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1. Introduction.

We shall consider the Schridinger equation
(1.1 %atw = Aw+ f(w),
the Klein-Gordon equation
(1.2) w=Aw—w+f(w),
and the wave equation

(1.3) 'w = Aw+ f(w)

for (x, )&R"X R, where i=+/—1, 0,=0/0t, A=37,02(0;=0/0x;) and f(u) repre-
sents the cubic convolution nonlinearity :

(1.4) fw) = (Vxlw|Hw = (SR,, V(X—y)lw(y)lzdy)w(X)-

The steady state equations corresponding to [1.1), (1.2) and [1.3) have the same
form and are given by

(1.5) —Av—f(v) = pv (#reR).

This equation has been studied e.g., in Gross [6], Lions and Menzala [12].
In case V=]|x|"%, (1.5) is known as the Hartree equation for the helium atom.
The time dependent equation [I.1) has been studied by Glassey [5], Ginibre-
Velo [4], Dias-Figueira [3], Hayashi-Tsutsumi and Hayashi-Ozawa [8], and
equations and have been studied by Menzala-Strauss [13]. The posi-
tivity V(x)=0 and the symmetry V(—x)=V(x) are required there. Then the
well-posedness of the Cauchy problem and the asymptotic behaviors of solutions
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(including the scattering theory) are obtained under suitable decaying conditions
on V.

In the following we do not require V to be non-negative. As is proved in
(see also Matsumoto-Mochizuki for the Schrédinger equation [(I.1)), in
our case, solutions may blow up in finite time unless the initial data is restricted
to have small energy.

The aim of this paper is to extend the small data scattering theory and
apply it to equations [1.I), [(1.2)] and [1.3) The theory has been studied in
Strauss for equations and with V satisfying

1.6) V)| £Clx|=° or WV(ix)eL=.

It was shown that if
1.7 2 £ 06 <min{n, 4} or
for equation and if
4n n n
A A
——| and ¢<n or 4 _2_2
for equation then the scattering operators exist in whole neighborhoods
of 0 in the energy spaces X=H"? and X=H"2?X L?, respectively. Note that a
more general V(x) is allowed if we dispense with the requirement that the data
is “arbitrary” within a neighborhood of 0 in X (see [17] and also Mochizuki-
Motai for the wave equation [(1.3)).

We shall extend the above mentioned results of Strauss. In our theory the
conditions (1.7) and can be weakened to

(1.8) 250=

1.9) 2Z0<L4ando<n or —<z<

Moreover, in case of the Schriodinger equation we can construct the scat-
tering operator in a neighborhood of 0 in X=L? if

(1.10) c=2and ¢ <n or z=%andzgl.
As for the wave equation [(1.3) we can have the following result. If
(1.11) c=4and ¢ <n or z:%andzgl,

then the scattering operator exists in a neighborhood of 0 in the energy space
X=H"**x L2

The key estimates for the results are the well known decay properties in
t of the fundamental solutions of the unperturbed linear problems. We shall
combine these properties with the Hardy-Littlewood-Sobolev inequality or the
Young inequality. In this sense our proof is very close to that developed by
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Pecher for the wave and Klein-Gordon equation with power nonlinearity.

The paper is organized as follows: In §2 we give notation and several
lemmas which will be used throughout this paper. In §3 we state the existence
theorem of the scattering operator in an abstract form and prove it. Applica-
tions of this theorem to equations [L.1}, and are respectively given in
the following 8§84, 5 and 6.

2. Notation and preliminary lemmas.

First we give notation which will be freely used in the sequel: Ct=C%(R"™)
=N, CHR™), where CER™) is the space of all k-times continuously differen-
tiable functions with compact support in R". L?=L?(R"), 1<p<co, is the
usual space of all LP?-functions in R*. For a Banach space Z, L?(Z)=L*(R; Z)
is the space of all Z-valued LP-functions in R. &'= &’(R™)is the space of all
tempered distributions in R™. * denotes the spacial Fourier transform and g-!
is its inverse. For &R, e>—n and 1<p<oo, let H"?=H"P?(R™) and H="?
=H="?(R") be the completions of C%(R™) with respect to

2.1) 1 fllzm? = 1F <& /@ »  and

(2.2) Ifllaem? = [FH{IE1<EFE e,

respectively. Here <&>=(1+]&]?"%. Conjugate exponents are denoted by g, ¢’;
s, s’ etc. Positive constants are denoted by ¢. If necessary, by c(x, -+, *) we

denote constants depending on the quantities in parentheses. They might change

from line to line.
Next we summarize several lemmas which will be used throughout this

paper.
LEMMA 2.1. If 1<p<g<oo and

1 _1 v
(2.3) —q— i
then
2.9 [1x]="*fllrasc(p, v fler for feLP”R").
LEMMA 2.2. If 1<p, g<oo and V(x)e L*(R™) with

' 1 1 1
(2.5) T=5-1-3)
then
(2.6) [ Vsflice < e(p, 2) ez for fELP(RY).

LEMMA 2.3. Let p(8)e &' satisfy
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2.7) [E1'110% ()| < c(p, m) < oo

for lal=a,+ - +a,<m and E€R"— {0}, where 0%=09t---9%» and m=n/2 is
an appropriate integer. Then p is a Fourier multiplier on L?, 1<p<oo, i.e.,
(2.8) IF o fller < clp, PIfllLr for feLP(R™).

LEMMA 24. Let 1<p,q< o, 7, teR and ¢, 6>—n.
(1) If 1/p=1/q=21/p—(r—t)/n, then

(2.9 Hr?—_, H»9,
(ii) If =0 and 1/p—e/n=1/q=1/p—(r+e—1t)/n, then
(2.10) Hem?— | Hbq,

(iii) If €=0 and r+0=s-+¢, then
2.11) Hom?P— , Ho5P,

Here K L means that K is continuously embedded in L.

LEMMA 2.5. Let 1<p=<oco. If r and ¢ are non-negative integers, then the
norms (2.1) of H™? and (2.2) of H*™? are equivalent to

(2.12) Do fllr and 3 16°f7,

la| =71

respectively.

Lemmas 2.1 and 2.2 are known as the Hardy-Littlewood-Sobolev and the
Young inequalities, respectively. The proof can be found, e.g., in Hérmander
[9], Chapter IV. Lemmas and 2.4 are the so called Mihlin multiplier and
the Sobolev embedding theorems, respectively. As for the proof see, e.g.,

Bergh-Lofstrom [1], Chapter 6. As is easily seen, is a result of
Lemma 2.3

3. The small data scattering operator.

Let X be a Hilbert space with norm || ||x, and A be a selfadjoint operator
in X with dense domain 9(A)cX. We consider the evolution equation
{ i0,u = Aut+F(u), t=R

@D lut)=Ust)p-lx —> 0 as t —> —oo,

where ¢_€ X and
3.2) Uyt) = exp{—iAt}, t<R.

It is convenient to rewrite (3.1) into the integral form:
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t
-0

(3.3) u(t) = Uo(t)go_+g U o(t—2)F (u(t))de .

We make the following hypotheses.

(1) There exist Banach spaces Y and Z such that X, Y and Y’ are con-
tinuously embedded in Z, and Z’ is dense in each X, Y and Y’. Here Y’ and
Z' are the dual spaces, with respect to X, of Y and Z, respectively.

(II) Uy®) restricted to XNY’ has a continuous linear extension (still denoted
U,(t)) which maps Y’ to Y, and there exist ¢>0 and 0<<d <1 such that

(3.4) U@Ply < cltl-?Igly  for t#0 and g,
Uy(t) also has a continuous extension from Y to Z such that
(3.5) UU(s)p =Ut+s)p  for ¢Y’.
(II) F maps XNY to Y’, F(0)=0 and we have
(3.6) IFu)—F@)lly: < clu—vlx{lluli*+ v}
+elllulx+ vl e lu—vle{luly?+llvli?}

for u, ve XNY, where s=2/d.
(IV) Moreover, F maps Y into X and we have

3.7 IF(w)—FW)llx = cllu—vly{luli*+lvly"t  for u,veY.

The integral equation will be considered in the following space of
functions u(?):

(3.8) W=LR; Y)"NL*(R; X).

THEOREM 3.1. Under (1)~(V) there exists a 0>0 with the following pro-
perties: If ¢o.€X and |o_|x=0, then there exists a unique solution u(t)cW of
the integral equation (3.3) such that

(39) Iully < S0l = - lp-lx,
(3.10) lu@®)—Udgp-lx —>0 as t—> —co.
Furthermore, there exists a unique ¢,.=X such that

(3.11) lu@®—Uot)psllx —> 0  as t—> +oo.

Thus, we can define the scattering operator S:¢_— ¢ on a neighborhood of 0
m X.

The proof of this theorem will be done based on a contraction mapping
principle. For this aim we prepare three propositions.
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PROPOSITION 3.2. f(t)—»So_o U(—1)f(t)dt is a continuous map of L¥(R; Y,
where 1/s'=1—1/s, to X. Namely, there exists a C;>0 such that
a1y |7 vd-orwa| = Clflwas  for fOSLYR; YY),

PrRooOF. We have only to prove (3.14) for f(¢) in a dense set of L'(R; Y").
Let f())eC(R; Z’). In this case we can change the order of integrations to
obtain

HS:U 0(—t)f<t>d‘H; - Hmw(SmmU (t—7)f(2)dr, f (f>>thl '

Here (, )y denotes the innerproduct in X, or more generally, the duality be-
tween Z and Z’. Using (I), (II) and the Holder inequality, we then have

< (" I" ve—orr@ae| 1o

IA

X:[Slc e I VA dr] 1 @®lly-dt

e -

A

< |7 te—el-e1s@tiede

The requirement 1/s=d/2 implies that 1/s=1/s’—(1—d). Thus, we can apply
with n=1 and v=1—d to obtain

s ce(s’, 1= fliEs o>

This proves (3.14) if we put C,=+/cc(s’, [=d). [

ProproSITION 3.3. Let o= X. Then U)o L(R; Y) and we have
(3.15) Wellzras < Cillelx  for =X,
where C, is the constant given in (3.14).

Proor. Let p=X and f(t)eCH(R; Z’). Then we have from the above
proposition

" o, vwpnat| = (" vi-vswa, 0) | = cllflranliols.

This proves (3.15) since C(R; Z’) is dense in L¥(R; Y'). O

PROPOSITION 3.4. There exists a C,>0 such that

3.16) ||| U= F@E)—Foeld| < Collu—olw{luliy+1oli)
for u(®), vit)sW.

Proor. By (1) and (III)
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HS;U o<t—r>{F<u<f>>—F<u<r>>}dfHW)
= HS:C”*TI ""IIF(u(r))—F(v(f))Ilyva’r“”
= “Slclf—fl“’Hu<r>—v(r>nx{nu<r>u§;1+nv<f>usy~1}df”m
+{” ett=el- @l + @l ) vl

XA+ @l e |

Noting 1/s=1/s’—(1—d), we can apply Lemma 2.1 to obtain
= C”u_U”L""(X){”u”sLEI(Y)'}'”v”i_sl(Y)}
Clllull zocxr vl zocas Hlu—vl psees {Hlull Tty + 1o 5% -

On the other hand, by (IV)

- vie-otrue-Fo@ae| =7 IF@E)—FeE)lde

= 5S:Hu(7)—v(f)lly{ lu@) *+lv@)l$de
< Clu—vllsan {lull iy + vl ) -
Summarizing these inequalities, we obtain (3.16) with c,<2c+C. O
PRrOOF OF THEOREM 3.1. We put
(3.17) (@u)) = Uo(t)go_+St_on(t—r)F(u(r))dr,

and consider it in the ball 8(0,)={ucW ; |ullw<d,}, where the constants d,>0
and >0 in the theorem are chosen to satisfy

(3.18) 20,51 < % and (1+C)8 < %51

Let us 8(d,). Then by Proposition 3.3 with ¢=¢_ and [Proposition 3.4 with
v=0,

(3.19) 1Puly < A+Colle-lx+Celluliy < d:.

On the other hand, it follows from [Proposition 3.4] that

(3.20) 19u—0vllw < Colllullir” + vl Hiu—vllw = S lu—vly

for any u, v< B(d,). and (3.20) show that @ defines a contraction map
of @(d,) into itself. Thus, there exists a unique fixed point u< $(d,) which
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solves (3.3). and the first inequality of (3.18) imply that this u satisfies
also. Moreover, we have

lu—-Ustp-Ix < | _elu@ltde —>0  as t—>—co,

and (3.10) follows.
Next, put

(3.21) 0 = ¢_+S U ~)Fue)de.

Then ¢.=X by [Proposition 3.2, and we have noting (II),

Udtips = u(t)+| Ust—0F @)z

Thus, letting t—-+o00, we obtain (3.11). O

4. The Schridinger equation with a cubic convolution.

In this section we consider equation with the cubic convolution non-
linearity requiring

4.1 [ V()] <clx|™° with 2<¢<n, or
(4.2) V(e LR with 1=z5.
We put X=H*? for k=Z, and define

(4.3) A=—A with domain 9(A) = H¥*%2,
(4.4) Flu)= —f(u) = —(Vx|u|"u,

where u=w.

THEOREM 4.1. Let k= Z be chosen to satisfy

n
< — <
(4.5) o Z2(k+1) or D) = z.
Put X=H** Y=H*"? and Z=H*"™19 where
1 1 2
4.6 i
(4.6) q 2 3n

and m=1 (integer) is sufficiently large. Then (1.1) can be written in the form
(3.3), and all the assertions of Theorem 3.1 hold.

The proof will be done in a series of lemmas.
LEMMA 4.2. We have Y'=H*Y and Z'=H*+™?,

PROOF. Obvious from definition of ¥ and Z. ]
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LEMMA 4.3. A is a positive selfadjoint operator in X, and U(t)=exp{—iAt}
satisfies the following estimate :

4.7 IUOlly = c@lt[=" 72 Plly:, t+0 and = CTR™).

Proor. The first assertion is well known. Since we have |f|y=
(14 A)*/2f| e, we have only to show [4.7) in case Y=L% Note the formula

- slx—y|® n=x

—_ nj2 AT ————e .

Udt)p = (4xt) /SRnexp{z( I’ ey, 0.

Then we have [|U@))llr==<c|t| "?||¢pllz1. Interpolating this and the unitarity
IUot)pll 2=1¢pll 2, We obtain the desired estimate. [

LEMMA 4.4. Uyt) maps Z’ continuously to Y’:
(4.8) Uy = ct, m)lld]lz -

Proor. We put p(§; t)=<&> ™exp{—:|&|*t}, where m is chosen so large
that this p satisfies conditions of Lemma 2.3. Then since we have F~'px¢=
(I4+A)"™"2U (t)p, it follows that

1UoPlly = [U)1+A) 2P| 1
= g ox(1+ A2 2| e < e, m)pllz . O

LEMMA 4.5. For 1Za, b, h< o satisfying

1-% if V satisfies (4.1),

(4.9) (%—}——i—-l-%—l)% =

1—% if 'V satisfies (4.2),

we have

(4.10) IF)—F)lly <¢ X [[0"u—0d"v| e

la+B+yisk

X A{10%u] Lee +10%v| Lo }{[0°ul| L2a + (07 vl oe' } .
PROOF. Let w=u—v. Then it follows from that
Flu)—F@) = (Vx| u|Hw+(Vx[uw v+ (Vx[wd])v.

We shall estimate (V*|u|?)w. The other terms of the right can be similarly
estimated. By means of we see that the norm |[(Vx|u|®Hwly
is equivalent to 3,4 107{(V*|u|»w}l.e. Repeated differentiations of
(Vx|ul®Hw give

(4.11) o{(VxlulHw} = 2 e, B, X Vx[0%ud*a])ow.

a+l+r=7

By the Holder inequality
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[(V«[0°ud?a@])o"w | 1o < [|07wllra || VE[0*ud®a ]| e
We can use [Lemma 2.1 or Lemma 2.2 to obtain

< 0wl e cl|o“ud?al oo,

where p solves 1/h'¢’=1/pq'—(1—a/n), or 1/h'q’=1/pg’—(1—1/z). Dividing
1/p into 1/a+1/b and using again the Holder inequality, we conclude

< cllgrwl e 0% ul| Low |0P u ] e
This and [4.1I1) imply the desired estimate for (Vx0*ud®a)o’w. [

LEMMA 4.6. For 1<a, b, h<co satisfying

g

1—— if V satisfies (4.1

(4.12) —l-(i—l-—l——*——l——l)— Y oo D
' 2\a b h o 1 . .

1——~Z— if V satisfies (4.2),

we have
(4.13) [Flu)—FWllx £¢c X [[0"u—0"v|2»

la+8+7isk

X {16 u] 2o+ 110%v] z2a} {107 u 20+ 0P vll 122} .

PrOOF. To obtain (4.13) we can follow the same argument as in the above
proof. [

PrROOF OF THEOREM 4.1. We shall show Hypotheses (I)~(IV).

First note that how we have chosen ¢ as in [4.6) By we should
choose d=n/q’—n/2. On the other hand, as we see from (4.10) or (4.13), s=3
in our cubic case. Since we require s=2/d in Hypotheses (III) and (IV), it
follows that 1/¢=1/2—2/(3n) and d=2/3.

(I) It follows from [(4.6) that

any of {%, %, ;]1—,} g—(l;zany of {7, T
11 l}>l 1

1
_— —— —
q,zany Of{Z’ q’q

=q n
Then applying (i) and noting Lemma 4.2, we see that X=H*%?2,
Y=H#%? and Z=H*"™49 with m=1 satisfy Hypothesis (I).

(II) With d=n/q¢'—n/2=2/3 is already known in Lemmas 4.3 and (4.4
except relation which is verified as follows: If p=Z’, then

UUS)f, @)x = Uos)f, Ul—=0)p)x = (f, Ul—t—s)p)x = Uot+3)f, ¢)x.
(I) That F(0)=0 is obvious. Further, in the present case, s=2/d=3.
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Thus, noting Lemmas 2.4 (i), 2.5 and 4.5, we conclude if there exist 1<
a, b, h<oo satisfying [(4.9) and also

1 l 1 k—|yl 1 1 1 k—Jal
> > — = > P 1
2= 2 n ° g~ aq T q n
and =z 2 FTIBL
q q n
Add up each term of these inequalities and use [4.9). Then we have
1, 2 1 2 2k
Sl Dt I B il Gl L _ax
(4.14) 7t =1 {n or }+,~2+ .

Conversely, it is easy to show the existence of a desirable triplet a, b, h from
this condition. Now, substitute for the above ¢. Then is reduced
to what we have required in [(4.1), and (4.5).
(IV) Note Lemmas (i), 2.5 and 4.6. Then we can use the same argu-
ment as above to establish [3.7) Namely, we are enough to show that
q n z 2 g n
As is easily seen, this is also equivalent to conditions [4.1), [4.2)and (4.5). O

5. The Klein-Gordon equation with cubic convolution.

In this section we consider equation with the cubic convolution non-
linearity [1.4) We require again that V(x) satisfies or [(4.2). We put
X=H*%2*x H* %2 for k= Z, and define

5.1) A= i(AEI (1)) with domain @(A) = H***x H*?,

(5.2) F(u) = {0, if(u)} = {0, (V| u;|Hus},
wheee u={u,, u,} ={w, w,}.

THEOREM 5.1. Let k<Z be chosen to satisfy k=1 and (4.5). Put X=H**
XHk-l,z, Y____Hk—1+e,q><Hk—2+e,q and Z:Hk—m,qXHk—m—x,q, where

1 1 2
o3 PR Ces e
nt+l4+6 n—3+40 1
i 1 3(1 —157)
with some 060 <1 which depends on ¢ or z, and m=1 is a large integer. Then
(1.2) can be written in the form (3.3), and all the assertions of Theorem 3.1 hold.

(5.4)

An example of the choice of § will be given later in (5.19).
The following lemma is obvious from definition of ¥ and Z.
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LEMMA 5.2. We have Y'=H*+'~¢ ¥ x Hk=¢¢ gnd Z'=H*+™ ¢ x Hk+m-10

LEMMA 5.3. (i) A is selfadjoint in X.
(ii) Let B be a positive selfadjoint operator in L*® defined by

(5.5) B=+1-A with domain D(B)=H"?,
Then
i . cos Bt B 'sin Bt
(5.6) Uilt) = exp{—iAt} = (——B sin Bt cos Bt )
(iii) For any 001 we have

(5.7) 1UBPly < eIt~ 2dly, ¢ € CHURM)XCHURT),
where
5.8) d= <n—1+0>(l—i)

. = 5 7)

Proor. (i) and (ii) are well known. Note that | f|zm»=|B"f]».

since we have the estimate (see e.g., Brenner [2])
[B~'sin(Btellr < c(@ltI~¢|B™plr, @& CUR™),
it follows that
| 1Uo)lly = | B~ cos(BE)B**¢h,+ B~ sin (Bt)B* 1+, |14
+||—B~'cos(Bt)B**p+ B cos (Bt)B* '+, 1a
< clt|~H{IB** %]l + B*Pal e},
which proves [5.7). O

LEMMA 5.4. Uyt) maps Z’ continuously to Y’':
(5.9) [Uo))lly < Bz

Proor. We put

p(&; 1) = (gymmme( 0N SOy

—sindédt  cos(&ENt

Then

Then p satisfies the conditions of and becomes a Fourier multiplier

on L?XL?, 1<p<eco. Moreover, we have
10PNy = 1F o { B** ™1, BH™ o} |1 1
S cOlPlukrma grim-te = c(t)|Plz
proving [5.9). O
LEMMA 5.5. Let ¢” and 1<a, b, h<oo satisfy
1 1

” I4

(5.10) p 7

v
%

L _e
q’ n’
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ag
1—— 'f V satisfies (4.1
1 1 1 N1 Y fies (4.1

.11) Grsra Do =1
l—; if 'V satisfies (4.2).

Then we have

(5.12) I1F)—F)lly = cl(Vieluy|H)us— (Vv | il gh @

<c¢ X 0u—0"v, | he
la+B+7isk

X A110% ]| oo +[10%v, | oo} {110yl 2o+ (1070, | oo}

Proor. Noting [5.10), we can apply (i) to obtain the first
inequality of (5.12). The second inequality can be proved by the same argument
as in the proof of Lemma 4.5 O

LEMMA 5.6. Let a, b, h be as given in Lemma 4.6. Then we have

(5.13) IFu)—F®)llx = (V| ui [ Duy— (Vi [, | Doy -1 2

Sc 3B 0 u 0" 2
ja+B+r1sk-1

X A{10%uy | L2e +[10%v, || 220} {1107 w,]| 22+ 10P0, | 220}
PrROOF. We can also follow the argument of Lemma 4.5. [

PROOF OF THEOREM 5.1. First note that comes from and the
relation s=3=2/d.

(1) The same proof of is applicable to this case if we deal
with the problem in componentwise.

(II) As in the proof of [Theorem 4.1, is easily verified. The rest of
(II) with d=2/3 is already known in Lemmas 5.3 and 5.4,

(II) Noting Lemmas (i), 2.5 and 5.5, we obtain the following condition
which corresponds to [(4.14):

(5.14) %+3 =1-{Z or l}+417 > 1,2 k=latfiyl  2k—lte)

q n z q 2 q n n

For each |a+pB+y| <k, this defines a strip region of (@, 1/¢”), where § moves
in the interval [0, 1]. We denote by I, the narrowest region which occurs
when |a+pB+47y|=k. Note that condition also defines a strip region of
(0, 1/q”). We denote this by I,. Then hypothesis (III) is finally obtained by
showing I,N[,# @.

Use and to eliminate ¢ and e. Then I, is represented by
1 1 4 2(k-1 4(n—1) g 1
> __ - _ . = il
P R T 3n(n—1+«9)+{n or 1,

(5.15)
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1 1 4 g 1
. il Qe SR N b =

(5.16) qg” — 2 3(n~—1-|—0)+{n or z}
and [, is represented by

1 2
(5.17) = ?‘l—m,

2 2(n—1)

< a7

(5.18) 7= 2+ +3n(n 1+)"

From these inequalities we see that the condition for I),N\I,# @ is given by
(4.1}, (4.2) and (4.5). In fact [5.16), [5.17) with 6=1 show {o/n or 1/z}=2/n,
and (5.15), [5.18) with #=0 show {g/n or 1/z}<2(k-+1)/n.

To determine it simply, we choose the following two straight lines included
in the regions restricted by (5.15), [5.16) and [5.17), [5.18), respectively:

1 2(k—1) 206—1) l

” {311_‘_ n }0+ 3n+ n {n or z} and
—2 4

7 ”W‘9+2+3

where 0<6=1. Then as the point of intersection we obtain

1 _ 1, 2(k=—1) 7 .1 _ktl n o 1
O1) —r= gt +3k{ or o 0= —gpty o )

(IV) Noting Lemmas 2.4 (i), 2.5 and 5.6, we can reduce our problem to
showing

(5.20) 35 1-{Z or l}+l o 3_ 3k=l+o—latpiyl
q n V4 2 q n
Use [5.3), (5.4) and the fact |a+8+y|<k—1. Then is rewritten as

2k 2(n—1) >{£ or 1}2_ 2

n(n—1+6) = 2/ = n—1+6"

This follows from [4.1), and (4.5) since we have
Ak+1) _ 2k 2n—1) 2 _ 2
n “n  an—=14+60) 7 n—1+0 T n

for any 0<60<1. O

6. The wave eguation with a cubic convolution.

In this section we consider equation [(1.3) with the cubic convolution non-
linearity requiring
(6.1) V()| <clx|™° with 4<g<mn, or

(6.2) V(x)e L(R™  with 1gzg%
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We put X=H"*12x H* 12 for k=Z, and define
—_ 0 1 3 3 . 1,k,2 k,2
6.3) A= A O) with domain @(A)=H"*2x H* 2,

(6.4) F(u) = {0, if(w)} = {0, i(Vx|u,|®ui},
where u={u,, u,}={w, w,}.

THEOREM 6.1. Let k=Z be chosen to satisfy k=1 and (4.5). Put X=
Hl,k—l,szk—l,Z’ Y:He,k—l,qXH—H-e,k—l,q ana’ Z:Hz,k—m—z,qXHk—m—l, where

1 1 2
(6:5) ¢ 2 3n-1)’
_n+l n—S_E 1
6.6) °T oy T 4 _3<l n—1>

and m=1 is a large integer. Then (1.3) can be written in the form (3.3), and
all the assertions of Theorem 3.1 hold.

The following lemma is obvious from definition of Y and Z.
LEMMA 6.2. We have Y/ =H? ¢ *-10 X ['=ek-19 qpd 7/ =H*+™ ¢ x *+m-1a

LEMMA 6.3. (i) A is selfadjoint in X.
(ii) Let B be a positive selfadjoint operator in L* defined by

6.7 B =~—A with domain D(B)=H"?2.

Then B can be continuously extended in H""* (still denoted B), and

(iii) We have
6.9 IUs®plly < c@ltl gl ¢ CHRMXCIHRM,
where
(6.10) d = m—l)(%——;—).

Proor. (i) and (ii) are well known. On the other hand, if we use the
estimate (see e.g., Pecher [15])

|B-*sin(Btp| e < c(q)|t] 4B *¢lw,  o=CHR™,
then we have
IUlly = | B~ cos (Bt)Bi**¢h,+ B~ sin (Bt)Bé¢h, || yr#-1.9
+1—B*sin(Bt)B***¢,+ B cos (Bt) By | gt 1.0
< clt] "B il gt a | B, g1 0}



158 K. MocHIZUKI

proving [(6.9). O
LEMMA 6.4. U,t) maps Z’ continuously to Y':

(6.11) IU&lly = cOlillz .

Proor. We put
Do tericeseemf |EIKE>"Tcos €] sin |§|t
0&; =161 2 tey-1sim 1212 cosIEIt)'

Then this p satisfies the condition of Lemma 2.3. Thus,
IU@Pllyr = IF 1 ox{<BY* ™y, <BY*+™ o} 17 10 < )l . O

LEMMA 6.5. Let ¢” be defined by
1 1 e

6.12 —=
(6.12) 7 g

and let a, b, h be as given in Lemma 5.5 with this ¢”. Then we have

” 2
n

(6.13)  NF(u)—F@)ly < cll(Vlus| us— (V| oy [Jva] gt b1

<c¢ 3 0w =0l
1s|a+B8+71sk

X0 us]l oo +110%vs]| Loe} {107 w1 ]| 20 +-110Pvyl| oo}

PrOOF. The first inequality follows from the Sobolev embedding
2.4 (ii) if we note [6.12). The second inequality is proved by the same argu-
ment of Lemma 45. O

As is easily seen, holds also in the present case without any
modification.

PROOF OF THEOREM 6.1. (I) The argument of is also appli-
cable to this case if we deal with the problems in componentwise and if we use
all the assertions of

(I1) Since is easy, Lemmas [6.3 and establish (II) with d=2/3.

(III) We shall estimate each term of the right side of (6.13). Since
la+B+7I=1, there exists at least one non-zero vector in each triplet a, 8, 7.
Suppose that y+#0 (the other cases can similarly be treated). Our problem
is then to obtain, e.g., the following type of inequalities:

10701 — 0701l 20w || Lo’ 0P | 20" S el us—vy]| b B-2 2] 1y pe 10,

For this aim it is enough to show the existence of 1<a, b, h< oo which satisfies

and
1 1
aq

1 _ 1 [k=D—(lyl-D 1
q

1 (k—D—la]
hq” — 2 n ’

n

\%
v

1\

v

e _ 1
z T
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(k=D)— 18]

_1
q n

Noting |a+B+ry|=<k, we see that these conditions are rewritten to

1 2 1 1 2 1 2 2k-—-1
o zl-{Tor 4+t 2 1 2 2k=D
q n z q n 2 q n
or equivalently, to
(6.14) Lol or gt 2D
n n z n n
if we use [6.5), and [(6.12) This is what we have required in 6.2)
and (4.5).
(IV) We see from (5.13) that (IV) follows from the inequality
ERIITAPE P W B Y
q z 2 n n n

which is also equivalent to [6.14) O
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