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§1. Introduction.

Maximal hypersurfaces are spacelike hypersurfaces of a Lorentzian manifold
which are critical points of the induced area functional. The (universal) anti-de
Sitter spacetime is a geodesically complete spacetime of constant negative cur-
vature, which is a useful model for spatially noncompact spacetime as the
Minkowski spacetime. The purpose of this paper is to prove the existence of
entire maximal hypersurfaces in an asymptotically anti-de Sitter spacetime
satisfying a global barrier condition (see Section 4).

Maximal hypersurfaces play a very important role in the study of Lorentzian
geometry. In fact, Gerhardt and Galloway proved splitting theorems
with respect to time and space in a spatially closed globally hyperbolic Lorentzian
manifold satisfying the timelike convergence condition (cf. [4]). In [14], Schoen-
Yau proved the positive mass conjecture under the assumption of the existence
of an asymptotically flat maximal hypersurface in an asymptotically flat space-
time.

In a spatially closed Lorentzian manifold, many general results for the ex-
istence of compact maximal! hypersurfaces were shown in Bartnik and [10].
In a spatially noncompact Lorentzian manifold, several difficulties arise when
considering the existence of noncompact maximal hypersurfaces. However, in
(1] it was proved that there exist entire maximal hypersurfaces in an asympto-
tically flat spacetime satisfying a uniform interior condition (cf. [7]). It should
be remarked that a complete maximal hypersurface in the Minkowski space is
totally geodesic (cf. [5], [6).

Although several useful gradient estimates for spacelike hypersurfaces have
been known, for example in [1], [2], [6], [10], [15], to prove our main result
we need more general gradient estimates since the lapse functions of asympto-
tically anti-de Sitter spacetimes are unbounded. In Section 3, modifying the
technique in [1], we shall prove the gradient estimates. The gradient estimates
nevertheless depend on the a priori decay of height functions of spacelike hy-
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persurfaces. For one sufficient condition to control the decay of height func-
tions of maximal hypersurfaces, we impose a global barrier condition upon
asymptotically anti-de Sitter spacetimes. It should be pointed out that, although
the anti-de Sitter spacetime satisfies the global barrier condition, the norm of
gradient of the barrier function defined by the condition is uniformly bounded
and converges uniformly to zero at spacelike infinity (see Section 5).

§2. Notation and formulas.

First we set up our terminology and notation.

Let (<, g) be a spacetime (i.e., a time oriented Lorentzian 4-manifold, cf.
[12]) with Lorentzian metric g of signature (—, +, +, +). Let V denote the
Levi-Civita connection of (<V, g). We shall use the summation convention with
Roman indices in the range 14, 7, --- <3 and Greek indices in 0=<4, g, --- <3.

A function t€C*(<V) is said to be a time function (cf. [8]) if Vi (=gradt)
is a nonzero timelike vector field. The lapse function a= C=(<V) of t is defined
by

(2.1) at = —Vt, Vt).

The future-directed unit normal vector T on the time slice S;={peV; t(p)=t}
is given by

(2.2) T = —aVt.

Let M be a spacelike hypersurface in <. We choose a local field of
Lorentz orthonormal frames {V, e;, e,, ¢} in <V such that, restricted to M, the
vectors {e,, ¢, ¢;} are tangent to M and the vector V is future-directed. Then
the second fundamental form A and the mean curvature H are given by

(2-3) A(ei} ej) = —<ei) Vej V>y
2.4) H= 3} Ale,, ) = —div V.

The following calculations are due to Bartnik [1]. For completeness we
review them briefly.

A function u=C=(M) is said to be the height function of M if u is the re-
striction of the time function to M, that is, u=t|,. Then we have
2.5) Vi = a0 V—-T),
(2.6) IV¥u|? = a™(1*—1),

where V¥u=gradyu and v=-—<T, V). Hence v=1. From (2.4) and (2.5) we
obtain ,
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2.7) Hy = —divy(aV*u)—divyT .

We carry out local calculations which are of use in Section 4. Let (¢, x%)
=(x%) be local coordinates (¢ is still the time function) of <V so that the metric
g can be written as

(2.8) gapdxtdx? = —(a®— B2di*+2Bdtdx*+ g, jdxtdx?

where B is the shift vector g*/§8,0/0x/ and (g*)=(g;;)"*. Note that, since the
vector fields {0/0x*, 0/0x%, 0/0x°} are tangent to S;, D¢=g*d¢/0x7-9/dx* for each
o= C=(<V) is also tangent to S,. The future-directed unit normal vector T can
be expressed as

(2.9) T =a™Y0/0t—B),

and the second fundamental form A° and the mean curvature H° of S, are
given by

(210) A(l)_, = —<8/6x’, Va/aij> = —%a“‘agu/at—i—%a‘liﬁg”,
(2.11) H'= ghiAY; = ——;—a“g”agi,-/at—l—a“ldiv",@,

where .L; is the Lie derivative with respect to 8 and div® is the divergence

on S;.
The height function u of M can be extended to one on <V satisfying ou/ot
=0. Since M is a level set of u—¢, the future-directed unit vector V can be

expressed as
(2.12) V=yU++T),

where U=aDu(14+<{8, Duy)"!, and hence yv=(1—|U|*)"% Let {&,, &, &, &},
where ¢,=T and ¢,=|Du| *Du whenever Du+0, be a local field of Lorentz
orthonormal frames in <. Choosing {V, ey, ¢,, ¢s} so that e;=|V¥u| " 'V¥u
whenever Du+0, we obtain

(2.13) V¥y = a" W U+ |U|T), e, =v(e,+\U|T),
(2.14) H= —ydivy(U+T)
= —pdiviU+vH— | U |%,(|U|)—v|U|<é;, VTT>—%D3T(IU|2)
= — VLU /1~ | U191+ H U, T Ty £ »T(U 1,
(2.15) divyT = —H' 2 UUIAY+vU, N T
= —H'+0*— DAY —a*T(a)+<Tu, Va).
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§3. Gradient estimates.

In this section we give main estimates for v.

Keeping our notation in Section 2, for each nonnegative integer n we define
a positive definite norm |||, on the space 9(<V) of tensor fields on <. The
norm | -||, is defined by

3 1/2
1Xo = 1XI =supar( | 3 1X@s, e, @, ),

A, 0,
n :
[ Xl = ;20 V7 X]
for Xeq(<V), where {@°, @', @*, @°} is the frame dual to {&,, &,, @,, @,}.
To prove the estimates for v, we need the following lemma.

LemMMmA 1([1]). Let (V, g) be a spacetime with a time function t. Let M be
a spacelike hypersurface. Then the following holds.

3.1) Ayy = (| A|*+Ric(V, V)T, VY H>—T(Hy),

where T(Hy) is the variation of mean curvature of M under the deformation vector
field T. This can be expressed as

(3.2) T(Hy) = — 5 33Ty Lrghew et 3V LrgXV, €

— 5 HL2gXV, V)= 5 (Lrg)es, ¢ Ales, 2.

PROPOSITION 1. Let (<V, g) be a spacetime with a time function t. Let M
be a compact spacelike hypersurface with the height function u and the mean
curvature H. Suppose that there exist constants 6 (>0), C,, ---, C, and k such that

3.3) IRic(V, V)II, INLrgl, laVWVal < Cy,
(3.4) 1A%, la=Nal, | Lrgll = C.,
3.5) IH|, < Cs,

3.6) supy(|u(x)—k|a(x)'*?) < C,.

(i) If oM=@, then for all x&6M
(3.7 u(x) < 2exp[ min {m.—(u(x)—k)ax(x)"*, (u(x)—k)ag(x)*?—m_}],

where K=K(C,, -+, C,, 0), ax=max(a, K) and m,=supy{(u—~k)ai?’}, m_=
inf {(u—k)al}d}.

(i) If OM+ @ and there exists a constant Cy such that OM satisfies the con-
ditions
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(3.8) | Hoell = supou( 3 1<How, 221)" < Cs,

3.9 ulow =k,

where Hyy is the mean curvature vector of dM, then for all x&M
(3.10) v(x) < 2exp(m),

where K=K(C,, -+, Cs, 8) and m=supy(|u—k|aid?).

Proor. We may assume that 2=0.
(i) We consider the function

v(x)expu(x)ax(x)*?), x€M,

where K is a large constant to be fixed later. vexp(uak?®) attains a maximum
at some point x,= M.

If a(xo)<K, the function vexp(K'*%u), x& M also attains a maximum at x,.
By the arguments in [1, Theorem 3.1, (i)], there exists a constant C’'=
c(C,, C,, C,) such that

w(x0)* < K**¥a(x0) 2 {K**¥a(x) 2 —C' (K Pa(xo)  +1)} 1.
Then we can choose a large constant K=K (C’, 0) so that v(x,)<2. Hence
(3.11) v(x) < 2exp(m.—u(x)ag(x)'+0)

for all xe M.
We now assume that a(x,)>K. Then the function v(x)exp(u(x)a(x)'+?),
xEM also attains a maximum at x,. Hence at x,

3.12) 0 = vy (ua*?)+V¥y,
0= Ay(uat*®)— | V¥ (ua'+?) |24y 'Ayy.

On the other hand, from (3.1)-(3.5) we obtain
(3.13) Ay =2 | AI2P—CO A+ AD) = (1—e)y| A|I2Z—C(e™'))?

for any ¢>0. Using the inequalities

|AI* = (1+‘91;)12—H2, [V]? = (e 24 Cle™ '

We obtain
(3.14) |A|2 = (1—!—%—){(H—e‘l)v“zIVlez—C(s‘l)uz} ,

where 2 is the maximum of the absolute values of the eigenvalues of A. Then,

from [(3.12), at x,
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(3.15) A2 = (1—5)“(1-1——})IVM(ua‘+5)|2—-sz.
Substituting and (3.15) in then at x,
(3.16) 0= AM(ua‘”)—l-% V¥ (uat*®)|2—Cy2.

From [2.6), [2.7), [2.15) and (3.3)-(3.5) we also have

(3.17) Ayu = —Ca™2?, a | VWa] < Cv, a M Ayal £ Cr2.

It follows from [(2.6), [3.6), [3.16) and [3.1I7) that at x,
(3.18) 0= a'*Ayu+21+0)a’ V" u, V¥ad>+o(1+0)ua’ | V¥a |2+ (1+0)ua’Aya

+ %(a“” |V u |2 4+-2(1+0)ua*? ¥ u, V2 a)>+(1+6)*ua® |V a|?)—Cr?

= i—az‘s(v2- 1)—Ca®y?—Cy?.

Now choosing K=K (C,, -+, C,, 0) large enough, then from (3.18) v(x,)<2 and
hence we obtain the same estimate [3.11)
Applying the same argument to vexp(—ua®), we obtain the estimate (3.7).
(ii) Applying an argument similar to that in [1, Theorem 3.1, (iii)] to
vexpuak?®) and vexp(—ua¥k?®), we can show the estimate [3.10).

REMARK. This result does not need the estimate of [|a| under the a priori

decay

§4. Asymptotically anti-de Sitter spacetimes.

First, we review the (universal) anti-de Sitter spacetime (H$, h) (of con-
stant curvature —1). (H{, h) equals R* as a set and the metric h is given by

(cf. 31, [12])
h;,,dx*dx” = —(1+B)dt?+(14r*)"'dr*4-+*(d0*4-sin*0d¢?),

where (¢ (=x°), x?) is the canonical global coordinate system of R* and (7, 0, ¢)
is the standard polar coordinate representation of (x%).

DEFINITION. Let N be an oriented 3-manifold which satisfies that there
exists a compact subset K of N such that N\K is disjoint union of a finite
number of subsets Ny, -+, N, with each N, being diffeomorphic to {(x*)=R?;
281 (x%?>1}. Then this diffeomorphism induces a global coordinate system (x?)
of each N,. Let (<, g) be a spacetime. (<V, g) is an asymptotically anti-de
Sitter spacetime if the following hold.

(i) There exists a diffeomorphism @ : V—RXN such that z-@: V—R is
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a time function, and hence each @ '(RXN,) has a global coordinate system
H=nm-D), x'(=(7-D)"), where 7: RXN—R and 7: RXN—N denote canonical
projections.

(ii) On each (@"(RXN)), (t, x%)) there exist constants &(0<e<1) and C,
such that for each B&SO(3) (the 3-dimensional rotation group) the metric g has
the form

@1)  giaduidet = —(a*—BOdr+28, didr+-28sdtd0+2B,dtdd+ g, dr*
—I—go0d02+g¢¢d¢2+2grodrd0+2g,¢drd¢+2gg¢d0d¢

and behaves asymptotically as

gu=—(@®—B*) = —(A+rP+r=fut, r, 0, ¢),
Ger =B, =1"7""f,@t, 7, 0,9),
gio=Bo=1r"fut, 7, 0,¢),

g =Bs=1"[1st, 7, 0,9),
grr=—(4r)Hrcf 0 7, 0, 8),
gro=1""f6t, 7, 0,0),

gro=1""frt, 7, 0,9),

goo =1 +7f46t, 7, 0, @),

Gop =71 fost, 7, 0, 0),

Geo = 1sin?O0+r=cf44(t, 7, 0, @),

(4'2) b,2c|fb’0(t, v, 07 ¢)I +b,§d ladfbc(t, v, 0; ¢)I +rb§la‘rfb6(t1 v, 0) ¢)l é CG)

where (7, 0, ¢) is the standard polar coordinate representation of ((B-(x/))*) and
the indices b, ¢, d are in the range {¢, 7, 6, ¢}.

(<v, g) satisfies the global future (resp. past) barrier condition (with respect
to S,) if there exist an entire spacelike hypersurface S* (resp. S7) and a posi-
tive constant C, such that

4.3) Hg+(x) >0 for all xS*
(resp. Hs-(x) <0 for all x=S87),

(4.4) oH(x) >0, limsupr|¢*(x)] £ C, <1  for all x&S8*

(resp. ¢~(x) <0, limsupr|¢=(x)| £ C, <1 for all x=S87),

where Hg+ (resp. Hs-) is the mean curvature of S* (resp. $7)and ¢+ (resp. ¢7)
is its height function.

REMARK. (1) From (4.2) we can show that there exists a constant Cg=
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Cy(C,, €) such that
(4.5) r**e| A £ Cs.

(2) The asymptotic condition (4.2) is weaker than that required in [13].
(3) Using the standard spacelike hypersurfaces of constant mean curvature
in (H}, h), (H{, h) satisfies the global future and past barrier conditions (see

Section 5).
Next, we construct barrier hypersurfaces at spacelike infinity. The radial

mean curvature equation in (H{, h) for w=w(),
(46) —r‘za[rzazw’(l—a‘w’z)“/2]’+a’azw’(1—a4w’2)“’2 = H*

can be solved with H*=(3—¢)R'"/*» ¢ in »=R>1, where a=a(r)=(1+7r*)"? and
H* is the mean curvature of the graph w in H{. The equation equals the
following

4.7) —[r*aw'(1—a'w'®)?] = H".
Then a solution of is given by

4.8) w'(r) = —a(r) [14R-1elbp=2+2eq(p)2] 22,
(4.9) w(r) = {"a(s)2[14+ R4 452 (5] nds.

PROPOSITION 2. Let (V, g) be an asymptotically anti-de Sitter spacetime
satisfying (4.2). Then there exist constants R=R(Cs, ¢) and C,(>0) such that
for each R=R the hypersurface defined by (4.9) is spacelike and satisfies

(4.10) Hw)=2r*, r=R,
(4.11) Ww)< 2R,  r=R,

(4.12) O<w £ Cyrtse, r= R,
(4.13) w(R) = (g-—tan-lfe)—zk-l-ww,

where Hw) is the mean curvature of the hypersurface defined by w and v(w)(x)=
(1—a?| Dw|*(A+<B, Dwd) ™) 2| 2, weayy-

Proor. First we note that for r=R
w(r) = R¥M-0(r™'7%),
w'(r) = R™1-0(r=*7%),
w”(r) = R0,

(1__a4wr2)—1/2 é [1+R5/5:|1/2 < 2Rs/1o
and
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0

w(R) a(r)‘2dr-—S: a(r) [1— {14 R-1ie/8p-2t2eq(y)2} -2 dy

L]

1\
%

8

%

S

" alr)ytdr—\ [R™5 %+ a(r)*] " dr
S 3

S

atr)ydr—{ (R 5477y

R

v

(%_tan—lR)_ZR—l—e/lo.
In the form (4.1), from we have
(4.14) Hw)= —div'[IWQA—|W|*)"2]+w(w)( H'—<W, VTT>)—%D(W)3T(IW12),

where W=aDw(1+<B, Dw))"'. From (4.2), [4.5), and using <W, V;T)>=
a W, Da> we can show that

(415) U(lU) < (1_a4w/2)—1/2+CR115/107,—1—135/10 < (Z_I_Cr—l—ze/m)Re/lo,

(4.16) —é-y(w)3T(lW|2) < CRM:/10p=3-8¢/5

(4.17) |w(w)H®| < CRe/Mpy=3-¢,

4.18)  |divI[W(— |W |2 2—r2a[ra?w’(1— a*w’®) V2] | < CRM/Mp=1-4e/5
(4.19) | (W)W, VeT>—(1—a*w'®) V2a’a’w'| < CRMe/10p-1-68/58

Choosing R large enough, from and (4.14)-(4.19) we obtain that H(w)=2r"¢
for r=R=R.

Let M be a spacelike hypersurface with the height function u. We often
consider M as a graph over a domain 9yCS,.

LEMMA 2([1]). Let (<V, g) be an asymptotically anti-de Sitter spacetime
satisfying the global future and past barrier conditions (4.3), (4.4). Then for each
R>0 there exists a maximal (H=0) hypersurface M such that

Dy = SN(VNVr),  OM = SiNHVVg), ¢ (x) = ulx) < ¢H(x),
for all xEDy, where Ve={p= @ (RX(JE N)); r(p)=R}.
We now prove the following main theorem.

THEOREM. Let (V, g) be an asymptotically anti-de Sitter spacetime satisfying
(3.3) and (4.2). Suppose that (<V, g) satisfies the global future and past barrier
conditions (4.3), (4.4). Then there exists an entire maximal hypersurface M
satisfying

lu(x)] = Cor™'7¢

for xEMNXVg,, where Ry=R(C,, ¢)=R.
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PrROOF. For each p>1, put B,=S;"\(cV\V,). It follows from
that there exists a solution u, of the Dirichlet problem

Hu)=0 in B,

(4.20) { u=0 on 9B,

and u, satisfies
(4.21) P7(x) = up(x) = ¢*(x)

for all x&B,.

From (4.4) and we then obtain that for a sufficiently large con-
stant Ry=>R

wg(Ro) = (%—tan‘lR())—Z}?al—s/w > C.R7,

and hence

(4.22) —Wr(Ro) < P~ (Ro) < P (Ro) <wg,(Ro).
It follows from [(4.21) and [4.22) that for each p>R,
(4.23) —wWr(Ro) < up(x) < wry(Ro)

for all »(x)=R,. Since for each r€ R wg,+7 has properties similar to that of
wg, in [Proposition 2 and H(wg,+7)>Hy=0 in B,NVg,, the maximum principle
shows that the function u,—wg, attains a maximum on {x&B,; r(x)=R,} or
oM. 1t then follows from and dMCS, that for all x&€B,NWVpg,

(4.24) (u,—wgx) = 0.
Applying the same argument to —wg, gives that for all x&B,NWVg,
(4.25) (uptwg)(x) = 0.
It then follows from [3.10) and [4.24), [4.25) that for each p>R,, u, satisfies
(4.26) supo{r‘“]u,,l—l-v(uP)} <C,

where C is independent on p. Using the Schauder estimates (cf. [11]) we ob-
tain that u, is smooth and its derivatives are estimated by constants, which are
independent on p, on every compact domain in &. Then there exist a sub-
sequence {u,,}ienC{u,},>r, and an entire function u=C=(S,) such that u,,
converges uniformly to u on every compact domain in S, when 7—co. From
[(4.20) and [(4.26), u is spacelike and H(u)=0. This completes the proof of
l A A
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§5. Final! remarks.

In this section, we show that (H{, h) satisfies the global future barrier con-
dition, and that entire maximal hypersurfaces of (H{, h) have a gap property.
The radial mean curvature equation in (H4%, h) for v=uv(r)

(5.1) — P (1— gy ] = H¥

can be solved with H*=K (>0). Then a solution [5.I) is given by
5.2 V()= —%m*(a%(g)%)"m - —a-2(1+a2(%)2r—2)"”2,
(5.3) o(r) = S:oa"2(1+a2(%>zs”2)_llzds.

From we then obtain

(5.4) 0< v < <1+(—]3T>2)_“2S:0(1+32)“ds < r-1(1+(%)2)‘”2.

It follows from and that (H{, h) satisfies the global future barrier
condition.
Also using the function v we have the following

PROPOSITION 3. Let M be an entire maximal hypersurface in (Hi, h). Sup-
pose that its height function u satisfies the following decay

(5.5) rHul £C,
where A is a positive constant. Then, M=S,.

Proor. We first note that (H{, h) satisfies the timelike convergence condi-
tion (cf. [3], [12]), that is, Ric(X, X)=0 for every timelike vector X< THj}.

For each K>0 consider the function v defined by [5.3). From there
exists a constant R, such that u(x)Zv(r(x)) for all x&{peS,; *(p)=R,}. From
and the timelike convergence condition we can show easily (e.g. [10,
Lemma 7.2]) u(x)Zv(r(x)) for all x&S,. Letting K—0 in we obtain that
u(x)<Z0 for all x=S,. Applying the same argument to —v, we also obtain that
u(x)=0 for all x&S,. Hence M=,.

REMARK. For each K>0 the hypersurface defined by satisfies

1 =< y(w)(x) <22
for all »(x)=1 and
lim v(v)(x)=1.

7(X)—c0
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