being arbitrary constants.
Concerning the convergence of formal canonical transformation (1.8), we have

THEOREM 2. (i) 3j20@-1, ;(t)P7 converges absolutely and uniformly in
D", 6, R, p"):={(t, P)eC*|t=S(8, 0, R"), |tT'P|<p’}

and represents there a holomorphic function of order O(t™'~7).
(ii) Dizebi. -1(t)Q" converges absolutely and uniformly in
D'(8, 0, R, p'):= {(t, Q)eC* | t€S5(0, 6, R"), |Q|<p'}
and represents there a holomorphic function of order O(t~°).
(iii) i j20cis(1)Q*PI (c=a or b) converges absolutely and wuniformly in

D@, 6, R', p’) and represents there a holomorphic function of order O(1), provided
R' (ZR) and 1/p’ (Z1/p) are large.

By using these theorems, we can obtain all known 2-parameter families of
solutions for Painlevé equations ([16], [20]) and new ones. We can also see
that the transformations obtained by S. Yoshida ([20]) are modified to canonical
transformations. We explain here a simple result for Painlevé system (Hvy),
while the others are shown in the last section. The Hamiltonian Hy is given by

Hy = t7'[2A—1) > — {ko(A—1)*+02(A—1)—nt A} p+£(A—1)]

where 4 and g are canonical variables, ¢ is an independent variable and the

other letters stand for constants ([14]). Consider the following successive
canonical transformations

sz_t_lfl(t_ly)’ ﬂ:y,
x=q/[1+f(t7p)+ 2t pfe(t1p)], y = pll+ft'p)]
where f;(X) and fx(X) are functions holomorphic at X=0 defined by

fi=—ko/(np+X) and fi=(+/f2)0/n with f,(0)=0 respectively. Then Hy is
changed to H of a normal form where =1 and



Painlevé equations 427

A= 7, hoo(o0) = 2k,4-0, hy(o0) = =2, hjj(oo) =0, j=2.

Let i=0.(¢, Q, P), p=0,(t, Q, P) be the composition of the above transfor-
mations and that given by Theorems 1 and 2. Then @, and @, admit analogous
expansions as the right hand sides of (1.8) satisfying (1.10) and (1.11) except
for a_, ;, 720, ao;, bej, 7=1, while a_, ;=O0(t777"), 720, aoj, bo;=0(t77), j=1. We
can verify that the transformation (1, #)=®(¢, Q, P)=(D,(¢t, Q, P), Du(t, Q, P))
is just the transformation constructed by the present author in [16] and
(4, p)=0(t, V,, tV,) coincides with the transformation obtained by S. Yoshida
([(20]). The 2-parameter family of solutions @(t)=®(t, Q(¢t), P(t)) of (Hy) thus
obtained behaves as

D(8) = ((1+0(1)Q(2), (1+o(1)P(1))

as t—oo along a curve 7(f,) which is tangent to the singular line of nt. Here
o is Landau’s small o and 7(t¢,) is a curve which is explained in Section 5 as
path of integration.

In Section 2, we prove Theorem 1. The remaining sections except the last
section are devoted to the proof of Theorem 2.

In the proof of Theorems 1 and 2, we take step by step procedure of
successive canonical transformations. In order to avoid complicated expressions,
at each step of transformation, we denote the old canonical variables and
Hamiltonian function by ¢, p and H and the new ones by @, P and K. We
remark that the canonical transformation g=—W,, P=—Wj (or p=W,, P=—W,)
generated by W=W(¢, Q, p) (or W(¢, q, Q)) changes H to K=H+W,. The
special transformation g=—1t"'p*, p=tg¢* generated by W=tgq* has the follow-
ing remarkable property: if H(¢, ¢, p) has the singularity of the first kind with
respect to D(4, 4, R, p), then the new Hamiltonian H*(¢, ¢*, p*) has also the
same type singularity.

We denote by v a valuation of the ring of bounded holomorphic functions
in S(4, 6, R) admitting asymptotic expansions in powers of ™' as t—oo or of
the ring of formal power series of 17! defined by w(a)=n for a~3i..a:t %,
a,#0. Since ¢ and § are fixed in this paper, we often denote S(4, d, R),
D@, 0, R, p), D'(@, 0, R, p) and D"(8, 4, R, p) by S(R), D(R, p), D'(R, p) and
D”(R, p) respectively.

§2. Proof of Theorem 1.
Let
@D H(t, g, )= ADgp+t7 3 hi(t)g™ p*

be the expansion of H where h;;(t)’s are holomorphic in S=S(R) having
asymptotic expansions in powers of {~! in S with
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2.2) v(hig) 2 (G—0)*.
2.1. Elimination of 4_,, and 4, .,. Consider a canonical transformation

(2.3) g=Q+a(1), p = P+b(t)

generated by W=—0p—w, ..Q—w_, ,p wWhere a=w_,,,, b=—w,, ;. In order
that k_; o(t)=Fk,, -1(1)=0 for the new Hamiltonian K=A(t)QP+t '3k ;(t)Q* Pi*1,
it is necessary and sufficient that the pair (a, b) is a solution of

(2.4) da/dt = Hy(t, a, b), dbjdt = —H(t, a, b).
We see that has a solution given by formal power series of ¢! with
(2.5) v(a) = 1+0, v(b) = 0.

Since S(#, 4, %) is a proper domain of i/l(i) with respect to 0 containing
singular directions of =+ A(t¢), there exists a unique solution of bounded
holomorphic in S(R’) and asymptotically developable to the formal power series
solution, provided R’ (=R) is large. From [2.5), it follows that

(2.6) (ki) = (j—0)*
2.7 kii(00) = hyi(0).
2.2, Elimination of h_,, and h,_,. We can suppose h_; ,=ho ;=0 in
2.1} Consider a canonical transformation
(2.8) g=0—4w_, ,w:, -1)Q+2w_, P, p= —2w,,.,Q+P

generated by W=—0Qp—w, _,Q*—w_,,p* In order that k_,,=k,_,=0, it is
necessary and sufficient that (w_, ;, w;, _,) is a solution of

dx/dt = t*h_y +2(A+ 1 he)x +4t " hy _1x?
dy/dt =t hy, 1(1—4xy)?—2(A+ 1 he)(1—4xy)y+4t~ h_y , y?

where x=w_,;, y=w, _;,. By the same way as in 2.1, we can verify that (2.9)
has a unique solution bounded holomorphic in S(R’) with

(2.9)

(2.10) W(w-1,1) = 240, v(wy,-1) =0

admitting asymptotic expansions in powers of ¢! If we write [2.8) as
(2.11) g = ao(1)Q+a-, ()P, P = by 2(1)Q+buo(t)P

then we have

(2.12) ao(t) =1+0(t™), boo(t) =1,

(2.13) v(a_,,) =240, v(b; )= o,

which imply the properties (2.6) and [2.7),
2.3. Suppose h;;=0 for i+5=<0, (7, )#(0, 0). Let
(2.14) qg = woo(1)Q, p = P/we(t)
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be a canonical transformation generated by W=—w,@p. Then the neW'Hamil-
tonian K is  [A(8)+1 " hoo(t)—(1/ woo)dwoo/dtJQ P+t 7' T jar he () wis Q1 P74,
If we take the solution of

(2.15) dwoo/dt = t L hoo(t)—7 Twes, Wwao = 14+0(t™Y),
then the new Hamiltonian satisfies

(2.16) k=0, i+7=0,( 7/)+(,0), koo(t) =17
(2.17) v(ki) 2 G—0)", k(o) = hi(e0), i=1.

2.4. Suppose that hy;=0, i+7=0, (7, 7)#(0, 0) and he=7%. We successively
make canonical transformations

(2.18)y g=0Q+ X ai(H)Q*'P, p =P+ 3 bi(1)Q'PI*,
i+jzN i+jzN
N=1, 2, ---, generated by W=—Qp—irmnvwi;(1)Q**'p*'. Let ¢;/(t)’s be
functions defined by
(2.19) QP+ X QP =(Q+ 3 ay QPP+ 3 b;;QPPIHY).
i+jzN i+jzN i+jzN
We first notice
CLEmmaA 2.1. (i) Al ai)’s, biy’s and ¢ii’s are polynomials of wq;’s of which

each term is
(2.20) w‘iljl T winjn’ Z: 'm,z=12'm’ ]: _m2=1]m *

(i) If wy;=0 for all ¢, j with i+#j, then ¢;;=0 for all 7, j.

The main part in the proof of is the following

PROPOSITION 2.2. Let h;(t)’s be defined in S=S(R). Then we can uniquely
determine a;;(t)’s and b;;(t)’s in the same sector S admitting asymptotic expansions
in powers of t™' as t—oo through S with

2.21) @iy, v(biz) = (—1)* +08:;+(1—0:5)0
so that (2.18)y changes H to a mnew Hamiltonian K=(A(t)+9t ")QP+
P e ki (1)QTTI P where

(i) kyft)'s are bounded holomorphic in S having asymptotic expansions in
powers of t7' as t—co, t&S with

(2.22) v(ki) = (J—0)*
(ii) k(1) = hif(t), i+j<N
(iii) kijf(t) = dijhij(),  i+j=N
(iv) ki(o0) = hy(o0), i=1.

PrROOF. It is easy to see that (ii) holds and that for i+;7=N
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For /#j, we can uniquely determine bounded holomorphic functions w;; having
asymptotic expansions in powers of {™' as t—oo in S with

(2.23) Ww) = (J—1)*+o

so that k,;=0. For /=j, there exists a unique function w;; having the same
asymptotic properties as w;;’s, i#j with

(2.24) v(wi) 21

such that k(t)=h; (o). We notice that the equations for w,;’s are linear.

For these functions w;;’s, we see that holds by Lemma 2.1, (i) and by
the following inequalities

(2.25) 53 (Un—in) i) Z (=10 +0
(2.26) 3 (1=1,5,) Z 1=

where (=237 _iin, J=2 17 m-

In order to verify the other properties, we have to investigate the coeffici-
ents of [A(t)+nt 1D ivjencif(1)QHH P+ where ¢,;’s are defined by (2.19). By
Lemma 2.1, (i), [2.25)] and [2.26), we have v(c;;)=(j—i)*+¢ for i#j, therefore

(2.27) V(@A) +9t e =2 G— +1,  i#Fj.

By Lemma 2.1, (ii), each term in c;; has a factor w; j;, ©’#j’ and hence both
factors w5 (j'>4') and wy; (j7<i”). Therefore we have v(¢;;)=1-+0 and then

(2.28) v((A)+ 9t ew) = 2.
By and we can verify the other properties in the proposition.
We can complete the proof of by noting

LEMMA 2.3. If the coefficients of (2.18)y and (2.18)y satisfy the order con-
dition (2.21), then those of the composition of the two transformations also satisfy
(2.21).

§3. Convergence of simple power series.

3.1. Preliminary reduction. We see that our Hamiltonian H is supposed
to have an expansion of the form

(3.1 H= qp{[l(t)+77t“]+t‘li§glhu<t)qif)f} .

By the results in 2.1, 2.2 and 2.3, we can first suppose that A;;=0 for 74;7=0,
7, 1)#(0, 0) and he(t)=7. Next, by the argument as in §6 of [17], we can
verify that the successive canonical transformations of the form
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(3.2) ¢=0Q, b= P+ Tbi 1@
(3.3) ¢=Q+ T a.(OP), p=P
Jjz2

change the Hamiltonian to that of the form Here, (i) b;, _,’s and a_, ;s
are bounded holomorphic functions in S=S(R’) admitting asymptotic expansions
in powers of ¢! as t—oo in S with v(b; )20, v(a_, )=j+1+0 (i) Dizebs, -1(1)Q°F
and X)j:.a-,, ;(¢)P7 converge in D’'(R’, p’) and D”(R’, p’) and represent there
bounded holomorphic functions of order O(t?Q%) and O(t7*~?P?) respectively,
where R’ and 1/p’ are sufficiently large.

Hereafter, we suppose that H is of the form Note that the correspond-
ing formal canonical transformation (1.8) which changes the H to H. is of the
form

(3.4) (]:QZ aijQin) jD:PZ bijQin; Qoo = boo = 1.
ifjz0 ifj20
In order to show it is sufficient to verify

PROPOSITION 3.1. (i) ZnsiCmin w(1)Q™ (c=a or b), m=0, converge absolutely
and uniformly for (t, Q)SD'(R’, p’) and represent there bounded holomorphic
functions cip(t, Q)'s of order O(Q),

(i) Dazi€m, men(t)P™ (c=a or b), m=0, converge absolutely and uniformly
for @, P)eD”(R’, p’) and represent there bounded holomorphic functions
ci(t, PYs of order O(t™*P),

(iii) SmzolCmm(t)Fcn(t, Q)+ch(t, PYXQP)™ (c=a or b) converges absolutely
and uniformly for (¢, Q, P)YSD(R’, p’) and represents there a bounded holomorphic
function, provided R’ and 1/p’ are large.

3.2. Proof of (i) in [Proposition 3.1. Set
At, Q)= %})au(f)Qi, Bt, Q)= g%bij(l‘)Qi, 7=0.

Let Q(¢) be a general solution of dQ/dt=[A(t)+»nt *]Q, namely, Q(t)=ct"exp A(t), ¢
being an arbitrary constant. Then A,=A;{¢, Q(t)), B;=Bt, Q(t)), =0, satisfy
dAO/dt == t_lf(t: Q(t), AO)) dBO/dt = ——t_lg(t: Q(t), AO)BO:

dA;/dt = {FLAD) A+t 1+t7g(t, Q@), Ao} Aj+cy,

dB;/dt = {jLAD)+nt7 ]—t7'g(t, Q(t), A} B;+d;, j=1,
Where f(t: X, y)zzmzlhmo(t)xmym+ly g(ty X, y):af(t, X, y)/ayy Cj:Cj(ty Qy AO; BO; Ty
Aj—l’ Bj—l) aAO/aQ’ aBo/aQ, Tty aAj~l/aQ; aBj—l/aQ); dj:d]'(t: Q; AO: BO; )
Ajo1, Bjo1, Ay, 0A40/0Q, 0B,/0Q, -+, 0A;-1/0Q, 0B;_,/0Q) are polynomials of the
variables other than ¢t and Q of which the coefficients are bounded holomorphic
functions of ¢ and Q of order O(¢t™!). Therefore, by virtue of a well known

theorem ([8]), Siz0ai;(1)Q%, Dizobif(1)QF, 7=0, converge in D'(R’, p’) and represent
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there bounded holomorphic functions, provided R’ and p’ are large.

3.3. Proof of (ii) in [Proposition 3.1. Let H*(t, ¢*, p*) be the Hamiltonian
obtained from H by the canonical transformation ¢=—t"'p*, p=tg* generated
by W=tqq*. Then

H* = Q*P*{[“l(f)-—(l—i-ﬂ)t"]‘H"i§21h2"j(t)(q*)i(i>*)’}
where A¥(t)=(—1)"*'t"9 D h;(t). Let
= Q% 3 afQHPY,  pF=Pr S pEQHPY
i+jz0

i+;z0

with afy(t)=0b§(¢)=1 be the formal canonical transformation which changes H*
to HE=Q*P*{[—At)—(L+mpt ' ]+t 2z hfi(oo)(Q*P*)'}.  Since Q=-—t"'P*,
P=tQ* changes H. to H*, we have

a;; = (—1)y't=9-9p%, bi; = (—1)"t Y Pa¥,
by the uniqueness in [Theorem 1. The convergence of 3,.1Cm. man(D)P®, m=0,

in D”(R’, p’) follows from that of 2,.1¢kn n(H)Q*", m=0, in D'(R’, p’) proved
in 3.2, ¢ representing a or b.

§4. Fundamental lemma.

The rest of this paper will be devoted to the proof of (iii) in
3.1. Let N be an arbitrary positive integer. Put

(4-1) qg = Q[aN<t) Q) P)+¢]’ p = P[bN(t; Q’ P>+¢)]
where
42 ex= 3 QP Lemn(t+en(t, Q+cht, P)]

¢ representing a or b. Then in order that changes H of the form [3.1) to
H.., it is necessary and sufficient that (@, ¢)=(é(¢, Q, P), ¢(t, Q, P)) satisfies

(4.3)x Do =17"Fy(t, Q, P, ¢, ¢), Dy =1t7Gu(t, Q, P, ¢, ¢)
where D denotes an operator 0/0t4[A(t)+9t '+t H(QP)]1Q0/0Q—[A)+nt™!
+t*h(QP)]PJ/6P and

Fy = | 2 (+DhiQ Pay+9)(bx+¢)—hQP)|(@x+@)—tDa,
(4.4)

Gy == 2 (+DhuQ PUay+8)by+)—h(@QP)(bx-+¢)~tDby.
| We can verify

PROPOSITION 4.1. The following inequalities hold
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(4.5)  |Fy(t, Q, P, ¢, P)I, |Gx(t, Q, P, ¢, §)]
S e[t QI PDIQP IV +MUQP |+ Q1+t PIXIg1+ 141,
(4.6)  [Fx(t, Q, P, ¢1, ¢)—Fn(t, Q, P, 62, Pl
[Gw(t, Q, P, 1, $1)—Gn(t, Q, P, &3, ¢)|
S M(IQPI+1QI+1t'PI1G1—@el +Idr—2 )

for (t, Q, PYED(Ry, pn), 101, 16,1, ¢, |¢;1<dw, =1, 2, where M is a constant
independent of N, while cy is one depending on N, provided Ry, 1/px and 1/4y
are large.

In the proof of (iii) in [Proposition 3.1, the following lemma plays an
essential role.

LEMMA 4.2 (Fundamental lemma). System (4.3)x has a solution (¢(t, Q, P),
O, Q, P)) with the properties:

(i) ¢, Q, P) and (¢, Q, P) are holomorphic in D=D(Ry, px),

(ii) @, ¢=0(QP|V({t|'4+|Q|+|t*P|)) in D, provided Ry and 1/py are
sufficiently large.

Furthermore a solution with these properties is unique.

§5. Path of integration and stable domain.

The fundamental lemma will be proved by solving a system of integral
equations which is equivalent to system (4.3)y. In this section, we give a path
of integration and a domain 9 which is a deformation of D and is usually
called a stable domain.

For the sake of simplicity, we assume hereafter that

(5.1) Ah=1.

In case where does not hold, we make a scale transformation of ¢ so that
the new Hamiltonian satisfies it.

For a set E in the t-plane, we denote by A(FE) the set in the z-plane defined
by {z€C|z=A(t), tE} where A(¢) is the function [1.2)

5.1. Sectorial domain. We define a sectorial domain S=S(R)=S8(4, 6§, R)
which is a deformation of S=S(R)=S(4, 4, R).

By assumption (A), we see that A(S(R)) with R>»1 contains a half line
{argz=m/2, |z| >1} or {argz=—=x/2, |z| >1}. We consider for example the
case where A(S)D{argz=mn/2, |z|>1}, because the other case can be treated
by the same way. In our case, we can choose a small number ¢>0 so that

(5.2) ASR) C {z€C | |z|>(1—e)R /0, |argz—r/2| <m—¢}

for every large R.
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Let / and [ be half lines in t-plane defined by /={argt=8, |¢|>1} and
I={argt=0, |t|>1} and let

(5.3) ¢ = A, ¢ = Ad).
Define a curve ¢(R) in z-plane by
|z] =R°/e, for |@—n/2|<n/2—w
(5.4)
|z| =(R°/0)|cosw/cosB|, for n/2—w<|@—n/2|<n—c¢,

O=argz. Here w is a constant with n/4<w<=z/2 which will be determined
later (see [(5.15)). The domain in z-plane bounded by ¢, ¢ and ¢(R) is denoted
by &=&(R)=&(4, 6, R). Then we define a domain S=S(R)=S(4, 4, R) by
(5.5) A(s8, 6, R)) =&(4, 6, R).

We see that S8, 4, R) is a sectorial domain containing every direction (8) with
9<0<4.

Divide ©=&(R) into three parts as follows: &,=8N{|O@—=r/2|<r/2—w},
S,=6N{—r/2+ec<O=<w} and &,=6N{r—w<O<3rw/2—e}, where O@=argz.
Then we define a decomposition S=\J}_,S; by

(5.6) A(S;) = &;, 1<7<3.

5.2. Path of integration. In order to define a curve 7(%,) in ¢-plane joining
o and t,=S, we define /(z,) in z-plane related with 7(¢,) by
(5-7) A(T(to» = F(Zo), /I(to) = 2.

Set
(5.8) =7, 7. =147,
From Re(n,+7%,)=1, it follows that Re#n,>0 or Re»,>0.

5.2.1. The case Re7,>0. Take constants £>0 and 0<d«1 so that
(5.9) Ren,—0 > a/k > —Ren,+0.
Then we define a curve /(z,) which generally consists of two parts /'(z,) and
Fz(zo)-

In the case where z,&&,. [I'(z,) consists of a part ['y(z,) only and the
variable point z=z(r) on ['y(z,) is given by
(5.10) 2(t) = v+ xo+iyee*T, =0
where zo=x,+ivo, i=+/—1. In the case where z,&&, (or &,;). [(z,) consists
of two parts I'j(z), =1, 2. The variable point z=2z(0) on [',(z,) is given by
(5.11) 2(0) = |zy]e*? cos @,/cos O
for 0, <O<w (or T—w<O<LO,) with O=argz, O,=argz, and [',(z,) is the curve
joining oo and z(w) (or z(r—w)) defined by
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We denote by 7,(¢), 7=1, 2, the parts of 7(¢,) defined by
(5.12) Ay (ko)) = Fj(ZO): Jj=1, 2.

5.2.2. The case Ren,<0. In this case, Ren,>0. Let £#>0 and 0<0<1 be
constants such that

(5.13) Ren.—d > o/k > —Ren,40.
The curve ['y(z,) is defined by the same way as 3.2.1, while I",(z,) is defined by
(5.14) z(t) = —t+x0+iy.e”, =20

where z,=x0-+17Y,.

5.2.3. In this paper, we only explain the case Ren,>0. Define a constant
w/4<w<rm/2 by

(5.15) tanw = [14+(3k+4)0 ' max(|n;| +0)+maxy;]/miny;
where
(5.16) y; = (=1 +(k/0)Re(n;—0)>0, =1, 2,

then we have

PROPOSITION 5.1. If R>»1, then t,&eS=S(R) implies 7(t,)CS, z'h particular,
to€81:Sl(R) Zmplles T(Z‘O)CSI.

PROOF. It is easy to see that {,&S, (or S,) implies 7.(f,)C S, (or S;). Hence
we have only to see the latter assertion. From tanw>1, it follows
(5.17) dlz(z)|?/dc >0, 7220.

In order that |argz(r)—n/2|<r/2—w, it is sufficient g(z):=yie**—(r+x,)’tan’w
=0, which is verified if R>0 is large such that

(5.18) -y, = tanw, XoFiY, =S (R).
5.3. Stable domain. Set

(5.19) h(w) = —h(w),  hw) = h(w),

(5.20) T(t) = tA@)™° = (1/a)'*+0@™),

where h(w) is the function (1.13), and

G.21)  Cft, w)= {1’ o FE S
|cos(arg A(t))/cosw|Reni+rjcwrio tE8,\US,,

(5.22) Ejt, w) = |T@t)| "Rers+riexplarg t-Im(n;+h(w))],

j=1, 2. Then we define a domain 9=9(R, p) by

(5.23) D={(t, Q, PYEC*|teS(R), |Q|<pCi(t, QP)E\(t,QP),

[t P <pCylt, QP)E(t, QP)}.
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Note that there exists a constant @>1 such that
(5.24) O(Ra, p/a) < D(R, p) C 9(R/a, pa)

for R>1, 0<p«1.
For the functions Q(¢) and P(¢) given by (1.14), put X,()=0Q(), Xy(t)=
t1P(t), then

(5.25) X(t) = ¢t~ msthicereexpl(—1)1A(H)], 7=1, 2.
Let u,(t) be a principal factor of X,(¢) defined by
(5.26) u;(t) = c; A(t)"Rens*njccrenisexpl (— 1)1 A(t)], 7=1, 2.

Then we have the following proposition.

PROPOSITION 5.2. Let t,&=8,=8,(R), then
(5.27) dlog|u,(t(t)|/dr = —(3/4)y;, =0, j=1, 2
provided R>0 is large.

PROOF. is equivalent to
(5.28) Ir):=[(—1)Y+kRe(n;+h;)]vie*—[(—1)"'+3cRe(n;+h;)](t+ x,)*
+[4Re(n;+hp)/o](c+x) =20, j=1,2
for every constants h;’s with |h;| <d, which follows from
(5.29) L0)=0, I0)=0, I/()=0, for r=0.
We can verify by the same way as in under and y,=tanw>1,

so we omit its proof.

PROPOSITION 5.3 (Stability of D). For every point (t,, Qo, Po)=D=9D(R, p),
we have (t, Q(t), P)=D for all t<y(t,), where (Q(t), P(t) is the solution of
(Hx): dQ/dt—‘:aHm/aP, dP/dtzwaHm/aQ with Q(ty)=0Q., P({t)=P,.

PROOF. Let (t,, Qo, Po)=D. If {,=S, (or S,), then it is readily verified that
(t, Qt), P)=D for teyy(ty). In case t,=S,, it follows from [Proposition 5.2
that |u,(¢(z))] is monotone decreasing in =0, which proves (¢, Q(t), P(H))=9D
for t=7:(t0).

§6. Proof of the fundamental lemma.

System (4.3)y is equivalent to a system of integral equations

¢(t0y QO; PO) :g t—IFNO(; Q(t)y P(t>r ¢(t’ Q(t>; P<t)>: Sb(ty Q(t)) P(t>>>dt,
(6-1)1\’ o>

P(to, Qo, Fo) =S t;)t"sz(t, QW), P(t), ¢(t, Q(1), P@), ¢(t, Q), P(t))dt

7¢
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where (Q(t), P(t)) is the solution of (H.) with Q(t,)=Q,, P(t,)=PF,. Therefore,
in order to prove the fundamental lemma, we show that system (6.1)y has a
unique solution (¢(t, Q, P), ¢(t, @, P)) holomorphic in Y(Ry/a, pya) satisfying
the order condition (ii) in provided Ry and 1/py are large. Here
a>1 is a constant for which holds. Define a family F as a set of all
(9@, Q, P), ¢(t, Q, P)) such that ¢ and ¢ are holomorphic in D(Ry/a, pya)
satisfying there

(6.2) lg(t, Q, P)I, 1¢(¢, Q, P)I = Kn(It] 7'+ 1QI+ 1t PIQPIY.

Then we define, for (¢, )= F, the functions @(t,, Qo, Py) and ¥(t,, Q., P) by
the integrals on the right hand sides of (6.1)y. Note that we must assume

(6.3) Kya®(1/Ry+2pn)p% < 4y,

for the integrals to be defined.
Let us estimate @ and ¥. From (4.5) and it follows

64) 19ty Qu P, [Ults, Q, P
< (ex+6Mapy K| QP *| | LIt [17Q(01+1EP()] D de

PROPOSITION 6.1. We have the following inequalities

(6.5) S 121721 dt] = Loltel ™,
1£€1)]

66 [ 1ewid = Lil, | 1etP@llde] < Lt
r(tod 7ty
where L;, j=0, 1, 2, are constants independent of R>1 and 0<p<1.

Proor. It follows from z=A@#)=t[1/0-+0( )] that
6.7) [t] 7 dt] < (1+0")e 7 | z| M dz|,
(6.8) A4a) e M| z|V S |t = (1407 V 7| 2]Y9,

for a constant 0<d’«1. Remark that ['y(z) is defined by and |z|'|dz|
<B1dO| on I'y(z), with B=1+tane+tanw. We see that

Sr 2] 7119 | dz| = [20-tanw/(tan—1)+ B )(sin &) /7 | z| /7.
zgd

Hence by and (6.8), inequality holds for L,=(1+0")*-[2¢-tanw/(tanw—1)
+Bn]o Y (sine)"*/?. Let us next prove Set

(6.9) (1) = z 1M+ 1P 0 T(§)=C1j+1(Q0P0) i=1,2

with z=A(t), then we have

(6.10) X0 = utwt), j=1,2

where X; and u; are the functions defined by [5.25) and [5.26) respectively. It
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is easy to see that
(6.11) Vit < o0 £V,

where V,, j=1,2, are constants defined by V,;=¢'7'*(1+4") exp[(|7,|+0)
-(3n/20—¢/a+0")]. If z,=A(t,)ES,, then it follows from [Proposition 5.2 that
dlu;|/dz| =[(3v;)/(4+ 2 k)]l u;|/|z|, which yields

Lo (Gs1/12DIdz] S @Y Z 0/ Bupl o).

In the case where z,EG, or &;, we have |u,(z)|<(sing) 7919y (z)| on
I'y(z,) and hence

S (lusl/12)dz] < Br(sine) Cni1+917 |y (z,)] .
Iyczgd

Therefore we obtain
(6.12) XF(ZO)(Iuj!/IZI)IdZI < [(4V' 2Zr)/Buy)+Br(sine) 175 +019 |y ()] .

By and (6.12), we see that inequalities hold for constants
L,=V¥1+48")0 '[(4v 2k)/(Bv;)+Br](sine) 1nj1+Dd/o j=1 2.
By virtue of (6.4), [6.5) and [(6.6), we obtain

(6.13) | D(to, Qo, Po)I, |¥(to, Qo, Fo)l
< (ex+6MapnKy)L(1to| 7'+ 1Q0| + 15 P )| QoPo | ¥

where

(6.14) L =max{L,, L, Ls}.
Now determine Ky by

(6.15) Ky =cn/(1/L—6Mapy)

where px>0 is sufficiently small such that

(6.16) 6Mapy < 1/L

and [6.3) hold. Then, for constants Ry»1, 0<px<1 and Ky>0 chosen above,
@ and ¥ also satisfy inequalities namely (@, ¥eg. It is easy to see that
the operator g defined by (¢, ¢)=(@, ¥) has a fixed point by the use of
Schauder-Tihonov fixed point theorem. The fixed point (¢, ¢)EF is a required
solution of system (6.1)y.

The uniqueness of solution with order condition (ii) in Lemma 4.2 is verified
by Lipschitz inequality (4.6) and the inequalities obtained in this section.

§7. Completion of the proof of Theorem 2.

For every positive integer N, put
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¢Vt Q, P)=ax(t, Q, P)+én(t, Q, P), ¢, Q, P)=0by(t, Q, P)+¢n(t, Q, P),
where (¢n, ¢n) is the unique solution of system (4.3)y. It can be supposed
without loss of generality that Ry and 1/p» are monotone increasing in N. In
order to prove (iii) of [Proposition 3.1, it is sufficient to show that (¢", ¢") is
independent of N. Let N(1)<N(2) be arbitrary positive integers. Since
(@ve—avw+dre, byey—byart+¢ne) is a solution of (4.3)yy, with order
condition O(|QPI¥®(|¢|"*4|Q|+[t7*P|)), it must coincide with (¢¥ <V, $p¥®) in
DRyw/a, pywa), namely (p¥P, H¥VD)=(g¥®, ¥®)  which shows that
(@Y, ¢V) is independent of N.

It is easy to verify that the composition of the canonical transformations

2.3), [2.11), [2.14), [(3.2), [3.3) and has the convergence property stated in
Thus we have completed the proof of

§8. General solutions of Painlevé systems.

Hamiltonian functions associated with Painlevé equations P;, j=I, ---, IV,
are given as follows:

Hy=(1/2)p*—=28—12,
Hy =1/2)p*—(2+t/2)p—(a+1/2)4,
Hyy = 7' [22° 1% — {29t 24+ (20,+1)A—270t } p+ 1o 00+ 0)1 2],
HIV = 22{12—‘ {22+2t2+2ﬁ70}ﬂ+0w2
where 4, ¢ and t are variables and other letters stand for constants ([14]). In
this section, we will give canonical transformations which change H,, J=I, ---, IV,
to Hamiltonian functions of the normal form and then compare our results
with those obtained by S. Yoshida ([20]). The canonical transformation which
reduces H; to a solvable Hamiltonian of the form will be written as
(2, £)=0(-, Q, P). The functions f,(X)’s will stand for ones holomorphic at
X=0.
8.1. Painlevé system (H;). Set
t — s4/5
and consider the successive canonical transformations
A= /124 x—fo(s7' )], p=sTly+sfilx—folsTTy)],
x=2z—sf(s7w), y=wt[fz—sf(s7wW)),
z=ull+fs(w], w=v/[1+f(w)+uf(w)],
u=q/[1+fe(s7'p)+spfe(s'p)], v =pL1+fs(s'P)]
where £=(—24)"", fi=—kX+0(X?), fo=£"/48+0(X), f;=£*/24+0(X), f.=
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£/48+0(X), fs=—(&*/12)X+0(X?* and f=—(k/12)X+0(X?. Then H; is
normalized as (1.7) where ¢=1 and

Ay = —4x/5, hoo(0) = —1/2, hy(e0) = —1/2, hjf () =0, j=2.
Hence we have a general solution @(s)=®(s, Q(s), P(s)) which behaves as
O(s) = (s*%(&*/2+0(1)), s*/*0(1))
as s—oo along the singular line of —(4x/5)s. (4, p)=0(s, V4, 2¢sV,) coincides
with the transformation obtained by S. Yoshida.
8.2. Painlevé system (Hy). Set
t=s*?.
8.2.1. By the successive canonical transformations
A=sTP[—atytsfilx—fo(sTy)], p=—s[=1/24x—fo(s7'Y)],
x =z—sfy(sT'w+s fu(2)), ¥y =w+f2),
z=ull+fs(w)], w=v/[1+f(w)+ufi(w)],
u=q/[1+fs7'P)+s7pfe(s7'P)], v =pll+fe(s7'p)]

with  f1=X+0(X?), [f.=X/24+0(X?), [fy=—(a/8+1/16)X+0(X?), f,=
—(a+1/4)X+0(X?), fs=—X/24+0(X?), fs=0(X), Hy is changed to [1.7) where
=1 and

A= —2/3, hoo(o0) = —1/2, hyy(e0) = —1/2, hje0) =0, j=2.
Then we have a general solution with the asymptotic property
O(s) = (s7?}(—a—+o(l)s), s**(1/2+0(1)))

as s—oco along the singular line of —(2/3)s. The transformation (4, y)=
@(s, V,, 2sV,) is that obtained by S. Yoshida.

8.2.2. By

A=sLx—fi(sT ) —s fosT)], p=sTy, x=2z, y=witfi2),
z=ull+fw)], w=v/[1+fu)+ufiu)],
u=q/[1+fs(s7'p)+sTpfi(s™'p)], v =pll+Ss(s7p)]

with f1=i/v2+0X), fo=—2a—1)/84+0(X), fi=—Qa+1)v 2i/4+0(X),
fo=3G/V2)X+0(X?), fs=—X/24+0(X?), Hy is changed to where ¢=1 and

Ao =24214/3, hoo(0) = —(a+1/2), hy(e0) = —1, fife0) =0, ;=2
with 7=+/—1. Therefore we have a general solution @(s) with
D(s) = (s"(—i/vV 2 +0(1)), s(—QRa+1)V 2i/4+0(1)s))

as s—oo along a curve which is tangent to the singular line of (2v/ 2 /3)s.
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This is a new general solution.
- 8.3. Painlevé system (Hyy).
8.3.1. By
A= VN it x—FLA7 )=t (1Y), p=nLtty, x=2z, y=w+[y2),
z=u[l+f(w)], w=v/[1+f(wW+ufiw],
u=gq/[1+f"'P)+t7'pf¢7 p)], v=pl1+f:(7'p)],

with fi=(vV90/9=/27)i X+0(X?), fo=—(300+0-+2)/(89.)+0(X),
fs=—(00—0)V N/ 0i /4+0(X), fi=—(V e/ 10i/2)X+0(X?),
fs=(1/27.)X+0(X?), Hy is changed to [(1.7) where ¢=1 and

A=AV i,  heo(o0) =(00—0<)/2,  hy(eo)=~1,  hj(e0)=0, s=2.
Hence we have a general solution @(¢) with
(1) = (V7o/ i+ 0(1), Det(1+0(1)))

as {—oo along a curve which is tangent to the singular line of 4v/79«it. The
transformation (4, #)=®@(t, Vi, 24/ 909.7«itV,) is that of S. Yoshida.

8.3.2. By

A= VN/ Nt x— Lt )=t fo(t70y), =y, x=2z, y = wtf42),
z=ull+f(w)], w=v/[1+f(w)+ufiw)],

with f1=—(V70/9e/29)X+0(X?), f2=(30s—0-+2)/(8%-)+0(X), ,
f =00+ 0NV 7/ 0o/A+O0(X), fo=(V 0/ 70/2)X+O0(X?), fs=—(1/20-)X+0(X?),
Hyy; is changed to where ¢-=1 and

Ao = ~4V 7o )w, Roo(00) = (6,+0)/2, hiy(e0) = —1, hjf) =0, jz2.
Then we have a new general solution @(#) with
D(t) = (VRo/ 9t 0(1), (Bo+0)V 7/ 0/4+0(1)2)
as t—oo along a curve which is tangent to the singular line of —44/7,7xt.
8.4. Painlevé system (Hy). Set
t = s'?,

By

A=s"x, p=sT(y+fx)),

x=z—s"fy(sT'w), y=w,

z=ull+f(w)], w=v/[1+f(w)+ufs(w)],

u=gq/[1+fsTP)+sTpfis7' )],  v=pll+fs7'P)],
with f1=0./24+0(X), fo=k+0(X), fo=X/24+0(X?), f,=—X+0(X?), Hy is
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changed to where ¢=1 and
A =—1, hoo(o0) = Ii'o‘l—ﬁoo—'l/z, hy(e0) = =3/2, hjj(°°) =0, j=2.

Hence we obtain a general solution @(s) with the property

D(s) = (o(1)s, s Y%(0./2+0(1)))

as s—oo along a curve which is tangent to the singular line of —s. The trans-
formation (4, ¢)=90(s, V,, sV,) coincides with that of S. Yoshida.
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