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1. Introduction.

In this paper, we consider a nonlinear distributed control system, with time
varying control constraints and an initial condition which is not determined by
an a priori given function, but instead it is assumed to belong to a certain
specified set (Lions [5] calls them “systems with insufficient data”). The cost
criterion is a general convex integral functional.

Using the Dubovitski-Milyutin formalism, we are able to obtain a necessary
and sufficient condition for the existence of an optimal solution. A very com-
prehensive presentation of the Dubovitski-Milyutin theory can be found in the
monograph of Girsanov [3]. Our result extends Theorem 2.1 of Lions [5],

since we allow for nonlinear dynamics and a nonquadratic cost criterion.

2. Preliminaries.

The mathematical setting is the following. Let $T=[0, b]\subseteqq R_{+}$ (a bounded
time interval) and $H$ a separable Hilbert space. Also let $X\subseteqq H$ be a subspace
of $H$ carrying the structure of a separable reflexive Banach space, which imbeds
continuously and densely into $H$. Identifying $H$ with its dual (pivot space),

we have $XcHcX^{*}$ , with all embeddings being continuous and dense. Such a
triple (X, $H,$ $X^{*}$ ) of spaces is sometimes called “Gelfand triple” or “spaces in
normal position”. By $||\cdot||$ (resp. $|$ . , $||\cdot||_{*}$) we will denote the norm of $X$ (resp.

of $H,$ $X^{*}$). Also by $(\cdot, )$ we will denote the inner product in $H$ and by $\langle\cdot, \cdot\rangle$

the duality brackets for the pair (X, $X^{*}$ ). The two are compatible in the sense
that if $x\in X\subseteqq H$ and $h\in H\subseteqq X^{*}$ , we have $(x, h)=\langle x, h\rangle$ . Also let $Y$ be another
separable Banach space modelling the control space. By $P_{fc}(Y)$ we will denote
the nonempty, closed, convex subsets of $Y$ .

The optimal control problem under consideration is the following:
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$\{$

$J(x, u)= \int_{0}^{b}L(t, x(t),$ $u(t))dt arrow\inf$

$s$ . $t.\dot{x}(t)+A(t, x(t))=B(t, x(t))u(t)$ $a.e$ . $x(0)\in C,$ $u(t)\in U(t)$

$a.e.\}$ $(*)$

We will need the following hypotheses concerning the data of $(*)$ .

$H(A)$ : $A$ :TXX– $x*$ is an operator $s$ . $t$ .
(1) $tarrow A(t, x)$ is measurable,
(2) $xarrow A(t, x)$ is continuously Frechet differetiable and strongly monotone

uniformly in $t\in T$ ,
(3) $||A(t, x)||_{*}\leqq a(t)+b||x||a.e$ . with $a(\cdot)\in L2$ , $b>0$ ,

(4) $\langle A(t, x), x\rangle\geqq c||x||^{2}$ , $c>0$ .
$H(B)$ : $B:T\cross Harrow \mathcal{L}(Y, X^{*})$ is an operator $s$ . $t$ .

(1) $tarrow B(t, x)u$ is measurable for all $(x, u)\in H\cross Y$ ,
(2) $xarrow B(t, x)$ is continuous,
(3) $xarrow B(t, x)u$ is continuously Frechet differentiable,
(4) $||B(t, x)u||_{*}\leqq\beta_{1}(t)+\beta_{2}(t)|x|+\beta_{s}(t)||u||a.e$ . with $\beta_{1}(\cdot),$ $\beta_{2}(\cdot)\in L_{+}^{2}$ ,

$\beta_{3}(\cdot)\in L_{+}^{\infty}$ .

$H(L)$ : $L:T\cross H\cross Yarrow R$ is an integrand $s$ . $t$ .
(1) $t \frac{>}{}L(t, x, u)$ is measurable,
(2) $(x, u)arrow L(t, x, u)$ is convex and continuously Gateaux differentiable,

(3) for every $(x, u)\in L^{\infty}(H)\cross L^{2}(Y),$ $J(x, u)$ is finite.

$H(U)$ : $U:Tarrow P_{fc}(Y)$ is a multifunction s. t. $GrU=\{(t, u)\in T\cross Y:u\in U(t)\}\in$

$B(T)\cross B(Y)$ (where $B(T)$ is the Borel a-field of $T$ and $B(Y)$ the Borel a-field
of $Y$ ), $t arrow|U(t)|=\sup\{||u|| : u\in U(t)\}$ belongs in $L_{+}^{2}$ and if $S_{U}^{2}=\{u(\cdot)\in L^{2}(Y):u(t)$

$\in U(t)$ a.e.}, then $intS_{U}^{2}\neq\emptyset$ .

$H(C)$ : $C\subseteqq H$ is a closed, convex set with a nonempty interior.
Following Lions [4], we define $W(T)=\{x(\cdot)\in L^{2}(X):\dot{x}\in L^{2}(X^{*})\}$ . This is

a Banach space with norm $||x||_{W(T)}=[ \int_{0}^{b}||x(t)||^{2}di+\int_{0}^{b}||\dot{x}(t)||_{*}^{2}dt]^{1/2}$ It is well known

that $W(T)cC(T, H)i$ . $e$ . the elements of $W(T)$ are continuous maps with values
in $H$, eventually after changing each function on a set of measure zero.

Since our necessary and sufficient conditions, will involve the adjoint state,
we need the following existence result. By $A_{x}(t, x(t))(\cdot),$ $B_{x}(t, x(t),$ $u(t))$ and
$L_{x}(t, x(t),$ $u(t))$ we denote the derivatives with respect to $x$ of the maps $A(t, x)$ ,
$B(t, x, u)$ and $L(t, x, u)$ at the points $(t, x(t)),$ $(t, x(t),$ $u(t))$ and $(t, x(t),$ $u(t))$

respectively. Also by $A_{x}^{*}(t, x(t)),$ $B_{x}^{*}(t, x(t),$ $u(t))$ we denote the adjoints of
$A_{x}(t, x(t))$ and $B_{x}(t, x(t),$ $u(t))$ respectively.

PROPOSITION 2.1. If hypotheses $H(A),$ $H(B),$ $H(L)$ hold, $B_{x}(t, x(t),$ $u(t))|_{X}(\cdot)$

is dissiPative and $tarrow L_{x}(t, x(t),$ $u(t))$ belongs in $L^{2}(H)$ , then there exists $p(\cdot)\in$
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$W(T)s$ . $t$ .
$-\dot{p}(t)+A_{x}^{*}(t, x(t))p(t)=B_{x}^{*}(t, x(t),$ $u(t))p(t)-L_{x}(t, x(t),$ $u(t))a$ . $e$ . $p(b)\in H$ .

PROOF. From the strong monotonicity of $A(t, )$ , uniformly in $t\in T$ , we
have:

$\langle A(t, x’)-A(t, x(t)), x’-x(t)\rangle\geqq\theta||x’-x(t)||^{2}$ $\theta>0$

$=\langle A_{x}(t, x(t))(x’-x(t))+O(||x’-x(t)||), x’-x(t)\rangle\geqq\theta||x’-x(t)||^{2}$ .
Putting $x’-x(t)=\epsilon p$ , we see that

$\langle A_{x}(t, x(t))\epsilon p+0(\epsilon||p||), \epsilon p\rangle$ 1111 $\theta\epsilon^{2}||p||^{2}$ .
Divide by $\epsilon^{2}$ and let $\epsilonarrow 0^{+}$ . We get:

$\langle A_{x}(t, x(t))p, p\rangle=\langle A_{x}^{*}(t, x(t))p, p\rangle\geqq\theta||p||^{2}$ .
Also by hypothesis $\langle-B_{x}^{*}(t, x(t), u(t))p, p\rangle\geqq 0$ . Since $tarrow L_{x}(t, x(t),$ $u(t))$

belongs in $L^{2}(H)$ , we can invoke Theorem 4.2, p. 167 of Barbu [1], and get
that indeed there exists $p(\cdot)\in W(T)$ solving our problem. Q. E. D.

3. Necessary and sufficient conditions.

The next result gives us necessary and sufficient conditions for a triple
$(x_{0}, x, u)\in HXW(T)XL^{2}(Y)$ to be a solution of $(*)$ .

THEOREM 3.1. If hypotheses $H(A),$ $H(B),$ $H(L),$ $H(U),$ $H(C)$ hold, for the pair
$(x, u)\in W(T)xL^{2}(Y)$ we have $||A_{x}(t, x(t))||_{1(X.X^{*})}\leqq\eta_{1},$ $||B_{x}(t, x(t),$ $u(t))||_{\mathcal{L}(H.X^{*})}\leqq\eta_{2}$ ,
$B_{x}(t, x(t),$ $u(t))|_{X}(\cdot)$ is dissipative and $tarrow L_{x}(t, x(t),$ $u(t))\in L^{2}(H)$ , then the triple $(x(O)$

$=x_{0},$ $x,$ $u)\in H\cross W(T)\cross L^{2}(Y)$ is a solution of $(*)$ if and only if
$\dot{x}(t)+A(t, x(t))=B(t, x(t))u(t)a$ . $e$ . $x(O)=x_{0}\in C,$ $u(t)\in U(t)$ ,

there exists $p(\cdot)\in W(T)$ satisfying the $ad_{J}$ oint equation”

$-\dot{p}(t)+A_{x}^{*}(t, x(t))p(t)=B_{x}^{*}(t, x(t),$ $u(t))p(t)-L_{x}(t, x(t),$ $u(t))a$ . $e.$ , $p(b)=0$

and the following “minimum principles” hold

$(L_{u}(t, x(t),$ $u(t))-B^{*}(t, x(t))p(t),$ $v-u(t))_{Y.Y*}\geqq 0$ for all $v\in U(t)a.e$ . and

$(-p(O), c-x_{0})$ lli $0$ for all $c\in C$ .

PROOF. AS we already mentioned in the introduction, our approach is based
on the Dubovitski-Milyutin formalism. So we need to analyze the cost criterion,
the equality constraint ( $i$ . $e$ . the evolution equation) and the initial data-control
constraints (regarded here as an inequality constraint), by determining the cone
of directions of decrease, the tangent cone and the cone of feasible directions
respectively.

We will start with the cost criterion $J(\cdot, )$ . Recalling that ] $(\cdot, )$ is convex
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and using the monotone convergence theorem we get that

$\nabla J(x, u)(h, v)=\int_{0}^{b}\nabla L(t, x(t),$ $u(t))(h(t), v(t))dt$ ,

where $\nabla$ is the gradient operator.
But since by hypothesis $H(L)(2),$ $L(t, \cdot, )$ is continuously Gateaux differenti-

able, from the total differential rule we have:
$\nabla L(t, x(t),$ $u(t))(h(t), v(t))=L_{x}’(t, x(t),$ $u(t))h(t)+L_{u}’(t, x(t),$ $u(t))v(t)$ .

Invoking Theorem 7.4 of Girsanov [3], we get that the cone of directions
of decrease of the cost criterion $J(\cdot, )$ at $(x, u)$ is given by

$K_{(:}=\{(h, v)\in W(T)\cross L^{2}(Y) : J’(x, u)(h, v)<0\}$ .
Assume $K_{d}\neq\emptyset$ . Then we have:

$=K_{a}^{*}=\{-\lambda J(x, u):\lambda\in R_{+}\}$ .
NOW we pass to the analysis of the equality constraint. This is determined

by the dynamical equation of the system. So consider the map $P:HxW(T)\cross L^{2}(Y)$

$arrow L^{2}(X^{*})\cross H$ defined by

$P(x_{0}’, x’, u’)(t)=(\dot{x}’(t)+A(t, x’(t))-B(t, x’(t))u’(t),$ $x’(O)-x_{0}’)$ .
Observe that because of our hypotheses both $\hat{A}:W(T)arrow X^{*}$ defined by

$(\hat{A}x’)(t)=A(t, x’(t))$ and $\hat{B}$ : $W(T)\cross L^{2}(Y)arrow L^{2}(X^{*})$ defined by $\hat{B}(x’, u’)(t)=$

$B(t, x’(t))u’(t)$ are continuously Frechet differentiable at $(x_{0}, x, u)$ . So $P(\cdot, \cdot, )$

is continuously Frechet differentiable at $(x_{0}, x, u)$ and furthermore

$P’(x_{0}, x, u)(h_{0}, h, v)(t)$

$=(\dot{h}(t)+A_{x}(t, x(t))h(t)-B_{x}(t, x(t),$ $u(t))h(t)-B(t, x(t))v(t),$ $h(0)-h_{0})$ .
We will show that $P’(x_{0}, x, u)$ is surjective. So let $(g, v, h_{0}, h_{1})\in L^{2}(X^{*})$

$\cross L^{2}(Y)XHXH$ be given and consider the following Cauchy problem:

$\{\begin{array}{lllllll}h(t)+A_{x}(t, x(t))h(t)= B_{x}(t, x(t), u(t))h(t)+B(t, x(t))v(t)+g(t) a.e.h_{0}h(0)=+h_{1}. \end{array}\}$

AS in the proof of Proposition 2.1, we can check that all the hypotheses of
Theorem 4.2 of Barbu [1] are satisfied. Hence the above Cauchy problem has
a solution $h(\cdot)\in W(T)$ . So for any $(g, h_{1})\in L^{2}(X^{*})xH$, we can find $(h_{0}, h, v)\in$

$HxH\cross L^{2}(Y)s$ . $t$ . $P’(x_{0}, x, u)(h_{0}, h, v)=(g, h_{1})i.e$ . $P’(x_{0}, x, u)$ is surjective.
Hence we can apply Lyusternik’s theorem (see Girsanov [3], Theorem 9.1) and
deduce that if

$Q_{1}=\{(x_{0}’, x’, u’)\in HXW(T)\cross L^{2}(Y):P(x_{0}’, x’, u’)=0\}$ (equality constraint set),

then the tangent space to $Q_{1}$ at $(x_{0}, x, u)$ is given by
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$T(Q_{1})=\{(h_{0}, h, v)\in H\cross W(T)\cross L^{2}(Y) : P’(x_{0}, x, u)(h_{0}, h, v)=0\}$

$=kerP’(x_{0}, \chi u)$

$\Rightarrow(T(Q_{1}))^{*}=\{w^{*}\in H\cross W(T)^{*}\cross L^{2}(Y^{*})$ : $w^{*}(h_{0}, h, v)=0$

for all $(h_{0}, h, v)\in T(Q_{1})\}$ .
Finally we will analyze the initial data-control constraints. So set

$Q_{2}=CxS_{U}^{2}\subseteqq HxL^{2}(Y)$ .
By hypothesis int $C\neq\emptyset$ and int $S_{U}^{2}\neq\emptyset$ , and $C\cross S_{U}^{2}$ is convex. So Theorem

10.5 of Girsanov [3], tells us that the dual to the cone of feasible directions of
$Q_{2}$ at $(x_{0}, u)$ is given by

$K(Q_{2})_{f}^{*}=(C\cross S_{U}^{2})^{*}=C^{*}xS_{U}^{2*}$ .
Hence $(c^{*}, u^{*})\in K(Q_{2})_{f}^{*}$ if and only if $c^{*}$ supports $C$ at $x_{0}$ and $u^{*}$ support

$S_{U}^{2}$ at $u$ .
NOW that we have in our disposal all the appropriate cones, we can apply

the Dubovitski-Milyutin theorem [2] (see also Girsanov [3], Theorem 6.1) and
get $y^{*}\in K_{a}^{*},$ $w^{*}\in T(Q_{1})^{*}$ and $(c^{*}, u^{*})\in K(Q_{2})_{f}^{*}$ , not all simultaneously zero $s$ . $t$ .

$(0, y^{*})+w^{*}+(c^{*}, 0, u^{*})=0$

$\Rightarrow y^{*}(h, v)+w^{*}(h_{0}, h, v)+(c^{*}, h_{0})+u^{*}(v)=0$ for all $(h_{0}, h, v)\in H\cross W(T)\cross L^{2}(Y)$ .
Recall from the analysis of the equality constraint that if $(h_{0}, h, v)\in T(Q_{1})$

i.e. if $P’(x_{0}, x, u)(h_{0}, h, v)=0$ , then $w^{*}(h_{0}, h, v)=0$ . This means then that if
for any $(h_{0}, v)\in H\cross L^{2}(Y)$ , we choose $h\in W(T)$ , so that $(h_{0}, h, v)$ solves the
Cauchy problem

$\dot{h}(t)+A_{x}(t, x(t))h(t)=B_{x}(t, x, (t), u(t))h(t)+B(t, x(t))v(t)$ $a$ . $e.$ , $h(O)=h_{0}$

(we already saw that such an $h\in W(T)$ always exists), then $w^{*}(h_{0}, h, v)=0$ and
in this case the Euler-Lagrange equation becomes

$y^{*}(h, v)+(c^{*}, h_{0})+u^{*}(v)=0\Rightarrow$ $-\lambda J’(x, u)(h, v)+(c^{*}, h_{0})+u^{*}(v)=0$ .
Since $(h_{0}, v)\in HXL^{2}(Y)$ is arbitrary, if $\lambda=0$ , then $c^{*}=0,$ $u^{*}=0$ and so $w^{*}=0$ ,

a contradiction to the Dubovitski-Milyutin theorem. So $\lambda>0$ and without any
loss of generality, we can take $\lambda=1$ .

Consider the following adjoint Cauchy problem.

$-p(t)+A_{x}^{*}(t, x(t))p(t)=B_{x}^{*}(t, x(t),$ $u(t))p(t)-L_{x}(t, x(t),$ $u(t))$ $a.e.$ , $p(b)=0$ .
From Proposition 2.1 we know that the above Cauchy problem has a solution

$p(\cdot)\in W(T)$ . Using this adjoint state $p(\cdot)$ , we get:

$\int_{0}^{b}(L_{x}(t, x(t),$ $u(t)),$ $h(t))dt= \int_{0}^{b}\langle P(t)-A_{x}^{*}(t, x(t))p(t)+B_{x}^{*}(t, x(t))p(t), h(t)\rangle dt$

$= \int_{0}^{b}\langle p(t), h(t)\rangle dt-\int_{0}^{b}\langle A_{x}^{*}(t, x(t))p(t), h(t)\rangle dt+\int_{0}^{b}\langle B_{x}^{*}(t, x(t))p(t), h(t)\rangle dt$ .
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From Lemma 5.5.1 of Tanabe [6], we know that:

$\int_{0}^{b}\langle p(t), h(t)\rangle dt=(p(t), h(t))|_{0}^{b}-\int_{0}^{b}\langle p(t),\dot{h}(t)\rangle dt=-(p(0), h_{0})-\int_{0}^{b}\langle p(t),\dot{h}(t)\rangle dt$ .

Also we have:

$\int_{0}^{b}\langle A_{x}^{*}(t, x(t))p(t), h(t)\rangle dt=\int_{0}^{b}\langle p(t), A_{x}(t, x(t))h(t)\rangle dt$ and

$\int_{0}^{b}\langle B_{x}^{*}(t, x(t), u(t))p(t), h(t)\rangle dt=\int_{0}^{b}\langle p(t), B_{x}(t, x(t), u(t))h(t)\rangle dt$ .
Using these facts, we get:

$\int_{0}^{b}(L_{x}(t, x(t),$ $u(t)),$ $h(t))dt$

$= \int_{0}^{b}\langle p(t), -\dot{h}(t)-A_{x}(t, x(t))h(t)+B_{x}(t, x(t), u(t))h(t)\rangle dt-(p(0), h_{0})$ .

Recalling the choice of $h(\cdot)\in W(T)$ , we get:

$\int_{0}^{b}(L_{x}(t, x(t),$ $u(t)),$ $h(t))dt= \int_{0}^{b}\langle p(r), -B(t, x(t))v(t)\rangle dt-(p(0), h_{0})$ .

Use this back into the Euler-Lagrange equation, to get:

$u^{*}(v)+(c^{*}, h_{0})= \int_{0}^{b}\langle p(t), -B(t, x(t))v(t)\rangle dt$

$+ \int_{0}^{b}(L_{u}(t, x(t),$ $u(t)),$ $\nu(t))_{Y.Y*}dt-(p(0), h_{0})$

for every $v\in L^{2}(Y)$ and every $h_{0}\in H$. Hence clearly

$u^{*}(v)= \int_{0}^{b}(L_{u}(t, x(t),$ $u(t))-B^{*}(t, x(t))p(t),$ $v(t))_{Y.Y*}dt$ and $c^{*}(h_{0})=-(p(0), h_{0})$ .

Recall that $u^{*}$ supports S& at $u$ and $c^{*}$ supports $C$ at $x_{0}$ . So we have:

$\int_{0}^{b}(L_{u}(t, x(t),$ $u(t))-B^{*}(t, x(t))p(t),$ $v(t)-u(t))dt10$ for all $v\in S_{U}^{2}$ and

$(-p(O), c-x_{0})\geqq 0$ for all $c\in C$ .
Suppose that for some $E\subseteqq T$ with $\lambda(E)>0$ , we have:

$\inf_{v\in U(t)}(L_{u}(t, x(t)),$
$u(t))-B^{*}(t, x(t))p(t),$ $v-u(t))_{Y.Y*}<0$ , $t\in E$ .

Consider the multifunction $V:Earrow 2^{Y}\backslash \{\emptyset\}$ , defined by:

$V(t)=\{v\in U(t) : (L_{u}(t, x(t), u(t))-B^{*}(t, x(t))p(t), v-u(t))_{Y.Y*}<0\}$ .
From our hypotheses $H(B)$ and $H(L)$ , it is easy to see that

$(t, v)arrow r(t, v)=(L_{u}(t, x(t),$ $u(t))-B^{*}(t, x(t))p(t),$ $v-u(t))_{Y.Y^{*}}$ ,

is measurable in $f$ , continuous in $v$ , hence jointly measurable. Thus
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Gr $V=\{(t, v)\in E\cross Y:r(t, v)<0\}\cap GrU\in B(E)xB(Y)$ .
Apply Aumann’s selection theorem (see Wagner [7]), to get $v_{1}$ : $Earrow Y$

measurable $s$ . t. $v_{1}(t)\in V(t)$ for $t\in E$ . Let $v:Tarrow Y$ be defined by setting $v(t)=$

$v_{1}(t)$ for $t\in E$ and $v(t)=u(t)$ for $t\in T\backslash E$ . Clearly v\in S& and furthermore

$\int_{0}^{b}(L_{u}(t, x(t),$ $u(t))-B^{*}(t, x(t))p(t),$ $v(t)-u(t))_{Y.Y*}dt<0$

a contradiction. So we have:

$\inf_{v\in U(t)}(L_{u}(t, x(t),$ $u(i))-B^{*}(t, x(t))p(t),$ $v-u(t))\geqq 0$ a. $e$ .

while inf,$\in C(-P(O), c)=(-p(O), x_{0})$ .
Finally we remove the hypothesis $K_{d}\neq\emptyset$ . If $K_{d}=\emptyset$ , then

$\int_{0}^{b}(L_{x}(t, x(t),$ $u(t)),$ $h(t))dt+ \int_{0}^{b}(L_{u}(t, x(t),$ $u(t)),$ $v(t))_{Y.Y*}dt=0$

for all $(h, v)\in W(T)\cross L^{2}(Y)$ . Hence we have:

$L_{x}(t, x(t),$ $u(t))=0$ , $L_{u}(t, x(t),$ $u(t))=0$ .
The solution of the adjoint equation is

$p(t)=0$

and so the minimum principle becomes obvious. This completes the necessity
part of the proof.

For the sufficiency part, we apply Theorem 15.2 of Girsanov [3]. Note that
$J(\cdot, )$ is a convex function, which is finite everywhere. Also through a simple
application of Fatou’s lemma, we can check that $J(\cdot, )$ is 1. $s$ . $c$ . A convex,
1. $s$ . $c$ . function which is finite everywhere, is continuous. So $J(\cdot, )$ is continu-
ous, convex. The Slater type requirement of Theorem 15.2 of Girsanov [3], is
automatically satisfied, since by hypothesis int Sb# $\emptyset$ and int $C\neq\emptyset$ . Thus an
application of Theorem 15.2 of Girsanov [3], gives us the sufficiency part. Q.E.D.

REMARK. If $U(\cdot)$ is not $L^{2}$-bounded (i. e. $tarrow|U(t)|$ is not in $L_{+}^{2}$), then

the minimum principle has integral form $i$ . $e$ . $\int_{0}^{b}(L_{u}(t, x(t)),$ $u(t))-B^{*}(t, x(t))p(t),$ $v(t)$

$-u(t))_{Y.Y*}\geqq 0$ for all $v\in S_{U}^{2}$ .

4. An example.

In this section we work out a concrete example of a parabolic distributed
parameter control system, to which our result applies.

So let $T=[0, b]$ and let $V$ be a bounded domain in $R^{n}$ , with a smooth
boundary $\partial V=\Gamma$ . We consider the following distributed parameter optimal
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control problem defined on $TxV$

$|_{x(t,.)nT\cross\Gamma}^{V} \hat{J}(x.’ L(t,z,x(t,z),u(t,z))dzdtarrow\inf_{\cross}x(0,)L^{2}(V),(\int_{V}||u(t,v)||^{2}dv)^{1/2}\leqq r(t).$ $\}$ $(**)$

Here $\hat{A}(t)$ is the formal second order elliptic partial differential operator in
divergence form, defined by $\hat{A}(t)y=-\Sigma_{i.j=1}^{n}(\partial/\partial z_{i})(a_{ij}(t, z)(\partial y(z)/\partial z_{j}))$ . We
assume that $a_{ij}(\cdot, \cdot)\in L^{\infty}(TxV)$ and that they satisfy the following strong
ellipticity condition:

$\sum_{t,j=1}^{n}a_{ij}(t, z)\eta_{i}\eta_{j}\geqq\theta\sum_{i=1}^{n}$ rp7

for all $(t, z)\in T\cross V,$ $\eta=(\eta_{i})_{i=1}^{n}\in R^{n}$ and with $\theta>0$ .
For this example $X=H_{0}^{1}(V),$ $H=L^{2}(V)$ and $X^{*}=H^{-1}(V)$ . Clearly (X, $H,$ $X^{*}$)

is a Gelfand triple. On $XxX$ we consider the following bilinear Dirichlet form:

$a(t, x, y)= \int_{V}\sum_{i.j1}^{n}a_{ij}(t, z)\frac{\partial x(z)\partial y(z)}{\partial_{Z_{i}}\partial_{Z_{j}}}dz$ .

Since $a_{tj}(\cdot, )\in L^{\infty}(TxV)$ and using Poincar\’e’s inequality, we have:

$|a(t, x, y)|\leqq c||x||_{H_{0}^{1}(V)}||y||_{H_{0}^{1}(V)}$ .
Let $A(t):H_{0}^{1}(V)=Xarrow H^{-1}(V)=X^{*}$ be the continuous, linear operator defined

by
$a(t, x, y)=\langle A(t)x, y\rangle$ $x,$ $y\in H_{0}^{1}(V)$ .

Making use of the strong ellipticity condition, we can show that

$\langle A(t)x, x\rangle\geqq\hat{c}||x||_{H_{0}^{1}(V)}^{2}$ .
We set $Y=L^{2}(V)$ (the control space) and set $U(t)=\{u\in L^{2}(V) : ||u||_{2}\leqq r(t)\}$ .

Assume $r(\cdot)\in L_{+}^{2}$ and $0<\delta\leqq r(t)$ . Let $\mathring{B}(\delta/(\max(b, 1)))=\mathring{B}=\{u\in L^{2}(Y):||u||_{L^{2}(Y)}$

$< \delta/(\max(b, 1))\}$ . Then $\mathring{B}\subseteqq S_{U}^{2}$ and so int $S_{U}^{2}\neq\emptyset$ . Also we assume that $C\subseteqq L^{2}(V)$

is nonempty, closed, convex, solid ( $i$ . $e$ . int $C\neq\emptyset$ ).

Finally let $\hat{L}$ : $TxV\cross R\cross Rarrow R$ be a integrand s. t.
(i) $(t, z)arrow\hat{L}(t, z, x, u)$ is measurable,
(ii) $(x, u)arrow L(t, z, x, u)$ is convex and continuously differentiable,
(iii) for every $x\in L^{\infty}(T, L^{2}(V))$ and every $u\in L^{2}(T, L^{2}(V))=L^{2}(TxV),\hat{J}(x, u)$

is finite.

Define $L:\tau xL^{2}(V)\cross L^{2}(V)arrow R$ by $L(t, x, u)= \int_{V}\hat{L}(t, z, x(z), u(z))dz$ . Using

the above hypotheses $(i)arrow(iii)$ about $L$ , we have that $L(t, x, u)$ satisfies $H(L)$ .
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Furthermore $L_{x}(t, x, u)(h)= \int_{V}\hat{L}_{x}(t, z_{y}x(z),$ $u(z))h(z)dz$ and $L_{u}(t, x, u)(\iota))=$

$\int_{V}\hat{L}_{u}(t, z, x(z), u(z))v(z)dz$ .
NOW rewrite optimal control problem $(**)$ in the following abstract form:

$\{s\int_{0}^{b}L(t,x(t),u(t))dtarrow inft.\dot{x}(t)+A(t)x(t)=u(t)a.e$

. $x(0)\in C$ , $u(t)\in U(t)$ $a.e$ .
$\}$ $(**)’$

This is a particular case of the more general problem studied in Section 3.
So we can apply Theorem 3.1 and get the following necessary and sufficient
condition for a triple $(x_{0}, x, u)\in L^{2}(V)\cross W(T)XL^{2}(TXV)$ , to be a solution of
$(**)$ . Recall that $W(T)=\{x\in L^{2}(T, H_{0}^{1}(V)):\dot{x}\in L^{2}(T, H^{-1}(V))\}$ . Also $A^{*}(t)$ is
the formal adjoint of the operator $A(t)$ , and $(t, z)arrow L_{x}(t, z, x(t, z), u(t, z))\in L^{1}(T\cross z)$ .

THEOREM 4.1. If the above hypotheses hold, then $(x_{0}, x, u)\in L^{2}(V)\cross W(T)$

$\cross L^{2}(T\cross V)$ solves $(**)$ if and only if

(i) $\frac{\partial x(t,z)}{\partial t}+A(t)x(i, z)=u(t, z)$ on $T\cross V$

$x|_{T\cross\Gamma}(t, z)=0,$ $x(0, )=x_{0}(\cdot)\in C,$ $( \int_{V}|u(t, z)|^{2}dz)^{1/2}\leqq r(t)$ ,

(ii) there exists $p(\cdot)\in W(T)$ satisfying the “adjornt equation”

$- \frac{\partial p(t,z)}{\partial t}+A^{*}(t)p(t, z)=L_{x}(t, z, x(t, z), u(t, z))$ on $TxV$

$p(t, z)=0$ on $T\cross\Gamma,$ $p(b, z)=0,$ $z\in V$ ,

(iii) the following “minimum principles” hold

$\int_{V}(-p(t, z)+L_{u}(t, z, x(t, z), u(t, z)))(v(z)-u(t, z))dz\geqq 0$ $a$ . $e$ .

for all $v\in L^{2}(V)s$ . $t$ . $||v||_{2}\leqq r(t)$ and

$\int_{V}-p(O, z)(c(z)-x(O, z))dz\geqq 0$ for all $c(\cdot)\in C$ .

REMARK. If $r(\cdot)$ is not in $L_{+}^{2}$ , but simply measurable, then the minimum

principle has an integral form $\int_{0}^{b}\int_{V}(-p(t, z)+\hat{L}_{u}(t, z, x(t, z), u(t, z)))(v(t, z)-u(t, z))$

lliiO for all $v\in L^{2}(T\cross V)s$ . $t$ . $||v(t, )||_{L^{2}(V)}\leqq r(t)$ $a.e$ .

Finally we will conclude with some special cases of the problem studied in
this paper

(1) $C=H,$ $S_{U}^{2}=L^{2}(Y)$ : Then from the maximum principles we get

$B^{*}(t, x(t))p(t)=L_{u}(t, x(t),$ $u(t))$ $a.e$ . and $p(O)=0$ .
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(2) $C\subseteqq L^{2}(Y)$ with int $C\neq\emptyset,$ $S_{U}^{2}=L^{2}(Y)$ : The maximum principles give us
$B^{*}(t, x(t))p(t)=L_{u}(t, x(t),$ $u(t))$ $a$ . $e$ . and $(-p(O), c-x(O))\geqq 0$

for all $x\in C$ .
Finally if $C=\{0\}$ , then although int $C=\emptyset$ , it can be easily seen looking at

the proof of Theorem 3.1 that the second minimum principle disappears and
we have:

(3) $C=\{0\},$ $S_{U}^{2}=L^{2}(U)$ : The first minimum principle tells us that
$B^{*}(t, x(t))p(t)=L_{u}(t, x(t),$ $u(t))$ $a$ . $e$ .

In the particular case of our example we have in all cases that the adjoint
state is $p(t, z)=L_{u}(t, z, x(t, z), u(t, z))a.e$ .
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